Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

Abstract

There is increasing concern about potential long-term effects of antibiotics on children’s health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria.

Description

We acknowledge grant support from the US Office for Naval Research (ONR) (N00014-14-1-0787). S.L. is a recipient of a post-doctoral fellowship from the ONR and received funds from FSR (Fonds Spe´cial de la Recherche), Belgium. P.F. and O.K. are supported by the Canadian-Israel Health Initiative, jointly funded by the Canadian Institutes of Health Research, the Israel Science Foundation, the International Development Research Centre, Canada and the Azrieli Foundation.

Keywords

ANTIBIOTICS, CHILD HEALTH, PENICILLIN, MICE, GUT MICROBIOTA, LACTOBACILLUS RHAMNOSUS JB-1 SUPPLEMENTATION, BENEFICIAL BACTERIA

Citation

Leclercq, S. et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062 doi: 10.1038/ncomms15062 (2017).

DOI