September 20th, 2000

TECHNICAL RESEARCH REPORT TO IDRC

<u>Transformation of Shea butter (Burkina Faso)</u> <u>Final Report</u>

ARCHIV 121299

1

•

Г

Π

-

121299

processing Solutions

September 20th, 2000

TECHNICAL RESEARCH REPORT TO IDRC

<u>Transformation of Shea butter (Burkina Faso)</u> <u>Final Report</u>

<u>Species</u> Butyrospermum paradoxum Butyrospermum parkii

> <u>Family</u> Sapotaceae

Herve Douce, Chem. Eng., Biochemist Scientist, Oilseeds and Oils Processing

RECEIVED / REÇU NOV 2 2000 HSD/DSSN IDRC - CRDI ARCHIV 616.5: 547.915.2 (662.5) 06

Approved for release by:

Paul Fedec, Ph. D. Director of Quality Assurance & Regulatory Compliance A-RC

Distribution:

IDRC- 2 copies Main File - 1 copy

POS Project No. 56-97-856

POS Pilot Plant Corp., 118 Veterinary Road, Saskatoon, Saskatchewan, CANADA S7N 2R4 Telephone (306) 978-2800 · FAX (306) 975-3766 · Email: pos@pos.ca · http://www.pos.ca

Table of Contents

Π

1. Background
2. Objectives
OBJECTIVE 2. EVALUATION OF REFINING TECHNIQUES
OBJECTIVE 3. EVALUATION OF DRY FRACTIONATION
OBJECTIVE 5. ECONOMIC FEASIBILITY
OBJECTIVE 6. TRAINING
Phase 1A. Alkali refining of Shea butter13
Table 1A-1. Crude oil analysis 14
Table 1A-2. Crude oil analysis - minor constituents 15
Table 1A-3. Alkali refined and bleached Shea butter oil 15
Phase 1B. Physical refining of Shea butter16
Figure 1B-1. Effect of bleaching temperature on oil red colour
Figure 1B-2. Effect of bleaching clay dosage on oil red colour
Figure 1B-3. Effect of temperature on deodorized oil red colour 19
Figure 1B-4. Comparison of AOCS and Lovibond colour scales
Figure 1B-5. Comparison of AOCS red and Gardner scales
Table 1B-1. Vacuum bleaching trials 22
Table 1B-2. Atmospheric bleaching trials
Table 1B-3. Deodorization trials 24
Table 1B-4. Comparison of colour scales for crude Shea butter 25
Table 1B-5. Comparison of colour scales for vacuum bleached samples 25
Table 1B-6. Comparison of colour scales for atmospheric bleached samples 26
Table 1B-7. Comparison of colour scales for deodorized oil 27
Table 1B-8. Miscellaneous deodorized oil analysis 28
Table 1B-9. FAC of Shea butter distillate
Phase 1C. Ethanol refining of Shea butter
Table 1C-1. Latex precipitation and refining using 95.6% ethyl alcohol
Table 1C-2. Analytical data for latex removal & ethyl alcohol refining

Table of Contents

_____.

Table 1C-3	. Latex ppte and refining of bleached Shea butter using abs. EtOH
Table 1C-4	. Analytical data for latex removal & absolute Ethanol refining
Phase 2.	Training
Phase 3A.	Dry fractionation37
Table 3A-1	. Dry fractionation trials
Table 3A-2	. Dry fractionation of 50/50 Shea butter and sunflower blend
Phase 3B.	Solvent fractionation40
Table 3B-1	. Solvent fractionation analytical data 41
Table 3B-2	. Solvent fractionation color data 42
Table 3B-3	. Wet fractionation of 25/75 Shea butter and hexane at $5^{\circ}C$
Table 3B-4	. Unsaponifiable material
Phase 3C.	Coco butter substitute (CBS)45
Table 3C-1	. Analytical data on formulation component and formulations
Table 3C-2	. Solid fat index of formulation component and formulations
Figure 3C-	1.Solid fat index of formulations
21	
Phase 4A:	Pilot Plant scale-up, Refining & Fractionation of Shea butter
4A1. Intro	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47
4A1. Intro 4A2. Meth	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47
4A1. Intro 4A2. Meth 4A3. Meth	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47
 Phase 4A: 4A1. Intro 4A2. Meth 4A3. Meth 4A4. Discu 	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48
 Phase 4A: 4A1. Intro 4A2. Meth 4A3. Meth 4A4. Discu 4A5. Mass 	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction
 Phase 4A: 4A1. Intro 4A2. Meth 4A3. Meth 4A4. Discu 4A5. Mass 4A6. Conce 	Pilot Plant scale-up, Refining & Fractionation of Shea butter47duction.47ods.47ods-Analytical.47ussion48Balance.52lusions53
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1Table 4A-2	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49 Oil analysis during refining 51
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1Table 4A-2Table 4A-3	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49 Oil analysis during refining 51 Mass balance for Pilot Plant Trial 52
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1Table 4A-2Table 4A-3Table 4A-4	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49 Oil analysis during refining 51 Mass balance for Pilot Plant Trial 52 Analysis of stearin and olein fraction of Shea butter 53
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1Table 4A-2Table 4A-3Table 4A-4Table 4A-5	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49 Oil analysis during refining 51 Mass balance for Pilot Plant Trial 52 Analysis of stearin and olein fraction of Shea butter 53 Shea butter samples produced from scale up run 53
Phase 4A:4A1. Intro4A2. Meth4A3. Meth4A3. Meth4A4. Discu4A5. Mass4A6. ConcTable 4A-1Table 4A-2Table 4A-3Table 4A-3Table 4A-4Table 4A-5Figure 4A-5	Pilot Plant scale-up, Refining & Fractionation of Shea butter 47 duction 47 ods 47 ods-Analytical 47 ussion 48 Balance 52 lusions 53 Certificate of analysis of refined Shea butter 49 Oil analysis during refining 51 Mass balance for Pilot Plant Trial 52 Analysis of stearin and olein fraction of Shea butter 53 Shea butter samples produced from scale up run 53 I. Bleaching of Shea butter 48

Table of Contents

Ĩ

Phase 4B. Commissioning of RBD technologies lab deodorizer
4B-1. Summary
Table 4-B1. Commissioning of deodorizer with soybean oil operational parameters 55
Table 4-B2. Commissioning of deodorizer with soybean oil - analytical results 56
PHASE 5. Economic feasibility
5A1. Overview
5A2. Proposed processing flow for Burkina Faso
5A3. Price of finished goods60
Table 5A-1. Cost of finished goods FOB, POS OS
Table 5A-2. Pricing on N. American market
Phase 6. Acquisition of De Smet fractionation unit61
Appendix
Appendix 1A-1. Alkali refining trial protocols
Appendix 1B-1. Physical refining trial protocols
Appendix 1C-1. Solvent (ethanol) refining protocol
Appendix 1C-2. Refining with 95.6% (by wt.) ethyl alcohol
Appendix 1C-3. Latex Removal by Absolute Ethanol Method
Appendix 3A-1. Dry fractionation trials
Appendix 4A-1. Bleach Shea butter (Pilot Plant)
Appendix 4A-2. Deodorize bleached Shea butter (Pilot Plant)
Appendix 4A-3. Fractionation of Shea butter (Pilot Plant)
Appendix 4B-1. Solving the darkening of the oil at start up76
Appendix 5A-1. Dependence of overall yield on starting Shea specifications
Appendix 5A-2. Calculation of yields
Appendix 5A-3. Calculation of costs at POS

Study Personnel

ſ

.

 $\left[\right]$

Study Personnel	Job Title	Signature
Herve Douce, B.E, B.Sc.	Study Director	
Paul Orde, B. Sc.	Technician	
Gary Pocha	Technician	
Kin Ho, B. Sc.	Technician	
Myles Marianchuck, B.S.A.	Chief Analyst	
Luchun Wang, M. Sc.	Technician	

1. BACKGROUND

This report describes the objectives and work completed on IDRC Project File 02724; Transformation of Shea butter (Burkina Faso). The project was executed with the contracting agencies being POS Pilot Plant Corporation (POS) and the Department of Natural Substances of the Institut de Recherches en Sciences Appliquées et Technologie (IRSAT). Project initiation was January 1, 1998, with completion on September 15, 2000.

2. OBJECTIVES

Objectives listed are as proposed, defined and approved per IDRC file: 02724, <u>Transformation of Shea butter</u> (Burkina Faso).

The main objective of the current project is to improve the utilization of Shea butter through value added processing and quality improvements. The perceived dependence of Burkina Faso's economy on improved utilization of Shea demands an immediate, speedy and successful execution of this program. However, strategies have to be implemented now to ensure future sustainability and growth. The immediate, specific goals to attain are:

- 1. Evaluation and standardization of treatment methods to inactivate the inherent and contaminating microbial lipases in the Shea kernel.
- 2. Development and evaluation of refining and deodorization methods to improve the overall quality of locally produced Shea butter.
- 3. Exploration of possible alternatives to promote the domestic use of Shea butter.
- 4. Pilot plant scale-up of the developed or adapted technologies for Shea and production of product samples.
- 5. Determine the economic feasibility of developed or adapted technologies for use in Burkina Faso.
- 6. Training of one individual on laboratory methods and quality control. Training of one individual on management of an oils processing plant.

Objectives have been broken into phases, based on rough chronology of project execution at POS. Phase 4, 'Commissioning of RBD Technologies Lab Deodorizer' and Phase 5, 'Acquisition of De Smet Fractionation Unit' are included in the reporting but not covered under the primary objectives.

Objective 1. Evaluation of Harvest Techniques

Evaluation and standardization of treatment methods to inactivate the inherent and contaminating microbial lipases in the Shea kernel.

<u>Status</u>

Evaluation of harvesting, oil extraction techniques and analytical results has been executed by the Department of Natural Substances of the Institut de Recherches en Sciences Appliqués et Technologie (IRSAT). Results are reported in report entitled "Transformation du beurre de Karité, Project 02724, CRDI/IRSAT".

Objective 2. Evaluation of Refining Techniques

Development and evaluation of refining and deodorization methods to improve the overall quality of locally produced Shea butter.

<u>Status</u>

This objective has been broken down into three phases:

- Phase 1A. Alkali Refining of Shea butter
- Phase 1B. Physical Refining of Shea butter
- Phase 1C. Solvent (in ethanol) Refining of Shea butter

This represents a deviation in detail but not in the primary objective, 'Development and evaluation of refining and deodorization methods to improve the overall quality of locally produced Shea butter'. See Results and Discussion section.

Objective - as per IDRC FILE: 02724

Two main refining processes are usually used in the fat and oil industry. Alkali refining involves neutralization of free fatty acids using sodium hydroxide followed by a bleaching step and finally a deodorization step. Physical refining involves a bleaching step followed by physical deodorization to remove the free fatty acids. These processes may be adaptable to Shea but cost and infrastructure constraints require that cost effective, and appropriate technologies be developed for the area. In this context the researchers are contemplating developing a solvent refining process to replace the conventional alkali refining process practiced in industries in Europe. The choice of a solvent refining process is based on the abundance of excess ethanol in Burkina Faso. The process envisaged would involve a simple stir tank agitation, time lagged phase separation and decantation of the refined butter from the solvent/contaminant mixture. The solvent is subsequently recovered for re-use while the fatty acids can serve as feedstock for the soap industry. The process is deemed to offer several advantages over the conventional alkali method with respect to Burkina's resources. The main advantages would be the anticipated lower energy consumption, hence lower cost and capital investment. The tasks to accomplish in the development of this novel refining process are:

- a) Identification of the modulating factors; temperature, solvent/butter ratio, solvent composition, FFA content of butter, contact time and speed of agitation.
- b) Optimization of the important modulating factors with respect to efficiency and yield.

- c) Optimizing the solvent recovery process.
- d) Process definition and specification.

The quality attributes that will be monitored during the refining process development are; FFA, moisture, colour, odour and non-saponifiables. Parallel refining comparison of the new method will be made with conventional alkali or physical refining method to compare efficiencies.

Bleaching tests would be conducted using activated charcoal and various clays. The quality factors that would be monitored in this test are; color, FFA and odor.

Deodorization of the butter has to be achieved without destroying the non saponifiables and other nutritionally important components of the butter. Factors such as; steam sparging rate, temperature, residence time and initial FFA will have to be optimized to achieve the goal of maximum retention of the important components. Quality attributes to monitor during the tests are: final FFA, odor, color and non-saponifiable matters.

Objective 3. Evaluation of Dry Fractionation

Development of a method to produce altered melting characteristics products for new markets.

<u>Status</u>

This objective has been broken down into two phases:

Phase 3A. Dry Fractionation of Shea butter Phase 3B. Solvent Fractionation of Shea butter Phase 3C. Coco butter substitute (CBS)

Objective - as per IDRC FILE: 02724

Additional technologies such as dry fractionation method (the separation of the solid phase from the liquid phase in a partly melted fat) will be explored with the view of enhancing and diversifying the utilization of Shea butter domestically or as an import substitution. Tasks to attain under this objective are:

- a) Determine the appropriate dry fractionation conditions for Shea butter.
- b) Separation of the solid (stearin) and liquid (olein) fractions from the butter.
- c) Analysis of each fraction to evaluate its best possible use; it is possible that the highly priced cosmetic compounds might be enriched in one or another of the phase, depending on the operating parameters.
- d) Development of prototype liquid cooking oil and margarine products from the appropriate fractions.
- e) Analysis and tests of the sample products to verify compliance with quality requirements.

Objective 4. Scale Up

Scaling of bench-top processes to the pilot plant.

<u>Status</u>

This objective has been broken into two phases.

Phase 4A. Refining and fractionation of Shea butter in the Pilot Plant. Phase 4B. Commissioning of RBD Technologies laboratory deodorizer.

About one tonne of crude Shea butter was air freighted from Burkina Faso to POS. The crude oil was bleached and physically refined.

Some of the refined oil was fractionated using hexane as carrier solvent. The olein and stearin fraction was fully desolventized and packaged.

Objective - as per IDRC FILE: 02724

In many cases, excellent technologies developed or successfully adapted in the laboratory become impossible or uneconomical to scale-up. It is, therefore, essential that the scalability of the developed or adapted technologies be tested in the pilot plant. It is also crucial that the stakeholders of this program; Burkina Faso people and their government, IDRC, associated NGOs and other organizations see tangible results of this program in terms of real products that can be tried. To meet this goal the investigators propose to conduct scale-up tests of the developed or adapted technologies at the POS Pilot Plant facility in Saskatoon, Canada. Half a tonne of crude Shea butter will be air freighted to Saskatoon for this purpose. Data on the scale-up tests would be used in subsequent economic evaluation of the processes. The refined or transformed products along with corresponding consumable products developed from them will be returned to Burkina Faso for presentation and testing by stakeholders.

Objective 5. <u>Economic Feasibility</u>

Assessment of economic feasibility.

<u>Status</u>

[

 \int

 \bigcap

Phase 5: An economic feasibility analysis of the proposed refining and fractionation system was done after the scale up work.

Objective - as per IDRC FILE: 02724

Economic feasibility analysis based on input costs and potential revenues extrapolated from the laboratory and pilot plant scale-up results to industrial scale would be made. Based on the viability of the evaluated processes a proposed process flow for a demonstration pilot plant would be defined.

Objective 6. <u>Training</u>

Training of key personal in important aspects of oil processing and Shea butter processing

<u>Status</u>

This objective was altered and Mr. Kassamba Bakari was at POS for a single 8 week training period. This objective is reported as Phase 2.

Objective - as per IDRC FILE: 02724

Two training programs are proposed in collaboration with the Canadian partner:

- 1) Technical training in terms of laboratory methodologies and quality control determinations to support the pilot plant.
- 2) Training of a process engineer in hands-on management of a fats and oil processing pilot plant.

Both training programs are planned to be undertaken at the pilot plant processing facility of POS Pilot Plant Corporation in Saskatoon, Canada. Each training program will involve one individual and will be of four weeks duration.

IRSAT personnel will also be trained at the facilities of the De Smet company in Belgium, on the use of the equipment to be bought from that company.

Phase 1A. Alkali Refining of Shea butter

Summary

 \int

The Shea butter had a very strong tendency to emulsify with the water used for the alkali refining process. Water washing of the oil was not manageable and easily formed emulsions. Actual trial conditions are reported in Appendix 1A-1. This task has been aborted. It is believed that the high unsaponifiable content, 8.58%, is responsible for this oil's tendency to emulsify. This is one of the properties that make Shea butter suitable for cosmetic applications.

Analysis of the crude oil follows.

Table 1A-1. Crude Shea butter analysis

	Shea butter	Literature	Literature
		References	References
<u>Crude oil</u> Peroxide Value, meq/kg p-Anisidine Value Free Fatty Acids, % Colour, 5.25" Lovibond (AOCS) Colour, 5.25" Lovibond (Lovibond) Gardner colour Chlorophyll, ppm Iodine Value Unsaponifiables, % Mettler Melting Point, °C Solid Fat Index, % 10°C 21.1°C 26.7°C 33.3°C 40.0°C	6.80 3.40 2.04 70.0Y2.9R 70.0Y3.0R 5.2 0.09 56.9 8.58 31.4 39.8 34.2 20.7 1.8 0.3	4.7-7.0 9-10 56.4-58.6 5.6-7.6	53-65 2-11

¹ <u>Ensayos para la refinación fisica de la mantec de karité;</u> Mendez, M.V., et al; Grasas y Aceites; Vol 42 (1991); pp 121-126

² <u>The Lipid Handbook</u>; Frank D. Gunstone et al, ed.; pub. Chaman & Hall, N.Y.; pp. 88-112

	Shea butter	Literature References	Literature References		
		1	2		
Crude oil					
Phosphorus, ppm	<0.2	70-100			
Sulfur, ppm	<0.5				
Iron, ppm	1.48				
Copper, ppm	<0.05				
Fatty Acid Composition * %					
C16	3 25	37-38	33		
C18	43.86	38.3-37.5	44.3		
C18:1	44.59	50.8-49.7	45.6		
C18:2	5.92	6.5-7.9	5.5		
C18:3	0.21	0.8-0.9			
C20	1.53		1.3		
C20:1	0.35	Í			
C22	0.14				
C24	0.08				
Tocopherols, µg/g	**	Traditional			
		780-902 ³			
		Pressed			
		1720-1760			
Sterois, $\mu g/g$			044		
Delta 7 - Stigmastenoi			9 44 001		
Unknown			401 130		
			102		

Table 1A-2. Crude Shea butter analysis - Minor Constituents

 \int

 $\left[\right]$

* Bleached using 0.2% phosphoric acid pretreat, 2.0% Supreme 120 FF clay at 110°C for 30 minutes, Deodorized at 250°C for 2 hours using 6% of steam/hr. ** Series of unknown compounds eluting at same time as sterols and tocopherols

Table 1A-3. Alkali Refined and bleached Shea butter oil

Conditions	Peroxide Value,	Free Fatty Acids, %	AOCS Col	5.25" our	Gardner Colour
	meq/kg		R	Y.	
0.1% Citric Acid 15 minutes	0.54	0.47	0.7	9.1	1.8

¹ <u>Ensayos para la refinación fisica de la mantec de karité;</u> Mendez, M.V., et al; Grasas y Aceites; Vol 42 (1991); pp 121-126

² <u>The Lipid Handbook;</u> Frank D. Gunstone et al, ed.; pub. Chaman & Hall, N.Y.; pp. 88-112

³ <u>The level of tocopherol in Ghanaian Oils;</u> J.K.B.A. Ata & Agnes Cobbina; Ghana Jnl agric. Sci., 6 (1973); pp 45-47

Phase 1B. Physical Refining of Shea butter

Summary

Phospholipid Removal

Initial protocols were established based on literature information that indicated a phosphorus content of 70-100 ppm (Table 1A-2). The phosphorus content of the oil received was <0.2 ppm. It is not know if the material received is representative of the long term quality of the Shea butter or if the specific processing used to generate this sample, resulted in the lower phosphorus content. If the low phosphorus content is related to the processing and the process is continued as per the sample received at POS then phosphorus content will not be an issue.

Bleaching

Initially single conditions were selected for bleaching to determine a starting point for oil quality (Table 1B-1). This was followed by a bleaching study using varying clay dosages (Table 1B-1) and several trials of atmospheric bleaching (Table 1B-2) to compare against vacuum bleaching. The bleaching clay used in the trials was Tonsil 'Supreme 120 FF'. There is an economic benefit if a vacuum system could be deleted from the system but it will impact oil quality. The protocol used for the trials is attached as Appendix 1B-1.

The minimum colour was obtained between 90°C and 100°C for the atmospheric bleached oil, Figure 1B-1. The vacuum bleached oil however had a lower bleached colour, Figure 1B-1. Clay dosages above 1.5% of Supreme 120 FF do not further reduce colour during vacuum bleaching, Figure 1B-2. The colour using 2% clay atmospheric bleaching was similar to the 1% clay vacuum bleaching, same Figure.

Atmospheric bleaching using Burkina Faso clay (2% at 100°C) yielded results comparable to Tonsil 120 FF clay, see Table 1B-2.

Deodorization (Physical Refining)

(Physical refining is the terminology used when free fatty acids are removed using steam stripping instead of alkali refining. The unit operation is the same as normal deodorization but more stripping steam capacity is required than for deodorization of alkali refining oil.)

Several of the bleached samples were lab deodorized as per the protocol in Appendix 1B-1. Results of the trials are listed in Table 1B-3. Peroxide values and para-anisidine values for the deodorized oils were not significantly different. Free fatty acids were reduced as the deodorization temperature increased from 0.15% at 220°C to 0.02% at 260°C using the same stripping time, 1 hour. The free fatty acid content of the lower temperature trials likely could have been reduced to the same free fatty acid level by increasing the deodorization time.

A comparison of the RBD colour is shown in Figure 1B-3. As can be seen the colour of the deodorized oil from the vacuum bleached oil is lower than the final colour from the atmospheric bleached oil, 0.5-0.6 Red compared to 0.7-0.9 Red. However in both cases the final colour compares favourably with commercially available RBD Shea that usually has a colour of 3 to 4 on the Gardner scale.

When atmospheric bleached oil is deodorized there is a tendency for the red component of the oil colour to increase during deodorization.

Table 1B-8 shows FAC and SFI were not significantly different from the crude to deodorized oil. There was a rise in unsaponifiable content, which may be a result of the removal of the free fatty acids, which may account for a 0.2% rise, and the rest may be variation in analysis. The AOM of 34.6 hours indicates a stable oil relative to many other vegetable oils. This is an expected result considering the oil has low poly-unsaturate content.

Table 1B-9 lists the FAC for the deodorized oil and deodorizer distillate. There is no significant difference indicating the free fatty acids have essentially the same fatty acid distribution as the triglyceride oil. This is expected for most oils.

Tocopherols and sterols content were established using a gas chromatograph operated according to established analytical protocols. A large number of unknown chromatographic peaks and over lap of various sterol peaks would not allow resolution and identification of the compounds. Since there is considerable literature information ^{3,4,5,6,7,} on the sterols and tocopherol composition of Shea butter, identification was not pursued further.

Colour Scales

Tables 1B-4, 1B-5, 1B-6, and 1B-7 and Figures 1B-4 and 1B-5 show a comparison of colour data gathered from different colour measurement systems for the various trials. The data is provided for information purposes and future intent would be to be able to compare colour measurements produced or expected by third parties. The Lovibond and AOCS scale are very well correlated, $r^2 = 0.96 - 0.99$, Figure 1B-4. However the Gardner scale is not as well correlated to the AOCS red scale, $r^2 = 0.76$, Figure 1B-5. This result was expected since the AOCS and Lovibond scales are based on adsorption characteristics at the same wavelengths and the Gardner scale is set up using a different wavelength.

^{3: &}lt;u>Sterols and methyl sterols in some tropical and subtropical vegetable oil;</u> Toshihiro Itoh, Toshitake Tamura and Taro Matsumoto.

^{4: &}lt;u>Characterization of Tripterpene alcohols of seed oils from some species of Theaceae</u>, <u>Phytolaccaceae and Sapotaceae</u>; Toshihiro Itoh, Toshimitsu Uetsuki, Toshitake Tamura and Taro Matsumoto.

^{5: &}lt;u>24-Methylenelanost-9(11)-en-3 β-ol</u>, New Tripterpene alcohol from Shea butter, T. Itoh, T. Tamura and T. Matsumoto.

^{6: &}lt;u>The non-glyceride saponifiables of Shea butter</u>; Kenneth E. Peers, J. Sci Fd Agric. 1977, 28, 1000-1009

^{7:} The effect of processing on vegetable oil sterols, A literature review, S.P. Kochhar, M.Sc., Ph.D., A.I.F.S.T.

All trials using 2.0% clay.

 \prod

 \prod

Į

- 18 -

Figure 1B-2. Effect of Bleaching Clay Dosage on oil red colour

Clay Dosage, %

ļ

Γ

[

[

[

Deodorization Temperature, °C

Figure 1B-4. Comparison of AOCS and Lovibond Colour Scales

 $\left[\right]$

 \prod

2

Data for above two Figures from Table 1B-5.

-

 $\left[\right]$

[

 $\left[\right]$

 $\left[\right]$

Data for above Figure from Table 1B-5.

Table 1B-1. Vacuum Bleaching Trials

Pretreatment as specified. Oil charge: 1,100-1,200 g Clay dosage: 2% Tonsil Supreme 120 FF unless otherwise specified. Bleaching Temperature: 110°C Bleaching Time: 30 minutes under vacuum Filter Aid: 1% of oil weight

Conditions	Peroxide Value,	Free Fatty Acids, %	AOCS	5.25" lour	Gardner Colour	
	meq/kg		R	Y		
0.1% Citric Acid, 15 minutes*	0.54	0.47	0.7	9.1	1.8	
0.2% Citric Acid 15 minutes **	0.40	1.79	0.5	8.0	1.6	
0.1% Citric Acid 15 minutes **	0.50	1.92	0.6	7.8	1.6	
0.1% Citric Acid 15 minutes 0.5% Clay	-	-	1.2	24.0	3.2	
0.1% Citric Acid 15 minutes 1.0% Clay	-	-	0.9	13.0	2.9	
0.1% Citric Acid 15 minutes 1.5% Clay	-	-	0.6	9.4	2.2	

* - Note soaps were 343.8 ppm and trial was aborted after bleaching. **- Use in deodorization trials.

Table 1B-2. Atmospheric Bleaching Trials

No pretreatment Oil charge: as specified Clay dosage: 2% Tonsil Supreme 120 FF Bleaching Temperature: as specified Bleaching Time: 30 minutes, open container Filter Aid: 1% of oil weight

Conditions	Peroxide Free Fatty Value, Acids, %		AOCS	5.25" our	Gardner Colour
	meq/kg		R	Y	
100g, Atmospheric at 40°C	2.93	-	1.7	17.0	2.6
100g, Atmospheric at 60°C	1.58	-	1.1	12.0	2.2
100g, Atmospheric at 80°C	0.92	-	0.9	12.0	2.2
100g, Atmospheric at 100°C	0.72	-	0.8	13.0	2.6
1604.5g, Atmospheric at 100°C *	0.30	1.84	0.6	12.0	2.3
489.5g, Atmospheric at 110°C	0.35	1.90	1.0	15.0	2.7
100g, Atmospheric at 120°C	0.60	-	0.9	15.0	2.8
100g, Atmospheric at 140°C	0.50	-	1.8	22.0	3.5
Atm. Bleach with 2% Burkina Faso clay at 100°C	0.06	1.70	0.8	9.9	-

* Used for deodorization trials

Table 1B-3. Deodorization Trials

1

AND COM

1000

Oil Type Peroxide p- Value, meg/kg		p-Anisidine Value	P-Anisidine Free Fatty Value Acids, %		5.25" lour	Gardner Colour
	mcy/ sg			R	Y	
Crude Shea butter	6.80	3.40	2.04	2.9	70.0	5.2
Vac. bleached, 0.1% pretreat	0.50		1.92	0.6	7.8	1.6
Deodorized at 250°C	0.12	-	0.01	0.6	4.8	<1
Vac. bleached, 0.2% pretreat	0.40		1.79	0.5	8.0	1.6
Deodorized at 250°C	0.00	2.71	0.02	0.5	4.6	. <1
Atm. bleach at 100°C	0.30	-	1.84	0.6	12.0	2:3
Deodorized at: 220	0.11	3.45	0.15	0.7	8.3	1.7
240*	0.00	3.16	0.14	0.8	8.4	1.8
240	0.00	3.43	0.07	0.9	8.6	1.8
260	0.00	3.24	0.02	0.7	6.9	1.3

All bleaches listed in this Table were executed using 2.0% of clay and a 30 minute bleaching time. The vacuum bleaching was done at 110°C and the atmospheric bleaching was done at 100°C.

* - Poor vacuum (3.7-8.0 mm Hg) occurred one hour after deodorization temperature was reached.

Note: Deodorization of vacuum bleached oil reduces the yellow component while leaving the red unchanged while deodorization of atmospheric bleached oil tends to increase the red component while reducing the yellow component. All deodorizations listed in the above Table were done in the glass deodorizer.

Note: Pressed, RBD **commercial** Shea has a colour specification of 3 to 4 on the Gardner scale.

Table 1B-4. Comparison of Colour Scales for Crude Shea butter

	Red	AOCS Col	our 5.25" Chl. a	Chl. b	Red	Lovibond C Yellow	olour 5.25" Blue	Neutral	Gardner Colour
Crude Shea butter	2.9	70.0	0.092	0.000	3.0	70.0	0.0	0.0	5.2

Table 1B-5. Comparison of Colour Scales for Vacuum bleached Samples

Standard conditions are 1100-1200g with 2% tonsil 120 FF clay at 110°C for 30 minutes under vacuum, filter with 1% filter aid.

Bleaching Conditions	AOCS 5.2 Colour	5"			Lovibond Colour	5.25"			Gardner Colour
	Red	Yellow	Chl. a	Chl. b	Red	Yellow	Blue	Neutral	
Alkali Refined/bleached									
0.1% Citric Acid 15 minutes	0.7	9.1	0.000	0.000	-	-	-	-	1.8
Pretreat bleached									
0.2% Citric Acid 15 minutes	0.5	8.0	0.000	0.139	0.9	9.2	0.0	0.0	1.6
0.1% Citric Acid 15 minutes	0.6	7.8	0.000	0.000	0.9	9.2	0.0	0.1	1.6
0.1% Citric Acid 15 minutes 0.5% Clay	1.2	24.0	0.013	0.535	1.5	27.0	0.0	0.1	3.2
0.1% Citric Acid 15 minutes 1.0% Clay	0.9	13.0	0.010	0.228	1.1	15.0	0.0	0.1	2.9
0.1% Citric Acid 15 minutes 1.5% Clay	0.6	9.4	0.000	0.220	1.0	11.0	0.0	0.1	2.2

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

- 26 -

Table 1B-6. Comparison of Colour Scales for Atmospheric bleached Samples

Standard conditions are 1100-1200g with 2% tonsil 120 FF clay at 110°C for 30 minutes under vacuum, filter with 1% filter aid.

Bleaching Conditions		AOCS Col	5.25" our			Gardner Colour			
	Red	Yellow	Chl. a	Chl. b	Red	Yellow	Blue	Neutral	
Atmospheric bleached									
100g at 40°C	1.7	17.0	0.003	0.230	2.3	20.7	0.7	0.0	2.6
100g at 60°C	1.1	12.0	0.000	0.108	1.4	15.0	0.0	0.0	2.2
100g at 80°C	0.9	12.0	0.000	0.038	1.1	14.0	0.0	0.1	2.2
100g at 100°C	0.8	13.0	0.000	0.000	1.1	15.0	0.0	0.2	2.6
1604.5g at 100°C	0.6	12.0	0.000	0.000	1.0	14.0	0.0	0.1	2.3
489.5g at 110°C	1.0	15.0	0.000	0.000	1.5	18.0	0.0	0.5	2.7
100g at 120°C	0.9	15.0	0.000	0.000	1.3	18.0	0.0	0.2	2.8
100g at 140°C	1.8	22.0	0.000	0.000	2.1	27.0	0.0	0.2	3.5

- 27 -

Table 1B-7. Comparison of Colour Scales for Deodorized oil

Deodorization Temp.		AOCS C	olour 5.25"			Gardner Colour			
1.91	Red	Yellow	Chl. a	Chl. b	Red	Yellow	Blue	Neutral	
Vacuum bleached									
0.2% citric/deod. 250°C	0.5	4.6	0.000	0.035	0.9	5.2	0.0	0.1	<1
0.1% citric/deod. 250°C	0.6	4.8	0.000	0.000	1.0	5.6	0.0	0.0	<1
		····							
Atmospheric bleached									
220	0.7	8.3	0.000	0.000	1.0	9.5	0.0	0.1	1.7
240*	0.8	8.4	0.000	0.017	1.1	9.6	0.0	0.1	1.8
240	0.9	8.6	0.000	0.000	1.1	9.9	0.0	0.1	1.8
260	0.7	6.9	0.000	0.000	1.0	8.2	0.0	0.1	1.3

* - Poor vacuum (3.7-8.0 mm Hg) occurred one hour after deodorization temperature was reached. Note: Pressed, RBD commercial Shea has a colour specification of 3 to 4 on the Gardner scale.

	Shea butter Crude	Shea butter Deodorized
Crude oil		
Unsaponifiables, %	8.58	10.09
AOM, hr	-	34.6
Solid Fat Index, %		
10°C	39.8	40.1
21.1°C	34.2	34.4
26.7°C	20.7	21.7
33.3°C	1.8	1.8
40.0°C	0.3	0.3
Fatty Acid Composition, %		
C16	3.25	3.24
C18	43.86	43.90
C18:1	44.59	44.61
C18:2	5.92	5.88
C18:3	0.21	0.19
C20	1.53	1.54
C20:1	0.35	0.35
C22	0.14	0.15
C24	0.08	0.08
Sterols & Tocopherols**		

Table 1B-8. Miscellaneous Deodorized oil Analysis

* - Bleached using 0.2% phosphoric acid pre-treat, 2.0% Supreme 120 FF clay at 110°C for 30 minutes, Deodorized at 250°C for 2 hours using 6% of steam/hr.

**- Series of unknown compounds eluting at same time as sterols and tocopherols. Chromatograms have not been included.

> · - .

Table 1B-9. FAC of Shea butter Distillate

	Shea butter Deodorized *	Shea butter Distillate **
Fatty Acid Composition, %		
CI4	0.0	0.07
C16	3.24	5.40
C16:1	0.0	0.11
C18	43.90	47.42
C18:1	44.61	38.00
C18:2	5.88	6.11
C18:3	0.19	0.26
C20	1.54	1.31
C20:1	0.35	0.30
C22	0.15	0.12
C24	0.08	0.17

Note: Distillate and deodorized oil FAC 's were not from the same run.

- * Bleached using 0.2% phosphoric acid pre-treat, 2.0% Supreme 120 FF clay at 110°C for 30 minutes, Deodorized at 250°C for 2 hours using 6% of steam/hr.
- ** Bleached using 0.2% phosphoric acid pre-treat, 1.0% Supreme 120 FF clay at 110°C for 30 minutes, Deodorized at 250°C for 2 hours using 6% of steam/hr.

Phase 1C. Ethanol Refining of Shea butter

First Trial: (1 part ethanol: 4 part Shea butter)

A first attempt to disperse Shea butter in 95% ethanol followed by phase separation of the free fatty acids was not successful. The ethanol and Shea butter did not separate as distinct phases, rather an emulsion was formed. Trial protocol and observations are listed in Appendix 1C-1. This trial failed because an insufficient amount of ethanol was used to dissolve the Shea butter. (1 part ethanol : 4 part Shea butter)

Second Trial: (1 part ethanol: 0.17 part Shea butter)

A second set of trials was initiated in February 1999 using 95% <u>by weight</u> ethanol at a higher ratio of alcohol to Shea, (6 part by weight of ethanol: 1 part by weight of Shea butter). The first three trials of this set were done at 95°C while the last four were done at 120°C. The protocol is listed in Appendix 1C-2. Results are displayed in Tables 1C-1, 1C-2.

In these trials lowering the free fatty acid content of the starting bleached Shea oil was successful. The free fatty acid level dropped from an initial level of 1.65% in the starting bleached oil to a level of 0.34-0.25% in the bottom oil rich layer upon separation of Shea from ethanol. At the same time an enrichment of the upper oil poor layer with free fatty acid was observed, (1.65% to 7.32%).

Ethanol refining may be the most economic method for Burkina Faso in view of the abundance of excess ethanol and simplicity of the method.

Another advantage of the ethanol refining process is the possibility of latex removal from the Shea butter if so desired. The non polar latex is insoluble in ethanol. If the temperature of the Shea butter-ethanol mixture is chosen so that the Shea butter is completely miscible in the alcohol then the latex can be separated by filtration. At 120°C Shea butter is completely miscible in 95.6% by wt ethanol. Filtration at 120°C results in the separation of the latex from the Shea butter. However at 95°C Shea butter is not completely dissolved in the 95% by wt ethanol so the latex stays in the butter and little is recovered by filtration. See Table 1C-1.

The removal of the latex, $\sim 1-1.5\%$ by weight of the Shea butter, is required if a cocoa butter substitute is the end Shea product use, whereas if the end product is for cosmetic applications latex removal may not be required.

This method of latex and free fatty acid removal can be used with ethanol having a concentration of 85% by weight or higher, in a range of 1 to 24 parts by weight of alcohol to 1 part by weight of Shea butter⁸. The use of larger amounts of alcohol may not be economical. The upper, oil poor/alcohol layer obtained during separation can be repeatedly used for refining a new batch of Shea butter. However it is preferable to bleed off some of this layer and replace it with some fresh alcohol before reuse. The amount to be removed will depend on the initial free fatty acid content of the Shea butter but will usually be in the range of 5 to 20% by weight.

8: US patent 4, 103,039

- 31 -

Third Trial: (Refining using absolute ethanol)

See Table 1C-3 & 1C4 and protocol in Appendix 1C-3.

The main **disadvantages** of the refining trials using 95.6% by weight ethanol, (trial #2) are the requirement of a pressure vessel for reaching the temperature of 120°C and the requirement of pressure filtration at 120 °C. Both requirements would not be easily transferable to Burkina Faso.

A third refining trial using absolute ethanol was performed on the 24-25th of March 1999. <u>Since Shea butter is more soluble in absolute ethanol the need for heating and filtering under pressure is eliminated</u>.

Two trials were performed one using atmospheric bleached Shea and the other SM/Shea. More latex is removed during absolute alcohol refining than refining using 95.6% alcohol, i.e. $(6.09 \times 44.31\%)/161.8=1.7\%$ of latex removed when using absolute alcohol as compared to $(1.67 \times 45.12\%)/125=0.6\%$ for the best trial using 95.6% alcohol.

The Shea-Absolute alcohol solution after filtration of the latex was then cooled to 10°C. This resulted in the precipitation of white Shea crystals, 61% by weight of the initial Shea dissolved in the alcohol. This fraction (S1) had a very low unsaponifiable level, 0.53%. The olein fraction, 39% by weight of the initial Shea dissolved in the alcohol, was enriched with the unsaponifiables, 11.41%. This method of fractionation of the stearin may represent the best method of obtaining a cocoa butter substitute, CBS, from Shea.

The main advantages of this method are:-

- The ability to refine the <u>Shea stearin</u> under low temperature (80°C). This will minimize energy requirement and any possible isomerization of the symmetrical triglycerides, SOS, POS, SOP which are needed for CBS.
- The possible fractionation of Shea in absolute ethanol excludes the need to use another solvent for that purpose.
- Ethanol is an abundant resource in Burkina Faso.
- The process does not need a pressure vessel or filtration under pressure.

The olein fraction obtained after desolventization yields a precipitate upon cooling to room temperature. This was filtered out to yield a second stearin fraction, S2 and an olein liquid fraction at room temperature. This olein fraction, 20% of initial Shea butter by weight, has a dropping point of 7.8°C and represents the best liquid Shea fraction obtained to date.

 \square

- 32 -

<u>Table 1C-1: Latex precipitation and refining of bleached Shea butter using 95.6% by wt. of EtOH</u>										
Trial #1-#3		Tria	l #4-#7							
Mix 125g of bleached Shea & 750g EtOH	, heat to 95°	C Mix	Mix 125 g bleached Shea & 750g EtOH, heat to 120°C							
Hold 30 minutes		Hold	30 minute	s						
Filter through 1.0 micron glass micro fib	er filter	Filte	r through 1	.0 micron gl	ass micro f	iber filter (tria	al 4, 5, 7)			
Dry filter paper in 80°C oven for ~ 2 hr.		Filte	r through 0	.45 micron '	Feflon filter	for trial #6				
Phase separation of Shea from alcohol at	: 40°C	Dry 1	filter paper	in 80°C over	n for ~ 2 hr					
		Phas	se separatio	n of Shea fr	om alcohol	at 40 °C				
	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	Trial #6	Trial #7			
Temperature (°C)	95	95	95	120	120	120	120			
Wt. of bleached Shea (g)	125	125	148.87	125	125	125	125			
Wt. of 95.6% ethanol (g)	750	750	893.2	750	750	750	750			
Wt of alcohol rich top layer (g)	-	726.38	859.3	717.55	735.63	744.31	762.85			
Wt. of oil rich bottom layer (g)	-	114.03	132.2	111.39	103.87	88.73	84.95			
% by wt of water in alcohol rich layer	-	4.03	3.99	-	-	-	-			
% by wt of water in oil rich lower layer	-	-	0.31	-	-	-	-			
Wt of oil obtained from alcohol rich layer (g)	19.52	25.58	24.70	20.19	29.53	39.08	48.18			
Wt. of oil obtained from oil rich layer(g)	94.44	96.74	114.22	99.47	91.57	79.25	74.03			
% oil in alcoholic top layer ^b	-	3.52	2.87	2.81	4.01	5.25	6.3			
Alcohol Insoluble (g)	0.4865*	0.5100*	0.5061*	1.1168**	1.46**	1.67**	0.93**			

* Residual on filter paper, very little or no latex (reaction and filtration done at 95°C)
 ** Latex was obtained on filter paper when reaction and filtration done at 120°C.
 *<u>Wt. of oil obtained from alcohol rich layer</u> Wt of alcohol rich top layer

- 33 -

Sample ID	PV	Col	our	% FFA	Unsaponifiable	Sap.	M.P.	Moisture
	meq/kg	Y	R		%	Value	°C	%
SM/Shea #2	8.30	40	2.6	1.70	6.13	178.7	30.8	-
Bleached oil (Atm. 100°C)	0.12	9.1	0.7	1.65	5.91	179.3	-	-
Ethanol Refining								
Latex †	-		-	-	-	- 1	_	-
Oil from upper EtOH layer	-		-	7.32	-		-	3.99
Oil from lower EtOH layer	-		-	0.34	5.65		-	0.31
Latex © Oil from upper EtOH layer Oil from lower EtOH layer®	-		-	- - 0.25	45.12 8.30*/7.64** 4.68*/5.94**			- -

Table 1C-2 : Analytical data for latex removal and 95.6% ethanol refining

† : Pooled sample of trial #1 to 3, filtration performed at 95°C .
©: Pooled sample of trial 4 to 7, filtration performed at 120°C .
* Better separation of lower oil rich layer from upper alcohol rich layer for trial #4&5
** Bad separation of lower oil rich layer from upper alcohol rich layer for trial #6&7

- 34 -

Table 1C-3: Latex precipitation and refining of bleached Shea butter using absolute EtOH

Trial #1	Trial #2
Mix 161.8 g of bleached Shea & 3,883g absolute EtOH.	Mix 124.7g of SM/Shea & 3,883g absolute EtOH.
Heat to 80°C, hold 120 minutes	Heat to 80°C, hold 120 minutes
Decant off alcohol-Shea solution at 80°C	Decant off alcohol-Shea solution at 80 °C
to separate latex from solution.	to separate latex from solution.
Cool down solution to 10°C, Hold 1 hour.	Cool down solution to 15°C, Hold 1 hour.
Oven-dry crystals overnight. (S1)	Oven-dry crystals overnight. (S1)
Desolventize the alcohol/Shea fraction (O1)	Desolventize the alcohol/Shea fraction (O1)
Allow O1 to stand at room temperature for 24 hr	Allow O1 to stand at room temperature for 24 hr
Decant liquid part of O1, O2 from precipitated crystals S2.	Decant liquid part of O1, O2 from precipitated crystals S2.

	Trial #1	Trial #2
Temperature (°C)	80	80
Wt. of bleached Shea (g)	161.8	124.7
Wt. of absolute ethanol (g)	3,883.2	2,992.8
Alcohol Insoluble (g), mainly latex % wt of alcohol insoluble	6.09 3.8	2.69 2.2
Fractionation temperature, °C	10.0	15.0
Wt. of dried crystals after hold (g) (S1)	86.5	56.4
% wt of Stearin fraction, S1, e.g. 86.5/(86.5+54.9)	61.2	47.5
Wt. of Shea obtained from alcohol layer after hold (g) (O1)	54.9	62.3
% wt of O1	38.8	52.5
Wt. of liquid oil obtained from O1, i.e. O2 at 25°C(g)	28.52	-
Wt. of crystals obtained from O1, i.e. S2 at 25°C(g)	17.65	-

Sample ID	PV meq/kg	Col Y	our R	% FFA	% Unsap.	Sap. Value	Iodine value	Dropping Point °C
SM/Shea #2	8.30	40	2.6	1.70	6.13	178.7	-	30.8
Bleached oil (Atm. 100°C)	0.12	9.1	0.7	1.65	5.91	179.3	56-58	-
Abs. Ethanol Refining #1 (Using Bleached Shea #2) Latex S1 O1 O2 S2	- - -	2.5 3.3 3.4	0.5* 0.5* 0.6*	0.05	44.31 0.53 11.41 11.32 11.56**	-	39.14 - 72.23 67.95	34.9 - 7.8 36.4
Abs. Ethanol Refining #2 Using SM/Shea Latex S1 01 O2 S2	1.92 13.60	1.8 8.5	0.5* 0.6*	0.18 3.10	81.04 1.83 9.86 - -	-	35.61 68.02 52.23 50.02	- 36.5 18.1

Table 1C-4: Analytical data for latex removal & Absolute ethanol refining

* 1" cell AOCS Lovibond otherwise 5.25" cell.

** Calculated

- 35 *-*
Phase 2. <u>Training</u>

Summary

Mr. Kassamba Bakari was at POS from May 25, 1998 to August 24, 1998 for training on process methods used for the Shea butter and for training on analytical methods. Some of the training time was also used to determine process characteristics of the Shea butter.

Process training included physical refining, bleaching studies, and deodorization studies.

Bench top Procedures training included:

Degumming Refining Bleaching Deodorization Fractionation

Analytical Procedures training included:

Peroxide Value p-Anisidine Value Free Fatty Acids Soaps Iodine Value Unsaponifiables Solid Fat Index Mettler Dropping Point Tintometer Colour Reading (both digital and visual) Fatty Acid Composition (observed principles only) Tocopherols & Sterols (observed principles only) Metals Analysis (observed principles only)

Phase 3A. Dry Fractionation

Summary

Satisfactory liquid and solid separation during the dry fractionation process was not achieved. Several trials were executed and only a single trial using a separation temperature of 31°C was successful and only produced a 5% stearin cut. The olein fraction was re crystallized at 29°C but the stearin and olein formed a gelled mass, and could not be separated. Some of the trial conditions are listed in Appendix 3A-1, and abbreviated results listed in Table 3A-1.

A blend of 50% by weight of Shea butter with 50% by weight of sunflower oil, an oil that does not solidify at room temperature, was used in another series of dry fractionation trials. Good fractionation yield was obtained at 28.3° C. The cut was 17.8% by weight stearin and 82.2% by weight olein(Table 3A-1). Judging from the stearin and olein yields the Shea butter was fractionated into a 35/65 split, i.e. 35% of initial Shea weight was in the stearin fraction and 65% of the original Shea butter was in the Olein fraction. This is supported by the distribution of the triglycerides in the two fractions as shown in Table 3A-2. SOS, the major triglyceride of Shea, was preferentially found in the stearin while SOO, the second most abundant triglyceride of Shea, was preferentially found in the olein fraction. About 88% of the initial SOO present in the Shea was preferentially found in the olein fraction. To increase the efficiency of separation of SOS from SOO one may lower the fractionation temperature from 28.3° C to a temperature above 25° C,(Table 3A-1).

The unsaponifiables distributed themselves equally in the stearin and olein fraction. Using the 50/50 blend may allow for a liquid Shea/sunflower oil at room temperature, the olein having a dropping point of 22.5° C. The stearin fraction with a dropping point of 36.6° C could be used in the cosmetic industry in view of the high unsaponifiable content. Decreasing the fractionation temperature as suggested above will decrease the dropping point of the resulting stearin & olein fraction.

The fractionation process may need to be executed in solvent. This will be especially true if a stearin fraction with low unsaponifiable content is required, however this is a major constraint from a commercial standpoint as extra costs are involved in a solvent fractionation process.

The DeSmet fractionation unit obtained for IRSAT in Burkina Faso may be able to produce better results than those obtained on POS equipment.

- 38 -

Table 3A-1: Dry fractionation Trials

Date of	Type of Shea butter	Temp at	Hold	Stearin	Olein	Comments
trial	used	hold	Time	fraction	fraction	
		°C	hr	%	%	
A: Crude Sh	lea butter					
6/12/98	SM/Shea	24.6	1.0	~100	-	Stearin solidify in funnel
6/15/98	SM/Shea	28.0	2.0	-	~100	Very small crystals, poor filtration
B: Bleached	l Shea					
6/17/98	bleached Shea	22.5	0.5	~100	-	Excessive crystal formation
6/18/98	bleached Shea	26.4	16.5	~100	-	Complete crystallization
8/28/98	bleached Shea	29.0	16.0	~100	-	Complete crystallization
9/1/98	bleached Shea	30.0	20.0			Many crystals, could not separate by centrifuge
8/27/98	bleached Shea	31.0	20.5	5.66	94.34	Stearin D.P 35.8°C, Olein D.P 30.5°C
9/2/98	Olein fraction from	29.0	19.0			Semi solid mass, could not filter , will need high pressure
	8/27/98					filtration.
9/3/98	Olein fraction from	31.0	20.0	-	100%	No crystals present
	8/27/98					
C: Bleached	1 Shea/RBD Sunflower 1	olend, 50:5	0 by wt	blend		
12/14/98	50/50 Shea/Sun	18.5	0.75			Complete crystallization
9/22/98	50/50 Shea/Sun	22.0	48.0			Complete crystallization
12/10/98	50/50 Shea/Sun	25.0	16.0	45.32	50.58	This suggests that most of the Shea has crystallized out.
			1	DP: 31.5°C	DP: 13.5°C	
12/15/98	50/50 Shea/Sun	28.3	20.0	17.8	82.2	Stearin D.P. 36.6 °C, Olein D.P. 22.5°C
D: Bleached	d & EtOH Refined Shea	butter				
3/12/99	EtOH Bl. Shea	23	48.0	~100%		Complete crystallization
3/15/99	EtOH BL. Shea	30.6	20.0	~100%		Complete crystallization
3/16/99	EtOH Bl. Shea	31.0	4.0	~100%		Complete crystallization
3/17/99	EtOH Bl. Shea	34.3	19.5	~100%		Complete crystallization
3/19/99	EtOH Bl. Shea	36.6	48.0		~100%	No crystallization
3/23/99	EtOH Bl. Shea	35.2	20.0	~20%	~80%	Some crystallization

	Project or have	and the second												TARKET	and the second	L. The		and the second	Ţ
--	-----------------	----------------	--	--	--	--	--	--	--	--	--	--	--	---------------	----------------	--------	--	----------------	---

- 39 -

1 abie 3A-2. D	Ty machionat	1011 01 30/30	onea butter a	na Samiower Die	4
Triglyceride	% in Shea butter	% in Sunflower	% in Stearin from 50/50	% in Olein in from	
			Shea/Sun	50/50	
			0-01	Shea/Sun	
	1	a series and the series of the	35% split	65% split	
		24.00	0.70	01.70	
	-	34.20	8.70	21.79	
LnLO	-	2.53	0.61	1.14	
LLO	-	27.83	6.39	15.66	
LLP	-	10.51	2.21	4.91	
LOO	0.51	7.07	1.87	4.08	
LLS	0.50	7.36	1.69	4.19	
LOP	0.44	4.06	0.96	2.55	
LPP	-	0.37	-	-	
000	3.64	2.30	1.92	3.81	
LOS	3.57	1.86	2.06	3.38	
POO	1.28	0.54	1.05	1.21	
SLP	0.60	0.62	0.83	0.84	
SOO	32.64	0.26	7.88	17.45	
SSL	3.65	-	2.21	1.87	
SOP	3.14	-	2.35	1.45	
POP	0.50	0.51	-	-	
SOS	46.60	-	57.02	14.59	
SPS	0.96	-	1.36	-	
SSS			0.89	-	
Total	98.03	100.02	100	103.4	

Table 3A-2: Dry fractionation of 50/50 Shea butter and Sunflower blend.

P: Palmitic

S: Stearic

O: Oleic

L : Linoleic

Ln: Linolenic

Bolded triglycerides are the major symmetrical TG found in cocoa butter.

Phase 3B. Solvent Fractionation

Summary

Several trials were conducted and separations obtained. Results obtained from the various fractions are listed in Tables 3B-1, 3B-2 & 3B-3.

Please note that the triglyceride SOS is nearly exclusively fractionated in the stearin fraction while SOO is mainly found in the olein fraction. Extending the hold time or lowering the temperature during the hold may render the separation of SOS from SOO more complete.

Unsaponifiables

See Table 3B-4.

For dry fractionation the unsaponifiables biased towards the stearin fraction and for solvent fractionation the unsaponifiables biased towards the olein fraction. In general, high unsaponifiables will be desired for cosmetic applications (although functional thresholds are not known) and low unsaponifiables desired for food applications. Using this argument solvent fractionation would be the desired process for the cocca butter substitutes (CBS). The concentration of unsaponifiables in the olein fraction from the solvent process with higher unsaponifiable content <u>may</u> have better functional properties for cosmetics than the non-fractionated oil.

It may be the presence of the unsaponifiable material and its emulsion properties that hinder the separation of olein and stearin in the dry fractionation process. The dry fractionation process however still has a distinctive processing cost advantage over solvent fractionation and the process ideally needs to be driven towards dry fractionation for economic reasons.

Most of the unsaponifiables of Shea butter have a boiling point of 240-270°C at 1 mm of Hg. As deodorization temperature is increased from 220°C to 260°C the amount of unsaponifiables in the distillate increased as would be expected, see Table 3B-4. The amount of unsaponifiables lost during deodorization is a function of the temperature used and the time period the oil is at temperature. As can be seen from the residual unsaponifiables in the deodorized oils, the actual loss at the temperature investigated is minimal. To minimize unsaponifiables losses one could deodorize at temperatures approaching 200-220°C. This will also minimize any possible isomerization of the triglycerides specially the symmetrical triglycerides, SOS, POS & POP needed for cocoa butter substitutes.

If the aim is to reduce the unsaponifiable content then deodorization at 270°C, (two passes) will most likely remove a substantial amount of unsaponifiables.

- 41 -

Table 3B-1. Solvent Fractionation Analytical Data

ST- Stearin; OL - Olein

Date of trial	Fractionation temperature ^a	Shea : Hexane Ratio (by wt)	AOCS Colour (5.25")		Chlorophyll		Iodine Value	Dropping Point (°C)	Stearin, % Yield ^b	
			Red	Yellow	á	ં કે				
7/10/98 7/10/98	6°C ST ° 6°C OL °	25:75 25:75	-	-	-	-	33.42 66.62	40.2 27.3	21.14 -	
7/10/98	5°C ST ª	25:75	2.6	12.0	0.110	0.157	40.48	38.9	34.41	
7/10/98	5°C OL ª	25:75	0.5	14.0	0.000	0.299	66.38	21.9	-	
7/13/98	5°C ST	25:75	2.6	12.0	0.100	0.119	37.51	40.3	34.08	
7/13/98	5°C OL	25:75	1.1	17.0	0.000	0.257	64.23	19.3	-	
7/16/98	5°C ST	25:75	4.2	20.0	0.000	0.000	40.38	40.3	30.82	
7/16/98	5°C OL	25:75	0.5	15.0	0.000	0.272	63.92	24.0	-	
7/14/98	5°C ST	50:50	1.4	11.0	0.010	0.205	46.26	36.0	52.88	
7/14/98	5°C OL	50:50	0.6	19.0	0.010	0.341	68.21	12.8	-	

• Produced by heating bleached Shea butter (produced on 6/16/98) and hexane to 50° C then cooling to fractionation temperature. The cooling rate was approximately 0.34° C/minute, agitation was set at 30 RPM, and the holding time at temperature was 24 hours. Olein and Stearin were separated by filtration through Whatman #5 filter paper.

^b The % Yield was calculated by the following formula: 1- ((olein (g)/ initial mass of Shea butter) X 100)

• This fraction was produced with no agitation.

^d This fraction was held at 15°C for 21 hours and then cooled to 5°C and held there for 24 hours.

The trials on 7/13/98 and 7/16/98 are duplicates.

Note: All stearin looked cloudy in the 5.25" path length

Table 3B-2. Solvent Fractionation Color Data

ST- Stearin; OL - Olein

Date of trial	Fractionation temperature *	Shea : Hexane Ratio (by wt)		AOCS Colour (5.25")			Lovibond Colour (5.25")				Gardner Colour
			Red	Yellow	Chl. a	Chl. b	Red	Yellow	Blue	Neutral	
7/10/98 7/10/98	6°C ST Þ 6°C OL Þ	25:75 25:75	- -	-	-	-	-	-	-	-	-
7/10/98	5°C ST •	25:75	2.6	12.0	0.110	0.157	3.3	16.1	1.1	0.0	2.1
7/10/98	5°C OL •	25:75	0.5	14.0	0.000	0.299	1.0	16.0	0.0	0.2	2.6
7/13/98	5°C ST	25:75	2.6	12.0	0.100	0.119	3.7	15.8	1.8	0.0	2.0
7/13/98	5°C OL	25:75	1.1	17.0	0.000	0.257	1.4	20.0	0.0	0.1	2.7
7/16/98	5°C ST	25:75	4.2	20.0	0.000	0.000	6.0	29.5	3.5	0.0	2.9
7/16/98	5°C OL	25:75	0.5	15.0	0.000	0.272	1.0	18.0	0.0	0.3	2.7
7/14/98	5°C ST	50:50	1.4	11.0	0.010	0.205	1.8	13.0	0.0	0.0	2.0
	5°C OL	50:50	0.6	19.0	0.010	0.341	1.1	21.0	0.0	0.4	3.0

^a Produced by heating bleached Shea butter (produced on 6/16/98) and hexane to 50°C then cooling to fractionation temperature. The cooling rate was approximately 0.34°C/minute, agitation was set at 30 RPM, and the holding time at temperature was 24 hours. Olein and Stearin were separated by filtration through Whatman #5 filter paper.

^b This fraction was produced with no agitation.

•This fraction was held at 15°C for 21 hours and then cooled to 5°C and held there for 24 hours.

Note: All stearin looked cloudy in the 5.25" path length

Î

Table 3B-3: Wet fractionation of 25/75 Shea butter and hexane at 5°C.

Triglyceride	% in Shea	Stearin from	Olein from
	Dutter	25/75 Sheo/hevone	25/75 Shea/hevane
		Silea/ilexaile	Silcay licxalic
?	0.26	-	0.54
LnLnLn?	0.50	-	0.79
LaLaLa ?	0.43	-	0.78
LaLaL ?	0.78	-	1.27
LOO	0.51	-	0.94
LLS	0.50	-	0.63
LOP	0.44	-	0.69
000	3.64	-	6.17
LOS	3.57	-	6.08
POO	1.28	-	2.32
SLP	0.60	-	1.11
SOO	32.64	1.70	54.79
SSL	3.65	2.30	4.45
SOP	3.14	3.65	2.66
POP ?	0.50	-	0.90
SOS	46.60	89.21	15.06
SPS	0.96	2.01	0.80
SSS	-	1.13	
Total	98.03		

Fractionation done on the 7/13/98

La: Lauric acid

?: Identity of triglyceride uncertain.

Please note the fractionation of the triglycerides results in SOS being fractionated mainly into the stearin phase & of SOO into the olein phase.

Bolded triglycerides are the major symmetrical TG found in cocoa butter.

Table 3B-4. Unsaponifiable Material

Crude Shea butter #1 (5/29/98) 4.98 8.58** Crude Shea butter #2 (summer 98) 6.13Ψ - Physically Refined Shea butter, 250°C /2 hr., 6% steam,(S) 5.63 10.09 ** 220°C /3 hr./6% S Distillate 2/4/98 (Shea #2) 5.39 - 220°C /2 hr./6% S Distillate 6/19/98 9.43 - 250°C /2 hr./6% S Distillate 6/19/98 (PR Shea) 5.42 - 260°C /2 hr./6% S Distillate 1/8/99 11.31 - 260°C /2 hr./6% S Distillate 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.23 9.71 31°C Olein 8/27/98 3.17 - 28.3°C Olein 12/15/98 3.17 - 28.3°C Olein 12/15/98 3.17 - Sufflower oil 0.69 - 50/50 blend 3.16 @ - Wet Fractionation of 25%/75% Bl. Shea: hexane blend - 5°C Olein 7/13/98 6.86 9.65 5°C Olein 7/13/98 4.68 Ψ Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables 45.12 Ψ Shea butter from lower layer (olein) 8.30 Ψ Shea butter from lower layer (olein) 8.30 Ψ <th>S: Steam PR: Physically refined</th> <th>Unsaponifiables AOCS Ca 6b-53 Marine oils* %</th> <th>Unsaponifiables AOCS Ca 6a-40 Non-Marine oil %</th>	S: Steam PR: Physically refined	Unsaponifiables AOCS Ca 6b-53 Marine oils* %	Unsaponifiables AOCS Ca 6a-40 Non-Marine oil %
Crude Shea butter #2 (summer 98) 6.13 Ψ - Physically Refined Shea butter, 250°C /2 hr., 6% steam,(S) 5.63 10.09 ** 220°C /3 hr./6%S Distillate 2/4/98 (Shea #2) 5.39 - 220°C /2 hr./6%S Distillate 6/19/98 9.43 - 250°C /2 hr./6%S Distillate 6/19/98 (PR Shea) 5.42 - 260°C /2 hr./6%S Distillate 1/8/99 11.31 - 260°C /2 hr./6%S Distillate 1/8/99 5.33 - 260°C /2 hr./6%S Distillate 1/8/99 5.33 - 21°C Olein 8/27/98 5.23 9.71 31°C Olein 8/27/98 5.23 9.71 31°C Stearin 8/27/98 3.17 - 28.3°C Olein 12/15/98 3.33 - 28.3°C Stearin 12/15/98 3.16 - 20'50 blend 0.69 - Wet Fractionation of 25%/75% Bl. Shea: hexane blend - 5°C Olein 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol 45.12 Ψ Latex unsaponifiables 45.12 Ψ Shea butter from lower layer (olein) 8.30 Ψ Shea butter from lower layer (olein) 4.68 Ψ	Crude Shea butter #1 (5/29/98)	4.98	8.58**
Physically Refined Shea butter, 250°C / 2 hr., 6% steam,(S) 5.63 10.09 ** 220° C / 3 hr./6%S Distillate 2/4/98 (Shea #2) 1.42 - 230° C / 2 hr./6%S Distillate 6/19/98 9.43 - 250° C / 2 hr./6%S Distillate 6/19/98 9.43 - 250° C / 2 hr./6%S Distillate 6/19/98 9.43 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 260° C / 2 hr./6%S Distillate 1/8/99 11.31 - 27 5.23 9.71 31°C Olein 8/27/98 3.17 - 28 .3°C Stearin 8/27/98 3.33 - Bleached Shea butter 5.63 - Sunflower oil 0.69 - Sof50 blend 3.16 © - Wet Fractionation of 25%/75% Bl. Shea: hexane blend 45.12 Ψ Shea butter from upper layer (olein) 8.30 Ψ Shea butter from lower layer (steari	Crude Shea butter #2 (summer 98)	<u>6.13Ψ</u>	-
220° C / 3 hr. /6%S Distillate 2/4/98 (PR Shea #2) 1.42 - 220° C / 3 hr. /6%S Distillate 6/19/98 9.43 - 250° C / 2 hr. /6%S Distillate 6/19/98 (PR Shea) 5.42 - 260° C / 2 hr. /6%S Distillate 1/8/99 11.31 - 260° C / 2 hr. /6%S Distillate 1/8/99 11.31 - 260° C / 2 hr. /6%S Distillate 1/8/99 11.31 - 260° C / 2 hr. /6%S Distillate 1/8/99 11.31 - 260° C / 2 hr. /6%S Distillate 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.23 9.71 31°C Olein 8/27/98 11.08 14.30 Dry Fractionation of 50/50 Shea, sunflower blend 28.3°C Olein 12/15/98 3.17 28.3°C Olein 12/15/98 3.13 - Sunflower oil 0.69 - Sol/50 blend 3.16 © - Wet Fractionation of 25%/75% Bl. Shea: hexane blend 5.23 9.65 S°C Olein 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol 45.12 Ψ 4.68 Ψ Shea butter from lower layer (stearin) 8.30 Ψ 4.68 Ψ Wet Fractionation with Abs. ethano	Physically Refined Shea butter, 250°C /2 hr., 6% steam,(S)	5.63	10.09 **
220° C /3 hr./6%S 2/4/98 (PR Shea #2) 5.39 - 250° C /2 hr./6%S Distillate 6/19/98 9.43 - 260° C /2 hr./6%S Distillate 1/8/99 11.31 - 260° C /2 hr./6%S Distillate 1/8/99 11.31 - 260° C /2 hr./6%S Distillate 1/8/99 11.31 - 260° C /2 hr./6%S Distillate 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.23 9.71 31°C Olein 8/27/98 5.23 9.71 31°C Stearin 8/27/98 3.17 - 28.3°C Olein 12/15/98 3.33 - 28.3°C Stearin 12/15/98 3.17 - 28.3°C Olein 12/15/98 3.16 \odot - Sunflower oil 0.69 - 50/50 blend 6.86 9.65 S°C Olein 7/13/98 2.28 2.24 Wet Fractionation of 25%/75% Bl. Shea: hexane blend 45.12 Ψ Shea butter from upper layer (olein) 8.30 Ψ 4.68 Ψ Wet Fractionation with 4bs. ethanol Bl. Shea, 10°C SM/Shea, 15°C Latex unsaponifiables 44.31**** 81.04*** Shea butter from lower layer (stearin) <td< td=""><td>$220^{\circ}C/3 hr./6\%S$ Distillate $2/4/98$ (Shea #2)</td><td>1.42</td><td>-</td></td<>	$220^{\circ}C/3 hr./6\%S$ Distillate $2/4/98$ (Shea #2)	1.42	-
250° C /2 hr./6%S Distillate 6/19/98 9.43 - 250° C /2 hr./6%S 6/19/98(PR Shea) 5.42 - 260° C /2 hr./6%S Distillate 1/8/99 11.31 - 260° C /2 hr./6%S 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.23 9.71 31° C Olein 8/27/98 5.23 9.71 31° C Stearin 8/27/98 11.08 14.30 Dry Fractionation of 50/50 Shea, sunflower blend - 28.3° C Olein 12/15/98 3.17 - 28.3° C Olein 12/15/98 3.33 - Sunflower oil 0.69 - $50/50$ blend 3.16 © - Wet Fractionation of 25%/75% Bl. Shea: hexane blend 5.28 9.65 5° C Olein 7/13/98 6.86 9.65 2.24 Wet Fractionation with 95% by wt. ethanol 45.12 Ψ 8.30 Ψ Latex unsaponifiables 45.12 Ψ 8.30 Ψ Shea butter from lower layer (olein) 8.30 Ψ 4.68 Ψ Wet Fractionation with Abs. ethanol Bl. Shea, 10°C SM/Shea, 15°C Latex unsaponifiables 44.31**** 81.04****	220°C /3 hr./6%S 2/4/98 (PR Shea #2)	5.39	-
250 °C /2 hr./6%S 6/19/98(PR Shea) 5.42 - 260 °C /2 hr./6%S Distillate 1/8/99 11.31 - 260 °C /2 hr./6%S Distillate 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.33 - 31°C Olein 8/27/98 5.23 9.71 31°C Stearin 8/27/98 11.08 14.30 Dry Fractionation of 50/50 Shea, sunflower blend - - 28.3°C Olein 12/15/98 3.17 - 28.3°C Stearin 12/15/98 3.33 - Sunflower oil 0.69 - 50/50 blend 3.16 © - Wet Fractionation of 25%/75% Bl. Shea: hexane blend 5.63 - 5°C Olein 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol 45.12 Ψ 8.30 Ψ Latex unsaponifiables 45.12 Ψ 8.30 Ψ Shea butter from lower layer (olein) 8.30 Ψ 4.68 Ψ Wet Fractionation with Abs. ethanol Bl. Shea, 10°C SM/Shea, 15°C Latex unsaponifiables 44.31**** 81.04**** 128****	250° C /2 hr./6%S Distillate 6/19/98	9.43	-
260° C /2 hr./6%S Distillate 1/8/9911.31 5.33- 260° C /2 hr./6%S 1/8/9911.31 5.33-Dry Fractionation of bleached Shea butter 31°C Olein 8/27/985.23 11.089.71 14.30Dry Fractionation of 50/50 Shea, sunflower blend5.23 11.089.71 14.30Dry Fractionation of 50/50 Shea, sunflower blend3.17 28.3°C Olein 12/15/98 3.33-28.3°C Olein 12/15/98 28.3°C Stearin 12/15/98 Bleached Shea butter Sof50 blend3.16 0.69 5-Wet Fractionation of 25%/75% Bl. Shea: hexane blend S°C Olein 7/13/986.86 2.289.65 2.24Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from lower layer (olein) Shea butter from lower layer (stearin)45.12 Ψ 8.30 Ψ 	250° C /2 hr./6%S 6/19/98(PR Shea)	5.42	-
260 °C / 2 hr./6%S Distillate 1/8/99 11.31 - 260 °C / 2 hr./6%S 1/8/99 5.33 - Dry Fractionation of bleached Shea butter 5.23 9.71 31° C Olein 8/27/98 11.08 14.30 Dry Fractionation of 50/50 Shea, sunflower blend 11.08 14.30 Dry Fractionation of 50/50 Shea, sunflower blend 3.17 - 28.3°C Olein 12/15/98 3.33 - Bleached Shea butter 5.63 - Sunflower oil 0.69 - Soly50 blend 3.16 © - Wet Fractionation of 25%/75% Bl. Shea: hexane blend - - S°C Olein 7/13/98 6.86 9.65 - S'C Stearin 7/13/98 45.12 Ψ 8.30 Ψ - Shea butter from upper layer (olein) 8.30 Ψ 4.68 Ψ - Wet Fractionation with Abs. ethanol Bl. Shea, 10°C SM/Shea, 15°C - Latex unsaponifiables 44.31*** 81.04*** - Latex unsaponifiables 6.2*** 42.2** - SM / Shea, 15°C 14.32*** 14.32*** -			
260 °C / 2 hr./6%S 1/8/995.33-Dry Fractionation of bleached Shea butter $31°C$ Olein 8/27/985.239.71 $31°C$ Stearin 8/27/9811.0814.30Dry Fractionation of 50/50 Shea, sunflower blend3.17-28.3°C Olein 12/15/983.33-Bleached Shea butter5.63-Sunflower oil0.69-50/50 blend3.16 ©-Wet Fractionation of 25%/75% Bl. Shea: hexane blend-S°C Olein 7/13/982.282.24Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31****81.04*** 8.2***Latex unsaponifiables44.31***81.04***	260 °C /2 hr./6%S Distillate 1/8/99	11.31	-
Dry Fractionation of bleached Shea butter $31^{\circ}C$ Olein $8/27/98$ 5.23 11.08 9.71 14.30 $31^{\circ}C$ Stearin $8/27/98$ 11.08 14.30 Dry Fractionation of $50/50$ Shea, sunflower blend 3.17 $28.3^{\circ}C$ Olein $12/15/98$ 3.33 3.33 $-$ 5.63 3.16° $ 28.3^{\circ}C$ Olein $12/15/98$ 3.33 $-$ 5.63 $-$ 3.16° $ 28.3^{\circ}C$ Stearin $12/15/98$ $12/15/98$ 3.33 $-$ 5.63 $ 3.17$ 5.63 $ 3.16^{\circ}$ $-$ Wet Fractionation of $25\%/75\%$ Bl. Shea: hexane blend $ 5^{\circ}C$ Olein $7/13/98$ $5^{\circ}C$ Stearin $7/13/98$ 6.86 2.28 9.65 2.28 2.24 Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin) 45.12Ψ 8.30Ψ 4.68Ψ Wet Fractionation with Abs. ethanolBl. Shea, $10^{\circ}C$ SM/Shea, $15^{\circ}C$ Latex unsaponifiables 44.31^{***} 81.04^{***} 4.68Ψ 44.31^{***} 81.04^{***}	260 °C /2 hr./6%S 1/8/99	5.33	-
Dry Fractionation of 50/50 Shea, sunflower blend3.1728.3°C Olein 12/15/983.3328.3°C Stearin 12/15/983.33Bleached Shea butter5.63Sunflower oil0.6950/50 blend3.16 ©Wet Fractionation of 25%/75% Bl. Shea: hexane blend5°C Olein 7/13/985°C Olein 7/13/985°C Stearin 7/13/985°C Stearin 7/13/98Shea butter from upper layer (olein)Shea butter from lower layer (stearin)Wet Fractionation with 95% by wt. ethanolLatex unsaponifiables45.12 ΨShea butter from lower layer (stearin)Wet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31***81.04***Charles unsaponifiables45.12 ΨShea butter from lower layer (stearin)4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31***81.04***51.2***52****52****52****	Dry Fractionation of bleached Shea butter 31°C Olein 8/27/98 31°C Stearin 8/27/98	5.23 11.08	9.71 14.30
28.3° C Olein 12/15/98 3.17 - 28.3° C Stearin 12/15/98 3.33 -Bleached Shea butter 5.63 -Sunflower oil 0.69 - $50/50$ blend $3.16 \odot$ -Wet Fractionation of 25%/75% Bl. Shea: hexane blend- 5° C Olein 7/13/98 6.86 9.65 5° C Stearin 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables 45.12Ψ Shea butter from upper layer (olein) Shea butter from lower layer (stearin) 4.68Ψ Wet Fractionation with Abs. ethanolBl. Shea, 10°CLatex unsaponifiables 44.31^{***} 81.04^{***} 81.04^{***}	Dry Fractionation of 50/50 Shea, sunflower blend		
28.3°CStearin 12/15/98 3.33 $-$ Bleached Shea butter 5.63 $-$ Sunflower oil 0.69 $-$ 50/50 blend $3.16 \ \odot$ $-$ Wet Fractionation of 25%/75% Bl. Shea: hexane blend $-$ 5°C Olein 7/13/98 6.86 9.65 5°C Stearin 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin) $45.12 \ \Psi$ $8.30 \ \Psi$ $4.68 \ \Psi$ Wet Fractionation with Abs. ethanol Latex unsaponifiables 	28.3°C Olein 12/15/98	3.17	-
Bleached Shea butter5.63-Sunflower oil0.69-50/50 blend3.16 ©-Wet Fractionation of 25%/75% Bl. Shea: hexane blend-5°C Olein 7/13/986.869.655°C Stearin 7/13/982.28Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin)45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanol Latex unsaponifiablesBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables Latex unsaponifiables44.31*** 81.04***81.04***	28.3°C Stearin 12/15/98	3.33	-
Sunflower oil0.69-50/50 blend3.16 ©-Wet Fractionation of 25%/75% Bl. Shea: hexane blend-5°C Olein 7/13/986.869.655°C Stearin 7/13/982.28Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin)45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables Latex unsaponifiables44.31***81.04***Wet Fractionation with Abs. ethanol44.31***81.04***	Bleached Shea butter	5.63	-
50/50 blend3.16 ©Wet Fractionation of 25%/75% Bl. Shea: hexane blend5°C Olein 7/13/985°C Stearin 7/13/985°C Stearin 7/13/98Wet Fractionation with 95% by wt. ethanol Latex unsaponifiablesShea butter from upper layer (olein) Shea butter from lower layer (stearin)Wet Fractionation with Abs. ethanolLatex unsaponifiablesWet Fractionation with Abs. ethanolLatex unsaponifiablesWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31***81.04***1.82***	Sunflower oil	0.69	-
Wet Fractionation of 25%/75% Bl. Shea: hexane blend6.869.655°C Olein 7/13/986.869.655°C Stearin 7/13/982.282.24Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin)45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables Latex unsaponifiables44.31***81.04***	50/50 blend	3.16 ©	-
5°C Olein 7/13/986.86 2.289.65 2.24S°C Stearin 7/13/9845.12 Ψ 8.30 Ψ 4.68 Ψ45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin)45.12 Ψ 8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanol Latex unsaponifiablesBl. Shea, 10°CMet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°C44.31***Latex unsaponifiables44.31***Cher Latex unsaponifiables44.31***	Wet Fractionation of 25%/75% Bl. Shea: hexane blend		
5°C Oteni 7/13/98 5.00 5.00 5°C Stearin 7/13/98 2.28 2.24 Wet Fractionation with 95% by wt. ethanol 45.12 Ψ Latex unsaponifiables 8.30 Ψ Shea butter from upper layer (olein) 8.30 Ψ Shea butter from lower layer (stearin) 81.04*** Wet Fractionation with Abs. ethanol 44.31*** Latex unsaponifiables 44.31*** Attem in the shead in the late of the late of the shead in the sh	590.01 m $7/12/09$	6.86	9.65
Wet Fractionation with 95% by wt. ethanol Latex unsaponifiables Shea butter from upper layer (olein) Shea butter from lower layer (stearin) Wet Fractionation with Abs. ethanol Latex unsaponifiables Latex unsaponifiables Bl. Shea, 10°C SM/Shea, 15°C Latex unsaponifiables Late	5° C Otenin 7/13/98	2.28	9.00 9.04
Wet Fractionation with 95% by wt. ethanol 45.12 Ψ Latex unsaponifiables 45.12 Ψ Shea butter from upper layer (olein) 8.30 Ψ Shea butter from lower layer (stearin) 4.68 Ψ Wet Fractionation with Abs. ethanol Bl. Shea, 10°C Latex unsaponifiables 44.31*** Bl. Shea, 10°C SM/Shea, 15°C Latex unsaponifiables 44.31*** Bl. Shea, 10°C 81.04***		2.20	2.21
Latex unsaponifiables45.12 ΨShea butter from upper layer (olein)8.30 ΨShea butter from lower layer (stearin)4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CLatex unsaponifiables44.31***Shea butter from lower layer (stearin)44.31***	Wet Fractionation with 95% by wt. ethanol		
Shea butter from upper layer (olein) Shea butter from lower layer (stearin)8.30 Ψ 4.68 ΨWet Fractionation with Abs. ethanolBl. Shea, 10°CLatex unsaponifiables44.31***81.04***Charter with the sheat butter has been bed with the sheat butter has been been bed with the sheat butter has been been been been been been been bee	Latex unsaponifiables	45.12 Ψ	
Shea butter from lower layer (stearin)4.08 PWet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31***81.04***Distribution with Abs. ethanol1.82***	Shea butter from upper layer (olein)	8.30 Ψ	
Wet Fractionation with Abs. ethanolBl. Shea, 10°CSM/Shea, 15°CLatex unsaponifiables44.31***81.04***Distribution with Abs. ethanol0.52***1.82***	Shea butter from lower layer (stearin)	4.68 Ψ	
Latex unsaponifiables 44.31*** 81.04***	Wet Fractionation with Abs. ethanol	Bl. Shea, 10°C	SM/Shea, 15°C
	Latex unsaponifiables	44.31***	81.04***
Shea butter crystals when alcoholic solution cooled 0.53 ^{***} 1.83 ^{***}	Shea butter crystals when alcoholic solution cooled	0.53***	1.83***
Shea butter olein when alcoholic solution cooled 11.41*** 9.86***	Shea butter olein when alcoholic solution cooled	11.41***	9.86***

* - This method was selected and tested based on the high unsaponifiable content of the Shea butter relative to other non-marine oils. There were emulsion problems and hence phase separation problems with the non-marine oil method which may have elevated the measured unsaponifiable content.

** - data extracted from Table 1B-8

 $\Psi\,$ - data extracted from Table 1C-2

***- data extracted from Table 1C -4

© - Calculated

Phase 3C. Coco butter substitute (CBS)

The European Union has endorsed an agreement reached in June 1999 to allow chocolate products to contain 5% of certain vegetable fats other than cocoa butter as long as they are clearly labeled.

The agreement would allow six specific fats to be used instead of cocoa butter for up to 5% of the weight of the product, Illipe, Palm oil, Sal, Shea, Kokum, Gurgi and Mango kernel.

The physical properties of cocoa butter can be matched by blending the triglycerides, POP, SOS and POS all obtained from different sources. Shea butter is rich in the SOS triglyceride, Palm oil mid fraction is rich in the POP triglyceride while Illipe is rich in the POS triglyceride.

Three formulations were prepared using various combinations of these 3 oils and resulting formulation characteristic compared to two purchased commercial CBS. Results is displayed in Table 3C1, Table 3C2 and Figure 3C1.

	Sample ID	Comments	Unsap	Sap.	Iodine	Dropping
	-		,%	value	Value	point, °C
1	Illipe butter		-		33.17	35.6
2	PMF	Palm oil mid fraction	0.13	199.2	35.87	54.3
3	Shea (S1)	Shea ppte in abs EtOH, 10°C	0.53	-	39.14	34.9
4	SM/Shea #2		6.13	178.7	56.9	30.8
5	Illexao 30-61	Commercial CBE*	0.28	190.9	31-36	32-35
6	Illexao 30-96	Commercial CBS**	0.52	188.9	35-37	36-38
8	CBE 11	49% Shea (S1), 31% PMF, 20% Illipe	-		36.48	40.9
9	CBE 12	50% SM/Shea, 30% PMF, 20% Illipe	-	-	46.76	40.5
7	CBE 13	60% Shea (S1), 40% PMF	-	-	-	42.5

Table 3C1. Analytical data on formulation components and CBS formulations

Table 3C2. Solid fat Index of formulations

Temperature °C	Shea(S1) % solid	RBD Shea % solid	Illexao 30-61 % solid	Illexao 30-96 % solid	CBE 11 % solid	CBE 12 % solid	CBE 13 % solid
10	72.95	39.50	61.15	61.17	43.88	33.60	47.84
21.1	62.99	33.93	20.86	41.76	37.71	22.96	40.29
26.7	52.59	21.26	2.36	31.38	24.82	9.29	26.92
33.3	13.53	1.44	0.59	1.65	6.71	5.69	8.35
40	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 3C1: Solid fat Index of various fractions and formulations

As can be seen from Table 3C-1 and Figure 3C-1 none of the three formulations had a Mettler dropping point close to the commercial CBE or CBS, i.e. 40-42°C compare to 32-38°C. This may be attributed to triglycerides with high melting point, 30-40°C, still present in the formulations. For instance the SFI curve of Shea stearin fraction, S1, clearly shows the high melting point components. Removing of the high melting point components from the Shea Stearin could consist of a double fractionation in ethanol. The first fractionation of RBD Shea could be done at a temperature, ~ 15-20°C . Any solids that precipitate out would be the triglycerides with high melting point. The slurry should be filtered and the olein fraction re-fractionate at 10°C to yield a Shea stearin fraction devoid of the triglyceride with high melting point. Likewise the high Mettler dropping point of Palm oil mid fraction, (PMF) would suggest that this component of our formulation would have to be fractionated to remove any high melting point components before final blending in the formulation. The De Smet crystallizer and membrane filter in Burkina Faso will be indispensable in obtaining the various stearin fractions needed as the use of a membrane filter, which was not available at POS, will produce a stearin cake with a steeper SFI curve.

1000-000

4A: Pilot plant scale-up for the refining & fractionation of Shea butter.

4A1:Introduction:

About one tonne of crude Shea butter was air freighted from Burkina Faso to POS. The crude oil was bleached and deodorized. Some of the refined oil was fractionated using hexane as the fractionating solvent. The olein and stearin fraction was fully desolventized and packaged.

4A2: METHODS:

Bleaching

The SM/Shea butter received from Burkina Faso was loaded into a reactor. It was liquefied and dried under vacuum. 0.2% by weight of citric acid was then added to the dried oil to chelate any metals that may be present. 6% by weight of adsorptive clay, Supreme 124FF, and 1% by weight of Darco activated carbon were then added to the oil for the removal of peroxides, phosphatides & color bodies. The slurry was heated to 110°C under vacuum for 30 minutes. The oil was then cooled to 65°C, vacuum broken with nitrogen, and filtered using filter aid. See Appendix 4A-1 for process directive.

Activated carbon was used in the scale-up trial due to the high initial colour of the starting butter. However it is rarely used in oil processing because of its high cost, high oil retention and handling difficulty.

Deodorizing

The bleached oil was sparged with steam at high temperature and low pressure to remove odoriferous components, flavour components, and additional free fatty acids. Color was also reduced by heat bleaching at elevated temperatures. The oil was deodorized at 260°C in a continuous deodorizer using stripping steam at a rate of 1.0%/hr. The oil was cooled before it exits the deodorizer to 55°C.

The product was packaged under nitrogen into 20 liter pails after being fortified with 300ppm of dL-Alpha-Tocopheryl Acetate. See Appendix 4A-2 for process directive.

Crystallization

96 kilos of bleached and deodorized Shea butter was melted and loaded into a 300L reactor. 96 kilos of hexane was added and the slurry was heated to 50°C to destroy all crystals that might be present. The miscella was then cooled to 5°C and held at temperature for at least 10 hours. The waxes were then filtered using the Heinkel reversing basket centrifuge after addition of filter aid. Both the stearin and olein fraction were then desolventized and packaged in 16 kilo plastic pails. See appendix 4A-3 for process directive.

4A3: Methods - Analytical

Peroxide Value, meq/kg p-Anisidine Value Free Fatty Acids, % Color

Unsaponifiables, % Residual hexane, ppm AOCS Cd 8-53 AOCS Cd 18-90 AOCS Ca 5a-40 Auto Tintometer Lovibond Color, PFX 990 AOCS - Official Methods of the American Oil Chemists Society. AOCS Ca 6b-53 AOCS Ca 3b-87

4A4:Discussion:

Bleaching

Prior to the pilot plant work a representative sample of the starting Shea butter was bleached and deodorized in the laboratory to determine the optimum amount of bleaching clay required to lower the colour in the starting Shea butter. A lighter starting crude Shea butter colour would have significantly reduced bleaching clay requirements. Lower bleaching clay levels will reduce the loss of neutral oil in the bleaching process (normally 20-30% of clay weight).

Fig 4A1: Bleaching of Shea Butter.

Deodorization

Deodorization was successful in reducing the free fatty acid to an acceptable level of 0.09%, final colour of deodorized butter was 13.0Y1.7R. See Certificate of Analysis displayed in Table 4A1.

During deodorization different feed rates to the deodorizer and dwell time in the retention tank were tried in an attempt to optimize the deodorization process. Results are displayed in Table 4A2. The best conditions for the continuous deodorizer included a feed rate of 200 kg/hr with a dwell time of 16 minutes, (all valves closed in the retention tank), see Figure 4A2, to allow for maximum heat bleaching effect on the Shea butter. If refining of Shea butter technology is to be transferred to Burkina Faso then atmospheric bleaching and batch deodorization will be the method of choice as the level of complexity of the equipment needed will be minimal. The colour of the final product will however be darker.

Fractionation of refined Shea in hexane

Fractionation of the refined Shea was done in hexane instead of ethanol as the fractions were to be tested on the cosmetic market in Canada. i.e. there was no need to obtain a very low unsaponifiable stearin fraction.

The trial yielded 42.1 kg of a stearin fraction with an unsaponifiable content of 6.15% and a Mettler drooping point of 33.7°C. The olein fraction, (20.1 kg)had an unsaponifiable content of 8.9% and a dropping point of 12.5 °C (Table 4A-4). The olein fraction with its creamy texture and high unsaponifiable value may be of interest for the cosmetic industry.

<u>Certificate of Analysis</u>

Bleached and deodorized Shea butter after antioxidants addition

POS Project number: 56-97-856

Production Date: January 2000

Table 4A1: OD3/out/Refined Shea oil after antioxidant addition

1

 \square

 \square

 $\left[\right]$

 \int

	Specification of commercial Refined Shea	Result	Method Reference
Peroxide Value, meq/kg	< 3.0	0.00	AOCS Cd 8-53
Free fatty acid %, (oleic)	< 1.0	0.09	AOCS Cd 3d-63
Moisture and volatiles, %	< 0.05	0.03	AOCS Ca 2d-25
p-Anisidine value	-	1.9	AOCS Cd 18-90
Colour 5 1/4" Lovibond(PFX990	-	13.0Y1.7R	POS Method SOP 3.1.9
AOCS)			

Table4A2: Oil analysis during refining

 $\hat{\Box}$

 \square

Sample ID	PV,	FFA,	Colour	Notes
	meq/kg	<u></u>	AOCS	
SM/Shea butter	2.15	6.52	20.0Y3.7R	Colour determined through 1" cell
OJ30A/S.cup/Bleached Shea butter	0.39	6.57	16.0Y1.7R	Colour determined through 5.25" cell
OD3/out/refined Shea	0.00	0.06	14.0Y2.2R	Feed rate to OD3 100 kg/hr, retention in retention tank, 32 minutes; 3 valves closed.
OD3/out/refined Shea	0.00	0.07	14.0Y2.1R	Feed rate to OD3 200 kg/hr, retention in retention tank, 16 minutes; 3 valves closed
OD3/out/refined Shea	0.00	0.07	24.0Y3.8R	Feed rate to OD3 200 kg/hr, minimum retention in retention tank, 6 minutes; all 3 valves open.

Figure 4A2:Continious deodorizer used for Shea butter deodorization.

ALC: NOT

in the second second

4A5: Mass Balance:

 \prod

 \square

Ĵ

 \Box

Material balance for the pilot plant trial is displayed in Table 4A3. Material losses during processing were normal for the pilot plant scale given the initial dark colour of the Shea butter. Material loss during fractionation may seem high but is usually the case when processing small amounts of oil.

Table 4A3: Mass balance of pilot plant trial:

BLEACHING	
Input (kg)	Kg
SM/crude Shea butter	944.83
SM/citric acid(50%)	1.88
Bleaching Clay	56.68
Activated Carbon	9.40
SM/Filter aid	0.57
Total	1,013.36
Output (kg)	
F4/out/bleached Shea butter, ~910L X 0.9	819.0
F4/drain/Shea butter	11.5
F4/Frame Shea butter cake	<u>151.0</u>
Total	981.5
% oil loss	12%
DEODORIZATION	
Inputs, kg	
F4/out/bleached Shea butter, ~910L X 0.9	819.0
Tocopheryl, lot # 852078	<u>0.216</u>
Total	819.2
Outputs, kg	
OD3/out/transitin to Shea	36.02
OD3/out/refined Shea butter	711.60
OD3/out/shea butter drain	<u>1.94</u>
Total Outputs	749.56
Total Oil Loss, %	8.5
FRACTIONATION	
OD3/out/refined Shea oil, 6 pails	95.0
SM/Hexane	95.7
SM/filter aid	<u>1.92</u>
Total	192.62
Outputs, kg after 1 st desolventization	017
MP3/out/Shea Olein fraction	21.7
F1/out/Shea Stearin fraction	40.0
F1/Blow/Shea stearin	5.7
F1/Irame/Shea Cake	4.0
F1/out/Shea line drain	2.4
Total Outputs	80.4
Total Oil Loss, %	17.9
Second desolventization	01 7
MP3/out/Snea Olein fraction	21.7
F1/out/Shea Stearin Iraction	40.0
<u>Utiputs, kg after 2nd desolventization</u>	20.1
MP2 /out / Shee Steerin fraction	20.1 40.1
MP3/out/Shea Olein fraction F1/out/Shea Stearin fraction <u>Outputs, kg after 2nd desolventization</u> MP3/out/Shea Olein fraction MP3/out/Shea Stearin fraction	21.7 46.6 20.1 42.1

<u>Sample I.D.</u>	Mettler D. point °C	Unsaponifiables %	Residual hexane ppm
OD3/out/Refined Shea oil	-	5.74	-
F1/out/Shea Stearin fraction	33.1	6.15	0.53
MP3/out/Shea Olein fraction	12.5	8.70	0.0

Table 4A4: Analysis of stearin and olein fraction of Shea butter.

4A6: Conclusions

All south for

Quality of the starting Shea butter was marginal, with a relatively low peroxide value of 2.15 meq/kg, high free fatty acid content (6.52%) and dark oil color (20.0Y3.7R) as measured using a filtered Shea butter sample in a 1" cell.

The following materials were produced:

Table 4A5: Shea samples produced from scale up run.

Sample ID	Kilos
Refined Shea butter	711.6-95.0 = 616.6
F1/out/Shea Stearin fraction	42.1
MP3/out/Shea Olein fraction	20.1

Phase 4B. Commissioning of RBD Technologies Lab Deodorizer

4B1. Summary

The unit was received in July and the manufacturer spent 2 days assembling and demonstrating the equipment. Kassamba Bakari observed the working principles of the unit.

There were vacuum problems in the unit when lines on the vacuum/distillate side of the deodorizer plugged with Shea butter distillate. Heat tape and a hot air gun were used to resolve the problem during the initial trials with the Shea butter. RBD technologies redesigned the distillate side and supplied heat tracing and a redesigned distillate trap. These were received in late August 1999. The two major free fatty acids from Shea butter are Stearic acid (melting point 72°C), and Oleic acid (MP 16°C). The vacuum line was heat traced at a temperature of 70-75°C to prevent plugging with condensation of free fatty acids.

In the interim while waiting for the parts, trials were conducted using conventional soybean oil. These results are displayed in Table 4-1 (Operational Parameters) and Table 4-2 (RBD oil Quality)and compared very favourably with the same material when it was run in the pilot plant. The unit was tested with both nitrogen sparging and steam sparging and no significant difference in oil quality was observed, trials 8/21/98 and trials 8/24/98.

The first trials, 8/19/98 and 8/20/98, were learning runs. The technician had to get an understanding for temperature control during the initial trials, a small amount of cross contamination of previous materials through the column were encountered and staff were trying to get an estimate of how much oil at the start needed to be removed. (The initial feed over the column is off as a result of the stripping column not being wetted at the start of the test. This amounts to about 200-300 g of oil at the start.) The last trial with the soybean oil 8/25/98 was not as good because of a sticky water flow meter.

Our conclusion from these trials is that sparging with nitrogen is comparable to steam and to POS's pilot plant operation. The advantage of nitrogen over water in this unit is that the control of the stripping gas is considerably easier to regulate.

- 55 -

Table 4B-1. Commissioning of Deodorizer with Soybean oil - Operational Parameters

Date of trial	RB oil Mass (g)	% Recovery ^a	Time to Pressurize De-aerator to 14 psi (min.)	Oil Flow Meter Setting	Feed Rate (kg/hour)	Oil Loss due to Low Column Temp. (g) ^b	Deodorizer Heating Rate (°C /min.)	Variation Around Column Temp. Set point (°C)	Spirafilm Temp. Setting (°C)	Total Run Time (hours) ^e
and Annaliz			a 182 201 ml	/ in	rodon flow v	ariad to maintain	evetam pracer	reat 20 mm Ha		
a ngalan yang ngalan san	AILIOBEN	r Stripping ge	(5-10 4- 001/111)		IOBCI IIOW V	and the community		10 a. 2.0 mm 11	NAMES OF THE OWNER OF THE PARTY	<u>我一次不要要问题我不过是好多少</u>
8/19/98	3219.5	96.67	30	60	2.0	70.0	3.1	259.0 - 265.3	194	5.0
8/20/98	3254.4	81.66	36	90	5.4	559.1	2.4	260.0 - 263.5	194	5.0
8/21/98	3232.5	92.82	31	60	2.0	169.3	3.0	258.0 - 265.3	194	5.3
	1.0% Ste	eam used for	Stripping gas.	System p	ressure 0.4	- 1.7 mm Hg				
0.104.100	2008.0	00.04		60	0.3	040.3	2.5	262 3 264 1	104	5 5
8/24/98	3208.2	90.94	- 28	90	2.5	272.5	2.6	258 0 - 262 0	194	4.6
0/23/90	2930.2	00.91	20	50	0.4	440.7	2.0	200.0 202.0	190	1.0

^a % Recovery : Deodorized oil (g) / RB oil Mass (g)

^b Initiation of oil flow over the column decreases the column's temperature from 270°C to approximately 125°C, it takes 10 minutes for the temperature to rise back to 260°C. The oil collected prior to the column reaching 260°C was discarded as this oil was dark brown in color. ^c The total run time includes the time it takes to check vacuum (~ 12 min.) and cool the oil to 100°C.

RB: Refined and bleached

- Note: 1. The actual steam rate on 8/24/98 was 1.2% and on 8/25/98 was 1.1%.
 - 2. In 25.4 hours of operation the deodorizer used 700 psi of nitrogen from a K size nitrogen bottle.
 - 3. The maximum flow rate for water is 1.27 g/minute: therefore the maximum steam rate for a feed rate of 5.0 Kg/ hr is 1.5% and the maximum steam rate for a feed rate of 2.0 kg is 3.8%.

- 56 -

Table 4B-2. Commissioning of Deodorizer with Soybean oil - Analytical Results

Date of trial	Sample	Peroxide Value	% Free Fatty Acids	AOCS 5.25"	Color	Taste (Randy Kruger)
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				Red	Yellow	
8/17/98	RB Soybean oil	0.48	0.03	2.8	70.0	-
	RBD Soy-Pilot Plant	0.00	0.01	0.5	3.3	-
8/19/98	N ₂ RBD Soy Flow : 60 Initial a*	0.40	0.01	4.6	22.0	-
	N ₂ RBD Soy Flow : 60 Final ^{b*}	0.20	0.01	1.0	3.9	-
8/20/98	N2 RBD Soy Flow : 90 Initial ª	0.33	0.02	0.9	13.0	-
	N ₂ RBD Soy Flow : 90 Final ^b	0.00	0.02	0.3	2.3	off taste
8/21/98	N2 RBD Soy Flow : 60 Initial *	0.00	0.01	1.0	3.9	-
	N ₂ RBD Soy Flow : 60 Final ^b	0.00	0.01	0.3	2.2	good
8/24/98	Steam RBD Soy Flow : 60 Initial	0.00	0.01	0.7	4.5	-
	Steam RBD Soy Flow : 60 Final ^b	0.00	0.01	0.4	2.4	good
8/25/98	Steam RBD Soy Flow : 90 Initial ***	0.20	0.02	1.5	14.0	-
-,,	Steam RBD Soy Flow : 90 Final ***	0.00	0.01	0.8	3.4	good

^a Initial - refers to a sample taken from the deodorizer 20 minutes after the column temperature stabilized between 260-265°C.

• Final - refers to a sample taken from the deodorizer after the oil in the collection vessel had been heated to 265°C for 20 minutes and then cooled to 100°C.

* These samples had a brown tinge.

** During this run the water flow meter's float became stuck and oil flow over the column was stopped until this problem was corrected . Once oil flow over the column ceased the Spirafilm heater over heated to ~ 300°C, this may account for the darker color of these samples.

Note: 1395.0 g of RB soybean oil was passed over the column prior to the series of trials to remove residues from the previous run, however the first trial samples (8/19/98) had a brown tinge to them. The second batch had good color but the taste was off. It therefore appears that more than 1,395.0 g of oil may be needed to pre-flush the deodorizer.

4B2. Commissioning of RBD Technologies Deodorizer after POS Modifications

The following modifications were made to the deodorizer to improve its ability to deodorize Shea butter.

- 1. Changed position of thermocouple on Spirafilm heater from middle of heater to top of heater so as to minimize overheating of oil in Spirafilm heater.
- 2. Installation of superior heating cable on the column. The new cable spirals down the column instead of an up and down arrangement. This will provide for more intimate contact between column and heating tape.
- 3. Installation of a -Z- pipe at the base of the column. This will provide for a means of diverting the initial and final oil flow over the column to a separate drain pot instead of the main deodorizer collection pot.
- 4. Installation of a drain pot between column and deodorizer for collection of start up and shut down oil.
- 5. Installation of a large distillate trap to enable batch deodorization of oil with high free fatty acid content.
- 6. Installation of an electrical element to liquefy distillate in the distillate trap at end of run.
- 7. Replace vacuum line with stainless steel tubing so that it may be heat traced.
- 8. Heat trace & insulate all vacuum lines to prevent FFA condensation in lines. This will lead to loss of vacuum if allowed to occur.
- 9. Construct a larger water reservoir for steam generation to resolve the problem of having to refill the reservoir during a run. The larger diameter reservoir also alleviates the problem of constant adjustment of steam flow rate during a run.
- 10. Installation of switch controlled power plugs for convenience of operation.
- 11. Place aluminum cladding on deaerator, column, and deodorizer for ease of cleaning and protection of insulation from oil, water damage.

Phase 5. Economic feasibility:

5A1. Overview

In view of the high variability of colour and free fatty acid level in crude Shea butter and low level of technological infrastructure in Burkina Faso it is proposed that any refining processing Shea plant, if built, will consist of a bleaching reactor, a filter press and a batch deodorizer.

Light coloured and odorless Shea butter produced from the refining process could compete as a cooking oil in Burkina Faso overcoming the main objection in using Shea butter as a cooking oil which is its strong odour. However, to achieve the lowest possible cost of production, all precautions should be taken to start processing with the highest quality of crude Shea butter. A good starting specification for crude Shea butter would be one with a free fatty acid content of 2% or less, a starting colour of 70.0Y3.0R or less and an oxidative state of 2.0 meq/kilo or less.

Starting with a butter having dark colour, high free fatty acid content and oxidative value will necessitate the use of high dosages of clay and possibly additional treatment with activated charcoal to bring down oxidative value and colour to acceptable levels. Lower colour and oxidative value will significantly reduce bleaching clay requirements, which in turn will reduce the loss of neutral oil in the bleaching process (normally 20-30% of clay weight). See Appendix 5A-4 & 5A-5 for an example of dependence of overall yield on starting Shea butter quality.

High free fatty acids in the crude Shea will also result in high loses during the deodorization process. The free fatty acids distillate could however be sold to the local soap industry.

5A2. Proposed processing flow for Burkina Faso

- An enclosed reactor was chosen over an open tank for bleaching as this will generate a lighter colour bleached oil and will result in a safer operation as operators will have little chance to be in contact with the hot oil produced during bleaching.
- Generation of steam at the boiler could use Shea outer coat, a by product which is generated when the Shea nuts are cracked prior to butter extraction.
- A batch deodorizer has been selected over a continuous deodorizer because of the low capacity of the plant envisioned, less than 100 metric tons per day and the possibility of high free fatty acid content in some of the starting Shea butter. A batch deodorizer will be better suited for Burkina Faso due to its simplicity in design and operation.
- Using a good starting butter will generate less spent clay effluents and thus minimize disposal problems. The spent clay could however be incorporated into spent Shea meal from the extraction process for animal feed.
- If there is a desire to produce Shea butter with low unsaponifiables for the CBS market then one could envision a flammable area where refined Shea butter will be fractionated using absolute ethanol. After cooling to 10-15°C, the precipitate would be filtered and desolventized to generate a Shea butter fraction suitable to be incorporated into a CBS formulation.
- Similarly the olein fraction could generate a liquid Shea oil at room temperature which may be suitable for the cosmetic market due to its high unsaponifiable content. The fractionation of Shea butter in ethanol is however a costly proposition as it would require a building and equipment rated for a flammable area and strict adhesion to safety regulations.
- Hexane could be used as the fractionating solvent if the stearin fraction is not required to have a low unsaponifiable value.
- Initial high cost of acquisition of solvent will have a quick payback time as the solvent will be reused for a long time as long as efforts are made to keep fugitive solvent loss to a minimum.

5A3. Price of finished good

The price per kilo of refined Shea butter ex POS is a function of the price of starting Shea, processing costs and overall refining yield. In general the more butter processed and the higher the quality of the starting Shea, the lower the overall price per kilo of finished product, see Appendix 4B3 and Table 4B1.

Results are based on the assumption of a refining yield of 78% for poor quality SM/Shea butter and 90% for high quality SM/Shea butter.

Table 5A1: Cost of finished goods FOB POS, (1999)

	Amount of SM/Shea butter processed	1 Tonne	2 Tonnes	4 Tonnes
[Poor quality SM/Shea butter			
1	Cost of SM/Shea ex B. Faso	\$ 1,190		
2	Packaging	\$ 262		`
3	Transport to POS	\$ 2,690		
4	Total SM/Shea, ex POS, (1+2+3)	\$ 4,142	\$ 8,284	\$16,568
5	Processing cost, poor quality SM/Shea*	\$10,650	\$12,915	\$19,915
6	Total, (4+5)	\$14,792	\$21,199	\$36,483
a series				
7	Cost/kilo of finished good	\$18.96	\$13.59	\$11.69
		ALL	State of the second	
	Good quality SM/Shea butter			
8	Processing cost, good SM/Shea*	\$10,520	\$12,515	\$19,415
9	Total, (4+8)	\$14,662	\$20,799	\$35,983
			1.1	
10	Cost/kilo of finished good	\$16.29	\$11.56	\$10.00
	and the second		Scan Scan Street	

*: Value extracted from Appendix 4B3.

Table 5A2. Pricing on North American Market, (1999)

Description	Quantity ordered, kg	Price/kilo in Canadian funds*
Pressed & RBD Shea butter		
	25-75	\$24.75
	100-375	\$22.50
	400-720	\$19.50
	720 up	\$15.65

* Handling and transport cost will have to be added to these prices.

It is clear from the above two tables, 4B-1 and 4B-2, that processing and marketing of Shea butter in North American can be a lucrative proposition provided the batch size is increased to 4 tonnes or more and only high quality starting Shea butter is sent to POS. The same logic could be applied to a processing plant in Burkina Faso as long as actual local labour cost and equipment acquisition cost are used.

Phase 6. Acquisition of De Smet Fractionation Unit

This phase was executed.

F

10 miles

ALC: N

and the

No.

and the second

Dr Rigobert Yamego was trained on the operation of a DeSmet fractionation unit in Belgium. The fractionation unit was then shipped to Burkina Faso.

Appendix 1A-1. Alkali Refining Trial Protocols

<u>Trial #1</u>

0. CRUDE OIL

1. ACID PRETREAT/REFINING

- i. heat oil to 60°C
- ii. add 0.2% of 85% phosphoric acid
- iii. mix 30 minutes (2 min. with Polytron (high Shear mixer/homogenizer))
- iv. add 16°Be NaOH to neutralize FFA's + 0.08% excess
- v. mix 30 min.
- vi. heat to 70°C
- vii. centrifuge

NOTE: 1. After addition of acid, oil turned dark black in color.2. After caustic addition a slight emulsion formed.

Starting Weight : 1381.4g	Refined oil : 1295.1g Soap stock : 99.68g	Recovery : 93.75%
Starting Material After acid addition	FFA : 2.04% FFA : 2.74 %	
Caustic	Addition Rat	e : 4.24%
Soaps : 2192.24 ppm		

2. WATER WASHING

- i. heat to 75°C
- ii. add 15% of 95°C water
- iii. mix 15 min.
- iv. centrifuge
- v. measure soaps, if soaps higher than 50 ppm, repeat steps i. to iv.

NOTE: 1. An emulsion formed after water addition:

- a. An attempt to break the emulsion by heating the oil to 95°C and holding at temperature for 30 minutes failed.
- b. An attempt to break the emulsion by heating the oil to 95°C and adding 5, 10, and 15% salt and holding for 15 minutes failed.
- c. An attempt to break the emulsion by heating the oil to 70°C and adding 5, 10, and 20% isopropyl alcohol and holding for 15 minutes failed.
- 2. Due to the emulsion problem this trial was aborted.

<u>Trial #2</u>

0. CRUDE OIL

1. ACID DEGUMMING

- i. heat oil to 60°C
- ii. add 0.2% of 50% citric acid
- iii. mix 30 minutes (2 min. with Polytron(high Shear mixer/homogenizer))
- iv. mix 30 min.
- v. centrifuge

NOTE: 1. Almost no gums 2. Some water was	 Almost no gums were removed. Some water was still present in the oil after centrifugation. 				
Starting Weight : 1200.0g	Refined oil : 1156.2g	Recovery : 96.35%			
Starting MaterialFFA : 2.04%After DegummingFFA : 1.93%, Phosphorus : <0.2 ppm					

2. ACID PRETREAT/REFINING

- i. heat oil to 80°C
- ii. add 0.2% of 85% phosphoric acid
- iii. mix 30 minutes (2 min. with Polytron(high Shear mixer/homogenizer))
- iv. add 16°Be NaOH to neutralize FFA's + 0.08% excess
- v. mix 30 min.
- vi. centrifuge

 NOTE: 1. Some water was still present in the oil after centrifugation.

 2. Some crystallization occurred as the oil cooled while centrifuging.

 Starting Weight : 1103.3g
 Refined oil : 1024.6

 Soap stock : 93.20g

 Starting Material, Degummed oil
 FFA : 1.93%

 After acid addition
 FFA : 1.93 %

 Caustic
 Addition Rate : 3.19%

 Soaps : 472.5 ppm

2. WATER WASHING

- i. heat to 75°C
- ii. add 15% of 95°C water
- iii. mix 15 min., very slowly
- iv. centrifuge

ſ

v. measure soaps, if soaps higher than 50 ppm, repeat steps i. to iv.

ł	NOTE:	1.	Two minutes after water addition an emulsion formed:					
I		a.	An attempt to break the emulsion by heating the oil to 90°C and					
I	holding at temperature for 30 minutes failed.							
	The oil was then centrifuged and had cooled to 40°C during the 15 minutes.							
I		3.	Some water pha	ase was removed by centrifu	gation but the emulsion was			
			still present. C present.	Centrifugation was then done	e at 90°C. Emulsion was still			
		4.	Added drying ste	ep to bleaching to remove wat	er.			
l	.				-			
	Starting	Wei	ght : 1024.5g	Washed oil : 848.3g 1st Wash Water : 244.0 g	Recovery : 82.79%			
ļ	2nd Wash Water : 27.0 g							
	Soaps : 602.12 ppm							
	FFA : 0.2	8%						

3. BLEACHING

- i. load oil into Parr reactor
- ii. dry the oil for 35 minutes at 80°C under vacuum
- iii. cool the oil to 40-50°C
- iv. add 0.1% of 50% citric acid and mix 15 minutes
- v. add 2.0% Tonsil 'Supreme 120 FF' bleaching clay
- vi. pull vacuum and heat to 110°C
- iv. hold 30 min.
- v. cool to 65°C
- vi. filter, using filter aid

NOTE: 1. As a result of the high soap content, this trial was aborted after bleaching.

Starting Weight : 793.0

Washed oil: 744.7

Recovery : 93.91%

Soaps : 343.8 ppm Peroxide Value : 0.54 meq/kg FFA : 0.47% AOCS Color 9.1Y 0.7R

Appendix 1B-1. Physical Refining Trial Protocols

0. CRUDE OIL

1. BLEACHING

- i. load oil into Parr reactor
- ii. heat the oil to 40-50°C
- iii. add 0.0, 0.1, or 0.2% of 50% citric acid and mix 15 minutes
- iv. heat the oil to 60°C
- v. add Tonsil 'Supreme 120 FF' bleaching clay in dosage specified
- vi. pull vacuum and heat to 110°C
- iv. hold 30 min.
- v. cool to 65°C
- vi. filter, using filter aid

NOTE: Changes made to protocol are as specified in Tables.

2. DEODORIZE

- i. load 800g into 2L glass deodorizer
- ii. pull vacuum
- iii. heat to 100°C
- iv. begin steam addition at 6%/hr
- v. continue heating until 250°C
- vi. continue sparging for 1 hr at temperature
- vii. cool to 70°C with sparging
- viii. remove oil

ş

NOTE: Changes made to protocol are as specified in Tables.

Appendix 1C-1. Solvent (ethanol) Refining Protocol

0. CRUDE OIL

1. <u>REFINING</u>

- i. Heat Shea butter to 50-55°C
- ii. Add 25% by volume of 80°C, 95% (by volume) ethanol
- iii. Mix with gentle agitation for 15 minutes
- iv. Transfer to 55°C convection oven and allow phases to separate

Observations:

- 1. After 30 minutes some phase separation occurred.
- 2. After 3 hours separation still incomplete.
- 3. After 24 hours further separation occurred, however emulsion was present.
- 4. Trial abandoned.

Appendix 1C-2. <u>Refining with 95.6% (by wt.) of ethyl alcohol</u>

A: Removal of latex unsaponifiables:

- i. Transfer 125g of bleached Shea butter to a Parr reactor.
- ii. Add 6 times the bleached Shea weight as 95.6% (**by wt**) ethanol into a Parr reactor.
- iii. Connect the inner vessel of the second Parr reactor with the first Parr reactor via an in line filter fitted with a 0.5 micron Teflon filter paper(see Diagram 1C-2 at end of Appendix).
- Note: A 1.0 micron filter paper will allow some of the latex to go through.
- iv. Heat-tape the in-line filter, setting the tape temperature to 120-125°C.
- Note: The first three trials were done at 95° C the last four were done at 120° C.
- v. Ensure that there are no leaks in the system and that the first reactor is isolated from the in line filter (valve 2 close).
- vi. Start heating the slurry in the first Parr reactor to 120-125°C (Final pressure in reactor will be around 40 psig).
- vii. Maintain temperature of slurry at 120-125°C for 1/2 hour (gentle stirring).

- viii. Pressurize the second vessel and the in line filter to same pressure as in the 1st reactor by opening valves 3 & 4. Close nitrogen valve once pressure is attained.
- ix. Start filtration by opening the valve 2 connecting the first reactor to the in line filter while pressurizing the first reactor to 45-50 psig with nitrogen (valve 1) to initiate flow to the filter.
- Note: As the second Parr reactor fills up the pressure in this vessel will increase while the pressure in first reactor will drop, once the pressure is the same as in the first reactor isolate the second reactor from the inline filter and discharge the second reactor into a 2 L beaker. Restart step is until transfer is over.
- x. After all the slurry has been transferred to the second vessel close the valves on both sides of the inline filter. Allow filter to cool.
- Remove the filter paper from the inline filter.
 Weight latex unsaponifiables on the filter paper after drying at 80°C for 1-2 hour.

Measure unsaponifiable, FFA after hexane extraction of the filter paper. Note: Analysis for Latex unsaponifiables, upper & lower ethanol layer can be done by pooling 3 sample lot at a time.

B: Alcohol refining (Removal of part of the FFA.)

- i. Transfer the filtrate from the second vessel once the temperature reaches 50°C into a separatory funnel. Allow to cool to 40°C.
- ii. Hold at temperature for 1/2 hour.
- iii. Decant the upper oil poor (and FFA rich layer) from the lower oil rich (and FFA poor layer).Weigh both layers.

Measure % moisture of both layers (Karl Fisher).

iv. Desolventized the lower and upper layers separately using a rotary evaporator. Measure IV, saponification value, % FFA, and unsaponifiables of both layers.

DIAGRAM 1C-2 : Set up for alcohol latex removal:

Appendix 1C-3. Latex Removal by Absolute Ethanol Method

<u>Protocol</u>

SM/Shea butter or 2% clay atmospheric bleached Shea butter was mixed with absolute ethanol in a ratio of 1 part to 24 parts and heated to 80°C in a Roto-Vap. The resulting solution was mixed for 3.5 hours. The solution was then decanted from the precipitated latex that adhered to the wall of the Roto-Vap. The Shea butter-alcohol solution was cooled to 10°C (bleached) or 15°C (SM/Shea), and held at these temperatures for one hour. The crystals that precipitated out (S1) were separated from the ethanol-Shea solution by filtration, residual ethanol was removed from the crystals by drying in a vacuum oven at 65°C for 20 hours. The ethanol soluble oil fraction was then recovered by rotary evaporation, (O1).

Note:

The 10°C ethanol soluble bleached Shea butter fraction, (O1) was desolventized in a Roto-Vap and then left at 22°C for 20 hours. Some crystallization occurred. The stearin(S2) and olein(O2) were separated by decanting the olein.

Appendix 3A-1. Dry Fractionation Trials

Using crude SM/Shea

6/12/98

-SM/Shea, (received 5/29/98) was filtered with Whatman #4 filter paper -heat to 60°C then cool at 0.2°C /minute to **24.6°C and hold at temp. for one hour** -very poor filtration, stearin solidified in the funnel

6/15/98

-SM/Shea, (received 5/29/98) was filtered with Whatman #4 filter paper

-heat to 60°C then cool at 0.2°C /minute to **28°C and hold at temp. for two hours** -no crystals present at the start of the hold period

-at the end very small crystals were present but filtration was poor, the Whatman #5 filter paper plugged due to solidification

-since filtration was problematic it was decided to bleach the Shea butter prior to fractionation

Using Bleached Shea

-the bleached Shea butter from the clay dosage trials done on the 6/16/98 was combined and used for the dry fractionation trials dated 6/17/98, 6/18/98, 8/27/98, 8/28/98 and 9/1/98.

6/17/98

-heat bleached Shea to 60° C then cool at 0.2° C /minute to **22.5°C and hold at temperature for 0.5 hours**

-stopped holding period after 0.5 hours because of excessive crystal formation -filtration was possible but very little olein was recovered

-centrifugation was possible but very little olein was recovered

-since the holding time at 22.5°C was only 30 minutes, crystallization equilibrium probably had not occurred

6/18/98

-heat bleached Shea butter to 60° C then cool at 0.2° C /minute to 28° C and hold at temperature for 16.5 hours

-after 16.5 hours the crystallization vessel temperature had fallen to 26.4 $^\circ C$, but the cooling water bath was still at 28 $^\circ C$

-complete crystallization had occurred, could not be filtered

8/27/98

-heat bleached Shea butter to 60°C then cool at 0.2°C /minute to 31°C and hold at temperature for 20.5 hours.

Yield : 5.66% Stearin, Dropping Point of Stearin was 55.8°C , Dropping point of Olein fraction was 30.5° C .

9/2/98

-heat the 30.5°C olein to 60°C then cool at 0.2°C /minute to **29°C and hold at** temperature for **19 hours.** Semisolid mass, could not filter.

9/3/98

-heat 31°C OL to 60°C then cool at 0.2°C /minute to **31°C and hold at temperature** for **20 hours.** No crystals present.

8/28/98

-heat bleached Shea (produced on 8/28/98) to 60°C then cool at 0.2°C /minute to **29°C and hold at temperature for 16 hours.** Complete crystallization.

9/1/98

-heat bleached Shea (produced on 8/28/98) to 60°C then cool at 0.2°C /minute to **30°C and hold for 20 hours.** Lots of crystals, Tried to separate by centrifugation, not successful.

Shea/ Sunflower blend fractionation

12/10/98

300 g of 2% bleached Shea butter (produced on 9/22/98) was mixed with 300 g of RBD sunflower oil. The mixture was heated to 76°C and mixed for 15 minutes.

The blend was cooled to **25°C** using the DeSmet cooling curve assisted by agitation of 33 rpm and held at temperature for 16 hours.

	Yield, % By weight	Dropping Point (DP) °C
Stearin	45.32	31.5
Olein	50.58	13.5
Shea butter	-	31.8
Sunflower	-	-9.0

From the split between the stearin and olein fraction and dropping points it is concluded that almost all of the Shea had crystallized out.

12/14/98

The Shea/Sunflower blend was heated to 75°C and cooled to **18.5°C** with an agitation of 33 rpm **and held at temperature for 44 minutes.** After 30 minutes at 18.6°C complete crystallization occurred.

12/15/98

The Shea/Sunflower blend was heated to 75cc and cooled to **28.3°C** with an agitation of 33 rpm and held at temperature for **20** hours.

After 3 hours at 28.3°C crystal growth was observed (Oil turned cloudy).

	Yield, %	Dropping Point (DP) °C	IV I	Unsaponifiables, %
Stearin	17.8	36.6	75.37	3.17
Olein	82.2	22.5	100.02	3.33
Shea butter	-	31.8	56.92	5.63
Sunflower	-	-9.0	135.25	0.69
50/50 Blend	-	-	-	3.16 *
3/23/99 Stearin	~ 20.0	33.3	50.02	-
3/23/99 Olein	~ 80.0	30.5	52.23	-
* calculated				

Dry Fractionation of alcohol refined Shea (latex removed)

-a mixture of the 120°C alcohol refined bleached Shea was prepared as follows: 142.2g of bottom layer from trial 6 &7 (2/23/99) were combined with 112.9g bottom layer from trial 4& 5 (2/22/99).

3/12/99

-heat alcohol extracted Shea to 75°C then cool at 0.2°C /minute to **31°C then add 0.2% seed crystals (5°C ST 7/16/98) and hold for ~ 48 hours.** -due to evaporation from the water bath the temperature had fallen to 23°C. Complete crystallization had occurred.

3/15/99

-heat alcohol extracted Shea to 75°C then cool at 0.2°C /minute to **31°C then add 0.2% seed crystals (5°C ST 7/16/98) and hold for 20 hours.** -crystallization vessel temperature was 30.6°C. Complete crystallization had occurred.

3/16/99

-heat alcohol extracted Shea to 75° C then cool at 0.2° C /minute to 31° C hold 2 hours then add 0.02% seed crystals (5°C ST 7/16/98) and hold for 1 hour.

-before the addition of the seed crystals no crystallization had occurred, one hour after addition lots of crystals were present . No separation was achieved with the carver cell. Crystallization was probably occurring in the cell, and an excessive amount of crystals plugged the cell.

-note after 4 hours (2 hours after seed addition) at 31°C crystallization was complete.

3/17/99

-heat alcohol extracted Shea to 75°C then cool at 0.2°C /minute to 35°C then add 0.02% seed crystals (5°C ST 7/16/98) and hold for 19.5 hour.

-crystallization vessel temperature : 34.3°C . Complete crystallization had occurred.
3/19/99

-heat alcohol extracted Shea to 75°C then cool at 0.2°C /minute to **36.6°C then add 0.02% seed crystals (5°C ST 7/16/98) and hold for 48 hour.** -No crystallization had occurred.

3/22/99

-heat alcohol extracted Shea to 75°C then cool at 0.2°C /minute to 35.5°C then add 0.02% seed crystals (5°C ST 7/16/98) and hold for 20 hours

3/23/99

-small amount of crystals present, crystallization vessel temp. = 35.8°C . -some temp. variation in the vessel on the right side= 35.8 on the left =35.1 crystallization vessel temp. = 37.8°C .

-We increased the RPM to 84 (to equilibrate the temperature) cooled to 35°C held 23.5 hours.

-after 4.5 hrs. slightly more crystals, temp. now equilibrated but high agitation will result in small crystals, decrease RPM to 33.

3/24/99

-after 20 hours at 35.5°C and then 23.5 hours at 35°C a slurry of crystals was present - Carver press-- separation of the larger crystals was possible but the smaller ones passed through the bottom and ST/OL was lost by up welling through the top of the press.

- Centrifuge at 4000 RPM for 10 minutes., ~20% ST was recovered

Appendix 4A-1: Process Directive of bleaching Shea butter in the Pilot Plant

Sec. 16.

1. A. A. A.

all a little

Marina.

1. 2.2.²

N. Sala

and the second

and the second

10 mm

1. A.

.

.

• •

Appendix 4A-3: Process Directive of fractionation of Shea butter in the Pilot Plant

Appendix 4B-1: Solving the darkening of the oil at start up

Trial #1: 2/22/99 Oil used: RBD canola oil (POS Startup oil) <u>Parameters :</u> Oil flow: 40% of rotometer scale Deodorization temperature: 265°C Sparging gas: Nitrogen Initial vacuum was 0.3 mm Hg. The Spirafilm was set at 268°C with a variation between 265-271°C. The column was set at 265°C with a variation between 263-266°C. Spirafilm heater and column were heated to temperature **before** initiating oil flow to the column. After all the oil had passed over the column the deodorizer pot was heated to 265°C and held there for 20 minutes, the oil was then cooled to 100°C and the final product sample was taken. The first oil over the column was diverted to the drain pot. This oil was dark in colour. The final product was lighter in colour but was still darker

than the starting oil. The deodorization process was darkening the oil. Note: The cool down procedure of the Spirafilm heater and column was initiated once **all**

the oil had passed over the column.

	Sample		
	Starting oil	Drain Pot oil	Final Product
Peroxide Value	0.8	0.4	0.2
% Free Fatty Acids	0.06	0.03	0.03

From the above data it appears that the increase in colour was not due to oxidation of the oil or free fatty acids. Oil colour may increase due to polymerization, oxidation, thermal degradation of phosphorus, or condensed fatty acids falling into the deodorized oil (vacuum loss). During this run the vacuum was good, therefore oxidation and fatty acid condensation should not have occurred. The oil had no phosphorus. Polymerization could have occurred just before cool down as the flow rate of oil over the Spirafilm and column would be tapering out at that time.

Trial 2: 2/24/99

Oil used: RB Palm oil

Parameters

Oil Flow rate: 40% of rotometer scale, i.e. Oil Rate of 2.27 Kg/hr.

Deodorization temperature: 265°C

Sparging gas: Nitrogen

Hold deodorizer pot at 100°C until feed is finished then heat to 265°C and hold 20 minutes, then cool to 100°C and discharge.

Collect start up oil in drain pot until column temperature is at 260°C .

Note this oil had no phosphorus.

The Spirafilm was set at 269° C with a variation between $265-288^{\circ}$ C.

The column was set at 265° C with a variation between $264-266^{\circ}$ C.

Time to heat ~ 2900g of oil from 100-265°C was 55 minutes (3°C /minute). The diverted drain pot start up oil was dark.

	Sample		
	RB Palm oil	Drain Pot oil	Final Product
Peroxide Value	0.00	-	0.00
% Free Fatty Acids	0.25	-	0.02
Colour 5.25"			
Lovibond ^a	70.0Y 18.1R	dark	34.0Y 3.0R

^a The Lovibond scale was used because the oil was too dark for the AOCS scale.

It should be noted that as in the previous run (2/22/99) this oil had no phosphorus, the vacuum was good and the oil's temperature was kept below 300°C. The dark start up oil was analyzed for polymerized and oxidized triglycerides, it was found to contain a 6.44% polar fraction (the usual value is 2%). The polar fraction contained 5.25% polymerized triglycerides and 17.17% oxidized triglycerides, therefore the dark colour was due to polymerization. Polymerization can occur at temperatures of 150°C and higher. During start up the column was heated to 265°C with no oil flow, the column was also cooled with no oil flow; this provided ample opportunity for the thin film of oil on the column to polymerize.

The start up and cool down was modified so that oil was flowing over the Spirafilm heater and the column during start up and cool down. The oil during start up and cool down was diverted to the drain pot as stripping of FFA would not be complete at lower temperature. When this procedure was followed we noted that the startup and cool down oil was no longer dark.

Trial #3: 3/3/99

Oil used: Atmospheric bleached Shea butter

Parameters

Flow: 40 % of rotometer scale

Deodorization temperature: 265°C

Sparging gas: Nitrogen

Heating and cooling of the Spira heater and column was done with Shea butter flowing over these units.

Place ice and salt in the distillate trap to strip maximum amount of FFA before vapours reached the vacuum pump.

Hold deodorizer pot at 100°C until feed is finished then heat to 265°C and hold 2 hours. Cool to 100°C and discharge.

Collect start up oil in drain pot until column temperature is 260° C. Note that this oil had no phosphorus.

Sample	% Free Fatty Acids	AOCS 5.25" Colour
SM /bleached Shea	2.03	0.0V 0.6P
Drain Dat saluma	2.03	9.91 0.0K
at175°C	-	9.9Y 0.9R
Drain Pot column at 250°C	-	9.4Y 1.5R
Drain Pot column at 250°C	-	9.4Y 1.3R
Deodorizer at 265°C		
Time: 0	0.26	9.0Y 1.1R
Deodorizer at 265°C Time: 20 Min	0.19	9.0Y 1.2R
Deodorizer at 265°C		
Time: 60 Min	0.15	9.9Y 1.2R
Deodorizer at 265°C Time: 120 Min	0.05	8.5Y 1.1R

This trial demonstrated that the deodorizer can remove 97.5% of the Free Fatty Acids and that heat bleaching can reduce the yellow colour by 1.0 unit. It was also noticed that the red colour rose from 0.6 to 1.5; through heat bleaching this was reduced to 1.1.

The decrease in red seemed to occur when the temperature was around 265°C. It seems that some thermal degradation product in the atmospheric bleached Shea increased the red and this was partially removed during heat bleaching. The same behavior was observed when atmospheric bleached Shea was deodorized in a glass deodorizer.

Trial #4: 3/4/99

Oil used: **Atmospheric bleached Shea butter** <u>Parameters</u> Oil flow rate: 40% of rotometer scale. Deodorization temperature: 265°C Stripping gas: 3% steam Note: Burkina Faso Clay was used instead on tonsil 120FF

Heat and cool the column with Shea butter.

When column temperature is less than 240°C collect oil in the drain pot. Place ice and salt in the distillate trap. Hold deodorizer at 100°C until feed is finished then heat to 265°C and hold 2 hours, then cool to 100°C and discharge. Collect oil in drain pot until column temperature is 260°C. Note that this oil had no phosphorus.

Losses during this run to heating and cooling : 870g, the deaerator was loaded with 2530.8g of Shea butter.

Sample	% Free Fatty Acids	AOCS 5.25" Colour
SM/BK. bleached Shea	1.70	9.9Y 0.8R
Deodorizer at 265°C Time: 0	0.02	10.0Y 1.4R
Deodorizer at 265°C Time: 1 hr	0.02	9.4Y 1.3R
Deodorizer at 265°C Time: 2 hr	-	9.7Y 1.4R

Once again deodorization increased the red. Heat bleaching did not occur for the red colour and only slightly for the yellow. The above Table shows that if oil passing over the column at temperatures below 240°C is discarded (start up and cool down oil) then a holding period in the deodorizer at 265°C is not necessary (this saves a minimum of 1.5 hours of operation time).

Trial #5: 3/5/99

Oil used: Atmospheric bleached/Carbon Treated High FFA Shea butter.

Initial colour of oil was very dark.

Note: This oil was first bleached with 2% clay , then it was treated with 0.5% carbon $\underline{Parameters}$

Oil flow rate: 60% of rotometer scale

Deodorization temperature: 265°C

Stripping gas: Nitrogen

Heat and cool the column with Shea butter.

When column temperature is less than 220°C **collect** oil in the drain pot. Place ice and salt in the distillate trap. Heat deodorizer to 265°C when feed is started, hold 2.5 hours at temperature after feed to the deodorizer has stopped, then cool to 100°C and discharge.

Sample	% Free Fatty Acids
SM/bleached High FFA Shea butter	13.14
Drain Pot - Column at 247°C	1.80
Deodorizer 240°C - Time : 0	0.28
Deodorizer 1 hour at 265°C	0.18
Deodorizer 1.5 hours at 265°C	0.17
Deodorizer 2.0 hours at 265°C	0.12
Deodorizer 2.5 hours at 265°C	0.08
Drain Pot Condensate from column during batch deodorization	0.12

During this run the distillate trap began to plug at the vapor inlet to the distillate trap. The plugging problem can be overcome by keeping the ice in the trap 12 cm below the top of the trap, also a heating tape could be placed around the top. In future runs the deodorization temperature should be kept at 100°C, if the deodorization temperature is above 180°C and vacuum is lost then fatty acids that have been distilled from oil in the deodorizer may fall back into the oil and affect the final colour. In the event of vacuum loss the flow from the column can be diverted to the drain pot, this should prevent unrefined oil from the column from falling into the deodorizer. The above procedure will increase operation time but should produce a better product.

It Is noted from the above Table that the column was able to remove 86.30% of the FFA present at a flow rate of 60% of rotometer scale, perhaps a slower flow rate would remove more.

Processing Step	Assumptions	Theoretical Yield of low quality Shea Butter	Theoretical Yield of high quality Shea Butter
Bleaching	6% clay & 1% carbon dosage with low quality Shea Butter	88% *	-
	1.5% clay dosage with high quality Shea Butter	-	96% *
Physical Refining	6.52% of free fatty acid in low quality Shea Butter.	89.0% **	-
	2.0% max. free fatty acid in high quality Shea Butter.	-	93.5%**
Overall Yield Ψ		78.3%	89.8%

Appendix 5A-1: Dependence of overall yield on starting Shea specifications

 Ψ See Appendix 4B-2 for calculation.

-

* 30% by weight of entrained neutral oil in weight of bleaching clay used. See Appendix 4B-2.

** 1.0 % of neutral oil entrainment in deodorization. See Appendix 4B-2.

Yield after bleaching:

With low quality Shea butter batch used in the pilot plant we use 6% clay dosage.

Yield after bleach = $\frac{Wt \text{ of bleached Shea butter obtained in plant}}{Wt \text{ of SM/Shea butter used at start of bleach}}$

If colour of SM/Shea butter was brought under control by proper processing in country of origin it is assumed that the amount of clay needed will be around 1.5% and that there will be no need for activated carbon.

Assuming 30% by weight of entrained neutral oil in weight of bleaching clay used and assuming a 20 kg filter press drain lost.

Yield, based on 1 tonne of SM/Shea after bleach will then be = $(1000-(0.3 \times (1000 \times 0.015))-20 = 96\%$ 1000

Physical Refining Yield:

With a low quality Shea Butter the % of free fatty acid in the Bleached oil was 6.52%. Assume 1% neutral oil loss in deodorizer and 35 kg of transition oil at beginning of deodorization.

Yield, based on one tonne of SM/Shea after deodorization :

<u>Wt of deodorized oil</u> = <u>Wt of bleached oil - Wt of FFA- 1% N. oil loss</u> Wt of bleached oil Wt of bleached oil

$$= \frac{1000 - 65.2 - 10.0 - 35.0}{1000} = 89.0\%$$

If the Shea seed were properly collected and stored a maximum free fatty acid content of 2.0% in the crude oil can be assumed.

Then the yield after deodorization will be: 1000 - 20.0 - 10-35.0 = 93.5%1000

OVERALL YIELD:

Overall yield for low quality Shea Butter:

88% x 89%= 78.3%

Theoretical Overall yield for Shea Butter with low colour and FFA, (2%):

96% x 93.5%= 89.8%

Thus if the starting material is top quality Shea butter approximately (898-783)= 115 kg of additional bleached and deodorized Shea butter per tonne processed will be achieved.

APPENDIX 5A-3. Calculation of costs at POS

A: Using low quality starting Shea butter

 \square

Estimated processing cost for refining SM/Shea butter with ~ 6% Free fatty acid content and dark colour, AOCS 20.0Y3.7R using 1" cell. An overall recovery of 78.3% has been assumed.

Amount of SM/Shea butter processed	1 Tonne	2 Tonnes	4 Tonnes
Labour at POS	\$5,730.00	\$6,600.00	\$8,725.00
Material	\$1,580.00*	\$2,300.00	\$3,300.00
Equipment	\$3,300.00	\$3,975.00	\$7,850.00
Lab Supplies	\$40.00	\$40.00	\$40.00
Total	\$10,650.00	\$12,915.00	\$19,915.00
Processing cost per kilo of SM/Shea butter	\$10.65	\$6.46	\$4.98
Processing cost per kilo of final RB Shea butter	\$13.60	\$8.25	\$6.36

* See appendix 4B4 for estimation of material cost for processing 1 tonne of Shea butter.

High quality starting Shea butter.

Estimated processing cost for refining SM/Shea butter with ~ 2% Free fatty acid content and light colour, AOCS 70.0Y2.9R using 5 1/4" cell: An overall recovery of 90% has been assumed.

Amount of SM/Shea butter processed	1 Tonne	2 Tonnes	4 Tonnes
Labour at POS	\$5,730.00	\$6,600.00	\$8,725.00
Material	\$1,450.00	\$1,900.00	\$2,800.00
Equipment	\$3,300.00	\$3,975.00	\$7,850.00
Lab Supplies	\$40.00	\$40.00	\$40.00
Total	\$10,520.00	\$12,515.00	\$19,415.00
Processing cost per kilo of SM/Shea butter	\$10.52	\$6.25	\$4.85
Processing cost per kilo of final RB Shea butter	\$11.69	\$6.95	\$5.39

Appendix 5A4. Material usage for processing 1 tonne of low quality Shea butter

Material	Quantity used	Total
		Cost, \$ Can.
Citric acid	1.88 kg	5.45
Bleaching Clay	56.68 kg	85.02
Activated Carbon	9.40 kg	57.37
Nitrogen		34.50
Filter aid	0.57 kg	0.74
Canola oil	170 kg	945.00
Pails & lids	46	257.70
Filter papers	16	38.40
Cartridge filters	2	56.00
Waste Disposal		50.00
Total		\$1,530.18

Project Number: 56-97-	PROCESS DIRECTIV	Έ	January	18 2000
Project Leader: Herve I Process Technician: Gr PROCESS: Bleach	January	Page 1 of 8		
Main Operators:				
Relief Operators:		·····		-
OBJECTIVE: To produ	ce a bleached Shea butter p	roduct.		
HAZARDOUS MATERI	ALS: Citric acid, bleaching c	lay, activated	carbon, filter aid	
GMP CONCERNS: Pro worn whe	duct is for human consumpt n handling product.	ion. Hair nets	and sanitary glo	ves to be
RAW MATERIALS: <u>Quantity</u> <u>Identifica</u> ~1000 kg SM/Crude ~2 kg SM/50% 0	<u>tion</u> Shea Butter Litric Acid	<u>Lot #</u> variable	<u>Container</u> boxes(50-55) PP	<u>Project #</u> 56-99-856 4100
~60 kg SM/Supre ~10 kg SM/Darco ~0.6 kg SM/Filter	me 124 FF Bleaching Clay Activated Carbon Aid	variable variable variable	bags bags bags	4100 4100 4100
EQUIPMENT	•			
<u>Main</u> CD, OP26, F4.				
<u>Auxiliary</u> PC26, OJ30A, scale for	input materials.			
<u>Containers</u> Pails for drain and blow	oil, open top drum for filter ca	ke.		
SETUP:				
Step QC Rep (Y/N)	Procedure			
1.0 Op 74 NR	CD for softening butter.			
2.0 Op <u>744 N</u>	OP26 for bleaching as per S man hole off for loading.	OP. SIHI as v	acuum source. Ha	ve
3.0 Op <u>M</u> N OP26SheaButter1	F4 with 8 x 1" frames to filter	the bleached	oil.	

Project Number: 56-97-856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Bleach Shea Butter

January 18, 2000

Page 2 of 8

<u>Step</u>	<u>QC Rep</u>	Dev. <u>(Y/N)</u>	<u>Procedure</u>
4.0	Op <u>74</u>	<u></u>	PC26 to feed F4.
5.0	Op <u>{//-</u>	<u>W</u>	F4/out recirc to OP26 and forward feed to OJ30A. Nitrogen sparge at F4 outlet.
6.0	Op <u></u>	<u>N</u>	Cartridge filter(1 micron-lab provided) at F4 forward feed and blow outlet.
7.0	ор <u>МҚ</u>	N	OJ30A with cover, nitrogen sparge to collect the filtered oil.

	Projec Projec	t Number t Leader:	: 56-97-8 Herve D	356 Douce	January 18, 2000
	Proce PRO	ss Technie CESS: E	cian: Gre Bleach	eg Gerva Shea B	is Sector Page 3 of 8 utter
	<u>Step</u>	QC Rep	Date/ <u>Time</u>	Dev. <u>(Y/N)</u>	Procedure
]	8.0	Op <u>'716</u>	<u>1830</u>	<u>N</u>	Test all scales that will be used during process and record on the events sheet.
	8.1	Op <u>7+</u>	1830	N	Remove bag from box, cut bottom of bag and let butter fall into reactor. If it is difficult to remove the butter from bag try steps 9.0-12.0.
	9.0	Op <u>24</u>	1830	_¥	Load CD with 9 boxes per chamber ensuring there is space between boxes for air flow.
	10.0	Op <u>26</u>		—¥—	Set temperature to 70°C and turn on Recirc fans and exhaust fan
7	11.0	Op <u>74</u>		¥	Let run for approximately 1 hour or until the butter appears to have softened considerably.
	12.0	Op_74	r/		Remove bag from box, cut bottom of bag and let butter fall into reactor.
~	13.0	Op 24		<u>`</u> }	Repeat steps 9.0-12.0 until all butter has been loaded.
	14.0	Op <u>24</u>	2100	<u>N</u>	Heat OP26 until butter is liquefied. Do not exceed 75°C while OP26 is not under vacuum.
				\checkmark	SAMPLE
	15.0	Op <u>U</u>	2130	<u>N</u>	Pull full vacuum and heat oil to $75^{\circ}C \pm 5^{\circ}C$.
	16.0	Op 7t	2140	N	Hold for 30 min. or until there is no more bubbling.
	17.0	Op 74	1220	<u>N</u>	Cool the oil to 55°C. Break vacuum with nitrogen.
	18.0	Op <u>ita</u>	2305	10	Add 0.2% by wt of SM/50% citric acid.
	19.0	Op <u>74</u>	2310	N	Hold for 15 minutes.

OP26SheaButter1

 $\{$

	Projec Projec	t Number: t Leader:	56-97-8 Herve D	PROC 356 Douce k	January 18, 2000
	Proce PRO	ss Technic CESS: B	cian: Gre	eg Gerva Shea B	is S Page 4 of 8 utter
Π	<u>Step</u>	QC Rep	Date/ <u>Time</u>	Dev. <u>(Y/N)</u>	Procedure
	20.0	Op_ <u>W</u>	13:45	W	Add 6% bleaching clay and 1% activated carbon through top via funnel. Let dust settle for 5 min. then pull full vacuum.
Π	21.0	Op <u>Vr</u>	0115	W	Heat oil to 110° C \pm 5°C and hold for 30 min.
	22.0	Op 🕅	ORIO	W	Cool oil to $65^{\circ}C \pm 5^{\circ}C$.
	23.0	Op <u>lk</u>	02(7	N.	Break vacuum with nitrogen and add 1% filter aid by wt. of clay.
	24.0	Op <u></u>	0130	W	Start feed to F4 and recirculate back to OP26 until clarity has been achieved and an additional 5 min. after that.
	25.0	Op_ <u>0/</u>	0935	N	Forward feed to covered OJ30A. Have nitrogen on F4 outlet and a sparge on OJ30A.
	26.0	Op_ <u>{//</u>	<u>Bio</u>	K)	At the end of the feed to F4 blow the press with Nitrogen for 30 minutes. If the oil flow out of F4 slows to a trickle sooner stop the blow at that time. Add the blow oil to the main batch if it is clear.
					SAMPLE
	27.0	Op <u>Plr</u>	<u>04140</u>	<u>eN</u>	Break F4, weigh the cake and discard the cake after it has been wetted down. Label as: F4/frame/Shea Butter cake.
	28.0	Op <u></u>	<u>0530</u>	N	Collect all drain oil in a 20L pail and store in the warehouse. Label as: F4/drain/Shea Butter
	ોલ. ષ્ 28. 0	Opla	<u>530</u>	eN_	Store samples in secondary cooler.

 $\left[\right]$

ſ

EVENTS

PAGE OF

OPERATION Bleach Shee

PROJECT 56-47856

2	Buttor	

TIME/DATE	INITIAL	EVENTS
1830/ 2000	itte	Tested K6 :21 10 Kgs - Scale reads 9.99 Kgs
		Waighing boxes of shea botter (cents #'s not
		consistent, some have "pos" labels, others don't - w
		write down what is on boxes)
21151	Zite	All butter is loaded, man hole back on , wait
		for butter to liquify using LP steam
2130/ "	74c	Sample taken, pulling fuil vac., continue heat
21401	24	OP26 @ temp., hold for 30 mins
22201 "	7.26	Cooling to 55°C
23:05 / 11	RE	Appint 50% cittic Acio
7-3101 "	- ZK	15 min Acid hold
23:30/11	<u>k</u> F	HOLD over ADDING CLAY + CARBON
2345/-	Pt-	Pulling record and heating to 1000
0030 / Jan 19	24-	At temp. holding for 30 min
ails	R(-	Hold over start couling to 65%
0210	Pl-	At demp , breaking vaccom and adding filter aid
0220	2.5-	Stort feed to Fy recircing until clavity
•		is achieved
0825	RI-	Stop Beed, hill in feed line
0117	<u> </u>	changed likes start feed
0230	26-	classify achieved recircing for 5 min
0235	Rr-	Forward Feed to 0530A
0237	Pt	Forward feed all will not got part the Indian
		Piller 55 advised to take out the Alter_
0242	P4-	Start Ferward Feed
0310	-19	End of Feed blowing press
		-blow is clear, adding to tank
<u></u>		

 \Box

EVENTS

(1)

_____ PAGE _2__OF ____

OPERATION Bluech Since Butter

	TIME/DATE	INITIAL	EVENTS
	0440 / Jan.	P/-	End of blazz, burgalang press
}			
}			
	-		
)			
1			
1			
]	· ·		
		· .	
}			
	· · · · · · · · · · · · · · · · · · ·		
3			
ſ	· · · · · · · · · · · · · · · · · · ·	۱.	

 \int

 $\left[\right]$

INPUTS

PROJECT ______ 56 97856 ______ PAGE ____ OF ____

OPERATION Bleach Shea Butter

TIME/ DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT #/#	DATE D/M/Y	NET WT (kg)	INIT
Jan. 18/00	0526	SM/ Crude Shea Butter	15/		17.28	TH
			10/		16.50	i
			28/		17.74	
			257		17.88	
			3/		12.77	
		· · · ·	22/		17.82	
			2.9/		16:22	
			2/		16.55	
			77/		17.46	
			רו		17.80	
-		· · · · · · · · · · · · · · · · · · ·	18/		17.90	
			26		17.63	
			22/		17.79	
			13/		17.80	
			14/		18.21	
			ור		17.97	
		· · · · · · · · · · · · · · · · · · ·	10/		18.0	
			101		17.79	
			20/		17.24	
			27/		17.75	
			23/		18.04	
			24/		17.64	
			5/		16.85	
			61		16.72	Ŷ
			8/		17.95	244
PAGE TO	DTAL				438 30	24

FORM: 169

REVISED: SEPTEMBER 22, 1997

 $\left[\right]$

INPUTS

PROJECT 56-97856 PAGE 7_ OF 3

OPERATION Bleach Shea Butter

TIME/ DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT #/#	DATE D/M/Y	NET WT (kg)	INIT
Cont	6926	SM/Crude Shea Butter	9/		17.77	- Zet
		·	3/		18.0	Ç.
			4/		17.74	
			461		17.98	
			47/		17.23	
		· · · · · · · · · · · · · · · · · · ·	48/		17.61	
			49/		17.90	
			53/		17.76	
			52/		16.62	
			55/		16.99	
			541		16.39	
			51/		17.34	
			50j		t'7.7-1-1	
		· · · · · · · · · · · · · · · · · · ·	95/		17.36	
			401		17.56	
· · · · · ·			44)		17.68	
			41/		16.67	
		······································	43/		16.83	Π
			42/		16.99	
		· · · · · · · · · · · · · · · · · · ·	38/		17.62	
			39/		17.89	
			34/		17.15	
			57/		18,14	
			2		17.17	
			2.2/		17.80	¥
PAGE T	OTAL				436.36	- 24

REVISED: SEPTEMBER 22, 1997

INPUTS

PAGE ______ OF _____

OPERATION Bleach Shea Butter

* + 0

TIME/ DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT .#/#	DATE D/M/Y	NET WT (kg)	
, 1			36/		1714	
Cont_	0446	SMI Grude Shea Butter	6/		17.07	t
			35/		17.82	ŀ
			17	3	16.87	1
			99	÷	17.84	L
land and a land a la Land a land a		Sub-total Butter	· ·	т	944.23	$\frac{1}{2}$
						Γ
San 18/00		· · · · · · · · · · · · · · · · · · ·	4/	: Jay 26		t
2305	0926	smiciteic Acid Soli	- 14	199	1.88	┝
<u>2330</u>	11	BLEACHING CLAY			56.68	┞
2	11.	ACTIVATED CARBON		R	9.40	
orio	CC -	SM/ Filter Aid			37 56	
1						
			· ·			t
					· · ·	┢
					· · · ·	╀
						╞
		· · · · · · · · · · · · · · · · · · ·				L
						Γ
			1			t
						╀
					·	╀
				ļ		1
	[T
						t
		3				+
		· · · · · · · · · · · · · · · · · · ·	_		1022.19	╀

REVISED: SEPTEMBER 22, 1997

OUTPUTS

PROJECT 56-97856

PAGE OF

OPERATION Bleach Shea Buiter

		•/•	TTPE	(144)	
FЧ	Fylout Riperchard Sheen Britter	11	0239¥	~910 L	<i>Qt</i> -
				· ,	
F4	Fildrain / Shee Bitter	41	PP	11.5	Ø4-
					·
F4	Fy Frame Shier Botter calle	1/1	MD Ozeb.	151.0	Pt-
					,
				. Are t	01
TAL				~110 X	101-
	<i>F</i> 4 <i>F</i> 4 <i>Γ</i> 4	EY FY/out/Ripschid Juse Bitter FY FY/bane Batter FY FY/bane Juse Botter calls TAL	EY FY/ost/Ripenhad Sume Britest // 1	E4 E4/out/Rirecolud Juse Rither 11 C332A E4 E4/out/Rirecolud Juse Rither 11 PP E4 E4/out/Rirecolud Juse Rither Calls 11 0200. E4 E4/out/Rither Calls 11 0200. E4 E4 11 0200. E4 E4 11 0200. E4 E4 11 0200. E4 E4 11 11 E4 E4 11 11 E4 E4 11 11 E4 E4 11 11 E4 E4 11 11<	E4 E4/art/Rirecolard June Rither 41 6330Å -910 L E4 E4/drain / Since Rither 41 PP 11.5 E4 E4/drain / Since Rither 41 PP 11.5 E4 E4/drain / Since Rither 41 PP 11.5 E4 E4/drain / Since Rither 41 02000. 151.0 E4 E4/draine June Briter calls 41 02000. 151.0 E4 E4/draine June Briter calls 41 151.0 E4 E4 162.5 Kg 162.5 Kg

Containers: Use Equipment I.D. or the following: BS-Bulk sack G-Garbage M

LB-Large Bucket PP-Plastic Pail G-Garbage PD-Plastic Drum PT-Tote

MP-Metal Pail SC-Sample Container PB-Porta Bin PS-Paper Sack FD-Fiber Drum CS-Cotton Sack MD-Metal Drum

January 18, 2000

Project Number: 56-97-856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Bleach Shea Butter

Page 7 of 8

PROCESS DATA

· · · · · · · · · · · · · · · · · · ·		· ·			Page <u>I</u>	_of <u> </u>	
TIME (every 30 min or process change)		TARGET	2145	2215	22.45	2315	234
Operator	init		张	THE	. Zite	ZH-	P4-
OP26 temperature	°C		77.5	76.4	63.7	55.8	540
OP26 vacuum	"Hg		-23	-23.5	NC	Atm.	NA
F4 inlet pressure	Psi		10 10	NA	NA	NA	WA
F4 rate	Pump setting		NA	NA	NA	NA	iv A

· · · · · · · · · · · · · · · · · · ·							1.11
TIME (every 30 min or process change)		TARGET	Jen. 19 2003 0615	0045	0115	0145	UZIT.
Operator	init		pt-	er	84-	0H	- 84
OP26 temperature	°C		12.9	109.6	64.5	43.6	67.3
OP26 vacuum	"Hg		- 25	-27	-27	-27	WA
						· .	
F4 inlet pressure	Psi		NA	NA	NA	NA	NA
F4 rate	Pump setting		NA	NA	NA	NA	44

January 18, 2000

Project Number: 56-97-856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Bleach Shea Butter

Page 7 of 8

PROCESS DATA

	PRO	CESS DA	ATA				
				[Page 🔔	_ of <u></u>	
TIME (every 30 min or process change)		TARGET	52019 2000 0845				
Operator	init		Qr-				
OP26 temperature							
	"Ha		62.3				
		ļ	NA				
E4 inlet processes	Doi						
			45				
F4 rate	setting	2	Full		 		

TIME (every 30 min or process					
change)		TARGET		,	
Operator	init				
OP26 temperature	°C		 		
OP26 vacuum	"Hg				
F4 inlet pressure	Psi				
F4 rate	Pump setting				

January 18, 2000

Project Number: 56-97-856 Project Leader: Herve Douce PROCESS: Bleach Shea Butter

a contract

Page 7 of 8

PROCESS DATA

	PROC	CESS DA	TA		
				Page	of
TIME (every 30 min or process change)		TARGET			
Operator	init				
OP26 temperature	O°				
OP26 vacuum	"Hg				
F4 inlet pressure	Psi				
F4 rate	Pump setting				
TIME (every 30 min or process change)		TARGET			
Operator	init				
00001					

OP26 temperature	°C			
OP26 vacuum	"Hg			
				4
F4 inlet pressure	Psi			
F4 rate	Pump setting			
	н. -			

January 18, 2000

Project Number: 56-97-856 Project Leader: Herve Douce Process Technician: Greg Gervais **PROCESS: Bleach Shea Butter**

Page 8 of 8

PROCESS SAMPLES

SAMPLE I.D.	NUMBERxSIZE	DETAILS	TIMES/INIT
SM/Shea	1 x 500 ml	Take from OP26 after butter is liquefied.	21:35 / RI
F4/out/Bleached Shea Oil	1 x 500 ml	Take from OJ30A after filtering is complete.	0425/RF

3.7

es.

ATT .

Ż

	Project Number: 56-97-856 January 18, 2000 Project Leader: Herve Douce January 18, 2000 Process Technician: Greg Gervais Page 5 of 8 PROCESS: Bleach Shea Butter Page 5 of 8										
1	Deviat	ions:							Page	11	
	<u>Step #</u> \. <u>.o-13 0</u>	<u>QC Re</u>	2000 Date	<u>Dev</u> The	iation(s) se steps	were	not re	quirer	1		
					·						_
				<u>. </u>			······································				
					<u></u>					·····	
		<u></u> ,		·		,					
		•	<u>-</u>		· · · ·	<u>.</u>			<u>.</u>		
				·····							
										<u>_</u>	
	· ·										
	NOTE:	THE N	IEXT PAGE	E IS EQUIF	PMENT AND	MATERI	ALS CHA	RGES A	ND IS NO	ОТ АТТАСНІ	— ED
	OP26She	T eaButte	O THIS DI	RECTIVE	AFTER THE	PROCES	S ENDS.				

Projec Projec Proce	ct Number ct Leader: ss Techni	: 56-978 Herve D cian: Gre	PROCESS D	DIRECTIVE		Janua	ary 19, 2000 Page 1 of 8
PRO	CESS: D	Deodori	ze Bleached S	hea Butter		٨Ì	
Main Relief	Operators f Operator	s:	<u>.</u>				
OBJE	CTIVE: T	o produc	ce deodorized Sh	iea butter wi	th a low fatty a	cid content.	
HAZA	RDOUS	MATERIA	ALS: Have the so when autom	crubber disc natic system	harge line goin is in use.	ig into a drum i	at all times
GMP	CONCER	NS: Hair	nets and gloves	required du	ring handling o	of product.	
RAW Quan ~ 400 ~ 100 ~ 0.3	MATERIA tity Kg 0kg kg	ALS: Ide SM F4/ SM	ntification /RBD Canola oil out/Bleached She /DL-Alpha Tocoph	a Butter heryl Acetate	Lot # uñknown 852078	Container IBC OJ30A PP	Project # stock 56-99856
EQUII <u>Main</u> OD3 v <u>Auxili</u> OJ30/	PMENT with Scrub <u>iary</u> A, MJ9.5B	ber 9, 3x 3 mi	cron filters, C-60,	K25A or B, K	3, K.6, nitrogen	sparges.	
<u>Conta</u> 3 bucl	ainers kets and 9) clean us	sed pails, ~ 50 nev	w pails, ~25 t	ear-tab lids, ~ 2	5 pour-spout lid	5 5
SETU	P:	Dev.	. .				
<u>Step</u>		<u>(Y/N)</u>	<u>Procedure</u> Stocked desk an	d refuse cont	ainer in immedi	ate area.	
2.0		N	3 micron filter in	permanent ca	anister after dea	ierator.	
3.0	Ор_Д	N	Hose and barrel	sucker on de	aerator inlet.		a ta sa Barang Ang Sang Ang Sang
4.0	ОрДД	$\underline{\nu}$	IBC of canola oil	on scale at d	leaerator inlet.		
5.0	Ор <u>ДД</u>		OD3 outlet with s filter, nitrogen sp	sight glass, 0- arge, sample	-150°C thermon port and line to	neter, 3 way val MJ9.5B.	ve, 3 micron
OD3Sh	eaButter1	L					

 \mathbb{N}

Project Number: 56-97856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Deodorize Bleached Shea Butter

January 19, 2000

Page 2 of 8

<u>Step</u>	<u>QC Rep</u>	Dev. <u>(Y/N)</u>
6.0	Ор_ДД	<u>_}/</u>
7.0		<u>N</u>
8.0		\mathcal{N}
9.0	ODA	1
10.0		1
10.0	<u>ob VIV</u>	

Second .

Procedure

MJ95.B, covered with agitator and nitrogen sparge hooked up to low pressure steam.

C-60 set up for packaging into pails out of MJ9.5B. 3 micron filter on pump outlet.

Ensure OD4 and distillate condenser flanges closed, scrubber flange open, valve to OP26 closed.

Hose and barrel sucker on scrubber inlet and hose out to waste drum on scrubber outlet.

3 buckets and 9 clean used pails, POS supplied pails and lids

Project Number: 56-97856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Deodorize Bleached Shea Butter

January 19, 2000 Page 3 of 8

THIS IS A HARD OIL. DO NOT ALLOW TEMPERATURE TO FALL BELOW 50°C.

Step	QC Rep	Date/ Time	Dev. (Y/N)	Procedure	
	11-	19/00	1	<u> </u>	
11.0	ОрД₫	103:05	-N	Test scales before process starts. F weight and the scale reading on the will be used.	Record the weight of the test e event sheet for all scales that
12.0	Op			Heat up OD3 as per SOP using SM to the conditions listed in step 15.0 retention valves open during heat u recirculation and transition. Durin cooling water at trim cooler so we c	I/RBD Canola oil. Set parameters of this directive, except leave all p. Take data during ng heat up check operation of an achieve a temp. of 60 C.
13.0	Op			Charge the scrubber with about 70k up. Have the distillate temperature	kg of SM/RBD canola oil and heat is set to 90°C.
14.0	Op <u>/}</u>	03:57	_N	When parameters on OD3 and scrue empty OD3 into plastic buckets. La	ubber are achieved and stable, bel as: OD3/out/start up oil
15.0	Op	<u>[615</u>	N	Start feed the F4/out/Bleached Sh at the following conditions: Project feed rate and retention during the	ea Butter to OD3 and deodorize leader will be changing the e process-please note changes
				on event sheet.	
7				Deaerator temperature	65 ± 5°C
				Feed rate	100 ± 2 Kg/nr initially
				I rim neater outlet temp	260 ± 3 °C. Manual control
					outlet temp. Likely ~300°C
1				Top retention sparge	Minimal, enough to give a reading
				Cooling section sparge	Minimal, enough to give a Reading.
				Bottom column sparge	1.0% of oil flow (1 kg/hr at 100 Kg/hr oil flow)
7				Top vessel retention	All valves closed after transition (max retention)
				Collection pot level	~30L (1/3 full) after transition
7				Collection pot temp	<120°C
				Trim cooler outlet temp	55 ± 5°C
				Heat tracing	ON
7.	÷			System vacuum	< 7mm at bottom of column.
OD3Sh	neaButter1				

PROCESS DIRECTIVE Project Number: 56-97856 January 19, 2000 Project Leader: Herve Douce 4 Process Technician: Greg Gervais λ Page 4 of 8 PROCESS: Deodorize Bleached Shea Butter Date/ Dev. Step QC Rep Time (Y/N) Procedure N 16.0 Op Q530 As soon as oil is coming down the column start to collect transition in plastic pails for 30 - 35 minutes. Keep deaerator and collection pot level low during transition. Oplas 9:70 After 30 - 35 minutes, close the retention valves, drain the collection pot and blow the trim cooler with nitrogen. Record weight of the transition. Save pails for client. Label as: OD3/out/transition to Shea Op M.K. 1025 Allow a level to build in the dearator and collection pot.)<u>∩`</u>,40 QD Collect the first 2 pails out of OD3 and recycle to the feed tank. Do not record these weights on the mass balance sheets. N 1612 Collect the deodorized Shea Butter in MJ9.5B. Have a Op. nitrogen sparge on in line. Op 5 1615 At the end of the feed from the dearator blow the line to the trim heater with nitrogen, open the retention valves over the time specified by the graph (if necessary), and discharge until the pumps cavitate, then blow out the trim cooler. 22.0 Op/16 17.31 Once all the deodorized Shea Butter has been collected add 0.03% tocopheryl to MJ9.5B and let it mix for 15 minutes. 1930 Op AG Package oil into 20L plastic pails, sparging each pail with nitrogen before putting lids on. Package half of the oil with pour spout lids and the other half with tear-tab lids. Label as: OD3/out/Refined Shea Butter. SAMPLE Op 5K 19:20 Record the weight of distillate collected if or when the scrubber discharges. Discard the distillate after weighing. Record on the output sheet as: OD3/scrubber/Shea distillate Op 3-Divert the paratherm and cool down OD3 using procedure for non vegetable oil. Collect, weigh, and discard cool down oil. 4.20 Shut down scrubber as per SOP. 11 26.0 Op 🖑

OD3SheaButter1

17.0

18.0

19.0

20.0

21.0

23.0

24.0

25.0

January 19, 2000

5.2

Project Number: 56-97856 Project Leader: Herve Douce \overleftarrow{F} Process Technician: Greg Gervais \overleftarrow{F}

PROCESS: Deodorize Bleached Shea Butter

Page 7 of 8

PROCESS DATA

Page / of 3

Ð

ر نیک		·····		· · · · · · · · · · · · · · · · · · ·			<u></u>	
n	TIME (every 30 minutes)		Run Target	07:30	8.00	9.10	9:40	10-10
	Operator	Init		XI	()s	MRK	(b.)	MAK.
	Heat up/Transition/Feed			Heatin	14	1	F	F
	Deaerator temperature	°C	65 ±5°C	18	\$4	72	62-	70
Π	Deaerator level	Liter		~40	~30	BELOW	20.	zo
	LH return press	Psi		123	121	116	115	113
	Trim heater outlet temp	°C	260 ± 3	262	267	263	260	760
	LH inlet temp	°C		272.6	272,5	272.8	272.4	272.1
ĥ	System absolute pressure	KPa		· · · ·	MA	xi/A	NA	isit
	Deodorizer feed rate	kg/hr	100 ± 2	100	/00	100	100	100
	Sparge steam flow- collection pot	kg/hr	1.0	1.0	1.0	1.0	1.0	1:0
	Bottom of column temp	°C		226	235	230	190	220
	Bot. of column abs pressure	mm Hg	< 7	2		1	1	1
Ŵ	Collection pot level		~1/3	13	1/2	Reland	- TAT.	MT
	Collection pot temp	°C		118	100	130	MT	MT
	Finished oil flow	kg/hr		~/00	100	~100	MT	MT
	Trim cooler water rate	read.		1.4	.5	.1	044	OFF
	Trim cooler outlet temp	°C	55 ± 5	NA	NIA	60	AV/A	KA
	Distillate recirc. Temp	°C	90 ± 5	90.7	96.7	104.0	105.9	107.7
	Distillate recirc. Rate		~1200	~/200	1,300	1200	1200	1200
	System vapour temp	°C		36	41	56	116	146
a .)	Barometric cond. Temp	°C	27 ± 3	27	21	27	27	27.5
	Column top vapour temp	°C		84	92	111	112	117
، م	Retention tank # of valves closed	#	3	O	O	0	3	3
	First ret. Oil temp	°C		237	233	250	NIA	253
	Column top abs pressure	mm Hg		3	3	3	2	3
	spent cartridge filters	#		ð	0	Ó	Q	0
7	Collection tank volume	L		NA	NIÀ	NOA	NA	LON

January 19, 2000

Page 7 of 8

Project Number: 56-97856 Project Leader: Herve Douce

 \prod

 $\left\{ \right\}$

 $\left\{ \right\}$

 $\left\{ \right\}$

5

Process Technician: Greg Gervais §

PROCESS: Deodorize Bleached Shea Butter

2 -3 of PROCESS DATA Page TIME (every 30 minutes) Run 11:10 10:40 1245 11:40 12:15 Target S Operator Init M.K. MK. thk MX P Heat up/Transition/Feed F 1 -F °C 65 ±5°C Deaerator temperature 30 71 < **Deaerator** level Liter 30-40 30-40 ~20 ~20 ~20 Psi LH return press 108 112 109 110 Trim heater outlet temp °C 260 ± 3 260 260 260 260 260 °C LH inlet temp 272.1 272.1 272.0 272.1 27.2.1 System absolute pressure KPa NA NA NA NA NA Deodorizer feed rate kg/hr 100 ± 2 100 100 100 NO 100 Sparge steam flow- collection pot kg/hr 1.0 10 1.0 1.0 1.0 1.0 °C Bottom of column temp 227 226 227 228 228 <7 Bot, of column abs pressure mm Hg 2 2 2 2 7 213 **Collection pot level** ~1/3 1/2 1/2 1/2 13 °C Collection pot temp 105 101 104 116 1160 Finished oil flow kg/hr 110 100 120 100 130 Trim cooler water rate read. 1 3 2 .4 9 57 °C 55 ± 5 Trim cooler outlet temp 576 570 69 58 °C Distillate recirc. Temp 90 ± 5 90.7 107.8 108.8 90.0 102.9 Distillate recirc. Rate ~1200 1200 1200 1200 1200 1200 58 °C System vapour temp 157 158 153 15 Barometric cond. Temp °C 27 ± 3 27 27 77 < 21 26.5 133 34 °C Column top vapour temp 32 30 26 3 3 Retention tank # of valves closed # 3 3 3 -3 °C 253 253 First ret. Oil temp 253 253 253 3 Column top abs pressure mm Hg Z 3 3 3 spent cartridge filters # (1) (r) \odot E Collection tank volume L ~220 NA ~ 75 NA 5,11~

January 19, 2000

Project Number: 56-97856 Project Leader: Herve Douce Process Technician: Greg Gervais **PROCESS: Deodorize Bleached Shea Butter**

Page 7 of 8

	PROCESS E	Pa	ge <u> </u>	of <u>2</u>	· · ·			
	TIME (every 30 minutes)		Run Target	1315	1345	1415	1515	1545
	Operator	Init		M.K.	MK	MK	5	5
m	Heat up/Transition/Feed			F	F	F	F	F
	Deaerator temperature	°C	65 ±5°C	73	73	74	80	76
Π	Deaerator level	Liter		20	30	40	50.	30
	LH return press	Psi		107	106	106	106	106
Π	Trim heater outlet temp	°C	260 ± 3	260	255	258	258	258
	LH inlet temp	°C		2721	281.7	284.4	288	288
\square	System absolute pressure	KPa		NA	NA	NA	MA	MA
	Deodorizer feed rate	kg/hr	100 ± 2	100	200	200	200	200
Π	Sparge steam flow- collection pot	kg/hr	1.0	1.0	2.0	2:0	2.0	20
	Bottom of column temp	°C	14	229	232	233	234	234
Π	Bot. of column abs pressure	mm Hg	< 7	2	3	7	2	2
	Collection pot level		~1/3	1/3	Y3	1/2	4-13	43
\Box	Collection pot temp	°C		117	128	124	136	124
	Finished oil flow	kg/hr		110	200	210	200	200
	Trim cooler water rate	read.		.6	.6	. 5	.5	. 5
	Trim cooler outlet temp	°C	55 ± 5	65	62	64	50	58
	Distillate recirc. Temp	°C	90 ± 5	90.8	91.2	91.0	910	90.5
-	Distillate recirc. Rate		~1200	i200	1200	1200	1200	1200
	System vapour temp	°C		159	166	i70.	168	168
	Barometric cond. Temp	°C	27 ± 3	26	26	26,5	26.5	27.0
	Column top vapour temp	°C		135	145	150	148	150
<u>ل</u>	Retention tank # of valves closed	#	3	3 X E	3	3	Q	-6-
	First ret. Oil temp	°C		253	250	252	252	250
·~~>	Column top abs pressure	mm Hg		3	3	3	3	3
	spent cartridge filters	#		Ó	0	0	D	0
-	Collection tank volume	L		~270	350	~450	~650	-740

January 19, 2000

Page 7 of 8

Project Number: 56-97856 Project Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Deodorize Bleached Shea Butter

TIME (every 30 minutes) Run Target Operator Init Heat up/Transition/Feed		PROCESS I	ATA		Pa	ge	_of		
Operator Init Heat up/Transition/Feed °C Deaerator temperature °C Deaerator level Liter LH return press Psi Trim heater outlet temp °C System absolute pressure KPa Deodorizer feed rate kg/hr Sparge steam flow- collection pot kg/hr Bott of column temp °C Soliction pot level ~1/3 Collection pot level ~1/3 Trim cooler water rate read. Trim cooler outlet temp °C System vapour temp °C Column top vapour temp °C Retention tan		TIME (every 30 minutes)		Run Target					
Heat up/Transition/Feed°C65 ±5°CDeaerator temperature°C65 ±5°CDeaerator levelLiterLH return pressPsiTrim heater outlet temp°CSystem absolute pressureKPaDeodorizer feed ratekg/hrSparge steam flow- collection potkg/hrBott of column temp°CBott of column temp°CCollection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler outlet temp°CDistillate recirc. Temp°CSystem vapour temp°CSystem vapour temp°CCollumn top vapour temp°CPrist ret. Oil temp°CSystem vapour temp°CSystem vapour temp°CSystem vapour temp°CSystem vapour temp°CSystem vapour temp°CSystem top vapour temp°CColumn top vapour temp°CRetention tank # of valves closed#System top vapour temp°CColumn top vapour temp°CColumn top vapour temp°CColumn top vapour temp°CSystem top vapour temp <t< td=""><td></td><td>Operator</td><td>Init</td><td></td><td>•</td><td></td><td>4</td><td></td><td></td></t<>		Operator	Init		•		4		
Deaerator temperature°C65 ±5°CDeaerator levelLiterLH return pressPsiTrim heater outlet temp°C260 ± 3	7	Heat up/Transition/Feed							
Deaerator levelLiterLH return pressPsiTrim heater outlet temp°C260 ± 3LH inlet temp°CSystem absolute pressureKPaDeodorizer feed ratekg/hrSparge steam flow- collection potkg/hrBott of column temp°CBott of column abs pressuremm HgCollection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler outlet temp°CDistillate recirc. Temp°CSystem vapour temp°CSystem vapour temp°CCollumn top vapour temp°CSigne scient in the formation of the scient in the		Deaerator temperature	°C	65 ±5°C				-	
LH return press Psi 260 ± 3 Trim heater outlet temp °C 260 ± 3 LH inlet temp °C 260 ± 3 System absolute pressure KPa 260 ± 3 Deodorizer feed rate kg/hr 100 ± 2 Sparge steam flow- collection pot kg/hr 1.0 Bottom of column temp °C 260 ± 3 Bot. of column abs pressure mm Hg <7	7	Deaerator level	Liter						
Trim heater outlet temp°C260 ± 3LH inlet temp°CSystem absolute pressureKPaDeodorizer feed ratekg/hrSparge steam flow- collection potkg/hrBottom of column temp°CBott of column abs pressuremm HgCollection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler outlet temp°CDistillate recirc. Temp°CSystem vapour temp°CSystem vapour temp°CCollumn tamp°CStillate recirc. Rate~1/200System vapour temp°CBarometric cond. Temp°CColumn tay apour temp°CSystem tapour temp°CColumn top vapour temp°CColumn top abs pressuremm HgFirst ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		LH return press	Psi		-			· ·	
LH inlet temp °C Image: star index	7	Trim heater outlet temp	°C	260 ± 3					
System absolute pressureKPaDeodorizer feed ratekg/hr100 ± 2Sparge steam flow- collection potkg/hr1.0Bottom of column temp°CBot, of column abs pressuremm Hg<7		LH inlet temp	°C				-		
Deodorizer feed ratekg/hr100 ± 2Sparge steam flow- collection potkg/hr1.0Bottom of column temp°CBot. of column abs pressuremm HgCollection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler water rateread.Trim cooler outlet temp°CDistillate recirc. Temp°CSystem vapour temp°CSystem vapour temp°CSystem vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#	7	System absolute pressure	КРа		· · · · · · · · · · · · · · · · · · ·				
Sparge steam flow- collection potkg/hr1.0Bottom of column temp°CBot. of column abs pressuremm Hg<7		Deodorizer feed rate	kg/hr	100 ± 2					
Bottom of column temp°CBot. of column abs pressuremm Hg<7	7	Sparge steam flow- collection pot	kg/hr	1.0					
Bot. of column abs pressuremm Hg< 7Collection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler water rateread.Trim cooler outlet temp°C55 ± 5Distillate recirc. Temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°C27 ± 3Column top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Bottom of column temp	°C						
Collection pot level~1/3Collection pot temp°CFinished oil flowkg/hrTrim cooler water rateread.Trim cooler outlet temp°CSystem vapour temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#	7	Bot. of column abs pressure	mm Hg	< 7				4	
Collection pot temp°CFinished oil flowkg/hrTrim cooler water rateread.Trim cooler outlet temp°C°C55 ± 5Distillate recirc. Temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Collection pot level		~1/3					
Finished oil flowkg/hrread.Trim cooler water rateread.Trim cooler outlet temp°CSystem vapour cemp°CDistillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Collection pot temp	°C					,	
Trim cooler water rateread.Trim cooler outlet temp°C55 ± 5Distillate recirc. Temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Finished oil flow	kg/hr						
Trim cooler outlet temp°C55 ± 5Distillate recirc. Temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#	7	Trim cooler water rate	read.		• .				
Distillate recirc. Temp°C90 ± 5Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Trim cooler outlet temp	°C	55 ± 5					
Distillate recirc. Rate~1200System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Distillate recirc. Temp	°C	90±5					
System vapour temp°CBarometric cond. Temp°CColumn top vapour temp°CColumn top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		Distillate recirc. Rate		~1200				1	
Barometric cond. Temp°C27 ± 3Column top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#		System vapour temp	°C						-
Column top vapour temp°CRetention tank # of valves closed#First ret. Oil temp°CColumn top abs pressuremm Hgspent cartridge filters#	-	Barometric cond. Temp	°C	27 ± 3					
Retention tank # of valves closed # 3 First ret. Oil temp °C Column top abs pressure mm Hg spent cartridge filters #		Column top vapour temp	°C						
First ret. Oil temp °C Column top abs pressure mm Hg spent cartridge filters #	-	Retention tank # of valves closed	#	3					
Column top abs pressure mm Hg spent cartridge filters #		First ret. Oil temp	°C						
spent cartridge filters #	~,	Column top abs pressure	mm Hg						
		spent cartridge filters	#						
Collection tank volume	7	Collection tank volume	L						

Project Number: 56-97856 Project Leader: Herve Douce C Process Technician: Greg Gervais S PROCESS: Deodorize Bleached Shea Butter

	PRO	CESS SAMPLES			
SAMPLE I.D.	NUMBERxSIZE	DETAILS	TIMES/INIT		
OD3/out/Refined Shea	1 x 250ml	Take half way through packaging.	Jan, 19100		
Butter			1830 / 24		
0530.4/S.cup/ Bleached	100 ml		10:32		
Shea Butter	() C		Jan 1900 Ch2		
3 value closed, joo kg/hr	1x2SomL		11 25/MK.		
OD3/OUT/REFINED SHEAD			in nativit		
3 VILLVES CLOSED, ZOO KG/HR	1 × 2 50 ML		14.001911-		
CU3/OUT/REFINED SHEA BUTTER			TICON S.		
3 VALUES OPEN , 200 KJ/HR.	1 X Z S U ML		1.201.0		
		the second s	and the second		

January 19, 2000

Page 8 of 8

POS	B
PROTEIN OIL STARCH	

EVENTS

PROJECT 56 97856 _____ PAGE _/ OF 2 OPERATION Deodorize Bleached Shea Butter TIME/DATE | INITIAL **EVENTS** point 300°C Site 03:00/50-19/00 Set 100 1.0kg 11 i ka 03:051 Ser 10.0 kg 10 Kю 20 Kg 20.0Ks Pul 64:15 11 ODZ los \sim 5 0S:00 0. mato dearry 11. land fine heat up CH was 1a 05:20 11 šλ 1. shi 05:23 See N 1:11-05:33 11 was To ka caro discharge pu 05:05/ R 9:25 Start op all startco lectine Blowing Trim cooler Start Feed to Dearater 12 8:57 9507 stateollecting transition Closing Retention Values & blowing out trim 9:30 nocler Blowing Thim Coolor 9.33 COLLECTING FIRST Z PAILS OUT OF OD3 AND RECYCLINK 10:20 41.K. BACK TO OJT30A 1045 M.K. COLLECTING IN MJ9,58 NOW 13:30252 Adust feed rate to scuth lhr, stean spong bo 1% of feel rate. All waln's diged. - 125 still THEREASED LH SET POINT TO BOO'C - THE TRIM HEADER 1332 m.K. OUTLET TEMP. DROPPED TO 247°C AFT RIGHT AFTER THEREASING FEED RATE TO 200 Kalur.

 \prod

EVENTS

PROJECT 5697856

_____ PAGE ____ OF ____

OPERATION DEDOORIZE BLEACHED SHEA BUTTER

TIME/DATE	INITIAL	EVENTS
14:30/Jun 14/00	65	Stopping Feed to Thim heater, & Deaneitor so
		that can open the retention values & start the
		3rd Trial with values open. Opening retention
	Δ	Values,
14:42	1 thi	As per PL veguest will also Blow the Thim
		Cooler before starting Feed goein
1510	MK.	BLOWING TRIM GOLER, RE-START FEED AT 200 RING
		ALL RETENDED WALLES OPEN
1533	5	end fiel to deserator.
1559	<u> </u>	end feed to top - blaning
1615	5	blouing trim woli-
1620	<u> </u>	start feeling cooldown/flish.
1650/ "	7#	MJ9.5B has 8001, 0.45 kg/500mb = 0.90 kg/L
17:30	JE.	Finish blowing trimcoole of shuldown wit
17:35	AG	added to copheryl
1750/ "	74	Start packaging into P.P's @ 16.0 Kgs each
19:20	312	Punping out fund scaller shows oil.
· · ·		Shuting danun On? warenigen
19:30	<u>AG</u>	Finished Packaging
	-	
	· · · · ·	
	· · ·	

INPUTS

PAGE _/___OF _/___

<u> </u>	PROTEIN OIL ST	TARCH	IN IN
	PROJEC	ст	56 97856
	OPERAT	rion _	Deodorize B
	TIME/ DATE STARTED	IN TO	CONTAINER (FROM THE CONTAINER LABB
	0#30/5_10/00	OD3	SM/RBN Canola Di
	<u>05:33/ 11</u>	Enthe	it tr
	8:57	003	FY/out/bleached show
	-		s
\square	1620	dD'r	OD3 OUT START UP OIL
	1638	4 0.5 0 0	SIM RBD CANON O
	17.20	1125.5	B Locophery 210
\bigcap	19:00	ZRUSh	Jm/ CANULA
Π			
	· · ·		
Π			
Π			
	PAGE T	OTAL	· · · · · · · · · · · · · · · · · · ·
11			

OPERAT	rion _	Deodorize Bleached Shea	Be	Her		
TIME/ DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT #/#	DATE D/M/Y	NET WT (kg)	INIT
430/5-10/00	OD3	SHIRBS Canola Dil	1/1		100.0	Al
633/ 11	Enthe	it It	1/1	· 	70.0	14
8:57	003	Fylout/ bleached show Butter	Y,	Jan 1400	~910 L	G.
11.20	NDY	OB3 MIT START UP AIL	1-2/		75.87	
1638	4	SAN RED CANON ON	X		100.8	Jn
7.35	M 5 9,5	3 tocophery 216kg Lot # 852078	Yi.	40V.17 198	, 21 Laki	AG
18:00	ZRUSh	Sm/ CANVER	4		150.6	JK.
		· · · · · · · · · · · · · · · · · · ·				
÷						
PAGE T	OTAL					
		aj.				?

OUTPUTS

36 97856 1 PAGE OF PROJECT Bi Butte eached Shea Deodorize **OPERATION** TIMP CONTAINER I.D.

DATE STARTED	OF	CONTRINER LD.	*/*	TYPE	(14)	
0620/19/20	003	003/Flosh / Canola eil	41	PP	12.0	26-
08:35	003	003/art/start-up all	13	LB	75.87	/
	<u> </u>			00		Λ
9:07	003	003/out/transition to shea	12	FF-	17.93	CS:
7.22	· · · ·		72	· ((0.0)	03
	<u>683</u>	003 10 RETINED SHEA FE TH	· · · · ·			
1630	603	OD3 OUT (COOLDOWN PLUSH	レ	DISCHPED	195.0	- Pr
16145	DD3/	503/ Sidestiller Justillete Show	N ₁	inp	117.7	5-
					164.4	
19:00	Schubber	Scrubber lower Shutdown on.	1/1	mo	-195.0	TK
	ļ		1-11		1422 Jac	
1750	003	003/out/Refined Shea Butter	451	P.P "	704.0	一社
2000	0.07		1.745		1.60	n He
2000	002	OUSTOST/SHER BOTTER / Drawn				
		· · · · · · · · · · · · · · · · · · ·				
					-	
PAGE T	OTAL					
L			.I			

Containers: Use Equipment I.D. or the following: BS-Bulk sack G-Garbage M LB-Large Bucket PD-Plastic Drum **PP-Plastic** Pail

PT-Tote

MP-Metal Pail SC-Sample Container PB-Porta Bin

PS-Paper Sack FD-Fiber Drum **CS-Cotton Sack MD-Metal** Drum

\square	,	PROCESS DIRE	CTIVE		
	Project No.: 300-998 Process Leader: Herv Process Technician: (PROCESS: Desolve	56 ve Douce Greg Gervals ntize Shea Butter		Se	ept 13, 2000 Page 1 of 7
	Main Operators: 🏼 🏼	L / M / m = m = m		st.	
	Relief Operators:	to:	<u>-</u>		
	OBJECTIVE: To desc	olventize shea stearine fraction to le	ess than 100) ppm of hexar	ie.
	HAZARDOUS MATE	RIALS: Hexane		<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
n	GMP CONCERNS: H	lairnets and gloves required whil	e handling	the product.	
	RAW MATERIALS				
	Quantity ~ 47 kg ~ 22 KG	Identification F1/out/Shea stearine fraction MP3/out/Shea oleine fraction	Lot #	Container 3 Pails 2 Pails	Project #
	EQUIPMENT				
	<u>Main</u> MP3	¥			
	<u>Auxiliary</u> Flammable single sta	ge eductor.		2- 	
	<u>Containers</u> 5 new pails and tear t	ab lids			
Π					

Π

Sept 13, 2000

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais S PROCESS: Desolventize Shea Butter

Page 2 of 7

SETUP : PROCESS TO TAKE PLACE IN FLAM 2.

	<u>Step</u>	INITIAL	Dev. <u>(Y/N</u>
	1.0	Ор	-
	2.0	Op	4
	3.0	Op	N
	4.0	Op CH	N
Π	5.0	Op.	\underline{N}
-	6.0	Ор <u><u>Д</u></u>	N
	7.0	0p <u>4</u>	N
	8.0		Ň
	9.0	Ор <u>(}</u>	N
	10.0	Ор <u><i>(Д</i></u>	$ \sim $
		·	
Π			

Procedure

Stocked desk and refuse container.

MP3 with agitator extension set up for desolventization in Flam 2. Have sparger installed (the longest one). Agitator on variable speed (via extension cord to Flam 1 pot).

Flammable single stage eductor as vacuum source with knock out pot in line.

All submerged fittings to be soft gaskets.

Nitrogen connected to MP3 sparger via nitrogen regulator.

Vac gauge connected to MP3. (Valve between gauge and reactor)..

Temperature gauge, tested, (0-150°C) on vacuum outlet to monitor vapour temperature.

Temperature gauge, tested, (0-100°C) in MP3 bottom side port.

Temperature gauge, tested, (0-100°C) in MP3 **bottom** port. Ensure this probe only extends \sim 3 inches into the bottom of the tank.

Hose and barrel sucker connected to MP3 bottom port.

Project No.: 300-99856 Sept 13, 2000 Process Leader: Herve Douce Process Technician: Greg Gervais S**PROCESS:** Desolventize Shea Butter Page 3 of 7 PROCESSING Date/ Dev. Step INITIAL Time (Y/N) Procedure aaaf 11.0 Op My Put the 3 pails of F1/out/shea stearine fraction under a tarp and melt it using low-pressure steam. 10000 N 12.0 Op 🔊 🗸 Pull vacuum on MP3. Suck in the F1/out/shea stearine fraction. 13.0 14.0 Op ୠ ∤ Start a fairly turbulent nitrogen sparge, start agitator at medium, and heat the liquid to 90°C ± 2°C. 000 Hold under vacuum until 0800 hours at 90°C ± 2°C. Ensure the 15.0 nitrogen sparge and agitator are on during the hold. SAMPLE (desdired hexane level is less than 10ppm) 16.0 Op_2 1020 N When analysis is good, cool to 50°C and break vacuum. 17.0 Op 1028 N Using slight nitrogen pressure, feed to new pails with tear tab lids via 3 micron filter. Fill pails to 16.0 kg± 0.1 kg. Sparge each pail with nitrogen for 2 minutes before sealing. Label as: MP3/out/Shea stearine fraction. SAMPLE 18.0 Opt 1053 M Rinse MP3. 1115 19.0 Pull vacuum on MP3 20.0 Opt Suck in the MP3/out/shea oleine fraction. 21.0 Opm 2 1/20 al Start a fairly turbulent nitrogen sparge, start agitator at medium, and heat the liquid to 90°C ± 2°C. 22.0 Opt 125 N Hold under vacuum for 2 hrs at 90°C ± 2°C. Ensure the nitrogen sparge and agitator are on during the hold. SAMPLE (desdired hexane level is less than 10ppm)

Desolventize Shea (00)

Sept 13, 2000

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais & PROCESS: Desolventize Shea Butter

Page 4 of 7

Date/ Dev. Step INITIAL, Time 1600 23.0 Op (Ň 1625 N 24.0 Op

(Y/N) Procedure

When analysis is good, cool to 50°C and break vacuum.

Using slight nitrogen pressure, feed to new pails with tear tab lids via 3 micron filter. Fill pails to **16.0 kg± 0.1 kg**. Sparge each pail with nitrogen for 2 minutes before sealing. Label as: MP3/out/Shea oleine fraction.

SAMPLE

EVENTS

PAGE PROJECT 300-99856 OF -SL. RH Desilvent **OPERATION EVENTS** TIME/DATE INITIAL 2000/Sent13/00 the 3 pails Flast startan plishi Un Sent 11/00/0070 DI Filin vac on MP3 had to fix some its leaks on lines to sometimer, will Dy 0035 shirt to soul all in ull in accidentally spilled NIP of oil on floor, starting 10, FRI 5045 071 an tober - start to head on temporenell maintain till morning 0100 s At variable opened to max. 0450 increased D.VI DA switched MP3 to Normal speed as variable speed 0510 is moded else whole A) 0835 The next 2 pails have. heen where plastic roelt 1020 Analysis is 7000 Cooling rear 1028 1057on 16 C Reator 115 ocal 1120 agitation + head 1125 hold temp. 1330 1600 STAT BLING TOSON ALACYSIS OIL 1625 TEMP-MP3 PRESSURIZED START GCKAGING 630 END PACKAGING Cff

Revised: April, 2000

INPUTS

 $e^{i\gamma}e^{i\gamma}$

PROJECT 300-99856 PAGE OF 1 OPERATION Devolventize Shea Better

TIME/ DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT #/#	DATE D/M/Y	NET WT (kg)	INIT
0035	mp3	Flood she stering Fraction	1/3	sept o yoo	160	DO
····	14	is the	2/3		16.0	D.T.
Senar	il	u ií	3/3	11.	14.6	DI
111.5	,0P3	mP3/out/shea Olerie Fraction	1/2	sept 1/20	16.1	FE-
	1		2/2	sept//co	5.6	Pl
			1/2		16.1	G.
			-2/2	•	4.1	- A
						1 /
						. ^
						i.
		· · ·				
····	1					
	1					1
		ж.				
				<u> </u>		1
	1					
	1					
						1
PAGE T	OTAL				182	01

POS	È
PROTEIN OL STARCH	

OUTPUTS

300-99856

OPERATION

PROJECT

ESOLVENTIZE	SHEA	BUTTER

	TIME/ DATE STARTED	OUT OF	CONTAINER LD.	CONT #/#	CONT TTPE	NET WT (Eg)	INIT
	1028	mB	mP3/our/stea stearie fronta	1/3	PP	16.1	pol
	1038	MP3		2/3	23	1/2	pol.
	1045	p	21 - 23 -	3/3	ن <i>و</i> ز	9.9 '	All
	1625	11	MP3/MIT/SHEA OLEINE FRACTION	1/2	"(16.0	CH
	•	11		2/2	11	4.1	CH
			·				
۰.							
			·				[
					.		
		· .					
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
	DAGE 6						
	PAGE T	UTAL				62.2	CA

Containers: Use Equipment I.D. or the following:BS-Bulk sackG-GarbageLB-Large BucketPD-Plastic DrumPP-Plastic PailPT-Tote

MP-Metal Pail SC-Sample Container PB-Porta Bin **PS-Paper** Sack FD-Fiber Drum **CS-Cotton Sack** MD-Metal Drum

Sept 13, 2000

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais S PROCESS: Desolventize Shea Butter

Page 6 of 7

· · · · · · · · · · · · · · · · · · ·		PROCES	S DAT	<u>A</u>	Page_	of	2
TIME (every 30 minutes)		Target	0100	0230	0300	0330	0400
Operator	Init	D.F.	27	D.I.	3.4		D'L
· ·							
MP3 temp	°C	89	20	54	90	40	37
MP3 vapor temp	°C	54	55	56	57	58	57
MP3 vacuum	"Hg	-71	-20	-20	- 20	-20	- 20
Nitrogen sparge on		ON	ON	ON	ON	ON	ON

PROCESS DATA

TIME (every 30 minutes)		Target	0500	6430	0.00	0670	6700
Operator	Init	24.	54	81	\$4	D.S.	F.1
MP3 temp	°C	83	92	90	399	33	87
MP3 vapor temp	°C	57	29	501	59	57	58
MP3 vacuum	"Hg	-20	-19	-101	-19	-18	-18
Nitrogen sparge on		ON	DN	ON	ON	ON	on.

		P	ROCES	S DATA				
	TIME (every 30 minutes)		Target	0830	0900	000	第 1125	1155
	Operator	Init	37	And	A	ME	P.	(Pl
7								
	MP3 temp	°C	92	95	90	90	90	93
-1	MP3 vapor temp	°C	60	55-	50	38	3.7	58
	MP3 vacuum	"Hg	-18	-20	-18	-19	-18	- 18
	Nitrogen sparge on		ON	ow	ar	ON!	ON	OK

Sept 13, 2000

 $\Omega = \Omega$

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais S PROCESS: Desolventize Shea Butter

 $\left[\right]$

 $\left[\right]$

Π

Γ

Page 6 of 7

٠,

		PROCES	S DATA		Page _	<u></u>	<u>+</u>
TIME (every 30 minutes)		Target	1235	1305	1335	1355	1445
Operator	Init		PU	11322	AL	Al	pre
MP3 temp	°C		90	85	90	88	80
MP3 vapor temp	°C		35	46	52	50	45
MP3 vacuum	"Hg		-18	-17	-18	-18	-18
Nitrogen sparge on			ON	ON	on	ow	ON

PROCESS DATA

TIME (every 30 minutes)		Target	1575	1545		
Operator	Init		A	at		
MP3 temp	°C		73	85		
MP3 vapor temp	°C		50	48		
MP3 vacuum	"Hg		-18	-18		
Nitrogen sparge on			ON	ON		

			PROCESS D		
	TIME (every 30 minutes)		Target		
	Operator	Init			
	MP3 temp	°C			
_	MP3 vapor temp	°C			
	MP3 vacuum	"Hg	· · · · · · · · · · · · · · · · · · ·		
	Nitrogen sparge on				

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Desolventize Shea Butter

Γ

Sept 13, 2000

Page 7 of 7

PROCESS SAMPLES

SAMPLE I.D.	NUMBER x SIZE	DETAILS	TIMES/INIT
MP3/out/desolventized shea stearine	1 X 100ml	Take to lab for analysis.	POT 0813
MP3/out/Shea stearine fraction	2 x 250 ml	Take while pailing.	MAKE .
MP3/out/desolventized shea oleine	1 X 100ml	Take to lab for analysis.	1330 RZ
MP3/out/Shea oleine fraction	2 x 250 ml	Take while pailing.	NAKE .

				PROCESS DIRECTIVE	
	Project Process Process PROCE	No.: 300- s Leader: l s Technicis SS: Des	99856 Herve Douce an: Greg Ger olventize Sh	vais <i>Ş</i> ea Butter	Sept 13, 2000 Page 5 of 7
	Deviati	ons:			Page <u>/ / /</u>
	<u>Step #</u>	INITIAL	Date	Deviation(s)	,
				······································	
$\prod_{i=1}^{n}$					
	<u></u>				
				·	
			<u></u>		······································
		<u> </u>			
					· · _ · _ · _ · _ · _ · _ · _ · _ ·

1. A.

Appendix 4A-3: Process Directive of fractionation of Shea butter in the Pilot Plant

$\left[\right]$		PROCESS DIRECTIVE							
	Project No.: 300-99856 Aug31-Sept 1, 2000 Process Leader: Herve Douce Process Technician: Greg Gervais Process Technician: Greg Gervais Process Technician: Greg Gervais PROCESS: Crystallize, Filter and Desolventize Shea Butter Page 1 of 9								
	Main Operators:								
	Relief Operators:								
Π	OBJECTIVE: To winter	ize and cold filter the Shea Butter.							
	HAZARDOUS MATER	ALS: Hexane, Filter Aid.							
	GMP CONCERNS: Ha	irnets and gloves required while handling	the product.						
	RAW MATERIALS Quantity ~ 96 Kg ~ 4 Kg ~ 96 Kg	Identification Lot # RBD Shea Butter SM/Filter aid SM/Hexane	Container Project # 6 PP Paper bag stock MD's						
	EQUIPMENT								
	<u>Main</u> MR7, BC2, MJ4, MP3,	-1 [.]							
	<u>Auxiliary</u> PC15, D30, K3, PVE, s	cale suitable for weighing filter aid							
	<u>Containers</u> about 6 new pails and t	ear tab lids, open top drums for BC2 solids.							
Π	SETUP								
9 99 1	Step INITIAL (Y/N)	Procedure							
	1.0 Op N N	Stocked desk and refuse container.							
	2.0 Op MP3 with agitator extension set up for desolventization in Flam 1. Agitator on variable speed (via extension cord to Flam 1 pot).								
	3.0 Op 12	MP3 agitator seal charged with SM/canola	oil.						
Π	4.0 Op	130-psi pressure release valve installed on	MP3.						
	5.0 Op <u>P2</u> <u>N</u>	Portable 3-stage eductors for vacuum sour	ce with knock out pot in line.						
	BC2 Shea (00)								

Projec Proce	ct No.: 30 ss Leader	0-99856 : Herve	Douce Aug31-Sept 1, 2000
Proce PROC	SS Techni CESS: Cr	cian: Gre ystallize	e, Filter and Desolventize Shea Butter Page 2 of 9
<u>Step</u>	INITIAL	Dev. <u>(Y/N)</u>	Procedure
6.0	Op_PL	N	All submerged fittings to be soft gaskets.
7.0	Op	<u>.</u>	Nitrogen connected to MP3 steam sparger via nitrogen regulator.
8.0	Qp <u>712</u>	a	Vac gauge connected to MP3. (Valve between gauge and reactor.) Do not install any portable mercury manometers.
9.0	Op Int	~	Temperature gauge, tested, (0-150°C) on vacuum outlet to monitor vapour temperature.
10.0	Op_2	\sim	Temperature gauge, tested, (0-100°C) on MP3 side port.
11.0	Op <u>p</u>	T)	Plastic gloves and respirators in the area.
12.0	Op		Hose and barrel sucker connected to MP3 bottom port.
13.0	Op M	N	Scale for weighing hexane drums.
14.0	Op 5	N/2	D30 for transferring MP3 contents to MR7 (pump will also be used for feeding BC2).
15.0	Op A	N	BC2 with teflon filter bag. (Install during day shift.)
16.0	Op		MR7 with valve on bottom. Agitator plugged in and glycol connected. Valve on top for recirc. Temperature gauge (-10 to +10°C range) in MR7.
17.0	Op h	N	D30 to feed BC2 from MR7, with recirc line back to feed tank via the dedicated automatic 3-way valve. Flexible line and sightglass from 3-way to BC2 inlet.
18.0	Op A	_1/	BC2 h.out to red open top drum.
19.0	Op ()		BC2 Louts to tared MJ4 via large stainless pipe. Reduce to put 3" sight glass in at lower level. MJ4 to have lid and vented.
20.0	Op <u>U</u>	Ň	F1 with \underline{D} frames, set up in the area. 3-micron filter on forward feed and blow outlet.
21.0	Op2	<u>N</u>	Ground all equipment. Vent all tanks via wall fan and BC2 with slight suction only.
BC2 S	hea (00)		

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais **PROCESS: Crystallize, Filter and Desolventize Shea Butter**

Dev.

2)

(00)

A)

 \mathcal{N}

N

N

11

Aug31-Sept 1, 2000

Page 3 of 9

Step INITIAL

Op

Op

Ο

a

しか

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

32.0

33.0

34.0

35.0

Date/

Time

H . 30

2250

2300

2305

3:50

13:50

23:50

AUS3160

0500

Aus 31 00

10:40

5:42

5:50

J315

(Y/N) Procedure

Put the 6 pails of RBD Shea Butter under a tarp and melt the butter using low-pressure steam.

Pull vacuum on MP3 and then close vacuum line.

Load MP3 with 96 kg ± 0.5 kg of SM/hexane.

Heat the Hexane to $50^{\circ}C \pm 2^{\circ}C$.

Suck in the 6 pails of RBD Shea butter and agitate well.

Break vacuum on MP3 and transfer the slurry to MR7. Have slow agitation on MR7.

Start cooling the slurry in MR7.

MR7 Agitator speed	10 ± 1 rpm
Glycol set point	3 °C
_ Final Product Temp.	5°C.

Hold time at temp. 10 hrs at 5°C.

Start timing the hold time when MR7 temperature reaches 5 °C.. Rinse MP3 with hot water and drain well.

When the winterizing hold is over do a five minute spin down of the material in MR7. Record the results.

Add **1.0% by slurry wt. of SM/filter aid** to MR7. Mix in well but do not increase agitator speed.

	Projec Proce Proce	ct No.: 30 ess Leader ess Techni	0-99856 : Herve [cian: Gre		vais S	• Dutter	Aug31-Sept 1, 2000
	Step		Date/ <u>Time</u>	Dev. (<u>Y/N)</u>	Procedure	a Duller	PC2 with the regime
	30.0	Ορ <u>./ι</u>	<u>70-00</u> 7		indicated below to star while maintaining l.or	t. Adjust conditions ut clarity and fairly	for maximum throughput, y dry solids.
Π					D30 air press	20-25 psi	
-					Max. fill time Max_fill weight	300 seconds 40 Kg	
					Min. fill weight	35 Kg 750 mm	
Π					Dewater speed	750 rpm	
~					Spin speed	1900 rpm	
					Spin unie	500 seconds	
Π					Discharge speed	500 rpm	
					Notes: -Watch near th that the bag is not bein	e end of the filling g overloaded.	part of the cycle to ensure
			Awa31		Check clarity of l.out re speed.	gularly, especially	after increases in spin
	37.0	Op	/630	_لر	Collect the h.outs in ne event sheet to describe Label as: BC2/h.out/s	ew red open top dru the heavy out soli hea butter solids .	im. Make notes on the ds. Weigh the product. (DO NOT DISCARD)
	38.0	Op <u>m</u>	1830	- La 	Collect the l.outs in MJ Label as: BC2/l.out/sl	4. Weigh the produne butter miscell	ıct. a.
	39.0	Op	1745	a)	With steam and slow a butter to MP3 via sight	gitation on to MP3, glass port.	add the BC2/h.out/shea
	40.0	Op <u>1 m</u>	/900	N	Seal MP3, increase ag on portable 3-stage ed	itation, and pull a four the second	ull vacuum using all stages
	41.0	Op <u>M</u>	1800	a!	Start nitrogen to sparge	er and heat the soli	ds to 60ºC ± 2ºC.

$\left\{ \right\}$	PROCESS DIRECTIVE							
	Projec Proce Proce	ot No.: 30 ss Leader ss Technic	0-99856 : Herve [cian: Gre	Douce g Gerv	Aug31-Sept 1, 2000			
	PRUL		Date/	Dev.	Procedure			
	<u>Step</u> 42.0		4-31/00/		Hold for 3 hours at $60^{\circ}C \pm 2^{\circ}C$.			
		f			SAMPLE (desdired hexane level is less than 10ppm)			
-	43.0	Op <u>¶</u>	olophu(12:40	\mathcal{N}	When analysis is good, cool to 50°C and break vacuum.			
	44.0	Op <u>atu</u>	12:54	\mathcal{N}	Feed to F1via PC15 and recirc to MP3 until clarity is achieved.			
	45.0	Op	<u>1300</u>	N	Forward feed to new pails with tear tab lids. Fill pails to 16.0 kg \pm 0.1 kg. Sparge each pail with nitrogen for 2 minutes before sealing.			
	46.0	Op_ 🖗	13:14	<u>N</u>	Blow F1 for 30 minutes or until there is only a trickle coming out. Add to the main batch if it is clear. If blow is not clear keep it separate and label as: F1/blow/Shea stearine fraction.			
					SAMPLE			
	47.0	Optil	1536	~	Break F1, weigh the cake and discard. Record as F1/frame/shea cake.			
	48.0	Op <u>4₽∂</u>	14:55	N	Pull vacuum on rinsed MP3 and suck in the BC2/I.out/Shea butter.miscella.			
	49.0	Op	1507	<u>_</u>	Pull full vacuum, start medium agitation and nitrogen sparge, and heat miscella to $60^{\circ}C \pm 2^{\circ}C$.			
	50.0	Op 4	1555	N	Hold for 3 hours at $60^{\circ}C \pm 2^{\circ}C$. $9^{\circ}C (Apply like)^{1/2} 2^{10^{\circ}D}$			
	51.0	Op <u></u>	/ 825-	and .	After hald All & I deft 2000 When analysis is good; cool to 50°C and break vacuum.			
	52.0	Op <u>of </u>	17.0		AOTE: USE A 3 MICPAN FILTER IN LINE FOR PACKAGING. 30400 Package into new plastic pails with tear tab lids using slight nitrogen pressure in MP3. Fill pails to 16.0 kg± 0.1 kg. Sparge each pail with nitrogen for 2 minutes before sealing. Label as: MP3/out/Shea oleine fraction.			
					SAMPLE			

EVENTS

PROJECT 300-99936 _____PAGE _____OF ____ OPERATION Crystallize, Filter and Dass Wartice Stea Ratter TIME/DATE EVENTS INITIAL Metting 6 pails of shear buffer 1805 Aug 30 M Suching in here 2300 2305 Loading Butter 2315 (123-23:50 (L) Begin transfer to MR7 Using pressure- Cooling on to MR7 00: 30 Aug31/50 \$ Cannot find MR7 Dipstick so cannot record Volume on Deita, Decreasing-set point to -sec on bong to try q 2:42 get to hold tomp faster 03:25 Not mixing well or cooling fast enough. Aquisting Agitator RPM to 11. (A) 4520 Will put apitation to Max. only ~ 11.5 -12 Apr. to try & get to mix better L 4:55 The outside edge of MR7 (along jorker walk) is 5% while in the middle is ~ 9.0 - Turning Bong chiller back to 3°C for set Pt. (1) 07:00 5:00 As per PT start hold as 05:00 Temp 3.4 on outside and 5.2 in middle will mave 24. 5840 Bear, set paint, to 4° as per P.T's advise. and to MRT - Spin dow 15:50 was 3.6/15 = 24% 16:00 Va BCZ. Goed FIRST loop come out fairly damp but 1630 the next load come out well Decreased load size down to 20 kg

Revised: April, 2000

Π

EVENTS

PROJECT	300	<u>-99856</u> PAGE <u>2</u> OF <u>3</u>
OPERATION <u>C</u>	ystalliz.	e, Filter + Desolucitize shea Butter
TIME/DATE	INITIAL	EVENTS
1745 A-31/00	Fré	sucked the horts into MP3
1500	TPU,	Start Leating to 60°C
18:50	AA	MP3 Q 60°C hold ander Muc until
		maning Drain IK. O. pot.
21:00		Short - 40 kg from original stating
		material open BCZ to recoven
		any product. Breaking yac and
		MP3 in order to add any
		through sight glass.
21:10		Recovered 5.2 ho tran BCZ, addin
		Lo MP3, Scroped the interior
20:00	CR.	Holding with Slight no sparse and
	 	full vec pulled (- 25') at 60-62'c.
·		Azitator at 35% on Variable speed will
Ac0+01/00		haid fill Am at these conditions.
10:50	A6	PL advises to heat up to 90° and hold.
		for an hour.
10-54	<i>\$</i> 14-	Otomp well hold for four
11: 37	<u>Ghe</u>	Ph requested sample betabare mon
12:40	<u>a</u>	Codene to 30°C
12 54	CAF A	CE toup Alast feod to FI
1300	- Of	oil looks good starting to pril.
15:14	gtk.	and ford start to brow FI with NZ
<u> </u>		sucking BC 2/L. OUT/SIA Bestles mescelle
15:20	Th	and Voad and to 70
L12:33	Ch	1 (& comp scort Shro kolcel. Revised: April 2000

EVENTS

PROJECT	300	-99856 PAGE 3 OF 3
OPERATION _	Crystallize	Filter and Desolventize Ster Butter
TIME/DATE	INITIAL	EVENTS
1835 Sefl	102	3 hr. Loldpover Breaking vacuum and cooling to 50°C
1830	M	lackagen
1920	pol	Dore packaging
<u></u>		
		-
<u>`</u>		
	-	
		۵ مراجع میں اور

].							
	PILOT PLA						
]	PROJECT	30	00-99856		PAGE	/ OF)
	- OPERATIO	N C	ystallize, Filter and desolventize	She	on lo	ruffer.	
	TIME/DATE STARTED	IN TO	CONTAINER I.D. (FROM THE CONTAINER LABEL OF MATERIAL USED)	CONT #/#	DATE D/M/Y	NET WT (kg)	INIT
]	2300	mp3	sm/Hexane			95.7	AR
ז	2315	MP3	OD3/out/Refined shea Oil & @46kg		J-1%	95.0	R
	·						
	15:50	ראומ	Sm / Filler Aid	AJ A	NA	1.92	
ו							
Ś	17:49.0.26	MP3	BC2/h. out/shec better solids	2	1-92/00	(08.0)	
	21:10/11	71	<i>ii ii</i>	γ_{2}		< 5.2	≥ <i>A</i> Y
	deptor 1455		BC2/LOWT / SHEA BUTTER M, SCELLA	- 41	Gua 3/100	45	-
7	<u> </u>			·			
			"				
]					; 		
- 7			· · · · · · · · · · · · · · · · · · ·				
			<u></u>				
]							
			<u></u>				
	PAGE TOT	AL	· · · · · · · · · · · · · · · · · · ·				

Revised: April, 2000

-

.

		OUTPUTS				-01
ROJECT	3(20 99 856		_PAGE _	OF)
OPERATIC	DN <u>Co</u>	setallize, Filter and Desolventize S	shea	Butter	、 	
IME/DATE	OUT	CONTAINER I.D.	CONT #/#	CONT	NET WT	INIT
	BCZ.	BC2/h. out/shea butter solids	1/2	MI)	2108.0	T AX
	11	Bc2/ 1. out/ shea butter miscella	1	MJY	45.0	
·		/			153.0	
	MP3	MP3/H.O. pot/ Mexane + water	7		4.3	M
			2/2			
<u>. </u>	BC2	BC2/h. Out/Shea hutter solids	12	MD	<u>< 5.7</u> 168.5	144
42701/00 13.14	·FI	FI / NUT /SHEA STERINE FRACTION	2/3_	PP	16 K95	10
ĉ i	н		13	PP	14.6	Arg-
13:45	4	FI/BLOW / SHEA STERINE FRACTION	1/1	99	5.7	#D
1543	רי) 	FI/Frome/Shen Cake	-/1	6	4.0	P.L.
151/5	. ₂)	FI/our/stea Line Arain	1	6	2.4 1	Pl-
1850	MP3	mP3/015/12, plain Esti-	12	PP	121	[ar]
/	111-	1)	12/2	PP	5.6	A
					84.4	ME
·				<u> </u>		
·						
r						
		· · ·		+		
PAGE TOT] `AL					<u> </u>
Containers: Us S-Bulk Sack	e Equipm G	ent I.D. or the following: -Garbage MP-Metal Pail PS-Paper Sack	CS-Cotto	n Sack	MD- Met PP-Plastic	al Drum Pail

Aug31-Sept 1, 2000

Process Leader: Herve Douce	~
Process Technician: Greg Gervais	5

Project No : 300-99856

PROCESS: Crystallize, Filter and Desolventize Shea Butter

Page 7 of 9

		P	ROCES	<u>S DATA</u>	- MR7		Page <u> 脸</u>	of <u>></u>
	TIME (every hour and change)		Target	00:15	01:20	02:20	3:20	4:20
	DATE	Month/ day		Aus 31/00	NC	NC	NC	eve
	Operator	Init		(h)	J.	Và	là	[h
].	<u></u>							
		1	Var		*			
		L.	Vai	NA	NA	MA	NA	NA
	MR7 temperature	°C	5	37.4	14.1	12.5	10-8	7.0-9.8
]	MR7 agitator speed	RPM	6.	9.5	9.5	9,5	9.5	
	MR7 glycol set temp.	°C	3	3	3	3	-5	-5
	MR7 glycol flow	Lpm	Var	NA	MA	MA	NA	NA
۰. ۱								
ا لار ب ا								
7.			÷.,					

Aug31-Sept 1, 2000

Project No.: 300-99856 Process Leader: Herve Douce K Process Technician: Greg Gervais S PROCESS: Crystallize, Filter and Desolventize Shea Butter

Page 7 of 9

	· · · · · · · · · · · · · · · · · · ·	PROCESS DATA – MR7 Page 👉 of						of <u>3</u>
	TIME (every hour and change)		Target	5130	6:25	10750	08750	0950
	DATE	Month/ day		A-33160	NC	ANC	nk.	nk
	Operator	Init		₿\$j	b	D-1	a.1.	Dit
7								
	-							
-	MR7 Volume	L	Var	NA	NA	NA	れみ	n JA.
	MR7 temperature	°C	5	3.9-72	4.6-6.7	4.3 -	3.6- 4.5	3.8-4.6
	MR7 agitator speed	RPM		11	11	· · //	N.	11
	MR7 glycol set temp.	°C	3	3	3	3	4	G
	MR7 glycol flow	Lpm	Var	MA	NA	NA	NA	MA
7								
7								
••••								

Aug31-Sept 1, 2000

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Crystallize, Filter and Desolventize Shea Butter

Page 7 of 9

		F	ROCES	S DATA	<u>– MR7</u>		Page 3	of <u>3</u>
]	TIME (every hour and change)		Target	105	1155	13:20	15:05	
	DATE	Month/ day		Act; 31/00.	N.C	NC	NC	
	Operator	Init		2.1	377	pr	Bru	
	···		· ·		· · ·			
	- MR7 Volume	L	Var		NA	at A	a. 4	
	MR7 temperature	°C	5	3.7-4.7	4.1-4.7	6,2	63	
	MR7 agitator speed	RPM		N.	h h	11	11	
	MR7 glycol set temp.	°C	3	ų	Ч	Ч	4	
	MR7 glycol flow	Lpm	Var	NA	AIN	NA	NA	8
-],			3			2		
		1						
			-17					
						بر کور میرو میرو		

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais & PROCESS: Crystallize, Filter and Desolventize Shea Butter

Aug31-Sept 1, 2000

Page 8 of 9

FRUGE	55 DAIA	A - Centi	rituge		Page _	/_ of _/_
TIME (every change and every hour)		1610		•		
Operator	init	frat				
	.4					
Max fill weight	Kg	40				
Min fill weight	Kg	30				
Load/Dewater speed	Rpm	750				
Dewater time	Sec	45-		1 -		
Spin time	Sec	360				د که بر از آن از ا
Spin speed	Rpm	1.900.		-		
				-		n an
Discharge speed	Rpm	500				
Oxygen level	%	T Ser				
Bearing housing nitrogen	Cfm	\mathcal{O}	18 1 - 19 1 - 19		а 	
Labrynth nitrogen	Cfm	23	19 A.			
Nitrogen inlet pressure	psi	42				
Discharge weight	Kg	17			side	
Discharge solids (wet, dry, etc.)		dage				
		· 4	÷.			

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gervais PROCESS: Crystallize, Filter and Desolventize Shea Butter Aug31-Sept 1, 2000

Page 9 of 9

PROCESS SAMPLES

ł	SAMPLE I.D.	NUMBERxSIZE	DETAILS	TIMES/INIT
}	<u> </u>	<u> </u>		
]	MP3/out/desolventized shea stearine	1 X 100ml	Take to lab for analysis.	5815 B
			·	
	F1/out/Shea stearine fraction	2 x 250ml	Take while pailing.	13:10 00
]				
7	MP3/out/desolventized shea miscella	1 x 100ml	Take to lab for analysis- TAKE AFTER 3 hr hold:	1810 pr
				:
	MP3/out/Shea oleine fraction	2 x 250 ml	Take while pailing.	1809 A
]			-	
1				

Project No.: 300-99856 Process Leader: Herve Douce Process Technician: Greg Gen PROCESS: Crystallize, Filter	vais S and Desolventize Shea Butter	Aug31-Sept 1, 2000 Page 6 of 9
Deviations:		Page/_/)
Step # INITIAL Date <u>17.0</u> Ang 30	Deviation(s) Used 65ps. Unive	
42.0 Af Ag21	Extend hold to	Hommoroe moning
]		
]		
]		

•

Appendix 4B-1: Solving the darkening of the oil at start up

Trial #1: 2/22/99 Oil used: RBD canola oil (POS Startup oil) <u>Parameters :</u> Oil flow: 40% of rotometer scale Deodorization temperature: 265°C Sparging gas: Nitrogen Initial vacuum was 0.3 mm Hg. The Spirafilm was set at 268°C with a variation between 265-271°C.

The column was set at 265°C with a variation between 263-266°C.

Spirafilm heater and column were heated to temperature **before** initiating oil flow to the column. After all the oil had passed over the column the deodorizer pot was heated to 265°C and held there for 20 minutes, the oil was then cooled to 100°C and the final product sample was taken. The first oil over the column was diverted to the drain pot. This oil was dark in colour. The final product was lighter in colour but was still darker than the starting oil. The deodorization process was darkening the oil.

Note: The cool down procedure of the Spirafilm heater and column was initiated once **all** the oil had passed over the column.

	Sample	Sample					
	Starting oil	Drain Pot oil	Final Product				
Peroxide Value	0.8	0.4	0.2				
% Free Fatty Acids	0.06	0.03	0.03				

From the above data it appears that the increase in colour was not due to oxidation of the oil or free fatty acids. Oil colour may increase due to polymerization, oxidation, thermal degradation of phosphorus, or condensed fatty acids falling into the deodorized oil (vacuum loss). During this run the vacuum was good, therefore oxidation and fatty acid condensation should not have occurred. The oil had no phosphorus. Polymerization could have occurred just before cool down as the flow rate of oil over the Spirafilm and column would be tapering out at that time.

Trial 2: 2/24/99

Oil used: RB Palm oil <u>Parameters</u> Oil Flow rate: 40% of rotometer scale, i.e. Oil Rate of 2.27 Kg/hr. Deodorization temperature: 265°C Sparging gas: Nitrogen Hold deodorizer pot at 100°C until feed is finished then heat to 265°C and hold 20 minutes, then cool to 100°C and discharge. Collect start up oil in drain pot until column temperature is at 260°C. Note this oil had no phosphorus.

The Spirafilm was set at 269°C with a variation between 265-288°C.

The column was set at 265° C with a variation between $264-266^{\circ}$ C.

Time to heat ~ 2900g of oil from 100-265°C was 55 minutes (3°C /minute). The diverted drain pot start up oil was dark.

	Sample	Sample				
	RB Palm oil	Drain Pot oil	Final Product			
Peroxide Value	0.00	-	0.00			
% Free Fatty Acids	0.25	-	0.02			
Colour 5.25"						
Lovibond ^a	70.0Y 18.1R	dark	34.0Y 3.0R			

^a The Lovibond scale was used because the oil was too dark for the AOCS scale.

It should be noted that as in the previous run (2/22/99) this oil had no phosphorus, the vacuum was good and the oil's temperature was kept below 300°C. The dark start up oil was analyzed for polymerized and oxidized triglycerides, it was found to contain a 6.44% polar fraction (the usual value is 2%). The polar fraction contained 5.25% polymerized triglycerides and 17.17% oxidized triglycerides, therefore the dark colour was due to polymerization. Polymerization can occur at temperatures of 150°C and higher. During start up the column was heated to 265°C with no oil flow, the column was also cooled with no oil flow; this provided ample opportunity for the thin film of oil on the column to polymerize.

The start up and cool down was modified so that oil was flowing over the Spirafilm heater and the column during start up and cool down. The oil during start up and cool down was diverted to the drain pot as stripping of FFA would not be complete at lower temperature. When this procedure was followed we noted that the startup and cool down oil was no longer dark.

Trial #3: 3/3/99

Oil used: Atmospheric bleached Shea butter

Parameters

Flow: 40 % of rotometer scale

Deodorization temperature: 265°C

Sparging gas: Nitrogen

Heating and cooling of the Spira heater and column was done with Shea butter flowing over these units.

Place ice and salt in the distillate trap to strip maximum amount of FFA before vapours reached the vacuum pump.

Hold deodorizer pot at 100°C until feed is finished then heat to 265°C and hold 2 hours. Cool to 100°C and discharge.

Collect start up oil in drain pot until column temperature is 260° C. Note that this oil had no phosphorus.

Sample	% Free Fatty Acids	AOCS 5.25" Colour
SM/bleached Shea	2.03	9.9Y 0.6R
Drain Pot column at175°C	-	9.9Y 0.9R
Drain Pot column at 250°C	-	9.4Y 1.5R
Drain Pot column at 250°C	-	9.4Y 1.3R
Deodorizer at 265°C Time: 0	0.26	9.0Y 1.1R
Deodorizer at 265°C Time: 20 Min	0.19	9.0Y 1.2R
Deodorizer at 265°C Time: 60 Min	0.15	9.9Y 1.2R
Deodorizer at 265°C Time: 120 Min	0.05	8.5Y 1.1R

This trial demonstrated that the deodorizer can remove 97.5% of the Free Fatty Acids and that heat bleaching can reduce the yellow colour by 1.0 unit. It was also noticed that the red colour rose from 0.6 to 1.5; through heat bleaching this was reduced to 1.1.

The decrease in red seemed to occur when the temperature was around $265^{\circ}C$. It seems that some thermal degradation product in the atmospheric bleached Shea increased the red and this was partially removed during heat bleaching. The same behavior was observed when atmospheric bleached Shea was deodorized in a glass deodorizer.

Trial #4: 3/4/99

Oil used: Atmospheric bleached Shea butter

<u>Parameters</u> Oil flow rate: 40% of rotometer scale. Deodorization temperature: 265°C Stripping gas: 3% steam Note: Burkina Faso Clay was used instead on tonsil 120FF

Heat and cool the column with Shea butter.

When column temperature is less than 240°C collect oil in the drain pot. Place ice and salt in the distillate trap. Hold deodorizer at 100°C until feed is finished then heat to 265°C and hold 2 hours, then cool to 100°C and discharge. Collect oil in drain pot until column temperature is 260°C. Note that this oil had no phosphorus.

Losses during this run to heating and cooling : 870g, the deaerator was loaded with 2530.8g of Shea butter.

Sample	% Free Fatty Acids	AOCS 5.25" Colour
SM/BK. bleached Shea	1.70	9.9Y 0.8R
Deodorizer at 265°C Time: 0	0.02	10.0Y 1.4R
Deodorizer at 265°C Time: 1 hr	0.02	9.4Y 1.3R
Deodorizer at 265°C Time: 2 hr	-	9.7Y 1.4R

Once again deodorization increased the red. Heat bleaching did not occur for the red colour and only slightly for the yellow. The above Table shows that if oil passing over the column at temperatures below 240°C is discarded (start up and cool down oil) then a holding period in the deodorizer at 265°C is not necessary (this saves a minimum of 1.5 hours of operation time).

Trial #5: 3/5/99

Oil used: Atmospheric bleached/Carbon Treated High FFA Shea butter.

Initial colour of oil was very dark.

Note: This oil was first bleached with 2% clay , then it was treated with 0.5% carbon Parameters

Oil flow rate: 60% of rotometer scale

Deodorization temperature: 265°C

Stripping gas: Nitrogen

Heat and cool the column with Shea butter.

When column temperature is less than 220°C **collect** oil in the drain pot. Place ice and salt in the distillate trap. Heat deodorizer to 265°C when feed is started, hold 2.5 hours at temperature after feed to the deodorizer has stopped, then cool to 100°C and discharge.

Sample	% Free Fatty Acids
SM/bleached High FFA Shea butter	13.14
Drain Pot - Column at 247°C	1.80
Deodorizer 240°C - Time : 0	0.28
Deodorizer 1 hour at 265°C	0.18
Deodorizer 1.5 hours at 265°C	0.17
Deodorizer 2.0 hours at 265°C	0.12
Deodorizer 2.5 hours at 265°C	0.08
Drain Pot Condensate from column during batch deodorization	0.12

During this run the distillate trap began to plug at the vapor inlet to the distillate trap. The plugging problem can be overcome by keeping the ice in the trap 12 cm below the top of the trap, also a heating tape could be placed around the top. In future runs the deodorization temperature should be kept at 100°C, if the deodorization temperature is above 180°C and vacuum is lost then fatty acids that have been distilled from oil in the deodorizer may fall back into the oil and affect the final colour. In the event of vacuum loss the flow from the column can be diverted to the drain pot, this should prevent unrefined oil from the column from falling into the deodorizer. The above procedure will increase operation time but should produce a better product.

It Is noted from the above Table that the column was able to remove 86.30% of the FFA present at a flow rate of 60% of rotometer scale, perhaps a slower flow rate would remove more.
Processing Step	Assumptions	Theoretical Yield of low quality Shea Butter	Theoretical Yield of high quality Shea Butter
Bleaching	6% clay & 1% carbon dosage with low quality Shea Butter	88% *	-
	1.5% clay dosage with high quality Shea Butter	-	96% *
Physical Refining	6.52% of free fatty acid in low quality Shea Butter.	89.0% **	-
	2.0% max. free fatty acid in high quality Shea Butter.	-	93.5%**
Overall Yield Ψ		78.3%	89.8%

Appendix 5A-1: Dependence of overall yield on starting Shea specifications

 Ψ See Appendix 4B-2 for calculation.

* 30% by weight of entrained neutral oil in weight of bleaching clay used. See Appendix 4B-2.
** 1.0 % of neutral oil entrainment in deodorization. See Appendix 4B-2.

APPENDIX 5A-2 : <u>Calculation of yields</u>

Yield after bleaching:

١,

With low quality Shea butter batch used in the pilot plant we use 6% clay dosage.

Yield after bleach = $\frac{Wt \text{ of bleached Shea butter obtained in plant}}{Wt \text{ of SM/Shea butter used at start of bleach}}$

=<u>819.00</u> = 88.0% 944.83

If colour of SM/Shea butter was brought under control by proper processing in country of origin it is assumed that the amount of clay needed will be around 1.5% and that there will be no need for activated carbon.

Assuming 30% by weight of entrained neutral oil in weight of bleaching clay used and assuming a 20 kg filter press drain lost.

Yield, based on 1 tonne of SM/Shea after bleach will then be = $(1000-(0.3 \times (1000 \times 0.015))-20 = 96\%$ 1000

Physical Refining Yield:

With a low quality Shea Butter the % of free fatty acid in the Bleached oil was 6.52%. Assume 1% neutral oil loss in deodorizer and 35 kg of transition oil at beginning of deodorization.

Yield, based on one tonne of SM/Shea after deodorization :

<u>Wt of deodorized oil</u> = <u>Wt of bleached oil - Wt of FFA- 1% N. oil loss</u> Wt of bleached oil Wt of bleached oil

If the Shea seed were properly collected and stored a maximum free fatty acid content of 2.0% in the crude oil can be assumed.

Then the yield after deodorization will be: 1000 - 20.0 - 10-35.0 = 93.5%1000

OVERALL YIELD:

Overall yield for low quality Shea Butter:

88% x 89%= 78.3%

Theoretical Overall yield for Shea Butter with low colour and FFA, (2%):

96% x 93.5%= 89.8%

Thus if the starting material is top quality Shea butter approximately (898-783)= 115 kg of additional bleached and deodorized Shea butter per tonne processed will be achieved.

APPENDIX 5A-3. Calculation of costs at POS

A: Using low quality starting Shea butter

Estimated processing cost for refining SM/Shea butter with ~ 6% Free fatty acid content and dark colour, AOCS 20.0Y3.7R using 1" cell. An overall recovery of 78.3% has been assumed.

Amount of SM/Shea	1 Tonne	2 Tonnes	4 Tonnes
butter processed			
Labour at POS	\$5,730.00	\$6,600.00	\$8,725.00
Material	\$1,580.00*	\$2,300.00	\$3,300.00
Equipment	\$3,300.00	\$3,975.00	\$7,850.00
Lab Supplies	\$40.00	\$40.00	\$40.00
Total	\$10,650.00	\$12,915.00	\$19,915.00
Processing cost per	\$10.65	\$6.46	\$4.98
kilo of SM/Shea butter			
Processing cost per kilo	\$13.60	\$8.25	\$6.36
of final RB Shea butter			

* See appendix 4B4 for estimation of material cost for processing 1 tonne of Shea butter.

High quality starting Shea butter.

Estimated processing cost for refining SM/Shea butter with ~ 2% Free fatty acid content and light colour, AOCS 70.0Y2.9R using 5 1/4" cell: An overall recovery of 90% has been assumed.

Amount of SM/Shea butter processed	1 Tonne	2 Tonnes	4 Tonnes
Labour at POS	\$5,730.00	\$6,600.00	\$8,725.00
Material	\$1,450.00	\$1,900.00	\$2,800.00
Equipment	\$3,300.00	\$3,975.00	\$7,850.00
Lab Supplies	\$40.00	\$40.00	\$40.00
Total	\$10,520.00	\$12,515.00	\$19,415.00
Processing cost per kilo of SM/Shea butter	\$10.52	\$6.25	\$4.85
Processing cost per kilo of final RB Shea butter	\$11.69	\$6.95	\$5.39

Appendix 5A4. Material usage for processing 1 tonne of low quality Shea butter

Material	Quantity used	Total
		Cost, \$ Can.
Citric acid	1.88 kg	5.45
Bleaching Clay	56.68 kg	85.02
Activated Carbon	9.40 kg	57.37
Nitrogen		34.50
Filter aid	0.57 kg	0.74
Canola oil	170 kg	945.00
Pails & lids	46	257.70
Filter papers	16	38.40
Cartridge filters	2	56.00
Waste Disposal		50.00
Total		\$1,530.18