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Precipitation in the high-altitude Indus basin governs its renewable water
resources affecting water, energy and food securities. However, reliable estimates
of precipitation climatology and associated hydrological implications are seriously
constrained by the quality of observed data. As such, quantitative and spatio-
temporal distributions of precipitation estimated by previous studies in the study
area are highly contrasting and uncertain. Generally, scarcity and biased distribu-
tion of observed data at the higher altitudes and measurement errors in precipita-
tion observations are the primary causes of such uncertainties. In this study, we
integrated precipitation data of 307 observatories with the net snow accumulations
estimated through mass balance studies at 21 major glacier zones. Precipitation
observations are adjusted for measurement errors using the guidelines and stan-
dard methods developed under the WMO’s international precipitation measure-
ment intercomparisons, while net snow accumulations are adjusted for ablation
losses using standard ablation gradients. The results showed more significant
increases in precipitation of individual stations located at higher altitudes during
winter months, which are consistent with previous studies. Spatial interpolation of
unadjusted precipitation observations and net snow accumulations at monthly
scale indicated significant improvements in the quantitative and spatio-temporal
distribution of precipitation over the unadjusted case and previous studies. Adjust-
ment of river flows revealed only a marginal contribution of net glacier mass bal-
ance to river flows. The adjusted precipitation estimates are more consistent with
the corresponding adjusted river flows. The study recognized that the higher river
flows than the corresponding precipitation estimates by the previous studies are
mainly due to underestimated precipitation. The results can be useful for water
balance studies and bias correction of gridded precipitation products for the
study area.
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1 | INTRODUCTION

High mountain ranges around the world are important
sources of freshwater storage and subsequent supplies to

downstream areas. Indus basin contains one of the most
diversified and complex mountain terrains in the world. Pre-
cipitation in its high-altitude areas governs the renewable
water resources determining water, energy and food

Received: 31 January 2017 Revised: 12 March 2018 Accepted: 13 March 2018 Published on: 11 April 2018

DOI: 10.1002/joc.5539

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
© 2018 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

3842 wileyonlinelibrary.com/journal/joc Int J Climatol. 2018;38:3842–3860.

http://orcid.org/0000-0002-0922-951X
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/joc


securities in the region. Run-off regime of the basin is pre-
dominantly controlled by winter- and summer-monsoon pre-
cipitations and summer temperatures (Yu et al., 2013). Yet,
there is limited understanding and reliable evidence of quan-
titative and spatio-temporal distribution of the key climatic
variables, particularly the precipitation (Hewitt, 2005; Wini-
ger et al., 2005; Ragettli and Pellicciotti, 2012; Immerzeel
et al., 2015; Mishra, 2015) leading to a large uncertainty in
the hydro-climatic predictability in the basin (Lutz et al.,
2016). Overall scarcity and biased spatial and altitudinal
distribution of the in situ observations are the primary rea-
sons for this uncertainty and knowledge gap. Substantial
increase in research on glacio-hydro-climatology of the
Hindukush–Karakoram–Himalayan (HKH) region is
observed since the International Panel on Climate Change
(IPCC) released its fourth assessment report, which claimed
that “glaciers in Himalayas are receding faster than in any
other part of the world and, if the present rate continues, the
likelihood of their disappearing by the year 2035 is very
high” (Cruz et al., 2007). Later, IPCC withdrew this state-
ment due to an inaccurate citation of the grey literature.
Yet, most of the subsequent research is mainly focused on
improved methods using more or less the same commonly
available data sets that use low altitude and largely unrepre-
sentative observations in the development or validation of
these data sets.

Adequate monitoring of climatic variables to better rep-
resent the entire range of a diverse climate of this complex
mountain terrain is essential for reducing uncertainties and
inferring informed policy decisions. However, such an
observational network in the study region is lacking mainly
due to resource constraints and logistical limitations. To
overcome the observational data gaps, the hydro-
climatologists generally rely on numerous global/regional-
scale gridded products derived through various means
(e.g., climate models reanalysis, merged model and station
observations, merged satellite estimates and station observa-
tions, and derived solely from station observations). How-
ever, the strong gradients and extreme heterogeneity of this
complex mountain terrain are inadequately captured by the
gridded products due to their coarse resolution and use of
non-representative climate data in their development or vali-
dation (Immerzeel et al., 2015; Reggiani and Rientjes,
2015; Dahri et al., 2016). As such, the precipitation esti-
mates by a number of earlier studies (e.g., Akhtar et al.,
2008; Immerzeel et al., 2009; 2010; Bookhagen and Bur-
bank, 2010; Bocchiola et al., 2011; Tahir et al., 2011;
Immerzeel et al., 2012a; Mukhopadhyay, 2012; Central
Water Commission and National Remote Sensing Centre,
2014; Lutz et al., 2014a; 2014b; Reggiani and Rientjes,
2015) that used the gridded data sets show highly contrast-
ing but consistently underestimated precipitation in most
parts of the high-altitude Indus basin.

Numerous efforts to accurately estimate precipitation in
this region only partially succeeded due to lack of observed
data but significantly underlined the relevance and severity
of the problem. In many hydrological modelling studies, the
underestimated precipitation is often compensated for with
other parameters like evapotranspiration and/or snow/glacier
melt factors (Schaefli et al., 2005; Pellicciotti et al., 2012;
Lutz et al., 2014a). This results in inaccurate and subopti-
mal inferences regarding precipitation distribution, snow/
glacier cover dynamics and associated melt water contribu-
tions. Adam et al. (2006) used a water balance approach to
indirectly correct monthly precipitation in mountain regions
from an existing global data set and provided reasonable
approximations at basin level. However due to inaccuracies
in water balance components and use of biased gridded data
sets developed from limited observations, their results show
large differences in precipitation amounts and distribution
patterns at sub-basin scale in the study area. For example,
precipitation in the high-mountain Karakorum region is
largely underestimated due to lack of stations in this area,
whereas higher precipitation amounts are shown for the
southern parts of western Himalayan region that hosts many
precipitation gauges. Lutz et al. (2014a) recognized under-
estimation of APHRODITE precipitation and multiplied it
with an arbitrary constant factor of 1.17 to account for the
inherent underestimations.

Recently, Immerzeel et al. (2015) and Dahri et al. (2016)
used other sources of data/information to cover the observa-
tional gaps and provided relatively better estimates of precip-
itation amounts and distribution in the high-altitude Indus
basin. The approach adopted by Immerzeel et al. (2015) used
the glacier mass balance (GMB) estimates of Kääb et al.
(2012) to inversely infer the high-altitude precipitation.
Using APHRODITE as the basis, they computed vertical pre-
cipitation gradients until observed mass balance matched the
simulated mass balance for the 550 major glacier systems in
the Indus basin. However, precipitation in the basin does not
have constant and linear gradients (Dahri et al., 2016), APH-
RODITE precipitation distribution is highly biased (Palazzi
et al., 2013; Dahri et al., 2016) and their mass balance com-
putations are uncertain due to the use of extremely elusive
direct evapotranspiration losses and negligence of percola-
tion, interception and sublimation losses from the precipita-
tion. Moreover, precipitation estimates of Immerzeel et al.
(2015) might be affected by the overestimated basin bound-
aries of Shyok and Indus at Tarbela sub-basins. However,
Dahri et al. (2016) integrated the available station observa-
tions with the indirect precipitation estimates at the accumula-
tion zones of major glacier systems. They employed Kriging
with external drift (KED) interpolation scheme with elevation
as predictor to derive the spatio-temporal distribution of mean
monthly and annual precipitation climatologies. They vali-
dated their precipitation estimates by the individual station
observations and the observed specific run-off at sub-basin
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scale. However, if the net mass balance (i.e., slightly negative
as estimated by Kääb et al., 2012) and precipitation losses
(direct evapotranspiration, percolation, interception and subli-
mation) in the basin are taken into account, the Dahri et al.
(2016) estimates still seem to be on lower side. The underesti-
mated precipitation relative to the corresponding specific run-
off in most sub-basins may be attributed to three possible rea-
sons: (a) overestimated river flows, (b) significant contribu-
tion of snow/glacier melt without an adequate amount of
precipitation to feed/sustain the glacier systems and
(c) underestimated precipitation. Given the technological
advancements and relative precision of discharge measure-
ment techniques and quality control ensured by the data col-
lecting agencies, river flows are generally considered to be
adequately accurate. However, there is considerable specula-
tion but little analysis and evidence regarding the contribution
of net glacier mass imbalance to the river flows. Although
Immerzeel et al. (2015) attributed the observed gap between
precipitation and streamflow to the underestimated precipita-
tion rather than the observed GMB, there is an emergent need
to quantify the contribution of net glacier mass imbalance to
the river flows. The underestimated precipitation by Dahri
et al. (2016) is probably due to the use of net precipitation
estimates from the glacier accumulation zones and the raw/un-
corrected precipitation gauge observations which are subject
to significant measurements errors (Sevruk and Hamon, 1984;
Legates, 1987; Legates and Willmott, 1990; Goodison et al.,
1998; Chen et al., 2015; Wolff et al., 2015).

The IPCC in its fifth assessment report stressed the need
for adjustment of precipitation measurement errors and
declared that observational uncertainties in precipitation may
limit the confidence in the assessment of climatic change
impacts (Bindoff et al., 2013). The measurement errors in pre-
cipitation observations, particularly the wind-induced under-
catch of solid precipitation in windy conditions can be sub-
stantial (Adam and Lettenmaier, 2003; Wolff et al., 2015;
Kochendorfer et al., 2017a; 2017b). This is particularly impor-
tant in the high-altitude Indus basin where moderately strong
winds are a common phenomenon; temperature mostly
remains below the freezing point and the majority of precipita-
tion falls in the form of snow. Legates (1987), Legates and
Willmott (1990) and Adam and Lettenmaier (2003) adjusted
the systematic biases of global precipitation products includ-
ing the Indus basin but these data sets included only a few sta-
tions located in relatively dry valleys in the study area. The
uncertainties in precipitation estimates may significantly affect
the outcomes of hydrological/land surface models and mass
balance studies. A systematic error of over 3% in rainfall mea-
surement could lead to substantial underestimation of water in
the hydrologic system (e.g., Sevruk, 1982; Biemans et al.,
2009). Therefore, the systematic errors in precipitation obser-
vations must be corrected if the measurements are to be used
for climate change, hydrological modelling and water balance
studies (Legates and Willmott, 1990; Voisin et al., 2008;

Wolff et al., 2015). This study attempts to address the above
concerns by adjustment of the systematic measurement errors
in precipitation observations, adjustment of net snow accumu-
lation for the ablation losses and adjustment of river flows for
the net mass balance contributions. The ultimate goal of this
research is to facilitate creation of an accurate and consistent
gridded precipitation product for the highly under-explored
region of Indus basin. The results will have considerable
implications for water resources planning and management in
both upstream (high altitude) and downstream (low altitude)
areas of the Indus basin.

2 | STUDY AREA

The study area covers the high-altitude catchments of the
Indus river, which originates from the Tibetan Plateau
(TP) and the HKH mountain regions (Figure 1). The total
area of the study region is about 4.03 × 105 km2 of which
50% is above 4,000 m a.s.l. and another 24% between 2,500
and 4,000 m a.s.l. Precipitation in the study area is influ-
enced by multiple weather systems. The Indian summer
monsoon brings moisture from the Indian Ocean and Bay of
Bengal and is the dominant system in the southeastern areas.
The western disturbances originating from the Mediterranean
and Caspian Sea dominate the southwestern and northwest-
ern areas bringing winter monsoon during December–April
months. During spring and early summer, irregular collapses
of the Tibetan anticyclone sometimes allow monsoonal air
masses to penetrate into the Karakoram Range (Wake,
1989). Direct transport of moisture from the Arabian Sea and
local evapotranspiration also have considerable influence as
about 5–40% of the precipitation falling in the Himalayas
originates from the irrigated areas in northern India and
Pakistan (Tuinenburg et al., 2012; Harding et al., 2013; Wei
et al., 2013). However, the hydrological cycle in the study
region is usually intensified when all or some of these sys-
tems interact with each other.

3 | DATA AND METHODS

3.1 | Precipitation observations

Indus is a transboundary river basin, as such its meteorolog-
ical data are scattered in four countries (i.e., Afghanistan,
China, India and Pakistan). The meteorological data of
Pakistani parts were collected from Pakistan Meteorological
Department (PMD) and Pakistan Water and Power
Development Authority (WAPDA). Precipitation data of the
station located in Afghanistan are available with Afghan-
Agriculture UCDAVIS (http://afghanag.ucdavis.edu/natural-
resource-management/weather), NOAA Central Library of
US (https://docs.lib.noaa.gov/rescue/data_rescue_afghanistan.
html) and US Geological Survey (http://edcintl.cr.usgs.gov/
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downloads/sciweb1/shared/afghan/downloads/documents/),
while precipitation data of Indian and a couple of Chinese
stations were downloaded from KNMI Climate Explorer
(https://climexp.knmi.nl). In addition, we derived monthly
precipitation data of many stations from Singh et al.
(1995), Miehe et al. (1996), Singh and Kumar (1997),
Miehe et al. (2001), Winiger et al. (2005), Arora et al.
(2006) and Eberhardt et al. (2007).

Information regarding the gauge type, use of wind
shield if any, orifice area and height of the gauge orifice
were taken from Sevruk and Klemm (1989) and Bureau of
Indian Standards (1992a, 1992b) and from PMD and
WAPDA through personal communications. Until 1969,
the most extensively used rain gauge in India was non-
recording (Symon’s gauge or MK2 model) with orifice
area of 127 cm2 and instrument height of 0.3 m (Sevruk
and Klemm, 1989). Thereafter, Indian standards adopted
by the Bureau of Indian Standards (BIS) for design and
manufacturing of meteorological instruments are strictly
followed and Indian rain gauge (20-22-P) reinforced with
fibreglass polyester is predominantly used (Bureau of
Indian Standards, 1992a; 1992b). Similarly, the most
widely used rain gauge type by PMD has been non-
recording MK2 (13-15-C) model with orifice area of
127 cm2 and instrument height of 0.3 m. In 2010, PMD

started using its own model, which is tipping bucket rain
gauge (TBRG) type equipped with logger and standalone
method of monitoring rainfall, with 0.2 mm (moderate
rain) tipping bucket, orifice area of 400 cm2 and gauge
height of 0.6 m. WAPDA uses both automatic weighing
and standard meteorological service manual rain gauges.
The automatic gauges have an orifice area of 127 cm2, tip-
ping capacity of 0.254 mm and gauge height of 0.3 m
(Water and Power Development Authority, 2008). A man-
ual gauge is read in conjunction with each automatic gauge
as a check on the total rainfall. In 1994–95, WAPDA
installed 20 automatic data collection platforms (DCPs) in
the high-altitude areas that use snow pillows to measure
both solid and liquid precipitation as water equivalent
(SIHP, 1997). The observatories installed and maintained
by the University of Bonn under the CAK program used
the automatic weather stations including data logger, tip-
ping bucket and snow depth gauge to measure precipitation
(Miehe et al., 1996). Afghanistan mainly uses the Tretya-
kov (20-24-G) type of rain gauge without windshield hav-
ing orifice area of 200 cm2 and 0.4 m height (Sevruk and
Klemm, 1989). The metadata of 305 precipitation observa-
tories and 21 glacier observation points used in this study
are outlined and described in Table S1, Supporting
information).
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FIGURE 1 Location of study area (bottom) and description of sub-basins, river network and location of precipitation and flow measuring gauges (top). The
red triangle and associated numbers refer to flow measuring gauges on various tributaries, which are (a) Indus at Kharmong, (b) Shyok at Yogo, (c) Shigar
at Shigar, (d) Hunza at Dainyor, (e) Gilgit at Gilgit, (f ) Astore at Doyian, (g) Indus at Tarbela dam, (h) Chitral at Chitral, (i) Panjgora at Zulum Br.,
(j) upper swat at Chakdara, (k) Kabul at Warsak, (l) Kabul at Nowshera, (m) Jhelum at Mangla dam, (n) Chenab at Marala, (o) Ravi at Thein dam, (p) Beas
at Pong dam and (q) Sutlej at Bhakra dam. The blue circles and associated numbers refer to the precipitation gauges, details of which are given at Table S1
[Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Temperature and wind speed observations

The adjustments for wind-induced under-catch of precipita-
tion observations require corresponding data of temperature
and wind speed. However, out of 324 stations, temperature
data were available for only 114 stations (Table S1). We
therefore derived monthly lapse rates based on elevation
and latitude and estimated the maximum and minimum tem-
peratures for the remaining stations. The observed data of
wind speed was available for only 25 stations. Wind speed
for the remaining stations is taken from the Japanese 55-
year Reanalysis (JRA55) data set (Kobayashi et al., 2015).
JRA55 provides wind speed estimates at the standard ane-
mometer height of 10 m, whereas the station-based
observed wind speed is measured at 2 m height. In order to
get an idea of the accuracy of the JRA55 wind speed data,
we compared it with the observed wind speed for the 25 sta-
tions. For this purpose, we computed wind speed from the
U- and V-components at 10 m height and downscaled it to
match the 2 m height of stations using the Monin Obukhov
theory (Businger and Yaglom, 1971; Obukhov, 1971).
Although we could not detect large differences and/or any
definite and strong trends, a tendency of slightly underesti-
mated wind speed in low-altitude areas and vice versa in
high-altitude areas is noticed. We also observed marginally
increased wind speeds during November–February months
and slightly decreased wind speeds during March–October
months for the JRA55 data. Due to insufficient observed
data of wind speed, we have neglected these minor differ-
ences and used wind speed data of JRA55 as such. Never-
theless, such minor differences of wind speeds in JRA55
data might result in slight overestimation of precipitation
adjustments in the higher-altitude areas during four
(November–February) winter months and slight underesti-
mation of precipitation adjustments in the lower-altitude
areas during the remaining months.

3.3 | River flows

Daily data of the observed river flows at sub-basin level for
14 hydrological stations (Figure 1) in the study area were
collected from WAPDA. We used flow data of Jhelum and
Chenab rivers for 1961–1970 period and all the rivers in the
western part sub-basins for 1999–2011 period to coincide
with the precipitation data periods. Ravi, Beas and Sutlej
basins are located in India and their inflow data are not pub-
licly available. Therefore, we extracted mean monthly river
flows from Adeloye et al. (2016) for the Beas River at Pong
dam for 2000–2008 period and from Asian Development
Bank (2010) for the Sutlej River at Bhakra dam for
1962–1971 period. The river discharge data for the Ravi at
Mukesar (near Thein dam) is collected from the global river
discharge database (RivDIS v1.1) for the period of
1968–1979. It is worth to note that there are considerable
diversions in some sub-basins on the upstream side of their

rim stations (e.g., at Warsak, Nowshera and Tarbela), which
are often overlooked by previous studies. We also collected
the data of these upstream diversions and added them to the
flows of the respective sub-basins. River flow data of coin-
ciding time periods are used to validate the adjusted precipi-
tation at sub-basin scale.

3.4 | Precipitation measurement error adjustment
methods

The amount of actual precipitation reaching the ground is
generally higher than what is measured in precipitation
gauges due to measurement errors, which usually depend on
the form of precipitation, gauge type, topography, vegeta-
tion around the gauge site and the exposure of the gauges to
prevailing temperatures and winds. Wind-induced under-
catch is by far the most dominant source of errors in gauge-
measured precipitation observations (Goodison et al., 1998;
Adam and Lettenmaier, 2003; Michelson, 2004; Wolff
et al., 2015), yet most of the widely used global precipita-
tion data sets are not adjusted for such errors (Adam and
Lettenmaier, 2003). While recognizing the significance of
measurement errors in precipitation observations, the World
Meteorological Organization (WMO) initiated a comprehen-
sive program of international precipitation measurement
intercomparisons during 1960–1993 and established the pit
gauge (Sevruk and Hamon, 1984) and the double-fence
international reference (DFIR) (Goodison et al., 1998) as
the standard reference gauges for liquid (rain) and solid
(snow) precipitation, respectively. Sevruk and Hamon
(1984) and Goodison et al. (1998) also underlined the need
for gauge calibration and adjustment of errors to increase
reliability of the precipitation data. However, the agencies
involved in measurement of precipitation in the Indus basin
generally indicate to follow the WMO standards for design,
construction, installation and operation of precipitation
gauges but hardly or inadequately adjust the systematic
measurement errors at the source, which signifies the need
for correction of measurement errors.

Sevruk (1982) related and statistically analysed various
components of the systematic measurement errors to the
meteorological and instrumental factors and proposed a gen-
eral equation for adjustment of gauge-measured precipita-
tion errors. Legates (1987) later modified it to account for
both liquid and solid precipitation components separately.
The modified equation is expressed as

Pa= 1−Rð ÞKr Pm+ΔPwr +ΔPtr +ΔPerð Þ+RKs Pm+ΔPwsð
+ΔPts +ΔPesÞ, ð1Þ

where Pa is adjusted precipitation (mm), R is proportion of
solid precipitation, K is correction coefficient that accounts
for wind-induced losses, Pm is measured precipitation (mm),
ΔPw is wetting losses (mm), ΔPe is evaporation losses
(mm), ΔPt is trace precipitation (mm) and subscripts r and
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s denote rain and snow components, respectively. Legates
(1987) model was developed for a variety of manual rain
gauges including Nipher, Tretyakov and MK1/MK2 models
with and without windshields. However, significant uncer-
tainties remained for wind-induced under-catch of solid pre-
cipitation particularly by automatic precipitation gauges.
Nitu and Wong (2010) observed much larger variation
between gauges and windshield configurations for auto-
matic stations than for manual stations.

Wolff et al. (2015) compared precipitation data from the
standard automatic Geonor precipitation gauge with data
from a reference configuration consisting of an automatic
precipitation gauge (Geonor T200-BM) and an Alter wind
shield with double-fence construction. They derived an
adjustment model to determine catch efficiency as a contin-
uous function of both wind speed and air temperature using
Bayesian statistics to more objectively choose the model
that best describes the data. Wolff’s model allows solid pre-
cipitation adjustments at wind speeds greater than 7.0 m/s.
However, it is also gauge/shield-specific and different site
specificities and gauge/shield configurations might result in
different adjustment functions.

Kochendorfer et al. (2017a) analysed precipitation mea-
surements from eight different WMO-SPICE sites for both
unshielded and single-Alter-shielded OTT Pluvio2 and Geo-
nor T-200B3 types of weighing gauges. They grouped
unshielded and single-Alter-shielded precipitation gauge
configurations separately irrespective of gauge types and
created a single transfer function of air temperature and
wind speed using the corresponding measurements from the
reference gauge. They also derived the coefficient fits for
both unshielded and single-Alter-shielded precipitation
gauges at gauge height as well as 10 m height. The derived
transfer function is expressed as

CE=e−a Uð Þ 1−TAN−1 b Tairð Þð Þ+cð Þ, ð2Þ
where Tair is mean air temperature (�C), U is wind speed
(m/s), a, b and c are the coefficients fit to the data and
TAN−1 is the inverse of tangent function.

Our method of adjusting systematic errors in precipita-
tion measurements largely follows the approach by Adam
and Lettenmaier (2003) using the “liquid” part of the model
by Legates (1987) and uses the model by Kochendorfer
et al. (2017a) for adjustment of the solid precipitation com-
ponent. The detailed methods for computation of the
required variables in Equation (1) are described in the sup-
plement available on-line. The coefficient values in Equa-
tion (2) (a = 0.0623, b = 0.776, c = 0.431) are taken as
determined at 10 m height by Kochendorfer et al. (2017a).
We used the coefficient values of 10 m height because most
of our wind speed data belonged to the JRA55 data set,
which provides wind speed data at 10 m height. The
observed wind speed at 25 stations is converted from

observation height to 10 m height using the Monin Obu-
khov theory (Businger and Yaglom, 1971; Obukhov, 1971).

3.5 | Adjustment of net snow accumulations

The meteorological stations in the study area are unevenly
distributed in both horizontal and vertical direction. Scarcity
of precipitation measurements at higher-altitude areas,
where the bulk of precipitation falls, seriously limits an
accurate assessment of precipitation climatology and its
hydrological implications. In order to overcome this obser-
vational data gap, we assumed 21 virtual stations at the
major glaciers where the net snow accumulations were esti-
mated through mass balance studies using snow pillows,
snow pits and ice cores (e.g., Qazi, 1973; Decheng, 1978;
Batura Investigations Group, 1979; Kick, 1980; Mayewski
et al., 1983; Mayewski et al., 1984; Wake, 1989; Bhutiyani,
1999; Shroder et al., 2000; Mayer et al., 2006; Hewitt,
2011; Mayer et al., 2014). However, most of these mass
balance studies were undertaken in the active ablation zones
of the glaciers, where ablation and accumulation processes
are happening simultaneously. Generally, glacier ablation is
the function of ablation rate, altitude of the equilibrium line
altitude (ELA) and the elevation difference between mean
ELA and the glacier observation point. Ablation zones are
the areas below the ELA, which is the elevation at which
the annual net mass of the glacier remains zero and the area
above this elevation is known as the accumulation zone
(Cuffey and Paterson, 2010). Hence, the estimated net gla-
cier mass accumulations are subject to ablation losses until
the next accumulation period. The ablation gradients can be
variable depending on debris cover and surface albedo or
energy availability to melt the exposed glaciers. Wagnon
et al. (2007) observed ablation gradients of 0.60–0.81 m
w.e. (water equivalent) for each 100 m with a mean value
of 0.69 m w.e. over a period of 4 years of mass balance
studies at the Chhota Shigri glacier, western Himalaya. Yu
et al. (2013), based on glacier studies by Mayer et al.
(2006) and Wagnon et al. (2007) in the Karakoram and
western Himalaya, assumed an ablation gradient of 1 m
w.e. per 100 m for the upper Indus basin. Hewitt et al.
(1989) however, estimated an ablation gradient of 0.5 m per
100 m for the middle portion of the ablation zone on the
Biafo glacier in the central part of the Karakoram. No abla-
tion above ELA is assumed. We selected the rather conser-
vative estimates of ablation gradient by Hewitt et al. (1989)
and adjusted the net accumulations by taking the ELA as
the boundary for the ablation process. However, the location
of ELA can vary from location to location. In temperate gla-
ciers, usually the snow line elevation (SLE) and ELA are
often assumed to be the same. The estimates for mean ELA
at sub-basin scale are taken from Khan et al. (2015), who
estimated ELA values based on SLE.
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3.6 | River flow adjustments

WAPDA uses standard flow measuring devices to ensure
high quality river flow data. The primary river flow measur-
ing technique uses area velocity measurements to determine
the stage–discharge relationships and associated rating
tables. The results are verified by area-velocity method,
area-slope method, contracted opening measurements, or
computation of flow over dams or weirs (Water and Power
Development Authority, 2012). The daily mean discharge
values are computed from the mean gauge heights and cor-
responding calibrated rating tables. In case of extremely
high discharges, the rating curves are extrapolated by apply-
ing simple linear regression between the gauge height and
discharge measurements. The actual measurements are how-
ever taken 4–8 times per month. The intermediate daily
values are estimated from the rating tables. The accuracy of
stream flow measurements depends primarily on stability of
the stage–discharge relationship, frequency of discharge
measurements if the relationship is unstable, and accuracy
in the observation of the stage and measurement of dis-
charges. In general, monthly and annual mean values are
more accurate than daily values because of compensation of
random errors. WAPDA evaluates the probable accuracy of
discharge measurements as excellent (error < 5%), good
(error < 10%), fair (error < 15%) and poor (error > 15%).
In general, a probable accuracy of 0–5% is aimed for.

Although river flow data may still be subject to some
degree of uncertainty due to measurement errors, we
assumed river flows as adequately accurate considering the
relative precision of discharge measurement techniques and
quality control ensured by the data collection agencies.

To account for the contribution of net glacier mass
imbalance in each sub-hydrological basin, we adjusted the
measured river flows. Kääb et al. (2012) used satellite laser
altimetry and a global elevation model and observed a
slightly negative mass balance of −0.21 ± 0.05 m/year
w.e. for HKH region during 2003–2008 with maximum
rates of −0.66 ± 0.09 m/year w.e. in the western Himala-
yan (Jammu–Kashmir) areas. We derived the specific net
mass balance rates at sub-basin scale from the mass balance
estimates of Kääb et al. (2012) and took glacier areas from
the Randolf Glacier Inventory (RGI) version 5.0 (Arendt
et al., 2015) to compute the contribution of the changes in
the net glacial mass imbalance to the observed river flows.
The adjusted river flows are used for validation of the
adjusted precipitation estimates at sub-basin scale.

3.7 | Spatial interpolation

The actual and error-adjusted point measurements of mean
monthly precipitation are spatially interpolated following
Dahri et al. (2016), who used the KED interpolation scheme
(Schabenberger and Gotway, 2005) with elevation as a pre-
dictor to derive spatio-temporal distribution of precipitation

in the high-altitude Indus basin. The KED model includes a
component of spatial autocorrelation and a component for
multi-linear dependence on pre-defined variables (predic-
tors). It considers the observations (Y) at sample locations
(s) as a random variable of the form (e.g., Diggle and
Ribeiro, 2007),

Y sð Þ=μ sð Þ+Z sð Þ, ð3Þ

μ sð Þ=β0+
XK

k=1
βk:xk sð Þ, ð4Þ

where μ(s) describes the deterministic component of the
model (external drift or trend) and is given as a linear com-
bination of K predictor fields xk(s) (trend variables) plus an
intercept (β0). The βk are denoted as trend coefficients,
while Z(s) describes the stochastic part of the KED model
and represents a random Gaussian field with a zero mean
and a second-order stationary covariance structure. The lat-
ter is conveniently modelled by an eligible parametric semi-
variogram function describing the dependence of semi-
variance as a function of lag (possibly with a directional
dependence). Dahri et al. (2016) provided a detailed
account of the KED interpolation method including model
description and functionalities, reasons for its selection and
comparative advantages of its use in the high-altitude Indus
basin.

3.8 | Cross validation of the adjusted precipitation

We used exactly the same approach of interpolation and
cross validation as adopted by Dahri et al. (2016), where
the cross validation applied on the observed and predicted
values from all the stations is used to assess the errors/
uncertainty associated with the interpolation scheme by
using error scores of the relative bias (B) and the relative
mean root-transformed error (E), which are defined as
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where Pi and Oi are the predicted and observed precipitation
values, respectively, while O is the average of all (or a sub-
set of ) the station observations and n refers to the number
of precipitation values.

Under ideal conditions, the overall performance of the
employed regression models and interpolation estimates at
basin/sub-basin scale can also be cross validated by apply-
ing the continuity equation suggested by Budyko (1974),
which is given by

ΔS
Δt

=P−Q−ET−G, ð7Þ
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where P, Q, ET and G are the basin-average precipitation,
run-off, evapotranspiration and net groundwater discharge,
respectively, while ΔS is the net change in storage for a
given time increment (Δt). Equation (7) can be modified by
adding interception (I), sublimation (S) and net mass bal-
ance (ΔMB) contributions for the highly glacierized and
snowpack-dependent river basins as follows:

ΔS
Δt

=P−Q−ET−G− I−S+ΔMB: ð8Þ

Unfortunately, there are no independent data sets of
actual evapotranspiration, sublimation, interception and the
net groundwater discharge for the study area. The global-
scale data sets of these variables are generally more uncer-
tain than precipitation itself; therefore, it would be unwise
to validate the estimated precipitation with these extremely
uncertain data sets. Nevertheless, surface storage and
groundwater recharge are mostly very low in high-altitude
areas, which are mostly rocky bare mountains with steep
slopes and no groundwater. Precipitation may travel long
distances through breaches but ultimately joins the river
streams as base flow. Although there might be considerable
delay effects, these may be considered negligible for long-
term average conditions. Similarly, the surface storage due
to topographical undulations may also have a delaying
effect. Interception by the vegetation cover and sublimation
(direct evaporation from the snow glacier fields) are
included in the total direct evapotranspiration. Direct evapo-
transpiration is notoriously complex to measure as it is
among others a function of water availability as well as
water demand. The available global-scale gridded data sets
of actual evapotranspiration are highly inconsistent in quan-
titative as well as spatial distribution terms and generally
reflect overestimated values. We therefore rely mainly on
the specific run-off and net mass balance data to validate
our adjusted precipitation estimates.

4 | RESULTS

4.1 | Precipitation adjustments

To facilitate adjustment of measurement errors in precipita-
tion observations, the corresponding air temperature is
determined from elevation and latitude based lapse rates.
The results revealed a strong correlation of temperature
with elevation and considerable correlation with latitude
(Figures S2–S5). Significantly different gradients for each
month and substantial difference among the gradients for
maximum and minimum temperatures were observed
(Table 1). Hence, use of a universally assumed or time-
independent site-specific observed gradient of mean annual
temperature to estimate maximum and minimum tempera-
tures (e.g., Immerzeel et al., 2012a; 2012b; Lutz et al.,
2013) is probably not correct in the high-altitude Indus

basin. Comparison of Table 1 and Figures S2 and S3 indi-
cate that incorporation of latitude as an additional predictor
improves the correlation of the regression models by up to
6.0% for maximum temperature and up to 1.5% for mini-
mum temperature during 1999–2011. Almost similar trends
are observed for 1961–1970 period. The contribution of
elevation to the correction is positive in the summer
months and negative in the winter months, while the con-
tribution of latitude is positive throughout the year. The
highest improvement is achieved during the monsoon sea-
son (July–September).

To illustrate the precipitation biases over the high-
altitude Indus basin, the results for each individual station
are presented. The applied bias adjustments significantly
increased the gauge-measured precipitation. The highest
increments are computed for wind-induced under-catch of
solid precipitation followed by liquid precipitation under-
catch, wetting losses and precipitation losses during trace
events (Figure 2a–d). The solid precipitation under-catch
generally dominates the higher-altitude stations, that is,
elevations greater than 2000 m and during the December–
April months. The range of liquid precipitation under-
catch is much lower and mainly concentrates in the sum-
mer monsoon dominated low-altitude areas, that is, eleva-
tion less than 3,500 m. The wetting losses and
unmeasured trace precipitation depend on the number of
precipitation events. In many cases, particularly for the
low-altitude stations experiencing lower wind speeds, the
wetting losses exceeded the wind-induced under-catch of
liquid precipitation due to the fact that it covers all the
stations and both forms of precipitation (liquid and solid).
The total bias between the gauge-measured and error-
adjusted precipitation ranged from 12 to 773 mm/year for
various individual stations and up to 1,000 mm/year for
the glacier points (Figure 2e). The total absolute biases
(corrections) for all the stations at monthly and annual
scale are given at Table S2. The largest increases are
found for the stations receiving greater precipitation
amounts, located at higher-altitudes and encountering
higher wind speeds. Based on the above mentioned cor-
rections, we introduced monthly-scale correction factors
(CFs) for each station (Table S3). These station based
CFs vary over space and time, with stronger magnitude in
higher-altitude areas (Figure 2f ) and during winter months
(Table S3).

4.2 | Snow accumulation adjustments

The total ablation losses at a given ablation rate from a gla-
cier zone depend on the ablation gradient and ΔELA (the
difference between the mean elevation of a glacier zone and
ELA). Assuming that the practical ablation above ELA is
insignificant, the potential ablation losses from the selected
glacier zones vary from 0 to 1,000 mm/year (Table 2).
These ablation losses are added to the original estimates of
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the net accumulations to account for the ablation losses
from the actual precipitation.

4.3 | Spatial distribution of unadjusted and adjusted
precipitation

Continuous fields of precipitation generated through KED-
based interpolation of the adjusted station observations and
adjusted snow accumulations at monthly scale show how
precipitation patterns and amounts are spatially distributed
in the study area (Figure 3a–l). Monthly precipitation distri-
butions largely confirm the bimodal weather system reflect-
ing the wintertime precipitation associated with the
westerlies and the impact of Indian summer monsoon in the
study area. Overall climatology and distribution patterns of
the adjusted precipitation (Figure 3m) match very well to
the unadjusted case (Figure 3n) or estimates of Dahri et al.
(2016). However, the adjustments revealed significant
improvement in terms of quantitative and spatio-temporal
distribution of precipitation in the study area (Figure 3o).
An overall increase of 21.3% in average annual precipitation
is realized at basin (study area) level, while at sub-basin
scale it ranged from 6 to 77% (Table 3). Greatest improve-
ments are achieved in the high-altitude areas of Astore,
Shyok, Shigar, Hunza, Gilgit and Chitral sub-basin and dur-
ing the winter months.

4.4 | River run-off adjustments

The net mass balance estimates of Kääb et al. (2012) for the
study area are translated into the amount of run-off gener-
ated at sub-basin scale. As a result of slightly negative mass
balance estimates for all sub-basins, their contributions to
river run-off are also negative and relatively small ranging
from 0.4 to 6.1%. The adjustments in river-specific run-off
depend on the net mass balance as well as glacier area and
varied from −51.5 mm in the Chenab sub-basin to
−2.5 mm in the Panjkora sub-basin (Table 4).

4.5 | Validation of precipitation estimates

The estimated precipitation distributions can be validated by
evaluating the accuracy of the employed interpolation
scheme and the output interpolated fields. For accuracy
assessment of the interpolation scheme, the KED interpola-
tion model produces both prediction as well as error/uncer-
tainty surfaces, giving an indication or measure of how
good the predictions are. The cross validation applied on
the observed and predicted values from all the stations
resulted in relative bias (B) error scores of less than 1, sug-
gesting a negligible underestimation of the predicted values
for all months except August, which shows a slight overes-
timation (Table 5). Similarly, the relative mean root-
transformed error (E) scores of less than 1 for the months
January–May suggest excellent results. While the remaining
months of June–December experience E values of greater
than 1, which depict typical errors slightly greater than the
spatial variations. Almost similar trends are observed for the
unadjusted case. In general, the cross-validation results

TABLE 1 Multiple regressions for maximum and minimum temperatures
for the western and eastern parts (Figure S1) covering the two time periods
of 1999–2011 and 1961–1970, respectively. Tx1-12 and Tn1-12 refer to the
calendar months for maximum and minimum temperatures, respectively.
E denotes elevation (m) and L represents latitude (decimal degrees) of the
meteorological stations. R2 is the combined correlation of temperature with
E and L

Regression equation
for Tx

R2

(%)
Regression equation
for Tn

R2

(%)

1999–2011

Tx1 = 31.5–0.00688
E − 0.318 L

96.7 Tn1 = 17.4–0.00534
E − 0.307 L

91.1

Tx2 = 38.1–0.00691
E − 0.455 L

97.5 Tn2 = 19.1–0.00559
E − 0.285 L

92.3

Tx3 = 41.3–0.00712
E − 0.383 L

96.6 Tn3 = 23.4–0.00567
E − 0.278 L

93.8

Tx4 = 44.5–0.00739
E − 0.303 L

97.5 Tn4 = 33.2–0.00567
E − 0.428 L

94.1

Tx5 = 41.0–0.00790
E − 0.025 L

96.9 Tn5 = 37.3–0.00599
E − 0.404 L

94.5

Tx6 = 19.1–0.00817
E + 0.719 L

96.2 Tn6 = 34.3–0.00591
E − 0.220 L

95.6

Tx7 = −9.47 − 0.00713
E + 1.48 L

90.5 Tn7 = 22.2–0.00575
E + 0.166 L

95.4

Tx8 = −5.13 − 0.00685
E + 1.30 L

90.9 Tn8 = 22.6–0.00567
E + 0.136 L

95.5

Tx9 = 8.60–0.00727
E + 0.876 L

96.0 Tn9 = 35.2–0.00532
E − 0.341 L

95.1

Tx10 = 20.4–0.00780
E + 0.444 L

97.0 Tn10 = 30.7–0.00518
E − 0.380 L

91.8

Tx11 = 39.0–0.00721
E − 0.291 L

97.8 Tn11 = 22.7–0.00515
E − 0.300 L

90.3

Tx12 = 38.8–0.00689
E − 0.459 L

96.8 Tn12 = 16.7–0.00519
E − 0.246 L

90.3

1961–1970

Tx1 = 38.2–0.00673
E − 0.529 L

98.0 Tn1 = 15.9–0.00536
E − 0.267 L

89.3

Tx2 = 39.3–0.00691
E − 0.495 L

97.9 Tn2 = 15.9–0.00572
E − 0.188 L

92.8

Tx3 = 45.3–0.00686
E − 0.524 L

97.3 Tn3 = 21.8–0.00582
E − 0.232 L

93.8

Tx4 = 53.2–0.00713
E − 0.589 L

97.7 Tn4 = 30.0–0.00592
E − 0.334 L

94.7

Tx5 = 48.7–0.00766
E − 0.281 L

97.8 Tn5 = 35.1–0.00612
E − 0.346 L

95.4

Tx6 = 20.0–0.00828
E + 0.703 L

96.6 Tn6 = 31.6–0.00608
E − 0.129 L

94.7

Tx7 = −9.23 − 0.00727
E + 1.48 L

90.3 Tn7 = 17.1–0.00590
E + 0.328 L

95.1

Tx8 = −6.80 − 0.00701
E + 1.37 L

88.3 Tn8 = 17.0–0.00588
E + 0.316 L

95.2

Tx9 = 2.74–0.00751
E + 1.06 L

95.4 Tn9 = 27.1–0.00560
E − 0.088 L

94.4

Tx10 = 25.2–0.00765
E + 0.288 L

98.0 Tn10 = 22.8–0.00546
E − 0.136 L

91.7

Tx11 = 38.0–0.00706
E − 0.281 L

98.3 Tn11 = 20.7–0.00530
E − 0.228 L

89.4

Tx12 = 44.0–0.00654
E − 0.632 L

96.9 Tn12 = 14.2–0.00524
E − 0.174 L

87.8
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depict excellent/good agreement between the observed and
predicted values.

Another means of validation is the comparison of the
estimated precipitation with the corresponding observed
river flows (specific run-offs). Dahri et al. (2016) demon-
strated that the previous estimates of precipitation distribu-
tion in the study area are not only highly contrasting but
largely underestimating the actual precipitation. Likewise in
the Dahri et al. (2016) study, precipitation estimates derived
from the unadjusted precipitation observations provided rel-
atively better estimates than the previous studies. Yet,
slightly lower precipitation than the measured specific run-
off in 9 out of 17 sub-basins (Figure 4) is absolutely coun-
terintuitive implying underestimated precipitation or an
unaccounted source of water (e.g., glacier melt contribu-
tion). Long-term annual mean precipitation must always be
greater than the corresponding specific run-off if a positive
or neutral mass balance is prevalent in any river basin. In
case of a negative mass balance, its contribution to river
flows has to be subtracted from the actually observed river

flows and the adjusted flows must be lower than the corre-
sponding mean annual precipitation. Cross validation of
adjusted precipitation estimates with the corresponding
adjusted specific run-offs (Figure 4) revealed adjusted spe-
cific run-off well below the adjusted precipitation estimates
for all the sub-basins except Swat, which reflects underesti-
mated precipitation or a bigger contribution of a negative
mass balance to river flows.

5 | DISCUSSION

Precipitation is an integral component of the hydrological
cycle and usually the most important input to water balance
assessments and climate change studies. Hence, its accuracy
is essential as errors in precipitation estimates may translate
into major changes in the water budget of a particular
region. However in many areas, precipitation measurements
are still subject to significant errors and a large uncertainty
(Kochendorfer et al., 2017a; Kochendorfer et al., 2018)
often leading to a substantial underestimation of the actual
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FIGURE 2 Adjusted station observations for (a) wetting loss, (b) trace precipitation loss, (c) liquid precipitation under-catch, (d) solid precipitation under-
catch, (e) total absolute bias between gauge-measured and error-adjusted annual precipitation, (f ) station-based CFs for under-catch of gauge-measured
precipitation. The different scales are to be noted [Colour figure can be viewed at wileyonlinelibrary.com]
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precipitation. The situation is particularly serious in the
high-altitude Indus basin where biased distribution and lack
of the observed data further worsen the problem. As such
the precipitation products derived from or validated by the
observed data covering this region are prone to significant
errors (Reggiani and Rientjes, 2015; Dahri et al., 2016).
Scientists have used different approaches to overcome the
observational data gaps. For example Adam et al. (2006)
used a water balance approach to indirectly estimate precipi-
tation. However, large uncertainties in the different water
balance components limit wider application of this
approach. Immerzeel et al. (2015) used mass balance esti-
mates to inversely compute precipitation in the major snow/
glacier zones and applied a linear lapse rate of precipitation
increase with elevation up to 5,000 m using APHRODITE
as the reference data set. Uncertainties in mass balance and
water balance components and assumption of linear precipi-
tation increase with altitude are the major drawbacks of this
method. Dahri et al. (2016) integrated station observations
with the net snow accumulations estimated through mass
balance studies and applied KED interpolation scheme to
derive precipitation in ungauged areas. Measurement errors
in station observations and negligence of snow/glacier abla-
tions in the net snow accumulations are the key shortcom-
ings of this approach.

The approach adopted in this study is based on catch
adjustments of precipitation observations for systematic
measurement errors, adjustment of net snow accumulations
for the ablation losses and adjustment of river flows for the
contribution of net GMB. Mean monthly precipitation cli-
matologies are derived from the actual precipitation obser-
vations and actual net snow accumulations as well as from
the adjusted precipitation observations and the adjusted net
snow accumulations following Dahri et al. (2016).

The results presented in this study further support the
wind-induced under-catch as the largest source of errors in
gauge-measured precipitation observations. The catch cor-
rections have increased the gauge-measured precipitation
values ranging from 12 to 773 mm/year for various stations,
while net snow accumulations at the glacier points increased
up to 1,000 mm/year. A large part of precipitation in the
high-altitude Indus basin falls as snow, which is more sus-
ceptible to under-catch even at moderate wind speeds. The
largest corrections were found for wind-induced under-catch
of solid precipitation, which is in line with the results of pre-
vious studies (e.g., Legates and Willmott, 1990; Goodison
et al., 1998; Adam and Lettenmaier, 2003; Michelson, 2004;
Ye et al., 2004; Yang et al., 2005; Chen et al., 2015; Wolff
et al., 2015; Kochendorfer et al., 2017a; Kochendorfer et al.,
2018). However, liquid precipitation under-catch, wetting

TABLE 2 Adjusted net snow water equivalent at the major glacier accumulation zones. Lon. is longitude, Lat. is latitude, Ele. is elevation, ELA is
equilibrium line altitude, ΔELA is the net elevation contributing to ablation and ΔA is adjustment in the net accumulation

Glacier name
Lon.
(dd)

Lat.
(dd)

Ele.
(m)

River
basin

ELA
(m)

ΔELA
(m)

ΔA
(mm)

Net accum.
(mm/year)

Adj. accum.
(mm/year)

Approach 75.6331 36.0678 5,100 Shigar 5,050 0 0 1,880 1,880

Baltoro 76.5508 35.8778 5,500 Shigar 5,050 0 0 1,600 1,600

Batura 74.3833 36.6667 4,840 Hunza 5,000 160 800 1,034 1,834

Chogolungma 75.0000 36.0000 5,400 Hunza 5,000 150 750 1,070 1,820

Chong
Kumdan

77.5448 35.2532 5,330 Shyok 5,500 170 850 484 1,334

Hispar Dome 75.5187 36.0109 5,450 Shigar 5,050 0 0 1,620 1,620

Hispar East 75.5064 35.8495 4,900 Shigar 5,050 150 750 1,070 1,820

Hispar West 75.5064 35.8495 4,830 Shigar 5,050 0 0 1,620 1,620

Hispar Pass 75.5215 36.0281 5,000 Shigar 5,050 50 250 1,420 1,670

Khurdopin 75.6197 36.1338 5,520 Shigar 5,050 0 0 2,240 2,240

Nanga Parbat 74.4444 35.1672 4,600 Astore 4,700 100 500 2,000 2,500

Nun Kun
North

76.1014 34.1219 5,200 Shingo 5,250 50 250 900 1,150

Sentik 75.9500 33.9967 5,100 Shingo 5,250 150 750 620 1,370

Siachin A 77.0376 35.4707 5,300 Shyok 5,500 200 1,000 484 1,484

Siachin B 76.9915 35.5235 5,300 Shyok 5,500 200 1,000 526 1,526

Siachin C 76.9116 35.5187 5,320 Shyok 5,500 180 900 662 1,562

Siachin D 76.8592 35.6242 5,350 Shyok 5,500 150 750 855 1,605

South Terong 77.4516 35.1384 5,330 Shyok 5,500 170 850 484 1,334

Terong 77.3120 35.5177 5,350 Shyok 5,500 150 750 855 1,605

Urdok 76.7025 35.7669 5,400 Shigar 5,050 0 0 1,060 1,060

Whaleback 75.5915 36.0572 4,900 Shigar 5,050 150 750 1,790 2,540
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loss and trace precipitation loss are also important, particu-
larly in low-altitude and relatively dry areas.

The large differences between the observed precipitation
and the corresponding specific run-off observations (usually
greater specific run-off than precipitation) in previous esti-
mates are often attributed to the contribution of snow/glacier
melt. Indeed the high-altitude Indus basin receives consider-
able snow/glacier melt contributions, which largely come
from the melting of temporary/seasonal snow cover and
may vary from year to year depending on the quantity and

timing of winter snowfall and snowmelt during the subse-
quent summer. However, quantitative estimates of net GMB
contributions to river flows are largely lacking. Therefore,
the accuracy of the estimated net GMB contributions to the
river flows is mainly depending on the uncertainties in gla-
cier area and the ablation rates of mass balance. Our meth-
odology of adjusting river flows for the net mass balance
contributions is straight forwards and the adjustments are
slightly less than what is modelled by Lutz et al. (2016).
For example, we estimated net GMB contribution of

FIGURE 3 Estimated precipitation distribution, (a–l) are mean monthly (January–December) error-adjusted precipitation, (m) is error adjusted annual
precipitation, (n) is unadjusted annual precipitation based on actual observations and (o) is the absolute difference between adjusted and unadjusted annual
precipitation distributions [Colour figure can be viewed at wileyonlinelibrary.com]
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−17.3 mm/year for the Indus at Besham Qila against
−25.0 mm/year modelled by Lutz et al. (2016). The differ-
ence might be due to the use of different approaches and
different glacier inventories having different glacier areas.
Lutz et al. (2016) pointed out a 23% difference in the gla-
cier areas from three different inventories implying consid-
erable differences in the water balance components.

The precipitation distribution derived through actual sta-
tion observations combined with the actual net glacier accu-
mulations is almost similar to that derived by Dahri et al.
(2016) except for the addition of a few sub-basins and the
use of additional and updated observed data. The
catch corrections and snow accumulation adjustments sig-
nificantly increased the total gauge-measured as well as
basin-scale precipitation (Figures 2–3o and 4 and Table 3).
The overall distribution patterns of precipitation remained
largely the same as identified by Dahri et al. (2016), but
substantial increases in the magnitude of precipitation
amounts are realized. One of the advantages of the KED
interpolation method is that it estimates an interpolated sur-
face from a randomly varied small set of measured points

and recalculates estimated values for these measured points
to validate the estimates and determine the extent of errors.
When compared with the corrected precipitation derived by
Immerzeel et al. (2015), our estimates show significantly
smaller root-mean-square error and a stronger correlation
with the error-adjusted station observations (Figure 5). The
corrected precipitation estimates by Immerzeel et al. (2015)
show considerable differences with significantly lower
values at the majority of station locations including the
points at the major glaciers, where actual measurements of
net snow accumulations were taken. At the basin scale their
estimates are relatively better but seem to be on the higher
side in about half of the sub-basins. This discrepancy
between station-based point observations and basin-scale
precipitation estimates by Immerzeel et al. (2015) may be
attributed to the higher and linear lapse rates of precipitation
increase applied to compute the precipitation fields. Also,
they did not validate their estimates with the observed pre-
cipitation of the individual stations. Instead, they used the
Turc-Budyko representation to show the physical realism of
their estimates and attributed some of the estimates that fall
on the right side (inside) of the theoretical Budyko curve to
the possible contribution of the negative mass balance to
river flows and uncertainties in the potential evapotranspira-
tion (ETp) data set.

In this study, we used accurate run-off observations
(specific run-offs), which are further improved by adjusting
for the net GMB contributions, and improved ETP estimates
from JRA55 reanalysis data set (Figure 6) to evaluate the
physical realism of our estimated precipitation compared to
the precipitation estimates from Immerzeel et al. (2015).
Over one third of the points representing estimated precipi-
tation by Immerzeel et al. (2015) in various sub-basins
(e.g., Gilgit, Chitral, Panjkora, Kabul at Warsak and Now-
shera, and Sutlej) lay inside the theoretical Budyko curve
indicating higher values than the theoretically expected.
However, the estimates of unadjusted precipitation in our
study, which are almost similar to the estimates of Dahri
et al. (2016), show 10 out of 17 sub-basins above the line
of moisture limit indicating underestimated precipitation in
these sub-basins. The adjusted precipitation derived in our
study shows relatively better fits in the Turc-Budyko repre-
sentation except for the Swat sub-basin. The greater specific
run-off than precipitation in the Swat basin may be attrib-
uted to yet an underestimated precipitation and/or greater
negative mass balance than what is presently assumed.

The run-off ratio (Q/P) determines the amount of precip-
itation converted into overland flow or surface run-off. It is
mainly controlled by largely stable natural factors including
climate, soil and topography and to some extent by the
human alterations to landscapes. Relatively higher run-off
ratios are produced for areas with shallow or clay soils,
steeper slopes and devoid of vegetation cover. Snow-
covered areas hold winter precipitation as snow/ice and

TABLE 3 Precipitation estimates at sub-basin scale. Puadj is unadjusted
precipitation derived through actual precipitation observations and net
glacier accumulations, Padj is adjusted precipitation derived through
corrected precipitation observations and adjusted glacier accumulations and
ΔP is the difference between them

S. No. River basin
Puadj

(mm)
Padj

(mm)
ΔP
(mm)

Increase
(%)

1 Gilgit at Gilgit 582.1 787.0 204.9 35.2

2 Hunza at
Dainyor

601.2 879.9 278.7 46.4

3 Shigar at Shigar 829.8 1006.0 176.2 21.2

4 Shyok at Yugo 249.6 442.3 192.6 77.2

5 Indus at
Kharmong

182.5 285.8 103.3 56.6

6 Astore at Doyian 917.8 1269.1 351.3 38.3

7 Indus at Tarbela
dam

394.5 540.6 146.1 37.0

8 Chitral at Chitral 646.3 924.9 278.6 43.1

9 Panjkora at
Zulum Br.

738.1 797.0 58.9 8.0

10 Swat at
Chakdara

950.3 1050.5 100.2 10.5

11 Kabul at Warsak 391.7 488.3 96.6 24.7

12 Kabul at
Nowshera

477.9 504.1 26.1 5.5

13 Jhelum at
Mangla dam

1129.3 1271.0 141.7 12.5

14 Chenab at
Marala

1106.4 1257.0 150.6 13.6

15 Ravi at Thein
dam

1647.2 1812.1 164.9 10.0

16 Beas at Pong
dam

1547.1 1635.7 88.6 5.7

17 Sutlej at Bhakra
dam

358.5 444.5 86.1 24.0

Whole basin 574.7 697.3 122.6 21.3
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produce higher run-off ratios during the subsequent snow
melting periods. Over 50% of the study area possesses
slopes steeper than 40% and about 81% of the surface soil
type is leptosol (47.4%), cambisol (22.5%) and rock outcrop
(11.1%). Dominant land cover types are closed to open her-
baceous vegetation (34.6%), bare rocky areas (25.3%) and
permanent snow and glaciers (13.4%) (Figure S6). All these
topographical properties infer the high-altitude Indus basin
as a typical case of an area that accelerates rapid run-off
generation. Therefore, relatively high rates of run-off ratios
are to be expected. Table S4 and Figure 6 show the
improved run-off ratios (Q/P) and aridity indices (P/ETp) if
compared to the data sets of Immerzeel et al. (2015) and
Dahri et al. (2016).

Although the error-adjusted precipitation derived in this
study seems to be more consistent, yet there are a few
uncertainties that need to be understood and taken care of in
future investigations. The major uncertainties associated
with the results of our study may arise from four possible
sources: (a) uncertainties in regression models due to their
imprecision and uncertainties in the input data,
(b) uncertainties arising from the estimated temperature and
wind speed for many observatories, (c) uncertainty in the
gauge type of the basin’s gauge network and
(d) uncertainties in spatial interpolation of the point obser-
vations to derive gridded fields of precipitation. The error
estimation of the regression models employed in this study

are tested at different locations and the relationships with
the best fit are also applicable for similar situations in other
areas. Nevertheless, regression models are in essence
approximations of reality and some degree of uncertainty
will always remain in the results. Relatively more accurate
adjustments of precipitation under-catch for any precipita-
tion event can be made by using the corresponding data of
temperature and wind speed. However, hourly or daily data
of these parameters are not available for many observatories
in the study area. Also, there are many stations for which
such data are not available at all. For locations without these
data, temperature may be derived from the lapse rates of the
available observations and wind speed from JRA55 data set.
However as shown, the use of these data may add to the
uncertainties in the catch corrections. The meteorological
data collecting agencies in the Indus basin generally indicate
to follow the WMO standards but we found inconsistencies
in the use of precipitation measurement instruments and
techniques. As the correction coefficients to account for
wind-induced under-catch of precipitation depend on the
type and orifice area of the precipitation gauge, incorrect
gauge configuration information has consequences for the
catch corrections. Although we tried our best to obtain the
maximum possible information regarding the type and specs
of precipitation gauges, we cannot exclude the chances of
different precipitation gauges than the actual ones in some
cases. However, we also think that the possibility of slight

TABLE 4 Contribution of net GMB to river flows and adjusted specific run-off

S. No. River basin name
Glacier
area (km2)

Net GMB
(m/year)

Contribution of net GMB to river
flows (mm/year)

Observed sp. run-off
(mm/year)

Adjusted sp. run-off
(mm/year)

1 Gilgit at Gilgit 1212.5 −0.350 −33.3 758.0 724.7

2 Hunza at Dainyor 4268.7 −0.113 −35.4 680.1 644.7

3 Shigar at Shigar 2974.1 −0.090 −38.1 924.9 886.8

4 Shyok at Yugo 7400.4 −0.060 −13.0 365.5 352.5

5 Indus at Kharmong 2164.7 −0.326 −9.9 201.3 191.4

6 Astore at Doyian 257.7 −0.540 −35.1 1136.7 1101.6

7 Indus at Tarbela dam 19355.3 −0.150 −16.7 421.2 404.6

8 Chitral at Chitral 1736.3 −0.320 −44.8 737.2 692.4

9 Panjkora at Zulum Br. 41.0 −0.350 −2.5 616.5 614.0

10 Swat at Chakdara 202.6 −0.400 −14.1 1186.3 1172.2

11 Kabul at Warsak 1851.5 −0.340 −8.9 154.8 145.9

12 Kabul at Nowshera 2095.0 −0.340 −7.9 305.6 297.7

13 Jhelum at Mangla dam 262.7 −0.550 −4.3 792.8 788.5

14 Chenab at Marala 2667.4 −0.560 −51.5 1026.4 975.0

15 Ravi at Thein dam 166.9 −0.386 −10.5 1391.0 1380.5

16 Beas at Pong dam 511.0 −0.213 −8.7 986.5 977.8

17 Sutlej at Bhakra dam 1411.9 −0.359 −9.3 264.2 254.9

TABLE 5 Relative bias (B) and relative mean root-transformed error (E) calculated over all observation points

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann

B 0.924 0.964 0.955 0.963 0.953 0.936 0.973 1.002 0.997 0.877 0.916 0.908 0.957

E 0.957 0.941 0.912 0.918 0.909 1.338 1.955 9.541 3.306 1.762 3.372 1.055 2.801
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differences in gauge type will only have a small impact on
the final results. The uncertainties resulting from spatial
interpolation techniques described by Dahri et al. (2016) are
equally applicable for this study as we followed their inter-
polation approach. Importantly, the cross-validation results
infer high accuracy of the corrections and indicate excellent
agreement between the adjusted precipitation and adjusted
specific run-off at sub-basin scale.

6 | CONCLUSIONS

Reliable estimates of precipitation climatologies and
amounts in the high-altitude Indus basin are seriously con-
strained by the quality and number of observed data
(e.g., scarcity of in situ observations, measurement errors
and space–time breaks). This study attempted to address
these core issues by improved estimates of the precipitation
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measurement errors and integrating precipitation data from
multiple sources with the net snow accumulations at major
glacier zones. The study employed WMO recommended
standard methods to adjust systematic errors in precipitation
measurements. Simple methods to adjust net snow accumu-
lation for the ablation losses and adjustment of river flows
for the net mass balance contributions are introduced. Mean
monthly adjusted and unadjusted precipitation observations
and net snow accumulations are spatially interpolated using
the KED interpolation scheme. Analysis of temperature var-
iations with elevation and latitude revealed significantly dif-
ferent gradients for each month and substantial differences
among the gradients at different locations for maximum and
minimum temperatures. Hence, the use of a universal
annual gradient or a time-independent gradient of mean
temperature to estimate maximum and minimum tempera-
tures or vice versa is a major source of uncertainty for the
high-altitude Indus basin.

The applied error-adjustments significantly increased the
gauge-measured precipitation, which is in line with previous
studies. The total bias between gauge-measured and error-
adjusted precipitation ranged from 12 to 773 mm/year
(2–182%) for various individual stations. The highest incre-
ments are computed for wind-induced under-catch of solid
precipitation, particularly in higher-altitude areas and during
winter months. The range of liquid precipitation under-catch
is much smaller concentrating mainly in the low-altitude
areas during summer monsoon. Similarly, notable increases
varying from 0 to 1,000 mm/year (0–200%) are estimated
for net snow accumulations. Precipitation increase at the
basin (study area) scale is 21.3%, while at sub-basin scale it
ranged from 6 to 77% with greater increments at higher-
altitude areas and during winter months. Contrary to the
general understanding, the contribution of net GMB to river
flows is only marginal ranging from 0.5 to 6.1% of the
observed flows. The highest contributions are revealed for
the Chenab, Chitral, Shigar, Hunza, Astore and Gilgit
basins.

The cross-validation results (Figure 4) and the Turc-
Budyko representation of the run-off ratios and aridity
indices at sub-basin scale (Figure 5) show that the adjusted
precipitation amounts and distribution patterns derived in
this study are more accurate than the unadjusted data and
previous estimates. The catch corrections provided new
insights in the magnitude and distribution patterns of pre-
cipitation implying potential hydrological implications for
water resources assessment, planning and management.
The actual precipitation is considerably greater than what
has been previously thought. These increases are mainly
realized in the higher-altitude areas of Chitral, Gilgit,
Hunza, Shigar, Shyok and Astore basins. The study recog-
nizes that the data quality-driven underestimated precipita-
tion may be the major source of uncertainty in the water
balance estimates in the high-altitude Indus basin. The

improved climatologies of mean monthly precipitation
developed in this study can be used for basin or sub-basin-
scale water balance studies and bias correction of gridded
precipitation products, thereby paving the way for the
development of an accurate, consistent and high-resolution
gridded precipitation product for this highly under-explored
region of the Indus basin.

Although our estimates of precipitation distribution
can easily be regarded as much better than currently avail-
able estimates, the uncertainties elaborated at the end of
the previous section recognize the need for further
improvement. Further improvements can be achieved by
calibration of the already installed precipitation gauges
with the WMO recommended reference gauges and devel-
opment of site and gauge-specific error adjustment
models, use of observed data with better spatio-temporal
coverage, use of daily or even sub-daily time steps, use of
corresponding observed wind speed and temperature data
sets, selection of any better spatial interpolation technique,
accuracy assessment and precise determination of other
components of the water balance to validate precipitation,
and a better integration of precipitation data with mass
balance data.
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