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1. Introduction
ABSTRACT

Extreme climatic and hydrological events result in water-induced disasters and
associated loss and damage of  lives, livelihoods, and properties. It is related with
various climatic, topographical, and anthropogenic factors,  and therefore,
expected to vary widely across the watersheds. This study characterized historical
and projected  future trends in climatic extremes, their spatial variations,
hydrological extremes, and linkage between hydro
climatic extremes for a rain-fed Extended East Rapti (EER) watershed in
Central-Southern Nepal. The water shed feeds into the Ganges in the South Asia
through the Gandaki river. A set of 14 climate extreme indices, seven  related to
precipitation and seven to temperature, and eight hydrological indices were
selected to characterize  the extremes. Climatic and hydrological extreme indices
were computed using RClimDex and IHA (Indicators for Hydrological Alteration)
tools, respectively. Trends were calculated using the Modified Mann-Kendall test
and  Sens’s slope estimator. Relationship between hydrological and climatic
extremes was evaluated by checking  dates for rainfall extreme, hydrological
extreme, and reported cases of flooding during that period. Results  showed
increasing trends in both precipitation and temperature extremes for the historical
period (1980–2005)  with a rate of 10–35% increase in RX1day (monthly
maximum 1-day precipitation), 10–50% increase in R95p (very wet days
precipitation amount) and 15–60% increase in warm nights from the base period
until the mid century. Hydrological alterations in terms of increasing extremes are
also clearly visible in maximum flows,  minimum flows as well as the shift in the
day of maximum flow. Since, hydro-climatic extremes bear a direct  relationship,
future hydrological extremes, primarily floods, are expected to increase in future.

“Water-Induced Disasters (WIDs)”.
Water-induced disasters (WIDs) are recurring events which result in

Nepal is one of the most disaster-prone country in the world ranking
4th, 11th, and 30th with regards to climate-related hazards, earth

quakes, and flood hazards, respectively (MoHA/GoN, 2017). Nepal’s
unique geo-physical setting, topographical diversity, ecological vari

ability (from sub-tropical to arctic within just a few hundred kilo metres),
varied climate and natural hazards has made it vulnerable to  natural
disasters in general, and climate-related disasters in particular.  The
weather/climate-related disasters include both geo-physical events

(e.g., earthquakes, glacial lake outburst floods, landslides) and hydro
meteorological events (e.g., floods (both flash and riverine) and

droughts). Hydro-meteorological events in this study are defined as

* Corresponding author.
significant human sufferings every year (MoHA/GoN, 2017). An esti
mated direct costs related to WIDs in Nepal during 1980 and 2000
ranged between 1.5 and 2.0% of gross domestic product (GDP); a
figure  that has gone up as high as 5% (MoSTE, 2014). The
government data  reveals the most observable and direct impact on the
communities  whose lives and livelihood are connected with their
riverine ecosystem.  For example, from 2011 to 2014, 395 persons died
due to floods; 376  due to landslides; 95 due to heavy rainfall
(MoHA/GoN, 2015). About an  equal number of people were also
missing and presumed dead from  these WIDs. In all these instances of
disasters, the section of the society  that is oftentimes the most affected
is the women, children, and the
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elderly. For instance, during the Koshi River Flood of 2008, of the 4,634
families registered in various camps in Sunsari district alone, there
were 333 pregnant women, 200 post-partum mothers, 131 disabled
men and  women, and 581 elderly people (OCHA, 2008).

Social, development and natural factors may contribute to increase
vulnerability of populations to WIDs. Factors related to weather or cli
matic change are considered as natural roots. Climate change/vari
ability is exacerbating weather anomalies, droughts, floods, and other
climate-related phenomena across the globe (Senevirante et al., 2012).
For example, the onset and end of monsoon in Nepal are changing
noticeably over the years (Rijal, 2015). Although the total annual
rainfall remains more or less the same, high-intensity-short-duration
rainfall, ones that are likely to result in disasters, have increased
noticeably (Pokharel and Hallett, 2015; Talchabhadel et al., 2018). In
the hilly areas, such events trigger various forms of WID, including
erosion and landslides; in the valleys and the flatlands these cause
severe  flooding. These events adversely affect the lives and the
livelihoods of  local communities (HI-AWARE, 2017; ICIMOD, 2017).
This abundance  of water is concentrated entirely during the four
monsoon months (June September) and the rest of the year these
regions are practically dry.  Climate change/variability in the recent
years has also increased the  occurrence of dryness during part of the
wet as well as the dry season  (Senevirante et al., 2012).

Nepal has made a notable progress in climate action and disaster
risk management over the decades with a number of legal and
institutional reforms to address the worsening situation of populations
exposed to the cumulative risk of natural hazards and climate change.
However, na
tional and local developments remain disjointed to risk-informed evi
dence-based planning. The policy and actions on climate and disaster
continue to operate in silos. Further, there are limited empirical evi
dence regarding disaster and climate risk mitigation based on long-term
scenario analysis using hydro-climatic extremes. In this context, it is
urgent to assess the hydro-climatic extremes scenarios for forecasting
future conditions and their implications on disaster and climate risk
mitigation. It is imperative to understand magnitude, frequency and
timing of hydro-climatic extremes, their trends over historical and  future
periods, and discuss their implications on various aspects of so ciety
and ecosystem so that we can get prepared better to minimize the
risks and losses from WIDs. The hydro-climatic extremes can be char
acterized in the form of precipitation extremes, temperature extremes,
and hydrologic extremes.

Characteristics of climatic extremes, including frequency, amplitude
and persistence can be described with a set of indices defined by
Expert Team on Climate Change Detection and Indices (ETCCDI)
(WMO, 2009) derived from daily time series of precipitation and
temperature (Table 2). The R-based tools such as RClimDex (Zhang et
al., 2018) are available to calculate the relevant climate indices.
RClimDex has been used by many studies over the years (e.g.,
Alexander et al., 2006; Donat et al., 2013; Islam, 2009; Kiktev et al.,
2003; Shrestha et al., 2017). Though both parametric and
non-parametric tests can be used for detection and attribution of
trends, non-parametric tests are preferred as they are distribution-free
tests. One of the widely used non-parametric tests for detecting a trend
in hydro-climatic time series is the Man n–Kendall (Kendall, 1975;
Khatiwada et al., 2016; Mann, 1945). Un
derstanding trends in climatic extremes in both historical and future
climate series are important for informed climate-resilient development
planning and decision-making.

Observed climatic data for historical trends are readily available
from the hydro-met department in a country. However, future climate of
an area is projected using General Circulation Models (GCMs) or

Regional Circulation Models (RCMs). RCMs are widely used for the
climate impact studies (e.g., Berckmans et al., 2019; Gaur et al., 2020;
Gutowski et al, 2020; Jacob et al., 2020; Pandey et al., 2019; Stefanidis
et al., 2020) due to its higher resolution and better capturing of regional
conditions. RCM projections are further corrected for biases to make
them usable for a watershed of interest. Various methods are available
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for bias correction, and quantile mapping (Gudmundsson et al., 2012) is
applicable in most of the cases (Enayati et al., 2020; Pandey et al.,
2019,  2020a).

Trends in various aspects of streamflow, one of the important hy
drological components affected by both climatic and non-climatic fac
tors, can be analyzed by various statistical approaches as described in
literatures (e. g., Dery et al., 2016; Kundzewicz et al., 2015; Panda et
al.,  2013). Some studies have even demonstrated statistically
significant  links of streamflow trends with temperature or precipitation
(Bates  et al., 2008). Indicators of Hydrologic Alteration (IHA) (Richter et
al.,  1996, 1997) is a tool, comprising of 32 parameters, that
characterizes  hydrological variability and represents various aspects of
the hydro logical extremes (Bharati et al., 2016).

There are several studies that assesses climate change impacts in
water availability in Nepal (e.g. Devkota and Gyawali, 2015; Lam
ichhane and Shakya, 2019; Pandey et al., 2019, 2020a). However,
studies focusing on climate projection using RCMs and the most recent
representative concentration pathways (RCPs) scenarios are limited in
Central-Southern Nepal in general, and Extended East Rapti (EER)
watershed in particular. Furthermore, studies focusing on both historical
and future climatic extremes as well as hydrological extremes are
limited. This study therefore aims to unpack hydro-climatic extremes in
the EER watershed located in Central-Southern Nepal that feeds to
Gandaki (Fig. 1) and then to the Ganges, by answering following
research questions: i) What are historical and future trends in climatic
extremes and how do they vary spatially? ii) What are historical trends
in hydrological extremes? iii) What are the links between hydro-climatic
extremes and associated WIDs?

2. Description of the study area

The EER watershed extends between 84.148◦E to 85.206◦E
longitude and 27.353◦N to 27.783◦N latitude in the Bagmati Province in
Nepal (Fig. 1). As water from outlet of Kulekhani dam is diverted into
the East Rapti watershed, the very first case of inter-basin water
transfer in Nepal, Kulekhani watershed above the dam is practically the
headwater of East Rapti, even though it is within different hydrological
boundary. Therefore, it is also considered as watershed area of East
Rapti even though hydrological boundary is different, and therefore,
defined as EER  watershed in this study.

The watershed area delineated above the confluence with the Gan
daki river and including Kulekhani watershed is 3,202 km2. The
watershed has dominance of forest cover (65.5%) and agricultural area
(28.8%) (as per data from ICIMOD, 2010), extends from an elevation of
136 to 2,579 m above the mean sea level (masl), and hosts 2.9% of
Nepal’s population (as per 2011 census). It extends over two districts,
15  (rural) municipalities, one wildlife reserve, and one national park.
There  are many water infrastructures in the watershed. The numbers
of irri gation projects alone are over 70, with varying command areas,
as per  the National Irrigation Master Plan (draft) database developed
by  Department of Water Resources and Irrigation (DWRI).

There are three hydrological and eight meteorological stations in the
watershed (Fig. 1). Climate in the EER watershed is characterized as
humid sub-tropical. Average annual rainfall in the EER watershed
based on data at eight meteorological stations vary from 1,750 mm (at
Daman) to 2,365 mm (at Hetauda), but have strong seasonality at all



the stations, with rainy season (JJAS) receiving about 80% of total
annual rainfall. Average monthly maximum temperature (Tmax) in the
EER watershed varies from 22.0 ◦C in January to 35.9 ◦C in June,
whereas average monthly minimum temperature (Tmin) varies from 7.7

◦C in January to 25.4 ◦C in August. In terms of water availability, an
average annual discharge at the EER outlet is 135 m3/s (or 4,291
million-cubic-meters a-year) (Ray, 2020).
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3. Methodology and data
Fig. 1. Location and associated details of the EER watershed, Nepal.

the Government of Nepal. The quality of observed data was assessed

based on extent and concentration of missing values, data reading to
The overall methodological framework for this study consists of

collecting and pre-processing observed and projected future climatic
data, identifying and selecting suitable set of climatic extremes, quan
tifying the climatic extremes for historical and future time periods,
characterizing hydrological extremes, and then identifying the links
between climatic extremes and hydrologic extremes. They are
described  in the following sub-sections.

3.1. Data collection and pre-processing

3.1.1. Observed historical data
Description of various types of data used in this research is

provided in Table 1 along with their sources. There are eight rainfall
stations and three discharge gauging stations in the watershed. Daily
time series of precipitation and temperature (both maximum and
minimum) data were collected from Department of Hydrology and
Meteorology (DHM),

Table 1
Description of various types of data used in this study.

ensure reliability of recorded values, plotting of hyetographs of various
temporal scale (e.g., daily, monthly, annual), and plotting of mass
curves.

Missing daily precipitation data was imputed using Inverse
Weighted Distance (IDW) interpolation at daily scale with power factor
of 2. In case of temperature, missing values were estimated using laps
rate from the nearest neighbour. Lapse rate used for maximum and
minimum temperature were the drop of 5.9 ◦C and 4.4 ◦C per 1000 m
altitude respectively as shown in Fig. 2. They were computed from
annual average values from three stations namely, Rampur (Index:
902), Daman (Index: 905), and Hetauda (Index: 906). Finally,
appropriate time period for data analysis as mentioned in Table 1 was
selected based on ade
quacy of data availability, quality, and spatial coverage within the EER
watershed.

3.1.2. Future climate data
Nineteen RCMs available in Coordinated Regional Downscaling

Experiment for South Asia (CORDEX-SA) platform were downloaded,
pre-processed, and evaluated as discussed in Dhaubanjar et al. (2020).
Annex-A provides characteristics of the RCMs. We derived the
consensus



Data [Unit] Data Type Description/  Properties

Data

Source
Resolution  [Time frame]
climate future for the EER

watershed in Central Nepal
(84–85.5◦E lon gitudes and 27-28◦N

latitudes) from the 19 RCMs using
the Australian

Historical
Rainfall [mm]  Historical
maximum and  minimum
temperatures  [◦C]

Time series Daily observed
precipitation

Time series Daily observed
maximum and
minimum
temperatures
DHM,  Nepal  DHM,  Nepal

8 stations
[1980–2005]  3 stations

[1980–2005]
Climate Futures Framework
(Clarke et al., 2011; Whetton
et al., 2012).  Projected
changes in annual
temperature and precipitation

were clas sified into
qualitative categories of
changes to generate a
climate future  matrix (CFM)
as shown in Fig. 3. Three
future periods were

investigated:  near-future
(NF; 2021–2045), mid-future
(MF; 2046–2070), and far
future (FF; 2071–2095). The
baseline considered was
1980–2005.

Regional Climate  Model
(RCM)  Precipitation  [mm]
and
Temperatures  [◦C]
Time series  extracted  from
spatial

grids
Daily projected  values in
grids,  available to  download
as netcdf format.
19 RCMs  from
CORDEX SA

(Annex-A)
0.44◦ x 0.44◦ [1981–2095]
Considering two
representative
concentration pathways

(RCPs) sce narios (RCP
4.5 and 8.5) and three
future periods, six CFMs
were  developed for the
ERR watershed. For

each of these six CFMs,
the RCMs  that
represent the
consensus case (i.e.,
the cell in the matrix

with the  maximum
number of RCM model
projections for a
combination of

Historical
streamflow  [m3/s]

Time series Daily observed
streamflow
DHM,  Nepal

3 stations
[1980–2005]

particular precipitation and
temperature class) were

identified and  selected.
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Table 2
Climatic extremes indices considered in this study.

Table 2 (continued ) Name of Index /
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Description Estimation Method

Name of Index /  Notation / Units
Description Estimation Method

Notation / Units  Heavy rainfall

Annual count of Let RRij be the daily precipitation
Temperature related indices days (R20) days when amount on day i in period j. Count the
Maximum of daily  maximum Monthly/ Annual  maximum

value of
Let TXx be the daily
maximum  temperatures in

monthk, periodj. The
[days]

precipitation > 20  mm
number of days where RRij ≥

20mm

temperature
(TXx) [◦C]

Maximum of daily  minimum

temperature
daily maximum  temperature

Monthly /Annual  maximum value of  daily
minimum

maximum daily maximum temperature  each
month is thenTXxkj = max(TXxkj) Let TNx be the
daily minimum  temperatures in month k,
periodj. The  maximum daily minimum
temperature

Notes: P is precipitation; T is
temperature; RH is relative humidity; Q
is  discharge.

(TNx) [◦C]

Minimum of daily  maximum
temperature
(TXn) [◦C]

Minimum of daily  minimum
temperature
(TNn) [◦C]

Warm days
(TX90p) [%]

Warm nights
(TN90p) [%]

temperature

Monthly/ Annual  minimum value of
daily maximum  temperature
Monthly /Annual  minimum value of
daily minimum  temperature

Percentage of days  with TX > 90th

percentile

Percentage of days  when TN >
90th

each month is thenTNxkj =
max(TNxkj) Let TXn be the daily
maximum  temperatures in month k,
periodj. The  minimum daily
maximum temperature  each month
is thenTXnkj = min(TXnkj) Let TNn be

the daily minimum  temperatures in
month k, period j. The  minimum
daily minimum temperature  each
month is thenTNnkj = min(TNnkj) Let
TXij be the daily maximum
temperature on day i in periodj and
let TXin90 be the calendar day 90th

percentile centered on a 5-day
window.  The percentage of time is
determined  where TXij > TXin90

Let TNij be the daily minimum
temperature on day i in periodj and
let

)
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Warm Spell
Duration index  (WSDI) [days]
percentile

Annual count of  days with at least 6

consecutive days  with TX > 90th percentile
TNin90 be the calendar day 90th percentile
centred on a 5-day window .  The percentage
of time is determined  where TNij > TNin90

Let TXij be the daily maximum  temperature
on day i in periodj and let TXin90 be the
calendar day 90th percentile centered on a
5-day window.  Then the number of days per
period is  summed where, in intervals of at
least 6  consecutive daysTXij > TXin90

Fig. 2. Lapse rate used for imputing
daily maximum and minimum
temperature.

The future climate data at the
meteorological stations were then
bias corrected using empirical
quantile mapping (QM) method
(Gudmunds son et al., 2012;

Teutschbein and Seibert, 2012),
implemented in R using  a qmap
package (Gudmundsson et al.,
2012). QM corrects quantiles of
RCM data to match with that of
observed ones. Its basic structure is
given by:

Precipitation related indices
future,t = inv.ecdf obs

(
ecdf RCM

(
) )

Consecutive dry
days (CDD)

Maximum number
of consecutive

Let RRijbe the daily
precipitation

amount on day i in
periodj. Count the

Xcorr

baseline

baseline XRCM future,t

[days]

Consecutive wet  days (CWD)
[days]

Annual total wet day
precipitation
(PRCPTOT)
[mm]

Very wet days  (R95p) [mm]

Annual / Monthly  maximum 1-day
precipitation
(RX1day) [mm]

Annual / Monthly  maximum

consecutive 5-  day
precipitation
(RX5day) [mm]
days with daily  precipitation less  than 1 mm
Maximum number  of consecutive  days with
daily  precipitation ≥ 1  mm
Annual total
precipitation in  wet days (Daily  precipitation
≥ 1  mm)
Annual total PRCP  when RR > 95p

Most intense
rainfall event in 1-  day for a given  month /
year

Most intense
rainfall event in 5  consecutive days  for a



given month /  year
largest number of consecutive days  where
RRij < 1mm

Let RRij be the daily precipitation  amount on
day i in periodj. Count the  largest number of
consecutive days  where RRij ≥ 1mm

Let RRijbe the daily precipitation  amount on
day i in periodj. If Irepresents the number of

days in j, then PRCPTOTj = ∑
I
i=1RRij

Let RRwj be the daily precipitation  amount on
a wet day w (RR ≥ 1.0 mm) in period j and let
RRwn95 be the 95th percentile of precipitation
on wet days  in the base period. If
Wrepresents the  number of wet days in the

period,  thenR95pj
= ∑W

w = 1RRwj where RRwj > RRwn95  Let RRij be
the daily precipitation  amount on day i in
periodj. Then  maximum 1-day values for
period j are RX1dayj = max(RRij)

Let RRkj be the precipitation amount for  the
5-day interval ending k, periodj.  Then
maximum 5-day values for  periodj
areRX5dayj = max(RRkj)

where, ecdf is empirical cumulative
distribution function for the refer

ence time period, XRCM

future,t is the raw RCM (projected
value) in future at
time t, ecdfRCM

baseline is empirical cumulative
distribution function of RCM  for
baseline time period, and inv.ecdf obs

baseline is the inverse empirical cu
mulative distribution function of
observation for baseline time period.
Xcorr

future,t is the corrected estimate of
XRCM

future,t. The ecdf and inverse ecdf
functions were derived for each of

the months. For the RCM values in
future period which lies beyond the
range of values in the baseline
period, the corrected estimate was
obtained by multiplying XRCM

future,t with
the ratio of maximum (or minimum)
of observation to maximum (or
minimum) of RCM values in
baseline period for precipitation. In
case of  the temperature, corrected
estimate was obtained by addition of
dif ference between maximum (or
minimum) of observation and
maximum  (or minimum) of RCM
values. If the frequency of dry days
in the baseline  period in RCM data

is greater than frequency of dry days
in the observed  data, correction
was made for the extra dry days
because any dry day is  mapped to
a precipitation day leading to wet
bias (Themeßl et al., 2012).  This
was achieved by ‘Frequency
Adaptation (FA) (Themeßl et al.,
2012)’, in which only the fraction,
ΔP0, of such dry-day cases with
probability P0are corrected randomly
by uniformly sampling a number
between zero precipitation and the
precipitation amount of inv.ecdf obs

baseline,t(ecdfRCM

baseline,t(0)).

ΔP0 = ecdf RCM

baseline(0) − ecdf obs

baseline(0)
ecdf RCM

baseline(0)

A multi-model ensemble of the bias
corrected times series for the
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RCP 4.5 Scenario RCP 8.5 Scenario



Fig. 3. Climate future matrices for the Extended East Rapti (EER) watershed. (Notes: Changes in precipitation are in percentage and changes in temperature are in
◦C. NF, MF and FF represent near-future (2021–2045), mid-future (2046–2070) and far-future (2071–2095). Number from 1 to 19 refers to the RCM identification
number in Annex-A).
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RCMs in the consensus case for each of the six climate futures were
then generated. The projected changes in future climate extremes
were  analysed based on the ensemble.

The RCMs considered for generating ensemble varies across the
future periods as well as scenarios considered as shown in the CFMs in
Fig. 3 (please refer Annex B for the list of RCMs). The colour scale in
the figure shows the number of RCMs in each of cells in the matrix
belonging to particular combination of temperature and precipitation



changes. For all six cases, model consensus on changes in average
annual precipita
tion are in “Little change (-10% to + 10%)” class. In case of temperature
changes, in RCP 4.5 scenario, consensus among models are in
“warmer (0.5 ◦C to 2.0 ◦C)” category. However, in RCP 8.5 scenario for
MF and FF, models show consensus on “hotter (2.0 ◦C to 3.5 ◦C)” class
though for NF, most of models fall in “warmer” category. In RCP 8.5
scenario for FF, four models fall in each category for “hotter” and “much
hotter” cases. Since, spread of temperature changes among models on
“hotter” case is less than “much hotter” case, we choose the former
one. From the six CFMs, we observed that EER watershed is projected
to be warmer to hotter in future while there is “little change” in
precipitation. Since, maximum temperature highly correlates with the
minimum tempera ture; we used daily maximum temperature for
deriving the CFMs.

3.2. Identifying and quantifying climatic extremes

A core set of 29 ETCCDI climate indices derived from daily time  series
of precipitation and temperature were calculated using the R based
RClimdDex package (Zhang et al., 2018). They are widely used for
analyzing global changes in extremes in observational records and

future climate change projection (Sillmann et al., 2013a, 2013b). Out of
Journal of Hydrology 598 (2021) 126383

details related to the Spearman’s Rho test and Sen (1968) provides de
tails on Sen’s slope estimator.

3.3. Identifying and quantifying hydrological extremes

Daily streamflow time series observed at the three stations for the
period of 1980–2005, located in the EER watershed (Fig. 1), and having
characteristics as detailed in Table 1, were collected from DHM. These
three sub-watersheds cover approximately 32.5% of the EER
watershed. The streamflow data were checked for quality, including
consistency before using for the analysis. Indicators of Hydrologic
Alterations (IHA), a tool developed by Richter et al. (1996) and detailed
in Mathews and Richter (2007) was used for characterizing
hydrological extremes. IHA uses a nonparametric range of variability
(RVA) approach (Richter et al., 1997) to characterize alterations in
inter- and intra-annual variation in river flow. The analysis was based
on observed data and no hydrological simulations were involved with it.
RVA is based upon comprehensive statistical characterization of the
temporal variability in hydrologic regime quantifying the degree of
alteration of 33 ecologically relevant hydrologic parameters (Table 3)
that describe crucial relationships be tween flow and ecological
functions (Mathews and Richter, 2007). The indicators are divided into
five groups representing different charac
teristics of flow regimes as shown in Table 3. These groups are (a)
magnitude of monthly water condition, (b) magnitude and duration of

Table 3
IHA indicators for hydrological extremes – groups, regime characteristics, and
parameters.

the 29 indices, we selected 14 climate
extreme indices (7 related to  precipitation and
7 related to temperature) as listed in Table 2,
from
IHA statistics group Regime  characteristics

Hydrologic parameters

careful review of literature and discussion with
experts. Selection was  mainly focused on
how these extreme conditions, especially the
pre cipitation extremes, influence hydrology of

the study area. RX1day and
Group 1: Magnitude of  monthly water
condition
Magnitude, Timing Mean value for each calendar  month
(Total 12 parameters)

RX5day represents conditions for
high antecedent soil moisture that
may  lead to floods and landslides in
the mountainous catchment. Wet
days  precipitation (R95p), is also
similar indicator of wet extreme
conditions.  CDD is especially
important for dry spells affecting
reduction in water  availability. CWD
on other hand is also both important
for water  availability. R20 can be

related to frequency of high flow
events. And  PRCPTOT generally
indicates overall wet and dry
conditions. Long  warm spells,
which is indicated by WSDI, can
cause conditions favour
able for reduction in water
availability like in soil moisture
storage due  to increase in
evapotranspiration. Temperature
indices like TXx, TNx,  TXn, TNn,

TX90p and TN90p were selected as
they are generally  accepted
indicators used for climate extreme
detection. The indices were
calculated for both historical and
projected future climate series.
Results  are discussed in terms of
amount of trend, their direction and
statistical
Group 2: Magnitude and  duration of annual
extreme water
condition

Magnitude,  Duration
Annual minima, 1-day mean  Annual minima,
3-day means  Annual minima, 7-day means
Annual minima, 30-day means  Annual
minima, 90-day means  Annual maxima,
1-day mean  (Daily peak flood)
Annual maxima, 3-day means  Annual
maxima, 7-day means  (7-day maximum
flood)  Annual maxima, 30-day means
Annual maxima, 90-day means  Number of
zero-flow days  Base flow index: 7-day
minimum flow/mean flow for  year
(Total 12 parameters)

significant. Furthermore, changes in these
extreme indices in future  period were also
assessed.
Trends in the climate extreme indices were

analysed using non parametric Modified
Mann-Kendall test (M− MKT) (Hamed and Rao,
Group 3: Timing of annual  extreme water
conditions
Timing Julian date of each annual  1-day maximum

Julian date of each annual
1-day minimum
(Total 2 parameters)

1998), Sen’s slope estimator (Hirsch
et al., 1982), and Spearman’s Rho
(Lehmann, 1975) tests. The M−
MKT accounts for the presence of
autocorrelation in the data in
addition to other advantages from
original  MK test. Once presence of
trend is confirmed from M− MKT,
magnitude  of trend was estimated
using Sen’s slope estimator. The
significance of  the detected trend
was evaluated using Spearman’s
Rho test. Spatial  variation of trends
in precipitation and temperature
extremes across the  EER

watershed was visualized and
analysed using geo-spatial maps
prepared in ArcGIS. Technical
details on computation of M− MKT
is  provided in Hamed and Rao
(1998), which is a modified version
of non
parametric rank-based MKT
(Kendall, 1975; Mann, 1945). In
MKT, the  null hypothesis H0 is that
data are independent and randomly
placed  with no serial correlation
structure among the observations.
Similarly,  literatures like Lehmann
(1975) and Sneyers (1990) provide
technical

Group 4: Frequency and  duration of high
and  low pulses

Group 5: Rate and  frequency of water
condition changes
Magnitude,
Frequency,
Duration

Frequency, Rate of  change

Number of low pulses within  each water year
Mean or median duration of low  pulses
(days)
Number of high pulses within  each water
year
Mean or median duration of  high pulses
(days)
(Total 4 parameters)
Rise rates: Mean or median of  all positive
differences between  consecutive daily
values  Fall rates: Mean or median of all
negative differences between  consecutive
daily values  Number of hydrologic reversals
(Total 3 parameters)
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annual extreme water condition, (c) timing of annual extreme water
conditions, (d) frequency and duration of high and low pulses and (e)
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4. Results and discussion

rate and frequency of water condition changes. Importance of these
groups is described in detail in Richter et al. (1996) and The Nature
Conservancy (2009). Computation and further details in the IHA can be
found in The Nature Conservancy (2009) and Mathews and Richter
(2007). Geomorphic and ecologic implication of the IHA parameters is
described in detail in Graf (2006).

In RVA analysis for this study, we used three different categories of
equal size for each of IHA parameter, the boundaries of which are
based on percentiles. Lowest category contains all values less than or
equal to the 33rd percentile; the middle category contains all values
falling in the range of the 34th to 67th percentiles; and the highest
category contains all values greater than the 67th percentile. We
divided the base period into pre-1990 (1980–1990) and post-1990
(1991–2005) periods, as change point was detected by Pandey et al.
(2020b) in 1990, and then computed the hydrologic alteration between
these periods. The Hy
drologic Alteration (HA) factor was then calculated for each of the three
categories which is basically the difference between observed
frequency and expected frequency divided by the expected frequency
of the parameter. The expected frequency is the frequency with which
the post-1990 values of the IHA parameters should fall within each
category defined in pre-1990 period. These alterations have directions,
positive and negative. Position alteration means the increase in
frequency from the pre-1990 to the post-1990 period while negative
alteration mean decrease. Degree of alteration are also divided into
three classes namely, low, median and high. If absolute value of

alteration ranges from 0 to 33% then changes are of low degree while
if it is between 34 and 67% then degree of alteration is of middle
category. Alteration beyond 67% is  categorized as high alteration.

4.1. Comparison of RCM-based extreme indices with observations

Comparison of the RCM-based extreme indices and monthly pre
cipitation / temperature (maximum) against observations for the base
line period (1980–2005) are made in order to investigate if the modelled
values from RCMs are consistent with the observations. Results are
depicted in percentile-based plots in Fig. 4. It shows values of mean
areal  extreme precipitation and temperature indices at percentiles from
1 to  99. Range of 19 RCMs along with the multi-model mean value
before  and after bias correction against observation are shown along
with  observation. Ensemble spread of RCMs is large, which suggests
that  RCMs are fairly unable to capture the extremes, even though
ensemble  mean in some cases is closer to the observation as in CWD
and TXx. This  can simply be due to the fact that RCMs are forced by
parent GCMs that  may not able to represent the variation of climate
dynamics in moun tains. In case of indices like PRECTOT and R95p,
ensemble mean shows  overestimation of the extremes. RCMs model
spread is higher at higher  percentiles, and RX1day and RX5day
rainfall are underestimated as  shown by ensemble mean. This can be
due to limitations of RCMs to  describe heavy precipitation processes.
Absolute-value based tempera ture indices as TNx, TXn and TNn are
underestimated by RCMs, though  count based indices like TX90p and
TN90p are in agreement with  observation. Wide spread of RCMs also
can be observed in monthly  precipitation and temperature values. In
general, RCMs are under estimating the precipitation in monsoon
(JJAS) months and over estimating in dryer months. Temperature
(here, daily maximum) is also  underestimated.

After bias correction using quantile mapping, spread of RCMs are

Fig. 4. Spread of extreme indices from RCMs in historical period 1980–2005 before and after bias correction against observation at different percentiles.
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narrowed down and they match closely with observation. Though in few
cases like wsdi and TX90p, bias correction is not effective especially at
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4.2. Precipitation extremes

higher percentiles. Differences in the distribution of extreme indices
between observation and RCMs were examined using Kolmogorov
Smirnov Test (2-sample) at level of significance α = 0.05 with the null
hypotheses that they come from same distribution. Distance between
distributions is given by D statistics, with higher D indicating more
differences. The results are shown in Fig. 5(a). RCM-based indices,
before bias correction, have their distribution significantly different  than
of the observed distribution (orange-red colour grid boxes), sug gesting
that RCMs generally lack fidelity to capture small scale extreme
phenomenon. This has been addressed after bias correction (blue col
oured grid boxes).

With regards to the trends, most of the projected trends (raw RCMs)
for temperature-based indices like TX90p and TN90p agree with the
increasing observed trends during the baseline period with statistically
significant slopes at α = 0.05. The results are similar after bias
correction as shown in Fig. 5(b). In contrast, for indices like TNn and
TXn, observed trends are decreasing (not significant) while most of the
raw and bias corrected RCMs show increasing trends (also not
significant). For indices TXx and TNx, observed trends are increasing
(not significant) and so as for most of RCMs before and after bias
correction (not significant). In case of precipitation-based indices,
increasing trend with statistically significant slopes at α = 0.05 are
observed for prectot, R95p and RX5day (Fig. 5(b)). More than half of
RCMs show increasing trends for these indices, though they are not
statistically significant. RX1day has increasing (not significant)
observed trend and most of RCMs model before and after bias
correction also have increasing trend, though not significant. More
than half of RCMs show increasing trend both before and after bias
correction for R20 (not significant) but observations show significant
increasing trend. In case of cwd, about half of the model show
decreasing trends (not significant) while it is observed to be decreasing
significantly.

In summary, for temperature indices like TX90p and TN90p,
modelled trends in climate extremes agree with the observed trends for
many RCMs with significant results while for indices like TNn and TXn,
they do not agree (not significant). For precipitation indices, more than
half of RCMs agree with observations but the results are not

statistically significant as compared to observations. And, bias
correction has no significant influence in either increasing or
decreasing trends except for  few cases.

4.2.1. Historical and projected future trends in precipitation extremes
Trends in precipitation extreme indices during the historical period  of
1980–2005 and future periods at eight stations in the EER watershed
are presented in Fig. 6. The statistical significance of the trends was
tested using Modified Mann-Kendall test and Spearman’s rho test. The
colours in Fig. 6 show magnitude of Sen’s slope of the trend line.
Observed trends are shown in circle, and ‘+’ sign is provided inside
circle for significant trend conducted at α = 0.05 (Spearman’s rho test).
For each of the observed indices, number of stations that have
significant  trends vary from one to a maximum of five among the eight
stations. For  instance, observed RX1day trends are significant for
three stations,  namely, 903, 904 and 919. Heavy rainfall amounts like
maximum 1-day  precipitation (RX1day), maximum consecutive 5-day
precipitation  (RX5day) and very wet day precipitation (R95p) are
observed with  increasing trends. RX1day precipitation is increasing at
a rate of 0.5 to 9  mm/year (approx.) while RX5day precipitation is also
increasing at a  rate to 2 to 17 mm/year. Similarly, R95p is also on rise
by 6 to 50 mm/  year. This result aligns with the increasing trends of
extremes in Nepal as  discussed in Baidya et al. (2008) and Karki et al.
(2017). However, Karki  et al. (2017) claims the decreasing precipitation
extremes in the central  lowlands. This contrasting results may be due
to – (a) exclusion of the  stations in the ERR in Karki et al. (2017) and
(b) difference in the scale of  the study: this study is focused on small
scale catchment unlike the study  by Karki et al. (2017) which focused
on entire Nepal. In the ERR basin,  consecutive dry days (CDD) are
increasing with simultaneous decrease  in consecutive wet days
(CWD). But at most of the stations, trends are  statistically insignificant.
Similarly, the numbers of heavy rainfall days  are also increasing by
0.25 to 1.7 days/year as suggested by increase in R20 index, and four
stations show statistically significant increasing trends. Total wet days
precipitation amount (PRECTOT) in the ERR  watershed is also
increasing by about 8 to 105 mm/year and the trends at five among the
eight stations are statistically significant. Hence, his torical trends from
1980 to 2005 clearly show that precipitation ex tremes are increasing
every year in the ERR watershed.  Trends in the projected precipitation
indices in near future, middle  future and far future periods, on the other
hand, have mixed trends  unlike observed trends as shown in Fig. 6.
Only few RCMs shows sig nificant trends for future projections– the
numbers of which are shown  inside the grid box, and magnitude of
slope are less than observed trend.

Fig. 5a. Differences in distribution of extreme indices between observation and RCM for historical period 1980–2005 shown using Kolmogorov-Smirnov D statistics
(‘+’ sign indicates significant result at α = 0.05).
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Fig. 5b. Variation in trends of extreme indices in observation and RCMs for historical period 1980–2005. Sen’s slope are provided. ‘units’ represent corresponding
units of extreme indices. ‘+’ sign indicates significant trend at α = 0.05 with Modified Modified Mann-Kendall test.

Projected CDD trends from RCMs in future are negative for most of the
stations and they range from − 0.7 to 0.5 days/year in contrast to posi
tive historical trend of greater than 0.7 to 1.4 days/year. On the other
hand, decreasing CWD trends are projected which is consistent with
observed trend. Projected PRECTOT trends vary among stations differ
ently in different future periods, most of them increasing, even though
historical trends are significantly positive for majority of the stations.
Though the future PRECTOT trends varied from decreasing 3 mm/year
to increasing 15 mm/year, they are less in compare to magnitude of
observed trend. Positive projected R95p, RX1day and RX5day trends
are  observed for most of the future periods with up to 10 mm/year, 1.5
mm/  year and 3.5 mm/year respectively. Projected R20 trend varies
between  decreasing 0.1 days / year to increasing 0.3 days / year and
most of the  stations show increasing trends like the observed trend,
though observed  trend is higher in magnitude.

Alongside with the trends, indices as PRECTOT, R95p, RX1day and
RX5day are projected to increase in futures as discussed in section
4.2.3. Any local small scale extreme inducing processes, like in the
study, are tied to larger scale phenomenon, here in this case, to the
overall monsoon in Nepal. Precipitation regime in the Himalayan region
in Nepal is largely determined by Indian Summer Monsoon (ISM) and
precipitation extremes like RX1day, RX5day, CWD, R95p and R20
occur usually during monsoon season for June to September. In
addition, the South Asia’s Himalayas, a regional topographic feature,
also modulates the distribution of extreme precipitation events (Singh
et al., 2019). Singh et al. (2019) discusses about the increase in
intensified sub seasonal extremes across parts of India and an increase
in spatial vari
ability of rainfall despite an overall weakening of seasonal rainfall in the
monsoon core. They attributed this overall weakening behaviour of
monsoon, but intensified local events, to global warming and anthro
pogenic factors, mainly, the influence of aerosols, land-cover changes
and agricultural intensification. Any intensification of ISM in future in
the Himalayan region, as discussed in Sanjay et al. (2017), might play a
key role in increasing trends and magnitude of extreme indices. Suman
and Maity (2020) showed that areas adjoining north India (including the
Himalayas and Tibetan Plateau) are projected to experience signifi
cantly higher mean daily air temperature at 850mb in future scenarios
thereby providing conducive environment for an increase in water
holding capacity of the atmosphere according to Clausius-Clapeyron

relationship. This will also enhance physical processes for increase in
extreme precipitation events. They argued that relative higher increase

in precipitable water content in comparison to the Tibetan plateau re
gion creates favourable condition for enhancement of ISM that in turn
increase the extreme rainfall events. Enhancement of the thermody
namics conditions due to atmospheric warming cause the increase in
ISM as well its daily variability that are linked to increase in heavy
precipitation and decrease in both low rain-rate and number of wet days
during future monsoon (Sharmila et al., 2015).

4.2.2. Spatial variation of trends in precipitation extreme indices Fig. 6
illustrates spatial variation in the extreme precipitation indices  across
eight stations in the ERR watershed. Increasing and decreasing  trends
along with the magnitude of slope of linear trend line are shown  by
positive and negative values of Sen’s slope with colours. Likewise,
statistical significant trends as tested by Spearman’s rho test at 95%
level of confidence are shown by ’+’ inside observation circles. The
division of the physiography of the study area is marked by Hills and
Tarai/Siwalik as backdrop in Fig. 6. Hills stations (904 and 905) have
elevations above 1,500 m above the mean sea level (masl) while rest of
the stations have elevation ranging between 250 and 1050 masl. As
stated above, most of the extreme indices have increasing trend in the
study area except consecutive wet days (cwd). However, it is interesting
to note that magnitude of trend at the highest elevation, station 905 at
elevation around 2,314 m, is lower than the stations located at lower
elevations. Though its neighbouring stations 904 (at elevation around
1706 m), 906 (at elevation 474 m) and 919 (at elevation 1030 m) show
higher amount of trends in the extreme indices. This can be due topo
graphic effects in the regions. Other stations with elevations less than
350 m are located at plains and show similar magnitudes of trends.
Trends of the indices representing heavy rainfall magnitude and fre
quency are increasing at faster rate in station 919 (Makawanpur Gadhi)
than the surrounding stations with statistically significant results.
Magnitude of trends of extreme indices is less at the highest elevation
station than other stations, however, there is not enough evidence that
Hill stations and Tarai/Siwalik stations behave differently in terms of
trends in extreme indices.

Compared to observed spatial trends, future trends have less
spatial variation among the stations and less magnitude of slope. They
are shown in Fig. 6. This can be attributed to limitations of RCMs being
unable to capture spatial heterogeneity as they have coarser resolution.
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Fig. 6. Spatial variation of trends in precipitation-related extreme indices for the
historical (1980–2005) and future periods.

4.2.3. Projected changes in future precipitation extremes Projected
changes in the seven precipitation extreme indices at eight  stations in
the ERR watershed for different future periods under RCP 4.5  and

RCP 8.5 scenarios are shown in Fig. 7. These changes are multi model
ensemble means of different RCMs. Only few RCM models show
statistically significant projected changes (tested using two sample
T-test at α = 0.05) as shown in Fig. 8. CDD at most of the stations in
the  ERR watershed are projected to increase within the limits of 12%
in  future. For RCP 4.5, increase in CDD, averaged over all stations,
are  between 0.7 and 1.6% from the historical average of 68 days while
projected changes in RCP 8.5 varies from 2 to 6%; the highest change
occurring at FF. In complement to CDD, CWD at majority of those sta
tions are projected to decrease by less than 20%. For RCP 8.5
scenario, in  FF, many stations show decrease by >15% in CWD. In
general, CWD is  projected to decrease between 2 and 7%, except
being FF, from the  historical average of 22 days. Shrestha et al. (2017)
also found increase  in rainfall intensities with decrease in CDD thus
indicating the rise of  extreme events in the eastern Nepal in historical
period. PRCPTOT is  projected to increase for all future periods for
both the scenarios. In RCP  4.5 scenario, PRCPTOT is expected to
increase within 3% in NF and  within 8% in MF and FF on the historical
mean of 2106 mm. For RCP 8.5  scenario, it is projected to increase
between 6% and 10%, though some  of stations show increase above
15%. For heavy rainfall indices like

R95p, RX1day and RX5day, projected changes increase as we go
more into future; and they show more changes in comparison to other
indices. R95p is also projected to increase in considerable amount. In
NF, under RCP 4.5 scenario, basin averaged R95p is projected to
increase by 13% and this is expected to increase up to 30% in MF FF
against the historical mean of 557 mm. Under RCP 8.5 scenario,
stations in the ERR watershed are expected to receive increased R95p
by 20% to 60% in future. Results are also similar in case of RX1day
and RX5day precipitation extreme indices. RX1day is projected to
increase by 10 to 25% and by 20 to 35% in the ERR watershed for
RCP 4.5 and RCP 8.5 scenarios respectively. Similarly, amount of
changes in percentage are expected for RX5day too. These results are
consistent with study by Baidya et al. (2008), which showed increase
in extreme precipitation indices (RX1 day, RX5day, heavy precipitation
days, total precipitation) in more than half of 26 stations encompassing
majority of climatic zones of Nepal in the his torical base period. Heavy
rainfall days (R20), on an average for all stations, are also expected to
increase between 1 and 4% except in FF in RCP 8.5 scenario which
project a decrease by about 0.6% from its his
torical average of 34 days.

Increasing future trends and projected changes in extreme-indices
related to precipitation in the EER watershed expected in future. In

crease in precipitation amount, dry days and heavy precipitation events
are projected in future. Since, indices like R95p, RX1day and RX5day

are
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Fig. 7. Projected changes in future precipitation extreme indices compared to historical (1980–2005) Notes: Changes in the indices are expressed in percentage
from the  baseline period of 1980–2005. N, M and F represent near future (2021–2045), mid future (2046–2070) and far future (2071–2095) periods.

4.3. Temperature extremes

4.3.1. Historical and projected trends in temperature extreme indices
Temperature-related extreme indices at the three stations in the EER

watershed during historical period show mixed trends (Table 4 and
Fig. 9). Maximum of daily maximum temperature (TXx) shows

increasing trends at two stations (905 and 906) at a rate of 0.04 ◦C/year,
but tests for Sen’s slope (Spearman’s rho test) show insignificant results.

Likewise, trends in maximum of daily minimum temperature (TNx) are
decreasing at the rates of 0.055 – 0.067 ◦C/year at stations 902 and 906,

however, station 905 shows increasing trend at rate of 1.25 ◦C/year. In
case of minimum of daily maximum temperature (TXn), two stations

902 and 905 show decreasing trend at the rates of 0.186 and 0.05 ◦C/
year, respectively, while station 906 show increasing trend. The results
are statistically significant only at the station 902. For minimum of daily
minimum temperate (TNn), stations 902 and 906 show increasing and

decreasing trends, respectively, and station 905 show no change. None

Fig. 8. Uncertainty in RCM models- Projected changes by 15 RCMs in
consensus in near future for RCP 4.5 scenario for station 905. Notes: Box plot
extends from the lower to upper quartile values of the data, with a line (red) at
the median. The whiskers are positioned at 1.5 times of Inter-Quartile Range
from the quartiles. Black triangles are multi model mean values, while blue
squares are number of RCM models that show significant projected changes in
future, tested at α = 0.05 using Two-sample T-test.

closely associated with hydrological extremes as floods and events like
landslides, those events are also expected to increase together with
precipitation extreme events.

Fig. 8 provides an illustration of the uncertainties associated within
the models. As an example, a box plot of changes in precipitation
extreme indices in NF compared to 1980–2005 at station 905 is shown.
Range of projections by RCMs (N = 15) are quite wide spread. For
instance, RX1day ranges from approximately 10% decrease to about
30% increase with an average of about 15% increase. Besides, the
RCMs that projected significant changes (T – test at α = 0.05) are quite
less – maximum of 2 RCMs. It is clear, from Fig. 8, that the spread of
future changes among ensemble members is large even taken within
the  consensus case.

of them are statistically significant. However, all the stations show in

crease in warm days (TX90p) by 0.2–0.7% per year and results are
statistically significant for two stations. Likewise, stations 902 and 905
also show increase in warm nights (TN90p) by 0.3–0.5% per year and
both of results are significant. Increase in warm days and warm nights
in ERR is consistent with the findings of Baidya et al. (2008) and
Shrestha et al. (2017). However, station 906 show decreasing trend by
about 0.1% (statistically insignificant). Finally, for all the stations, there
is no change in warm spell duration index. Historical period
(1980–2005), therefore, clearly shows increase in warm nights and
warm days, and no change in warm spell duration; however, for other
indices we observed  mixed results.

Unlike mixed observed trends at three stations, projected tempera
ture indices have consistent increasing trends in future (exception being
TNx, TNn and TX90p for RCP 4.5 in FF), as shown in Fig. 9. TXx has
increasing trend from 0.02 to 0.06 ◦C per year in NF while from 0 to
0.04 ◦C per year in MF and FF. TNx, TXn and TNn are also projected to
increase by 0.01 to 0.1 ◦C per year in future. Warm days and warm
nights also have increasing trends at rate of 0–1.2% of days/year in
future and so as warm spells (upto maximum of 2.5 days/year. Rela
tively higher number of RCM models with statistically significant results
for temperature based indices show that results are consistent among
RCM models.
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Table 4

Historical (1980–2005) trends in temperature extreme indices in the EER
watershed.
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Indices Stations

Mann-Kendall’s  Tau
p- value from  M− MK test
Sen’s  slope
p –value from  Spearman rho
test

Significance (α = 0.05) as
per  M− MK test
Significance (α = 0.05) as
per  Spearman’s rho test

TXx 902 − 0.157 0.181 − 0.044 ↓ 0.221 NS NS  905 0.145 0.233 0.04 ↑ 0.238 NS NS  906 0.142 0.320 0.04 ↑ 0.217 NS NS
TNx 902 − 0.345 0.013 − 0.055 ↓ 0.012 S S  905 0.474 0.001 0.125 ↑ 0.001 S S  906 − 0.218 0.122 − 0.067 ↓ 0.122 NS NS
TXn 902 − 0.428 0.002 − 0.186 ↓ 0.006 S S  905 − 0.163 0.251 − 0.05 ↓ 0.291 NS NS  906 0.111 0.439 0.053 ↑ 0.425 NS NS
TNn 902 0.194 0.000 0.045 ↑ 0.167 S NS  905 − 0.012 0.947 0 ↕ 0.973 NS NS  906 − 0.043 0.774 − 0.008 ↓ 0.853 NS NS
TX90p 902 0.268 0.058 0.235 ↑ 0.068 NS NS  905 0.569 0.002 0.492 ↑ 0 S S  906 0.526 0.009 0.678 ↑ 0 S S
TN90p 902 0.514 0.000 0.332 ↑ 0 S S  905 0.443 0.002 0.488 ↑ 0.001 S S  906 − 0.089 0.537 − 0.118 ↓ 0.609 NS NS
WSDI 902 − 0.012 0.944 0 ↕ 0.874 NS NS  905 0.255 0.080 0 ↕ 0.034 NS S

Notes: Arrows ↑, ↓ and ↕ indicate increase, decrease and no change in trends respectively. ‘S’ and ‘NS’ are statistically significant & not



significant. Fig. 9. Spatial variation of trends in temperature-related extreme indices for the historical period (1980–2005).

4.3.2. Spatial variation of trends in temperature extreme indices Table
4 provides information on spatial variation of temperature related
ETCCDI extreme indices for the historical period in the ERR
watershed. Only three stations had the temperature recorded, namely,
stations 902, 906, and 905, at the elevations of 256 m, 474 m, and
2,314  m, respectively. There is not enough evidence (as there are only
three

stations) to deduce a clear relationship between the dependency of
extreme indices with elevation or with physiographical region in this
watershed. However, there is an overall increase in the warm days and
warm nights in the region and no change in the warm spell duration
index. Fig. 9 also shows spatial variations in indices among three sta

tions. Future trends are similar in terms of magnitude and direction
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though for TXx and TX90p, trends in NF at station 905 is stronger than
at remaining stations. Like precipitation based indices, these trends
are  similar spatially.

4.3.3. Projected changes in future temperature extremes Three future
periods (NF, MF and FF) are considered for analysing future trends
under two scenarios, namely, RCP 4.5 and RCP 8.5. The  projected
changes in future trends with respect to baseline are illustrated  in Fig.
10. All the temperature-related extreme indices, in general, are
projected to increase in future periods, in which increase is more pro
nounced under the RCP 8.5 scenario. Majority of ensemble RCM mem
bers show significant changes (tested using two-sample T- test at α =
0.05) in future from historical values for temperature based extreme
indices, which is in contrast with extreme indices for precipitation.
Maximum of daily maximum temperature (TXx) are projected to in
crease by around 1 ◦C to 1.7 ◦C in NF, 1.2 ◦C to 3.1 ◦C in MF, and 1.3 ◦C
to 4.1 ◦C in FF. Likewise, maximum of daily minimum temperature
(TNx) are also projected to increase by around 1.5 ◦C to 2.5 ◦C in NF in
both scenarios. Increase in TNx are much higher ranging from 2 ◦C to
5 ◦C in MF and FF, which suggests that increase in TNx is likely to be
more than TXx in future. Minimum of daily maximum temperature
(TXn) are also projected to increase by 0.2 ◦C to 1.3 ◦C in NF for both
scenarios, though the rise of TXn in MF and FF is by 1 ◦C to 5 ◦C in MF

and FF. Magnitude of increases are slightly lower for minimum of daily
minimum temperature (TNn) than TXn. Furthermore, warm days
(TX90p) are projected to increase from about 10% up to 15% in NF.
They are expected to increase by 16 to 20% in MF and FF in RCP 4.5
scenario, while expected increase is by 30% to 50% in RCP 8.5
scenario  for those futures. Similarly, warm nights (TN90p) will increase
by 15%  to 20% in NF in both scenarios. They are expected to increase
between  25% and 30% in MF and FF in RCP 4.5 scenario, while
expected increase  is by 45% to 60% in RCP 8.5 scenario for those
futures. In is clear from  above data, that nights are going to be much
warmer in future. In  addition, warm spell duration index (WSDI) is
projected to increase by  between 20 and 30 days in both scenarios in
near future. Projected in crease in MF and FF in RCP 4.5 scenario is
between 35 and 40 days,  though it is very high (from 80 to 120 days)
in RCP 8.5 scenario. These  results clearly indicate potential rise in
temperature-related extreme  events in the EER watershed. Hotter
days and nights are expected to  increase in future together with the
rise in extremes, and further coupled  with other precipitation related
extremes, may result in compounded  impacts on societies and
ecosystems in future. Projected changes for the  station 905 (hill
station) is higher than other two stations. Fig. 11 provides an example
of the uncertainties associated within
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the RCM models. It is a box plot of changes in temperature based
extreme indices in Near Future compared to 1980–2005 for station 905.



Here, number of RCMs in an ensemble of consensus case is 15.
Spread of projected changes are large, for instance, for station 905,
warm spell duration index (wsdi) ranges from approximately increase in
3 days to about 49 days with an average of about 24 days. It is clear
from Fig. 11 that uncertainties among the models are present and they
are large even though attempts were made to address it using
consensus case.

4.4. Hydrologic alterations and extremes

Hydrologic alterations in three stations in the EER watershed,
namely, Q460, Q465 and Q470 are illustrated in Fig. 12(a), Fig. 12(b),
and Fig. 12(c) respectively. Discussions are made in following sections.

4.4.1. Hydrologic alterations in monthly streamflow
Fig. 12 illustrates hydrologic alteration (HA) factors for monthly

streamflow magnitudes (parameter group 1) at three stations, and Fig.
13 presents monthly flow changes (in median) from pre-1990 period to
post-1990 period. Hydrologic alterations in monthly streamflow, it is
interesting that middle RVA categories at stations Q460 and Q465 for
11 months and at station Q470 for seven months show negative alter
ations, most of which are middle and high degree of alterations. This

means that the frequency of values in middle category has decreased
from pre-1990 period to post-1990 period. In station Q460, median
values in dry months like Jan, Feb and March has increased by 20–35
percent in post-1990 period but has decreased in monsoon months of
Jun, Aug and Sep by about 20–30 percent (Fig. 13). HA factors relating
monthly flows in high and low RVA categories for stations Q460 and
Q465 are positive for most of months with middle and high degrees
(hydrologic alteration values >0.5 or 50%). For station Q465, HA fac
tors for low RVA category also shows decline like middle category, but
with increase in high category for all months. It is to be noted that, for
station Q465 even though HA factors are negative, there is increase in
median values for all months ranging from 15% in December to 170%
in  June, except in September (Fig. 13).

Deviations in median values for monthly flows at station Q470 are
less in comparison to other two stations. Shifts in HA factors relating to
group 1 (or monthly flows) from middle range category to high and low
RVA categories before and after 1990 is an indication of shifts in the
frequency of monthly flows towards higher and lower percentile groups.
This implies increase in the intra-annual hydrological variability in the
river flow. Such changes are not visible in annual volume point-change
analysis as carried out by Pandey et al. (2020), though they can be

Fig. 10. Projected change in future temperature based extreme indices compared to historical baseline (1980–2005) - (left) for indices TXx, TNx, TXn and TNn;
(right) for indices TX90p, TN90p and WSDI. N, M and F represent near future (2021–2045), mid future (2046–2070) and far future (2071–2095) periods.
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Fig. 11. Uncertainty in RCM models- Projected changes by 15 RCMs in consensus in near future for RCP 4.5 scenario for station 905 (left for indices TXx, TNx,TXn
and TNn; right for indices TX90p, TN90p and wsdi). Other descriptions are same as in Fig. 8.



Fig. 12a. Hydrologic alteration in station Q460 before and after 1990 for three RVA categories.

attributed to anthropogenic changes after 1990. It is to be noted that,
there is no change in the seasonal pattern of precipitation before and
after 1990 (Fig. 13d).

4.4.2. Alterations in annual extreme flow conditions
Low flows: Parameter group 2 represents extreme flow conditions.

Hydrological alterations in these flow conditions before and after 1990
are also presented in Fig. 12. Almost all of minimum and maximum
flows parameters for middle RVA category at three stations have nega
tive HA values and most of alterations are of medium and high degree.
In case of minimum flow parameters (1-day, 3-day, 7-day, 30-day and
90- day minimum flows), station Q460 show negative HA values for
high RVA category, result of which is shown by increase in low RVA
category. For station Q465, high RVA category show high positive
alterations. Alteration of low flows is of low degree for station Q470.
Low flow magnitudes at station Q460 varies from about 4% increase
for 90-day minimum flow to about 32% decrease for 3-day minimum
flow in post-1990, among which only 90-day minimum flow has
increased. At station Q470, minimum flow has decreased from 2 to 16
percent. Trend

analysis of 1-day, 7-day and 30-day minimum flow for period
1980–2005 are presented in Table 5. They represent short-term, me
dium term and long-term minimum flow regimes. At station Q460, 1-day
and 7-day minimum flow are observed to be decreasing at 0.066
m3/sec  per year; while 30-day flow is increasing at 0.011 m3/sec per
year. At  station Q465, minimum flows are increasing at rate of 0.018 to
0.034  m3/sec per year. In contrast, minimum flows are decreasing by
about  0.004 to 0.015 m3/sec annual. However, all these trends are not
sta tistically significant.

The possible impact of decrease in low flows can be reduction of
habitat availability (Zeiringer et al., 2018). Importantly, since these
rivers have low flows in winter (DJF) months than in monsoon (JJAS),
reduction in water flow can have serious implication on environment
and aquatic habitat. For instance, Abebe et al. (2020) reported that
extreme reduction in low flows in Gumara River in the Ethopian high
lands impacted on predators by reducing their mobility and ability to
access prey concentrated in smaller pools. Unlike these two stations,
minimum flows have increased at station Q465; 1-day minimum
increased by about 15% and 30-day minimum by about 35% after
1990.
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Fig. 12b. Hydrologic alteration in station Q465 before and after 1990 for three

RVA categories.

Fig. 12c. Hydrologic alteration in station Q470 before and after 1990 for three RVA categories (Notes: H, M and L represents high, medium and low degree of
alterations, respectively. Hydrologic alteration values within yellow, green and light-red zones represent low (0 to 33%), medium (34 to 67%) and high (>67%)
degree of alterations, respectively. Deviation values are computed from the median values before and after 1990, and expressed as percentage in secondary axis
which are shown as squared dots.)

High flows: Pattern of high flow HA values for station Q460 is similar
to that of low lows i.e. negative high and middle RVA categories are
observed when low RVA category is positive. At this station, high flows
in post 1990 has decreased in general; for instance, seasonal
maximum flow (90-maximum) has decreased up to 19 percent and
weekly maximum (7-day) has decreased by about 15 percent. This
contrasts with station Q465 and Q470, where there is increase of high
flow re
gimes up to 37 percent. In station Q465, seasonal maximum flow (90-
maximum) has increased up to 27 percent and weekly maximum
(7-day) has increased by about 8 percent. Most of alterations for Q465
are positive for high RVA category and negative for medium and low
RVA category. Likewise, in station Q470, seasonal maximum flow has
increased by 11 percent and weekly maximum by about 37 percent;
though 1-day maximum has decreased by 18 percent. At station Q470,

HA values are positive in high and low RVA categories but negative in
middle category. Results of trend analysis of high flows namely, 1-day
maximum, 7-day maximum and 30-day maximum flows for period
1980–2005 show that they are increasing annually in the EER
watershed (Table 5). 1-day flow is increasing at rate of 2.3, 9.1 and 1
m3/sec per year at stations Q460, Q465 and Q470 respectively. 7-day
and 30-day maximum flows are also increasing at rate between 1.2 to
4.5 m3/sec and 0.4 to 1.8 m3/sec annually respectively. Though these
trends are not statistically significant, they provide information on
increasing short,  medium and long term flow regimes.

Increase in the high flow regimes can have both positive and nega tive
impacts which depends up on channel morphology, types of sub strate,

depth and other geomorphological characteristics and greater
magnitude of extreme flows can also disrupt life cycle, loss sensitive

species (Zeiringer et al., 2018); but reductions of seasonal maxima also
can break the linkage between flood-plains and surrounding
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Fig. 13. Alterations in monthly flow and precipitation in the Extended East Rapti (EER) watershed before and after 1990. Spread represents Middle RVA category
(34th to 67th percentile). cms is cubic meters per second.

environmental habitats (Abebe et al. 2020). We recommend for detailed
study on impacts of flow regimes on corresponding ecological

responses.  Base flow: Number of ‘zero-day’ values for all stations is
zero, and  there in no alteration in this parameter before and after 1990.

Changes
in base flow index HA values is low alteration for station Q460. At sta
tion Q465, there is medium alteration (negative) of high RVA category
with simultaneous high alteration (positive) of low RVA category. This is
shift in frequencies from high to low category. In contrast, at station
Q470, there is high alteration (negative) of middle RVA category when
low RVA category show positive high alteration. This implies shift in
frequencies from middle to low categories. Likewise, median value has
decreased by about 20 percent at station Q470 while there are only
small  changes in remaining stations.

4.4.3. Timing of daily minimum and maximum flows
Table 6 presents shifts in occurrence dates of 1-day maxima and

minima in three rivers in the study area (Parameter group 3). Median
Julian date of annual 1-day minimum flow for all three rivers are
moving backward in time, which suggests prolongation of low flow
season. Similarly, median Julian date of annual 1-day maximum flow
for all three rivers are occurring almost a month earlier. Such changes
can also be observed from the trends of the date of minimum flow
(days) and maximum flow in Table 6. Date of maximum flows is in
decreasing trend, i.e., it is occurring earlier by 1 day to 2 days per year
in period of 1980–2005; however, this decrease is statistically
significant only for station Q465. Similarly, date of minimum flows is
shifting later for stations Q460 and Q465 by around 1 to 1.5 days; but
is shifting earlier in station Q470. Trends for date of minimum flows
though are not statis tically significant.

Such shifts in low and high peak flows indicates the changing flow
regimes and increase in variability of river flow in the EER watershed,
either due to natural or anthropogenic causes. Such alterations can

have serious implications on natural habitats and ecology of a river
which  needs detailed investigation.

4.4.4. Alterations in frequency and duration of high and low flow pulses
Hydrological pulses are the periods within a year in which the daily
mean water condition either rises above 75th percentile (high pulses) or
drops below the 25th percentile (low pulse) of all the daily values for the
base period (Richter, 1996). Frequency of high pulses have increased
in  post-1990 period for stations Q465 and Q470 bygreater than 25
percent,  however it has decreased at station Q460. High pulse duration
though  have decreased by 1.5 to 2 days in those stations. In case of
low pulses,  the count has increased in stations Q460 and Q470, but
decreased in  Q465. In station Q465, the low pulse duration has
increased slightly by  quarter day; but in remaining stations, it
decreased by 1 to 3 days.  Impact of alteration of changes in such
pulses can be felt differently for  different river systems and different
causes of alteration. Xue et al.  (2017) discusses the possibility of
supply of nutrients to plants and an imals at the river bank of Tarim
River in China and development of river  biodiversity because of
increase of high pulse duration.

4.4.5. Alterations in rate and frequency of flow conditions Parameter
group 5 describes the alterations in the rate and frequency  of flow
conditions. Flow rise rate in station Q460 has increased after  1990 by
about 10 percent; though in other stations it has decreased by 5  to 12
percent. However, the fall rate has decreased from about 8 to 13 at  the
three stations. Number of reversals in Q460 and in Q 465 has
increased by about 54 percent and 11 percent; though it has decreased
by about 5 percent at Q470. All the group 5 parameters at station Q470
have decreased, implying that the channel is undergoing more deposi
tional process. Same is true for Q465 but since the reversal rate has
increased, stabilization process may be slower than in case of Q470.
Unlike these two stations, erosion processes may be more active in
case  of station Q460 with effects on overall annual stability of the river
banks.
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Table 5
Trends in the IHA parameters related to extremes at three gauging stations.
Journal of Hydrology 598 (2021) 126383

IHA parameters Station

Mann Kendall’s Tau
p- value from  M-MK test
Sen’s slope  (units /
year)
p –value from  Spearman

rho test
Significance (α¼ 0.05) as
per M-MK test
Significance (α¼ 0.05) per
Spearman’s rho test

1-day minimum flow  (m3/sec)

7-day minimum flow  (m3/sec)

30-day minimum  flow (m3/sec)

1-day maximum flow  (m3/sec)

7-day maximum flow  (m3/sec)

30-day maximum  flow (m3/sec)

Date of minimum  flow (days)

Date of maximum  flow (days)
460 − 0.178 0.234 − 0.066 ↓ 0.319 NS NS  465 0.046 0.728 0.018 ↑ 0.889

NS NS  470 − 0.145 0.133 − 0.015 ↓ 0.360 NS NS  460 − 0.159 0.286 −

0.066 ↓ 0.407 NS NS  465 0.071 0.628 0.027 ↑ 0.708 NS NS  470 − 0.071

0.319 − 0.009 ↓ 0.673 NS NS  460 0.043 0.785 0.011 ↑ 0.668 NS NS  465

0.132 0.355 0.034 ↑ 0.403 NS NS  470 − 0.025 0.803 − 0.004 ↓ 0.848 NS

NS  460 0.156 0.297 2.357 ↑ 0.339 NS NS  465 0.172 0.225 9.100 ↑ 0.173

NS NS  470 0.022 0.895 1.029 ↑ 0.841 NS NS  460 0.101 0.407 1.274 ↑

0.471 NS NS  465 0.243 0.064 4.370 ↑ 0.084 NS NS 470 0.200 0.158 1.413

↑ 0.226 NS NS  460 0.123 0.413 0.434 ↑ 0.521 NS NS 465 0.182 0.201

1.844 ↑ 0.204 NS NS  470 0.151 0.063 0.683 ↑ 0.279 NS NS  460 0.228

0.124 1.142 ↑ 0.105 NS NS  465 0.175 0.217 1.588 ↑ 0.250 NS NS  470 −

0.049 0.741 − 0.467 ↓ 0.810 NS NS  460 − 0.167 0.18 − 1.079 ↓ 0.267 NS

NS  465 − 0.295 NA − 1.800 ↓ 0.022 S S

470 − 0.335 0.017 − 2.000 ↓ 0.051 S NS

Notes: Arrows ↑, and ↓ indicate increase and decrease in trends, respectively. ‘S’ and ‘NS’ are statistically significant & not significant.

Table 6
Timing of annual maximum and minimum extremes.

(Rajaiya) (annual maximum flow as well as recorded floods) and the
rainfall extremes (RX1day) occurring at rainfall stations upstream of
Q460.

Date of daily minimum flow  (median) – n days from Jan
1
Date of daily maximum flow  (median) – n days from Jan

1
It is very clear from Table 7 that occurrence of

annual maximum  flows at Q460 are closely
tied up with the occurrence of the extreme

Station Before  1990

460 109 (19  Apr)
465 77 (18  Mar)
470 121 (1  May)
After
1990

134 (14  May)
105 (15  Apr)

126 (6  May)
Changes Before  1990

25 (→) 246 (3  Sep)
28 (→) 243 (31  Aug)
5 (→) 247 (4  Sep)
After
1990

220 (8  Aug)

210 (29  Jul)
214 (2  Aug)
Changes

26 (←)  33 (←)  33 (←)

rainfall events. In
addition, the flood

record dates obtained
from GoN  (2020) and
United Nations Office for
Disaster Risk Reduction
(2019) also can be
seen associated with
the RX1day rainfall.
These are shown by

the blue and green
colours in the Table 7.
For instance, in 2000,
the flood  recorded date
is between period 30
July to 4 August, and
three upstream  rainfall
stations (904

–Chisapani, 905-
Daman and 925 –
Rajaiya) have  received
rainfall of RX1day
magnitude between the
flood period. Like

Note: (a) Units are in days (b) → indicates delay or late shifting (c) ← indicates
early shifting.

4.5. Inter-relationship between hydrological and climatic extremes

Hydrological extremes are the manifestation of the climatic ex tremes,
specifically precipitation extremes. Stream flows are directly or

indirectly proportional to the rainfall. Simple expression of this rela
tionship is a rational formula, i.e., Q = C × I × A; where C is catchment
coefficient, I is rainfall (intensity) and A is catchment area. It explicitly
relates to the intensity of rainfall to the streamflow, i.e., extreme rain
falls should also result in the high discharge in stream. It implicitly re
lates the timing of flows in relation to the occurrence of rainfall, i.e.,

flow due to extreme rainfall events can be traced out in flow hydrograph
and it depends upon the time of concentration of the catchment. Table

7 shows the relationship between high discharges at station Q460
wise, in 2002, annual maximum flow occurred on 23 July as result of

rainfall extremes (RX1day) in upstream on the same day. Table 7 also
shows spatial variability of rainfall extremes in relationship to high flows
and floods in the EER watershed. However, the regression analysis
between the magnitude of annual maximum discharge and RX1day
occurring on the same date (or day earlier) shows poor relationship in
the watershed. This might be due to erroneous discharge reading for
the high flows at the gauging station. For example, in observation
records on 23-July 2002 and 9 July 2004, it can be seen that rainfall on
the former date is approximately 2 times higher than the latter date but
river flow is about 2.6 times lesser on the former date. Strong
correlation between RX1day rainfall and corresponding flow as floods
is shown by Basnyat et al. (2020) in the Bagmati basin, which is
neighbouring basin to the east of the ERR watershed. The study
showed that correlation coefficient between RX1day rainfall and flood
discharge is approximately 0.74 with statistically significant results. As
the Bagmati is located in the East of
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Table 7
Annual maximum flows, floods and its relationship with extreme precipitation
(RX1day).
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EER, the similar relation can be expected for EER watershed as well,
even though data has not shown it clearly, perhaps due to errors in
data observation/recording for high floods. Since RX5day in most of
the cases also includes day corresponding to RX1day, RX5day rainfall
also have  strong relationship with high flows and floods.

Precipitation extremes events like R95p, RX1day, RX5day, R20 are
increasing in the ERR watershed as shown in Fig. 6. Simultaneously,
hydrological extremes like 1-day maxima, 7 –day maxima and 30-day
maxima are also increasing (Table 5). Likewise, the increase in the ex
tremes like consecutive dry days is also affecting the minimum flows.
This is a clear indication that increase in precipitation extremes are
also causing increase in the hydrological variability in the ERR
watershed.

In future, the precipitation extremes are projected to increase
(IPCC, 2014). As explained in Section 4.2.3, precipitation extremes in
the EER watershed are projected to increase even up to 40 percent.
Sillmann et al. (2013b) estimates an increase of RX5day up to 20

percent in RCP 4.5 scenario and up to 50 percent in RCP 8.5 scenario
during 2081–2100 for the South Asian region. Dhaubanjar et al.
(2020), using projections of 19 different CORDEX-SA RCMs, projects
prolonged monsoon effects and increase in the intense rain events in
the Karnali region of the Western Nepal for both RCP scenarios.
Similarly, another study (MoFE, 2019) projects an increase of very wet
days (P95) by about 12 percent in 2036–2065 period for Chitwan and
Makwanpur districts of the ERR watershed. Since, precipitation
extremes are currently increasing and are projected to increase, its
translation into extreme hydrological events are also expected in the
ERR watershed.

5. Conclusions

Climatic and hydrological extremes are of greater concern to the
socio-economy. Climatic extremes influence the impacts of water

induced disasters to the socio-economically vulnerable population. We
examined the changes in temperature- and precipitation-based
extremes in the Extended East Rapti (EER) watershed in the
southern-central Nepal. We used ETCCDI indices for climate extremes
and examined its trend in the base period 1980–2005. Besides, we
presented the alter
ations in the river flow characteristics in pre- and post-1990 in the three
sub-watersheds in the EER watershed. They were analysed using IHA
indicators; and trend analysis were also performed in hydrological
extreme indices. In order to assess the future changes in the climate
extremes, we first selected a suitable ensemble out of 19 regional
climate models (RCMs) using the Australian Climate Futures
Framework based on changes in annual average precipitation and
temperature changes in the three future time periods namely,
near-future (2021–2045), mid
future (2046–2070) and far-future (2071–2095), as compared to the
base period. Then, we computed the ETCCDI indices and analysed the
changes.

Performance of bias correction: Ensemble spread of raw RCMs is
large, indicating RCMs’ limitations to fairly capture the extremes, even
though ensemble means in some cases are closer to the observation
as in CWD and TXx. RCMs model spread is higher at higher
percentiles. Absolute value-based temperature indices are generally
underestimated whereas count-based indices (e.g., TX90p, TN90p)
are in agreement with observation. The spread of RCMs after bias
correction are narrowed down and they match closely with observation
for indices others than  higher percentiles.

Projected changes in climate extreme magnitudes: The ERR
watershed, like all the basins in Nepal, are highly influenced by the
monsoon rainfall in JJAS season. Almost all of the heavy precipitation
events occur in those months. Precipitation amount, dry days and
heavy pre
cipitation events are projected to increase in the future. Since, indices
like R95p, RX1day and RX5day are closely associated with
hydrological
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extremes as floods and events like landslides, those events are also ex
pected to increase together with precipitation extreme events. All the
temperature-related extreme indices, in general, are projected to in
crease in future periods, in which increase is more pronounced under
the  RCP 8.5 scenario. Future, as projected by the RCMs for both
scenarios,  will be warmer with increase in temperature-based extreme
indices like  warm days (10–50%) and warm nights (15–60%), the daily
maxima and  minima based extremes (0.2–5.0 ◦C) and prolongation of
warm spell  duration. Projected increase in hotter days and nights
together with the  rise in extremes, and further coupled with other
precipitation-related  extremes, may result in compounded impacts to
the societies and  ecosystems.

Observed and projected trends in climatic extremes: Observed
trends in precipitation extremes in the EER watershed for the baseline
period (1980–2005) are clearly increasing over the years. Heavy

rainfall amounts like maximum 1-day precipitation (RX1day), maximum
consecutive 5-day precipitation (RX5day) and very wet day precipita
tion (R95p) are observed with increasing trends, though with varying
rates and level of significance. Consecutive dry days (CDD) are
increasing with simultaneous decrease in consecutive wet days (CWD).
The numbers of heavy rainfall days (e.g. R20) are also increasing. In
case of temperature-related extreme indices, they show mixed trends
over the baseline period across the indices as well as stations. There is
a clear indication of increase in warm nights and warm days, no
change in warm spell duration; and mixed results for other indices. For
example, TXx has increasing trends at two stations (s905 and s906),
whereas trend in TNx is decreasing at stations 902 and 906. Similarly,
TXn has decreasing trend at two stations (s902 and s905), and TNn
has increasing trend at s902 and decreasing trend in s906. The trends,
for both temperature- and precipitation-based extremes, vary spatially,
mostly indicating same direction of trend albeit with varying magni
tudes. Most of the projected climate extreme trends (e.g., TX90p,



TN90p, R95p, RX5day) agree with the increasing observed trends
during the baseline period, albeit with varying rates and different levels
of  significance.

Observed trends in hydrologic extremes: Alterations in the flow regime
of rivers of the EER watershed is progressing. These alterations can be

attributed to the anthropogenic changes in the EER watershed; espe
cially after 1990 when lots of developments are underway inside the
watershed. Trend analysis of different indicators shows they are not

statistically significant, but they certainty provide us information on
direction of alterations. For instance, extreme indicators of maximum

Annex A. . Description of the 19 RCMs considered in this study
Journal of Hydrology 598 (2021) 126383

flows are increasing in the ERR watershed. IHA indicators’ shift from
middle RVA category to high and low RVA categories in post-1990
period with medium and high degree of alterations show that vari ability
is increasing in the rivers. Such increase of variability may have
geomorphic and ecologic implications as described in (Richter et al.
(1996)) and Graf (2006). Identification of geomorphic and ecological
implications in river of the EER watershed requires a separate rigorous
study.

Climate extremes, specially related to precipitation, have direct
relation to the hydrological extremes and these can be seen in the wa
tersheds of southern Nepal including the ERR watershed. We observe
that both the precipitation and hydrological extremes are increasing in
the watershed. Since, they bear direct relationship, future hydrological
extremes mostly floods are expected to increase in future.
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ID Short Name  [GCM_RCM]

CORDEX  South Asia  RCM
Driving GCM RCM Description
Contributing RCM Modeling  Center
Timeframe Coordinate

1 ACCESS_CCAM CSIRO

CCAM-1391
M
ACCESS1.0 Conformal Cubical
Atmospheric  Model – CCAM

(Mcgregor and
Dix, 2001)
Commonwealth Scientific and
Industrial Research

Organization (CSIRO), Marine
and Atmospheric Research,
Melbourne, Australia
Hist:

1970–2005  RCP4.5/8.5:
2006–2099
Regular

2 CanESM2_RegCM4 IITM

RegCM4
CCCma CanESM2
The Abdus Salam
International  Centre for
Theoretical Physics  (ICTP)

Regional Climatic Model
version 4 - RegCM4 (Giorgi
et al., 2012)
Centre for Climate Change
Research (CCCR), Indian

Institute of Tropical
Meteorology (IITM), India
Hist:
1951–2005  RCP4.5/8.5:
2006–2099

Rotated_mercator

3 CNRM_CCAM CSIRO
CCAM-1391
M

4 CNRM_RegCM4 IITM RegCM4
CNRM-CM5 Conformal Cubical
Atmospheric  Model – CCAM
(Mcgregor and
Dix, 2001)

CNRM-CM5 ICTP Regional

Climatic Model  version 4 -
RegCM4 (Giorgi
et al., 2012)
CSIRO, Marine and
Atmospheric Research,  Melbourne,
Australia

Centre for Climate Change
Research (CCCR), IITM, India

Hist:
1970–2005  RCP4.5/8.5:
2006–2099  Hist:
1951–2005  RCP4.5:
2006–2099
Regular

Rotated_mercator

(continued on next page)
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CORDEX  South Asia  RCM

Driving GCM RCM Description Contributing
RCM Modeling  Center
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Timeframe Coordinate

RCP8.5:
2006–2085
5 CNRM_RCA4 SMHI-RCA4 CNRM-CM5
Rossby Centre regional  atmospheric model
version 4 -

RCA4 (Samuelsson et al., 2011)
Rosssy Centre, Swedish  Meteorological and
Hydrological Institute (SMHI),  Sweden
Hist:
1951–2005  RCP:
2006–2100
Rotated_pole

6 CSIRO_RegCM4 IITM

RegCM4
CSIRO Mk3.6
ICTP Regional Climatic
Model  version 4 - RegCM4

(Giorgi  et al., 2012)
Centre for Climate Change
Research (CCCR), IITM,
India

Hist:
1951–2005  RCP4.5/8.5:
2006–2099
Rotated_mercator

7 GFDL_CCAM CSIRO

CCAM-1391
M
GFDL-CM3 Conformal Cubical
Atmospheric  Model – CCAM

(Mcgregor and
Dix, 2001)
CSIRO, Marine and
Atmospheric Research,

Melbourne, Australia
Hist:
1970–2005  RCP4.5:
2006–2070  RCP8.5:

2006–2099
Regular

8 HadGEM_RA HadGEM3-

RA
HadGEM2-  AO
HadGEM3 Regional
Atmospheric Model
(Moufouma-Okia and Jones,
2014)

Met Office Hadley Centre
(MOHC), UK
Hist:
1970–2005  RCP4.5/8.5:
2006–2100
Curvilinear

rotated_latitude_longitude



9 ICHEC_RCA4 SMHI-RCA4 ICHEC-EC

EARTH
Rossby Centre regional
atmospheric model version 4 -  RCA4

(Samuelsson et al., 2011)
Rosssy Centre, SMHI, Sweden Hist:
1970–2005
RCP:

2006–2100
Curvilinear
rotated_latitude_longitude

10 IPSLLR_RegCM4 IITM

RegCM4
IPSL-CM5A LR
ICTP Regional Climatic

Model  version 4 - RegCM4
(Giorgi  et al., 2012)
Centre for Climate Change

Research (CCCR), IITM,
India
Hist:

1951–2005  RCP4.5/8.5:
2006–2099
Rotated_mercator

11 IPSLMR_RCA4 SMHI-RCA4
IPSL-CM5A MR

12 MIROC5_RCA4 SMHI-RCA4 MIROC

MIROC5
Rossby Centre regional
atmospheric model version 4 -  RCA4
(Samuelsson et al., 2011)

Rossby Centre regional
atmospheric model version 4 -  RCA4
(Samuelsson et al., 2011)

Rosssy Centre, SMHI, Sweden Hist:
1951–2005
RCP:
2006–2100
Rosssy Centre, SMHI, Sweden Hist:
1951–2005
RCP:
2006–2100

Rotated_pole  Rotated_pole

13 MPI_CCAM CSIRO
CCAM-1391
M

14 MPI_REMO MPI-CSC
REMO2009

MPI-ESM-LR Conformal
Cubical Atmospheric  Model –
CCAM (Mcgregor and
Dix, 2001)

MPI-ESM-LR MPI Regional

model 2009  -REMO2009
(Teichmann et al.,
2013)
CSIRO, Marine and
Atmospheric Research,
Melbourne, Australia

Climate Service Center (CSC),
Germany
Hist:
1970–2005  RCP4.5/8.5:
2006–2099  Hist:

1970–2005  RCP:
2006–2100
Regular  Regular

15 MPI_RCA4 SMHI-RCA4 MPI-ESM-LR Rossby
Centre regional  atmospheric model version 4 -

RCA4 (Samuelsson et al., 2011)
Rosssy Centre, SMHI, Sweden Hist:  1951–2005
RCP:

2006–2100
Rotated_pole

16 MPIMR_RegCM4 IITM
RegCM4

17 NOAA_RegCM4 IITM
RegCM4
MPI-ESM MR

NOAA

GFDL-GFDL ESM2M
ICTP Regional Climatic
Model  version 4 - RegCM4
(Giorgi  et al., 2012)

ICTP Regional Climatic
Model  version 4 - RegCM4

(Giorgi  et al., 2012)
Centre for Climate Change
Research (CCCR), IITM,
India

Centre for Climate Change
Research (CCCR), IITM,

India
Hist:
1951–2005  RCP4.5/8.5:
2006–2099  Hist:
1970–2005  RCP:
2006–2099
Rotated_mercator

Curvilinear
rotated_mercator

18 NOAA_RCA4 SMHI-RCA4 NOAA

GFDL-GFDL
ESM2M
Rossby Centre regional
atmospheric model version 4 -  RCA4

(Samuelsson et al., 2011)
Rosssy Centre, SMHI, Sweden Hist:
1951–2005
RCP:

2006–2100
Rotated_pole

19 NorESM_CCAM CSIRO

CCAM-1391
M
NorESM-M Conformal Cubical
Atmospheric  Model – CCAM

(Mcgregor and
Dix, 2001)
CSIRO, Marine and
Atmospheric Research,

Melbourne, Australia
Hist:
1970–2005  RCP4.5:
2006–2099  RCP8.5:

None
Regular

Notes: All RCMs have spatial resolution of 0.44◦ X 0.44◦. Hist. is historical; RCP is representative concentration pathways; GCM is global climate
model; RCM is regional climate model.

Annex B. List of the regional climate models (RCMs) selected for consensus case in six climate future matrices.
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ID RCM Name Δpr (%) Δtasmax (◦C) ID RCM Name Δpr (%) Δtasmax (◦C)

Near Future (NF) RCP4.5 Scenario RCP8.5 Scenario
1 ACCESS1_0-CSIRO-CCAM − 3.06 1.00 1 ACCESS1_0-CSIRO-CCAM − 3.65 1.22 3 CNRM-CM5-CSIRO-CCAM − 5.71 0.74 2
CCCma-CanESM2_IITM-RegCM4 8.46 1.05 4 CNRM-CM5_IITM-RegCM4 − 5.12 0.72 3 CNRM-CM5-CSIRO-CCAM − 1.09 0.74 5
CNRM-CM5_SMHI-RCA4 8.49 0.69 4 CNRM-CM5_IITM-RegCM4 − 2.47 0.89 6 CSIRO-Mk36_IITM-RegCM4 − 3.99 1.65 6
CSIRO-Mk36_IITM-RegCM4 2.70 1.43 7 GFDL-CM3-CSIRO-CCAM − 5.46 1.84 8 HadGEM3-RA 9.66 1.39 8 HadGEM3-RA 7.70 1.09 10
IPSL-CM5A-LR_IITM-RegCM4 4.00 0.96 9 ICHEC-EC-EARTH-SMHI-RCA4 7.61 0.81 12 MIROC-MIROC5_SMHI-RCA4 4.30 1.35 10
IPSL-CM5A-LR_IITM-RegCM4 − 0.53 0.92 13 MPI-ESM-LR-CSIRO-CCAM 1.67 1.08 11 IPSL-CM5A-MR_SMHI-RCA4 4.01 1.50 14
MPI-ESM-LR-MPI-CSC-REMO2009 − 1.02 1.68  13 MPI-ESM-LR-CSIRO-CCAM − 2.44 0.75 15 MPI-ESM-LR_SMHI-RCA4 7.96 1.40
14 MPI-ESM-LR-MPI-CSC-REMO2009 − 5.37 1.51 17
NOAA-GFDL-GFDL-ESM2M-IITM RegCM4

16 MPI-ESM-MR_IITM-RegCM4 − 3.05 0.83
− 0.21 1.21

17

NOAA-GFDL-GFDL-ESM2M-IITM
RegCM4
1.74 1.08

19 NorESM1-M-CSIRO-CCAM − 4.72 0.83
Mid-Future (MF) 1 ACCESS1_0-CSIRO-CCAM 2.32 1.47 1 ACCESS1_0-CSIRO-CCAM − 2.19 2.61 2 CCCma-CanESM2_IITM-RegCM4 7.58 1.42 11

IPSL-CM5A-MR_SMHI-RCA4 6.23 2.98 3 CNRM-CM5-CSIRO-CCAM 2.57 0.73 12 MIROC-MIROC5_SMHI-RCA4 − 3.22 2.44 4
CNRM-CM5_IITM-RegCM4 − 3.51 1.19 13 MPI-ESM-LR-CSIRO-CCAM 7.70 2.07 9 ICHEC-EC-EARTH-SMHI-RCA4 7.68 1.63 15
MPI-ESM-LR_SMHI-RCA4 − 1.39 2.72  12 MIROC-MIROC5_SMHI-RCA4 5.50 1.63 16 MPI-ESM-MR_IITM-RegCM4 − 4.44 2.20
13 MPI-ESM-LR-CSIRO-CCAM − 0.06 1.32 17
NOAA-GFDL-GFDL-ESM2M-IITM RegCM4
15 MPI-ESM-LR_SMHI-RCA4 − 0.25 1.98

16 MPI-ESM-MR_IITM-RegCM4 − 7.33 1.63
0.78 2.13



17

NOAA-GFDL-GFDL-ESM2M-IITM
RegCM4
3.80 1.48

18 NOAA-GFDL-GFDL-ESM2M_SMHI-RCA4 − 9.26 1.77
19 NorESM1-M-CSIRO-CCAM 2.07 0.98

Far Future (FF) 2 CCCma-CanESM2_IITM-RegCM4 8.03 1.62 2 CCCma-CanESM2_IITM-RegCM4 9.61 2.88  3 CNRM-CM5-CSIRO-CCAM − 1.17 1.32 3
CNRM-CM5-CSIRO-CCAM 0.93 3.04
4 CNRM-CM5_IITM-RegCM4 − 0.29 1.25 17
NOAA-GFDL-GFDL-ESM2M-IITM RegCM4

5.35 3.07

9 ICHEC-EC-EARTH-SMHI-RCA4 7.95 1.86 18 NOAA-GFDL-GFDL-ESM2M_SMHI-RCA4 0.74 3.44  13 MPI-ESM-LR-CSIRO-CCAM 3.59 1.42
16 MPI-ESM-MR_IITM-RegCM4 − 9.10 1.58
17
NOAA-GFDL-GFDL-ESM2M-IITM

RegCM4
4.94 1.67

19 NorESM1-M-CSIRO-CCAM 1.62 1.41

Notes: ID corresponds to identification number of Regional Climate Model (RCM) in Annex-A; Δpr change in precipitation; Δtasmax is change in
average temperature.
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