2110.09571v1 [cs.CV] 18 Oct 2021

arxiv

Hands Offt: A Handshake Interaction Detection and
Localization Model for COVID-19 Threat Control

A. S. Jameel Hassan', Suren Sritharant, Gihan JayatilakaT,
Roshan I. Godaliyadda®, Parakrama B. Ekanayake', Vijitha Herath!, Janaka B. Ekanayake'
tDepartment of Electrical and Electronic Engineering, University of Peradeniya, Sri Lanka
tSchool of Computing and IT, Sri Lanka Technological Campus, Sri Lanka
{jameel.hassan.2014, suren.sri, gihanjayatilaka}@eng.pdn.ac.1lk,
{roshangodd, mpb.ekanayake}@ee.pdn.ac.lk, {vijitha, ekanayakej}@eng.pdn.ac.lk,

Abstract— The COVID-19 outbreak has affected millions of
people across the globe and is continuing to spread at a drastic
scale. Out of the numerous steps taken to control the spread
of the virus, social distancing has been a crucial and effective
practice. However, recent reports of social distancing violations
suggest the need for non-intrusive detection techniques to ensure
safety in public spaces. In this paper, a real-time detection model
is proposed to identify handshake interactions in a range of
realistic scenarios with multiple people in the scene and also
detect multiple interactions in a single frame. The efficacy of the
proposed model was evaluated across two different datasets on
more than 3200 frames, thus enabling a robust localization model
in different environments. The proposed model is the first dyadic
interaction localizer in a multi-person setting, which enables it
to be used in public spaces to identify handshake interactions
and thereby identify and mitigate COVID-19 transmission.

Index Terms—COVID-19, deep learning, human-human inter-
actions, dyadic interaction localization

I. INTRODUCTION

The novel COVID-19 virus is one of the biggest threat
to global health since the Spanish flu in 1918. As of July
2021 nearly 196 million people have been infected and more
than 4 million people have succumbed to death due to the
virus [1]. Vaccination has been identified as the most effective
measure by the World Health Organization (WHO) to curtail
the spread of the virus [2]. However, complete vaccination
of the entire global population has not been possible due
to varying production and logistic issues. Therefore, the key
measure taken for the curtailment of the spread of COVID-19
has been social distancing.

Social distancing has been found to be a promising approach
towards mitigating the virus spread [3]. Nevertheless, humans
as a social species, tend to deviate from such constrained
behavior [4] for prolonged periods of time. Thus, it is crucial
to identify such breach of social distancing protocols in order
to ensure the safety of the society. Importantly, human-human
interactions need to be ensured minimal as it is the most
severe form of breach which are also the easiest to avoid.
Moreover, a simple greeting is the often the initial breach of
social distancing. Therefore, identifying and localizing such
interactions such as from a CCTV footage will enable to
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create a framework to prevent such breach of social distancing
measures.

Identification of human interactions often referred to as
dyadic interactions (interactions between two people) has been
explored in the action recognition domain. Action recognition
has moved from an object detection/tracking problem [5], [6]
in to a multi-class classification problem. Dyadic interaction
detection has spawned from human action recognition in
computer vision literature. Most of action recognition has
focused on a single person in the frame performing a specific
action such as running, walking, jumping etc [7]. Recently
works have focused on behavior/activity recognition of multi-
ple people in the frame, such as in a game [8].

The use of limb positions to identify interactions was
presented in [9]. The idea stemmed from the concept that each
interaction presented unique limb positioning. As a next step,
considering the gross body movement and proximity measures
was done in [10]. This is done in a multi-step manner where
the person localization is used for the interaction identification.
This poses a drawback in interaction localization as the error
in the first stage of person localization can extend to the next
stage. This has been improved by considering this a multiple
instance learning problem by [11] since not all frames in an
interaction are considered informative.

Bag of visual words method has also been used to identify
body movements. Local features from this are pooled and a
mapping is generated from this to interactions in [12]. Part-
based models such as deformable part model (DPM) [13]
has been proven extremely effective in people and body part
detection and localization prior to neural networks. The use
of interaction specific DPMs to identify people in specific
poses is done in [14]. An extension of this work using
spatio-temporal DPMs to localize dyadic interactions has been
presented in [15]. This has been one of the few works that
localizes the interaction itself instead of the actors.

The advent of neural networks has drastically overtaken
DPM techniques in detection problems. The YOLO network
[16] is a highly robust neural network capable of detecting 80
classes in real-time (78 FPS). In [17] a human activity recog-
nition model has been formulated using the YOLO network on
the LIRIS dataset [18]. Most notably, this model can perform
the localization in real-time which is crucial depending on the



need. A recurrent neural network (RNN) based spatio-temporal
attention mechanism for human interaction recognition is
performed in [19]. This model incorporates attention to the
hands of the body to identify the interaction. However, one of
the main drawbacks of this and other methods is the absence
of real-time detection. The above cited works except [14], [15]
in dyadic interaction detection consider a video feed/frame and
classify it to the given class of interaction or identify the actors
where the localization of the interaction is not considered. This
localization too is performed only with two persons in the
frame.

The major contributions of this paper are as follows. In this
paper, the first human interaction localization model in a multi-
person setting is proposed. A handshake interaction localiza-
tion model in real-time to mitigate the threat for COVID-19 is
presented using computer vision in a non-intrusive technique.
This ensures a scalable, robust model that can be used in
public spaces and work environments to mitigate the spread
of COVID-19.

II. PROPOSED SOLUTION

A convolutional neural network (CNN) based model is
proposed to identify and localize handshake interactions in
a multi-person setting for wall mounted CCTV video footage.
The model architecture used is the YOLO network with
training and testing performed using a novel dataset and the
UT-interaction (UTI) [20], [21] dataset.

A. YOLO network

The YOLO network is a state-of-the-art (SOTA) CNN in
object detection. It was the pioneering work in creating a one-
stage detection network for the object detection task. The key
change in YOLOV3 [22] was the approach to divide the image
into grids (such as 13x13), and then predict a fixed number
(such as 3) of bounding boxes for each grid cell. The bounding
box is predicted with the relevant class and object confidence
score. The architecture of the YOLOv3 network is shown in
Fig.1.

The YOLOV3 architecture makes prediction at three stages
in the neural network depth as seen in Fig.1. This enables
detection of objects of all sizes, which was the main drawback
in previous versions. The first stage detector outputting a 13 x
13 grid is better at predicting larger images, while the 26 x
26 grid predicts medium sized images and the 52 x 52 grid
prediction in stage three is best at predicting small images.
The image input (resized to 416 x 416 passes through the
convolutional layers to output a tensor of shape h x h x 18.
Here h is the number of grid cells along one axis and 18
corresponds to 3 x (54 1), where 3 is the number of bounding
boxes predicted in one grid cell, 5 is the number of bounding
box attributes and 1 is the number of classes. The bounding
box attributes are the coordinates of the four vertices and the
objectness score.

B. Model Training

In order to train the YOLO network for handshake interac-
tion detections, a suitable dataset is required. There are few
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(a) Original ground truth for UTL

(b) Created ground truth for UTL

(c) Ground truth of Shakes.

Fig. 2: Dataset ground truth annotations.

datasets in the action recognition domain for computer vision.
However, the handshake interactions in these datasets are
minimal and even then, the ground truth for such datasets are
not for the localization problem but for actors identification.
Furthermore, existing datasets for dyadic interactions have
only two people in the frame. Since our motivation is to
identify interactions to combat COVID-19, a video footage
with multiple people in the frame, where dyadic interactions
occur is necessary. Therefore, a dataset rich in context to
tackle the problem of human interaction identification in a
multi-person setting was created. The existing UTI dataset
was also used in the framework by relabelling the handshake
interactions for the localization problem.

C. Datasets

The existing UTI dataset was re-labelled by marking the
interactions in each frame. Fig.2 shows the original ground
truth and the created ground truth data for the UTI dataset.

Due to the scarcity of handshake interactions, a new dataset
was created in the university premises using wall mounted
CCTVs. This consisted of 10 videos each spanning nearly
1500 frames. We refer to this dataset as the ”Shakes dataset”.
This consists a multi-person setting and also multiple interac-
tions in the same instance in many frames. A sample frame is
shown in Fig.2c.

D. Training Using Transfer Learning

In order to train the YOLO network for the handshake inter-
actions, the darknet53 (highlighted by a cyan dotted rectangle)
Fig.1, referred to as the YOLO backbone was initialized with
weights obtained by training on the Imagenet dataset [23].
Then, 3000 images of hands from the open images database
[24] were used for training the YOLO network as the first
stage, since a larger distribution of images was available here.
Using the weights of the network from this training phase,
the handshake images from the Shakes and UTI datasets
were trained. The transfer learning approach was used as the
handshake interactions were from a smaller distribution. Out
of 20 videos, 17 videos from the UTI dataset and 5 out of
the 10 videos from the Shakes dataset were used. While the
number of videos from the UTI dataset is higher, the number
of frames were maintained approximately equal.

III. RESULTS AND DISCUSSION

The model was evaluated using both the aforementioned
datasets. The Average precision (AP) and the Mean average
precision was used as the evaluation metric, as prominent
object detection competitions such as PASCAL VOC challenge
[25], COCO detection challenge [26] and the Google Open
Images dataset [24] competition use these metrics as key
parameters in evaluating the detector performance.

The Average precision (AP) is the precision value averaged
across varying recall values between O and 1. This is computed
using area under the curve (AUC) of the precision vs recall
curve, plotted as a function of the confidence threshold of
detection with a constant intersection over union (IoU) for the
bounding box threshold [27]. This IoU threshold is usually
maintained at 0.5 in object detection tasks.

The performance of the model in detecting handshake
interactions was evaluated on the UTI and Shakes dataset
separately and is tabulated in Table I. 3 videos containing 418
frames from the UTI dataset and 5 videos with 2786 frames
from the Shakes dataset were considered for this purpose. The
AP value for the UTI dataset was 95.29% and for the Shakes
dataset was 88.47%. The precision vs recall curves for the UTI
dataset and the Shakes dataset are shown in Fig.3.

TABLE I: Performance metrics of handshake detection

Dataset AP/%
UT-interaction 95.29
Shakes 88.47

Few frames of detection and localization of handshake
interactions from the UTI and the Shakes dataset are shown in
Fig.4. It can be observed that the neural network can identify
more than just a single handshake interaction in the frame. It
is also able to identify interactions even at different scales as
seen in Fig.4c. A more realistic setting such as interactions
in a busy public space is shown in Fig.5. The neural network
performs well to even detect such interactions such as that
might occur in an office corridor or a busy public place.
The neural network was also tested for very rare cases by
considering hand occlusion cases. Fig.5b shows instances of
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Fig. 3: Precision vs Recall curves for handshake localizer for
UTI and Shakes dataset.

such occlusions intentionally mimicking a handshake which
the neural network avoids detecting.

Finally, the false positives of the neural network model in
handshake interaction localization were analyzed. The false
positives can be observed in Fig.6. It can be observed that
most errors occur during occlusion or in instances where the
hand positions are similar to those during handshakes, ie: an
outstretched hand and palm. Furthermore Fig.6f depicts an
instance where one handshake is identified whilst the other is
not.

CONCLUSION

Lack of human adherence to social distancing protocols
is notably increasing thereby compounding the spread of
COVID-19. This demands a scrutinized monitoring of human
interactions in public spaces to identify and mitigate such
violations of social distancing measures. In this paper, we
present a neural network model to identify handshake inter-
actions in realistic scenarios from CCTV footage in a multi-
person setting. The neural network performance is validated by
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Fig. 4: Handshake interaction detection localizations.

comparing its localization in 2 different datasets. The ability to
detect and localize interactions in real-world settings and the
detection of multiple interactions in a single frame affirm the
robust nature of the model. The deployment of this model will
enable us to identify social distancing violations in real-time
and thereby create a framework to reduce such violations and
mitigate the adverse impacts of COVID-19. As a deployable
system, the model could be further improved to localize more
challenging interactions such as hugs and kisses to combat the
pandemic.
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(a) Handshake in corridor. (b) Fake handshake by occlusion.

Fig. 5: Detection localizations in busy settings and occlusion cases.
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Fig. 6: Localization false positives and false negatives in the model.



