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Developing countries share many common challenges in addressing current and future climate risks. A key barrier to
managing these risks is the limited availability of accessible, reliable and relevant weather and climate information.
Despite continued investments in Earth System Modelling, and the growing provision of climate services across Africa
and India, there often remains a mismatch between available information and what is needed to support on-the-ground
decision-making. In this paper, we outline the range of currently available information and present examples from Africa
and India to demonstrate the challenges in meeting information needs in different contexts. A review of literature
supplemented by interviews with experts suggests that externally provided weather and climate information has an
important role in building on local knowledge to shape understanding of climate risks and guide decision-making across
scales. Moreover, case studies demonstrate that successful decision-making can be achieved with currently available
information. However, these successful examples predominantly use daily, weekly and seasonal climate information for
decision-making over short time horizons. Despite an increasing volume of global and regional climate model
simulations, there are very few clear examples of long-term climate information being used to inform decisions at sub-
national scales. We argue that this is largely because the information produced and disseminated is often ill-suited to
inform decision-making at the local scale, particularly for farmers, pastoralists and sub-national governments. Even
decision-makers involved in long-term planning, such as national government officials, find it difficult to plan using
decadal and multi-decadal climate projections because of issues around uncertainty, risk averseness and constraints in
justifying funding allocations on prospective risks. Drawing on lessons learnt from recent successes and failures, a
framework is proposed to help increase the utility and uptake of both current and future climate information across Africa
and India.

Keywords: climate information services; adaptation; semi-arid regions; barriers; climate risk

1. Introduction

Recent developments in the provision of weather and
climate information (Dutton, 2002; Giorgi, Jones, &
Asrar, 2009; Hewitt, Mason, & Walland, 2012; IPCC,
2013) have created opportunities to better integrate scienti-
fic information into decision-making (e.g. Adams et al.,
2015; Hallegatte, 2009; Wilkinson, Budimir, Ahmed, &
Ouma, 2015). Furthermore, in the context of a changing
climate (IPCC, 2013) and the high exposure of developing
countries to climate change risks (Hewitson, & Coauthors,
2014), it is important that long-term planning decisions
assess future climate projections to help reduce risks and
utilize opportunities.

The relevance of weather and climate information is
largely dependent on the ability of scientists to provide
information that is fit-for-purpose (Daron, Sutherland,
Jack, & Hewitson, 2015; Ranger et al., 2010) and produced
in formats that can be integrated into decision-making
processes. The relevance of weather and climate infor-
mation is dictated by the nature of the risks being
managed, the economic sector of focus, the region of inter-
est, the governance structures within which decisions are
made, and other context-specific realities (Adger et al.,
2009; Goddard et al., 2010). In Africa and India, managing
weather and climate risks is intrinsically related to the
sociocultural context, differential vulnerability and
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economic development pathways (Adger, Huq, Brown,
Conway, & Hulme, 2003; Denton, 2002; Spear et al., in
press; Ziervogel & Zermoglio, 2009).

We distinguish between scientific information and local
knowledge about weather and climate. Local knowledge
encompasses ‘the knowledge and practices that are
acquired by local people over a period of time through
the accumulation of experiences over generations,
society–nature relationships, and community practices
and institutions’ (Kniveton et al., 2014, p. 38). Whilst
acknowledging the importance of local knowledge in
shaping decisions, our focus is on the uptake and use of
externally provided scientific weather and climate infor-
mation, which refers to processed data, products and/or evi-
dence-based knowledge about the atmosphere-ocean
system across short (hours to days) and long (seasons to
decades) time scales; the term information, as opposed to
data, implies that it has meaning and relevance within a
given context. It is typically produced and disseminated
by scientific institutions such as national meteorological
agencies, or intermediaries and boundary organizations
(e.g. environmental consultancies, applied university
research centres). The private sector has recently become
more active in providing short-term forecasts and services.
For example, in India, Skymet (http://www.skymet.net/)
provides climate services for agriculture risk management,
weather forecasting, and crop insurance and delivers short-,
medium- and long-term forecasts at the district level to
multiple actors.

Many factors affect the uptake and use of weather and
climate information. Two key scientific barriers limiting the
uptake of long-term climate information in Africa and India
are the lack of reliable historical observations (Overpeck,
Meehl, Bony, & Easterling, 2011; Tarhule & Lamb,
2003), both to understand the current climate and to evalu-
ate climate models, and the coarse scale of future climate
projections (Taylor, Stouffer, & Meehl, 2012). Additional
social and economic barriers include socio-cognitive con-
straints (Jones & Boyd, 2011; Singh, Dorward, &
Osbahr, 2016), a disconnect between users and producers
of climate information (Lemos, Kirchhoff, & Ramprasad,
2012; Singh, Urquhart, & Kituyi, 2016), and inadequate
institutional capacity to effectively deliver and use
climate information (Singh, Urquhart, et al., 2016; Spear
et al., in press; Tall, Kristjanson, Chaudhury, Mckune, &
Zougmore, 2014).

In this paper, examples of how weather and climate
information, across temporal and spatial scales, can be suc-
cessfully integrated into decision-making in Africa and
India are provided. Given the importance of agriculture in
Africa and India, we focus primarily on the agricultural
sector, with some additional examples from the develop-
ment of early warning systems (EWS). Using this evidence,
we extract lessons for improving the utility of climate infor-
mation to manage present and future climate risks better.

In Section 2, the current landscape of weather and
climate information is outlined. Insights from the analysis
of literature and relevant projects across Africa and India
are provided in Section 3. Key barriers to the utility and
uptake of weather and climate information are discussed
in Section 4. In this paper, ‘utility’ refers to the usefulness
of climate information in managing risk, and ‘uptake’ is the
use or application of climate information to make
decisions. In Section 5, we present a framework to demon-
strate how short-term and long-term climate information
feeds into decision-making processes at various spatio-tem-
poral scales and conclude by emphasizing key gaps in
research, policy and practice in Section 6.

2. Background on weather and climate information

2.1. The existing landscape of weather and climate
information

Weather and climate information encompasses a diverse
range of data sets, methods and tools. To unpack the
issues in the utility of weather and climate information
for decision-making, it is necessary to understand what
type of information is relevant and the underpinning tech-
nical and scientific challenges associated with the pro-
duction of such information. This section summarizes the
range of globally and regionally available weather and
climate information, but first provides pertinent back-
ground on key concepts of weather and climate.

Weather and climate are fundamentally different. Defi-
nitions vary (Werndl, 2015), but ‘weather’ is often defined
as the state of the atmosphere at a point in time, while
‘climate’ is the statistical distribution of weather aggregated
over a period of time (e.g. a 30year period: Arguez & Vose,
2011). Atmospheric and ocean processes influence both
weather and climate, but different aspects have more or
less importance depending on the time scale of interest.
Crucially, weather predictions are limited by chaotic behav-
iour in the atmosphere; a weather forecast (i.e. a determinis-
tic forecast of the future state of the atmosphere) loses all
skill beyond a lead time of approximately two weeks
(Palmer, 1993). Longer time scale predictions are possible
but they must focus on aggregate statistics of weather (i.e.
climate). Seasonal forecasts typically estimate the likeli-
hood of a forthcoming season being different to climatol-
ogy, and multi-decadal climate projections detail possible
changes to the statistics of climate processes and variables
(e.g. changes in mean annual rainfall). Furthermore, accu-
rate observations of the atmosphere are required to make
skilful short-term weather and climate forecasts (Collins,
2002), but become less important for long-term future
climate projections (Hawkins & Sutton, 2009). Skilful pre-
dictions on longer (climate) time scales result from accurate
representations of the slower evolving components of the
climate system, such as the oceans and polar ice sheets,
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as well as changes in the external forcings on the system
(e.g. greenhouse gas forcing). The predictability of future
weather and climate, as well as our ability to understand
past weather and climate, affects the type of information
that can be provided.

Historical observations help us understand past and
present-day climate risks. Observations from paleoclimate
proxy data sets (e.g. from ice cores and tree ring data) and
directly measured observational data sets provide data at
different temporal and spatial resolutions. For example,
three observational data sets are used in the Intergovernmen-
tal Panel on Climate Change (IPCC) fifth Assessment
Report (AR5) to develop a time series of global mean
annual temperatures from 1850 to the present day (Figure
SPM1; Stocker, Qin, Plattner, Tignor, & Allen, 2013).
Other examples of observational data sets include satellite-
based rainfall data (e.g. Huffman et al., 2007) and tropical
cyclone data (e.g. Knapp, Kruk, Levinson, Diamond, &
Neumann, 2010). In addition, historical model reanalyses
developed using General Circulation Models (GCMs) –
the same models used in climate prediction – assimilate
observations to create spatially consistent data. This is par-
ticularly useful in data-sparse regions of the world and for
validating climate model outputs.

GCMs are the primary source of future weather and
climate information. Many scientific institutions provide
global weather and seasonal forecasts, based on GCM
output, and there are a number of strategic partnerships
between national meteorological agencies in developed
and developing countries to share modelling and forecast-
ing capabilities. Advances in understanding and compu-
tational capacity have improved the skill of weather
forecasts dramatically over recent decades (Lynch, 2008).
Seasonal forecasts, however, are generally much less
skilful than weather forecasts but they can still have
value for guiding management decisions, particularly for
agriculture (Troccoli, 2010). Seasonal forecasts are pro-
duced using different methods, including GCM-based pre-
dictions and empirical statistical methods that are much less
computationally expensive.

On longer climate time scales, projections are produced
using coupled atmosphere-ocean GCMs and Earth System
Models (ESMs), as well as downscaling methods including
limited area Regional Climate Models (RCMs) and statisti-
cal downscaling techniques. The Coupled Model Intercom-
parison Project phase 5 (CMIP5) conducted a coordinated
set of climate change experiments using the latest gener-
ation of GCMs under altered greenhouse gas forcing con-
ditions. The experiments produced twenty-first-century
climate projections for potential use in scientific research
and policy formation (e.g. IPCC AR5). A similar approach
has been adopted to provide higher resolution projections
for application in adaptation planning and impacts research.
The Coordinated Regional Downscaling Experiment
(CORDEX) uses the latest generation of RCMs and

statistical downscaling methods to downscale CMIP5
GCM projections to 25–50 km resolution for regions
across the world.

In discussing the utility of climate information for
decision-making, it is important to distinguish between
weather and climate variables (e.g. temperature, winds
and rainfall) and climate-related variables that are also
influenced by nonclimate drivers (e.g. river flow and soil
moisture). Impact models (e.g. hydrological or crop
models) can be used to predict changes in climate-related
variables and generate information applicable to decision-
makers. Like CMIP5 and CORDEX, the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) adopts a
consistent experimental framework to provide comparable
climate impacts information to different user communities
(Warszawski et al., 2014).

Dissemination of climate information has improved in
recent times. With an increasing volume of climate data,
online data portals are becoming an important mode of
communication (Daron, Lorenz, Wolski, Blamey, & Jack,
2015). Institutes across the world host online portals to
help users access relevant data and information; examples
include the Climate System Analysis Group climate infor-
mation platform, the Royal Netherlands Meteorological
Institute (KNMI) climate explorer, the World Bank
climate data portal, and the Potsdam Institute climate
impacts platform. Producing information from raw data
requires postprocessing expertise and appropriate analyti-
cal tools. Users in this space are therefore mostly limited
to researchers and impact assessment modellers.
However, climate information is increasingly being trans-
lated into more usable formats for other users, such as
through agro-advisories for farmers (Dorward, Clarkson,
& Stern, 2015), and is also being disseminated through
innovative communication channels for more widespread
uptake. Ensuring the quality, consistency and appropriate
interpretation of tailored information represents a continu-
ing challenge for the climate community.

2.2. Weather and climate information provision in
Africa

Much of the weather and climate information available for
Africa comes from global data sets (e.g. CMIP5) and projects
with broad geographical coverage (see Section 2.1). In
addition, national meteorological and hydrological agencies
play an important role in generating and disseminating
weather and climate information within African countries
(for an overview, see Singh, Urquhart, et al., 2016). While
the capacities of different national agencies vary across
Africa, typically, they collect and maintain observational
data, and provide weather and climate forecasts to commu-
nities, private sector companies, and government departments.

Regional hubs, including the Intergovernmental Auth-
ority on Development Climate Prediction and Applications
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Centre (ICPAC), the Agrometeorology, Hydrology,
Meteorology (AGRHYMET) Regional Centre, and the
Southern African Development Community Climate Ser-
vices Centre (SADC-CSC), provide additional support
and coordination across countries. ICPAC disseminates
early warning climate hazard information to East African
countries while AGRHYMET provides information on
food security and environmental issues for countries in
the Economic Commission of West African States
(ECOWAS). Traore et al. (2014) note that because of an
increased occurrence of climate extremes throughout
West Africa, AGRHYMET has developed additional ser-
vices, including climate change impact assessments for
agriculture and water resources. The SADC-CSC provides
climatic information to Southern and Central African
countries, covering operational services for climate moni-
toring, predicting extremes and hydrometeorological
products.

The regional centres have a particularly significant role
in providing seasonal forecasts at the regional scale,
through the Southern Africa Regional Climate Outlook
Forum, PRÉvisions Saisonnières en Afrique de l’Ouest
for West Africa and the Greater Horn of Africa Regional
Climate Outlook Forum (Patt, Ogallo, & Hellmuth,
2007). They create networking opportunities for users of
climate information to engage with climate scientists. For
example, ICPAC have enhanced collaborations with
sector-specific users through pilot projects to develop
new tools for supporting the use of weather and climate
information in agriculture and food security, livestock,
health, water resources, hydropower risk management
and environment management. The regional centres also
support improving human resource capacity in regional
climate modelling, prediction and application.

Long-term climate projections are increasingly being
produced through international projects such as
CORDEX, and through more engagement of national
meteorological agencies in Africa with climate modelling
institutions in developed countries. For example, the
Global Framework for Climate Services recently developed
an initiative called ‘Climate Services Adaptation and Disas-
ter Risk Reduction in Africa’ to work with national meteor-
ological agencies in Africa and build capacity for improved
weather and climate services for agriculture.

2.3. Weather and climate information provision in
India

Forecasting the Indian Monsoon every year is a challenging
task with major implications for short-term adaptation.
Weather and climate information generation and dissemina-
tion in India are managed by the Earth System Science
Organisation (ESSO), New Delhi, which operates as an
executive arm of the Ministry of Earth Sciences. Recogniz-
ing the importance and relationships between all

components of the Earth system, the mandate of ESSO (a
virtual organization) is to bring all meteorological and
ocean-centric research activities under one umbrella. It
has four major branches of Earth sciences: ocean science
and technology; atmospheric and climate science;
geoscience and technology; and polar science and cryo-
sphere. The ESSO primarily provides services in forecast-
ing the timing and magnitude of monsoon rains as well
as other weather and climate variables, the ocean state,
and early warnings for natural disasters such as storm
surge, earthquakes and tsunamis. The most prominent
climate information services provided by a consortium of
organizations within the ESSO system are agro-advisories,
and hydrometeorological, disaster-related and long-term
regional climate projections.

Operational numerical weather forecasting services
have improved in recent times due to advances in atmos-
pheric modelling capabilities. India is able to make use of
state-of-the-art numerical weather prediction methods and
models for near-term weather prediction at the district
scale (up to five days). For example, this advancement
has enabled tropical cyclone tracking and assessments of
the intensity of cyclones over the Bay of Bengal and the
Arabian Sea. District-level agro-advisories are prepared
for 608 districts across the country using five-day
weather forecasts. These forecasts are issued through
short messaging services (SMS) every Tuesday and
Friday to more than eight million farmers. State Composite
Bulletins and National Agrometeorological Advisory Ser-
vices Bulletins are also issued simultaneously. Weather
forecasts are issued at the sub-district level in the country.
Hydro-meteorological services are also provided as inputs
to the Central Water Commission through their 10 Flood
Meteorological Offices established in different parts of
India for flood forecasting. In addition, there has been sig-
nificant improvements in rainfall monitoring and monsoon
forecasting activities, with major gains in the accuracy and
skill of operational forecasts and heavy rainfall warnings
(including using scientific information to set up EWS
across sectors and scales). Recently, private climate infor-
mation service providers have gained prominence in the
forecasting space, attributed partly to their vast observa-
tional networks and computational facilities (Parija &
Mishra, 2015), as well as their flexibility because they are
unhampered by constraints that potentially affect govern-
ment responses.

On climate prediction time scales, the ESSO-IITM
ESM has been implemented by transforming the seasonal
prediction model to a climate model capable of long-term
projections, improving climate prediction capabilities in
the region. Simultaneously, regional climate downscaling
activities have been institutionalized through CORDEX
South Asia.

To improve the efficacy and dissemination of weather
and climate information, the Global Information System
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Centre inNewDelhi has been set upwithin the framework of
World Meteorological Organization Information Systems
(WIS). An onlineWIS portal has been designed for regional
and global connectivity to collect and distribute data and
information, while also archiving rich data for research
and analytical purposes.

3. The use of climate information to inform
adaptation decisions: what we can learn from Africa
and India

3.1. Approach to literature reviews and expert
interviews

3.1.1. Background on the ASSAR project

The Adaptation at Scale in Semi-arid Regions (ASSAR)
project is a five-year-long initiative across Africa and India
that focuses on using insights from multiple-scale, interdis-
ciplinary work to improve the understanding of the barriers,
enablers and limits to effective, sustained and widespread
adaptation out to the 2030s. The ASSAR project ultimately
aims to identify scalable adaptation pathways that are
responsive to the current and future climatic and non-
climatic risks in semi-arid regions. An extensive literature
review was undertaken during the diagnostic phase of the
project (Few et al., 2015; Padgham et al., 2015; Revi et al.,
2015; Spear et al., 2015), and it examined the barriers and
enablers for effective medium-term adaptation, including
those associated with weather and climate information and
their relationship to decision-making. The primary motiv-
ation for this paper emerged from identifying, through this
process, that the current provision and use of climate infor-
mation are a critical barrier for adaptation at scale.

3.1.2. African approach

The regional approach included an extensive literature
review of peer-reviewed articles, reports and policy docu-
ments, and tended to focus on the countries ASSAR is
working in (Ghana, Mali, Kenya, Ethiopia, Namibia and
Botswana). This was supplemented by key informant inter-
views (n = 3) in Botswana and Namibia, including those
who specifically work on climate information-based
research and associated projects. The key informant inter-
views were critical to obtain information from multiple per-
spectives on threats, opportunities and barriers in the
climate information space, and to gauge the range of under-
standing and issues across sectoral subsystems.

3.1.3. Indian approach

The IPCC AR5 (Hewitson, & Coauthors, 2014) and national
and sub-national literature including peer-reviewed journal
articles and book chapters, project reports, and policy docu-
ments were reviewed. The review also drew on programmes

and assessments conducted by the Government of India as
part of India’s National Communication to United Nations
Framework Convention on Climate Change. This helped
to identify key literature and networks associated with
climate science, which were followed by interviews with
key informants (n = 8) with researchers and government offi-
cials. The India-specific insights in this paper also draw from
discussions in two national stakeholder consultations around
climate science and adaptation.

3.2. Climate information for agriculture in Africa
and India

Agriculture is one of the primary economic sectors in
Africa and India, supporting the livelihoods of a large
number of people. It is highly exposed to weather and
climate risks (Aggarwal, 2008; Cooper et al., 2008; Diao,
Hazell, Resnick, & Thurlow, 2007; Kumar, 2011; Mall,
Singh, Gupta, Srinivasan, & Rathore, 2006; Schlenker &
Lobell, 2010) and transformational changes in some agri-
cultural practices will be required to address the risks of
climate change (e.g. through changing crops, Rippke
et al., 2016). In particular, agriculture is susceptible to rain-
fall variability because a substantial portion of agricultural
land in Africa and India is inadequately connected to
modern irrigation systems. Governments have attempted
to minimize impacts through programmatic responses,
such as irrigation infrastructure improvements and water
storage structures, and, more recently, through the pro-
vision of climate information.

Most examples of the successful uptake and use of
climate information services have been in helping farmers
to find coping strategies for managing short-term climate
risks. In some regions, for some agricultural practices,
there is widespread uptake of monthly to seasonal climate
information (Sivakumar, Collins, Jay, & Hansen, 2014;
Stone & Meinke, 2006; Ziervogel & Zermoglio, 2009),
largely because of the importance of this time scale for
farming decisions (Easterling & Mjelde, 1987; Kandlikar
& Risbey, 2000). As evidenced in a study by Cooper
et al. (2008), which focuses on rain-fed farming systems
in sub-Saharan Africa, the ability of decision-makers to
utilize short-term information and manage current climate
risks is a precursor to better management of future
climate risks. Yet, there are relatively few examples of
long-term climate information informing decision-making
(Jones et al., 2015; Nidumolu et al., 2016), implying that
there are issues around the relevance, provision and usabil-
ity of climate information on longer time scales.

3.3. Use of short-term climate information (days to
seasons)

There is a large body of literature in India discussing pilot
projects, implemented by state and civil society actors, on
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the delivery of climate information (mainly short-term
weather information) (for examples, see Gadgil, Rao, &
Rao, 2002; Sivakumar et al., 2014; Venkatasubramanian,
Tall, Hansen, & Aggarwal, 2014), but it is unclear to what
extent this information feeds into local and regional
decision-making (Manjula & Rengalakshmi, 2015). There
is also very little evidence to suggest that long-term
climate projections are being integrated into local
decision-making. The situation is similar in Africa where
there are very few clear examples of climate information
uptake, with some notable exceptions in South Africa (e.g.
Ziervogel, Johnston, Matthew, & Mukheibir, 2010).
However, in recent times, there has been a move towards
greater uptake of climate information on shorter time
scales (Jones et al., 2015; Stone & Meinke, 2006) through,
for example, setting up EWS, planning for resilience in agri-
culture, and managing water resources by integrating
weather and climate information in planning decisions.

In general, decisions taken at multiple levels are a
complex interplay of climatic, agronomic, economic and
social factors such as labour, individual capacity and
credit. Since climate information is often given in isolation,
‘more often than not [it] is disconnected from the real life
agricultural decisions’ (Manjula & Rengalakshmi, 2015,
p. 13). Our review identifies characteristics key to defining
success in the context of using climate information for
decision-making in adaptation: (1) decision-makers
(farmers, policy-makers) receive, trust and understand
information (Mase & Prokopy, 2014; Singh, Urquhart,
et al., 2016); (2) information is locally relevant, fit-for-
purpose and available in a timely manner (Lackstrom,
Kettle, Haywood, & Dow, 2014; Lobo, Chattopadhyay,
& Rao, 2017; Nidumolu et al., 2016; Vaughan & Dessai,
2014); (3) there are appropriate governance and insti-
tutional structures for the provision of climate information
(Vaughan & Dessai, 2014); and (4) there is an emphasis on
socio-economic value in the uptake of climate information
provided and subsequent decision-making (Dorward et al.,
2015; Nidumolu et al., 2016; Vaughan & Dessai, 2014).

Most examples of success in the uptake and use of
climate information to support decision-making have
occurred when the provision of relevant climate data is tai-
lored to the local context (specific to biophysical, crop and
farmer types) and makes use of innovative delivery pro-
cesses that are participatory in nature (Table 1). The
examples in Table 1 highlight that when climate infor-
mation is about recent or ongoing stressors (e.g. cyclone
in Odisha), it is readily accepted. Information generated
through multi-stakeholder processes that involve participa-
tory approaches to interpreting climate information (e.g.
Participatory Scenario Planning in Kenya) and those that
have direct economic utility for end users (e.g. agrometeor-
ological advisories for crop yields in Maharashtra, India)
are found to have local resonance and increased uptake.

3.4. Use of long-term climate information (years to
decades)

The IPCC AR5 states, with very high confidence, that to
adequately assess adaptation options, it is critical to have
relevant information about the present and future climate
(Klein et al., 2014), implying the need to consider
decadal and multi-decadal time scale information. This
section describes some examples from India and Africa
where long-term climate projections have been used to
inform adaptation, but it is important to note that the litera-
ture review process revealed that there are very few clear
examples of long-term climate information linking directly
to on-the-ground decision-making.

In India, a significant effort has been made to generate
regional climate projections in the medium term (up to the
2050s) and longer term (up to 2100). The utility of such
climate projections, which are at coarser scales than
short-term forecasts, has triggered a range of long-term
state and non-state responses towards building adaptive
capacities and facilitating adaptation in sectors that are
likely to be severely impacted by climate change, one of
the most prominent being agriculture. It is noteworthy to
recognize that the utility of climate projections in the
longer time frame is significantly challenged due to the
relatively poor performance of climate models in simulat-
ing observed historical trends and seasonal dynamics of
the summer and winter monsoon (Sabeerali, Rao,
Dhakate, Salunke, & Goswami, 2015; Saha, Ghosh,
Sahana, & Rao, 2014). This introduces uncertainty
around future projections and an element of caution when
considering long-term policy responses based on such
projections.

Indian climate change scenarios are used to understand
impacts on ecological and socio-economic systems for
medium- and long-time scales, across subnational and
national levels. Using a mix of modelling and field-based
experiments, these scenarios are interfaced with key econ-
omic sectors to measure the impact of climate change and
feedback recommendations. Climate information, coupled
with impact assessments and future climate projections,
have helped to create a framework that responds to long-
term impacts of climate change. For example, land-use/
land-cover mapping and biodiversity characterization have
resulted in a better understanding of climate change
impacts at regional scales (Krishnaswamy, John, & Joseph,
2014) and enabled policy interventions, such as natural
resource conservation planning (e.g. Kasturirangan et al.,
2013). Rigorous scientific assessments create a basis for
initiating large-scale interventions, which are implemented
through programme- or policy-based frameworks (such as
national Five Year Plans). Impact assessment studies have
been anchored within a multi-institutional framework com-
prising independent and government-sponsored research
institutions. Research findings from these centres (either
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Table 1. Examples of successful uptake of climate information for short-term decision-making.

India Africa
Characteristics defining successful use of climate

information for adaptation decision-making

Decision analysis framework to communicate seasonal
climate forecasts in India (Manjula & Rengalakshmi,
2015)

. Participatory approach to communicate forecasts
and historical data and help assess trade-offs
between competing objectives in a given season
using multiple criteria.

. Historical data and farmer perceptions and
experiences used to build upon terms familiar to
farmers, allowing easy comprehension.

Adaptation Learning Programme (ALP) for Africa (Ambani
& Percy, 2014) implemented by CARE International, together
with the national meteorological services in Ghana, Kenya
and Niger

. Multi-stakeholder – Participatory Scenario Planning
(PSP).

. Multiple information sources - combination of
scientific and local forecast knowledge (e.g. based on
behaviour of trees, animals and wind patterns) and
expertise (what constitutes good rainfall in the local
context).

. Community monitored rain gauges provide locally
relevant data.

. Context-relevant information communicated by radio.

Approach: Participatory approach to help farmers
understand information (e.g. detailed sessions on
communicating differences between deterministic and
probabilistic forecasts).
Process: Trust, understanding and capacity to interpret
seasonal forecasts is built through engagement including
co-exploration of data by different stakeholders.
Particulars: Provided information is crop-specific and
locally relevant.
Utility: Information tailored around identification of a
range of socio-economic benefits, leading to relevant
actions that can be taken such as when to plant and what
crop to plant.

Agromet advisories in rural Maharashtra, Watershed
Organisation Trust (WOTR) working with the Indian
Meteorological Department (IMD) (WOTR, 2013; Lobo
et al., 2017)

. Forecasts from IMD used to develop context-
related, crop-specific agro-advisories.

. Advisories include integrated nutrient–water–pest–
and diseases management recommendations.

. Information dissemination through multiple
channels (mobile phones, loudspeakers in the
village, on walls in public spaces and word of
mouth).

. Supplemented with 3-day weather forecasts with
special focus on unseasonal rain, frost or
temperature spikes.

CCAA (Climate Change Adaptation in Africa) programme,
Kenya jointly funded by IDRC and DFID (2006–2012) (Ouma
et al., 2013)

. Traditional forecasters participate in meetings with
Meteorology Department and the Kenya Industrial
Property Office

. Communication through locally established forms of
convening the public and mass communication
including youth drama on market days or at church.
Local public administration officers have executive
convening powers for such meetings that attracted
crowds.

. Local departmental heads interpreting and
communicating sector-relevant advisories.

. Institutionalizing the entire process of forecast
consensus building, development of advisories and
communicating the same in the local office of the
Kenya Meteorological Department.

Approach: Multi-stakeholder, collaborative approach
(between meteorologists, agriculture experts, community,
NGOs) with use of innovative and multiple modes of
communication. Reliability and source of information
(from an accepted NGO working in the area for 30 years)
strengthen trust in the information. Participation
encouraged buy-in and ownership of the resulting
consensus forecast to be communicated.
Process: Advisories are issued in the local language at
least twice a week in the summer and more frequently
during the agricultural season, giving farmers sufficient
time to implement suggested measures. In Kenya,
information is communicated through existing sectoral
structures, adding value and institutionalization of the
process has ensured sustainability
Particulars: Information communicated in a context-
relevant manner – not only is the information relevant but
it is readily available, delivered directly to the user.
Utility: Demonstration of the benefits of
agrometeorological advisories through farmer field
schools and significant agricultural productivity gains
ranging from 30% to 80% (in Maharashtra).
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independently or through a sponsored assessment) are recog-
nized through a multi-stakeholder engagement process
of policy formulation (http://moes.gov.in/programmes/
programmes). The cornerstone of the long-term response
to climate change in India has been the National Mission
for Sustainable Agriculture and a network-based National
Initiative on Climate Resilient Agriculture (NICRA)
project. Collectively, these programmes aim to make the
agricultural sector climate-resilient. Improved climate infor-
mation has been critical for designing interventions within
these programmes.

In Africa, monitoring and assessing the use of long-
term climate information are complicated by the paucity
of direct engagement with decision-makers. Outside of
direct engagement with user communities, it is difficult to
establish how information is being used, implying the
need for further action research-oriented approaches.

Additional evidence from the literature shows limited
use of long-term climate information in Africa with some
notable exceptions, particularly in South Africa. For
example, historical observations and downscaled climate
projections were used as an input to the Long-Term Adap-
tation Scenarios for the Department of Environmental
Affairs (DEA, 2013). The scenarios considered the impli-
cations of climate change for a range of sectors to inform
government planning decisions. In the City of Cape
Town, the Stormwater and Sustainability Branch has
adapted to climate change by factoring in an increase in
rainfall intensity of 15% based on climate change projec-
tion data (Taylor, in press). This has led to an increase in
the area designated as high hazard zones and floodplains
and a reconsideration of infrastructure specifications such
as increasing the diameter of pipes. Also, Daron (2015)
examined the use of climate information in local
decision-making to protect railway infrastructure in Cape
Town. The study shows that sea level rise information
and downscaled projections of future winds were con-
sidered but that the decision process was far more influ-
enced by other technical and socio-economic factors.
Finally, in a review of climate change impacts and adap-
tation in South Africa, Ziervogel et al. (2014) note that
some city-scale and project-based adaptation responses
have been implemented, but that institutional challenges
persist. The study identifies a number of sectors where
long-term climate change and impacts information has
been used, for example, in the development of national
plans for the expansion of protected areas by the middle
of this century (DEAT, SANBI, 2008).

Numerous and significant socio-economic challenges
in India and Africa require urgent attention and the long-
term nature of climate change has meant that many have
not viewed it as central to addressing urgent challenges
(Namibia: MET, 2011). There is a growing awareness of
the impacts of climate change on poor households, their
livelihoods and the rural and urban areas in which theyT
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live. Despite this, responding to the impacts has been slow
to be institutionalized, as many are uncertain how to adapt
(DEA, 2011; Dirkx, Hager, Tadross, Bethune, & Curtis,
2008; Giorgis, 2011) or how to use of climate information
in decision-making (Koch, Vogel, & Patel, 2007; Pasquini,
Ziervogel, & Cowling, 2013). Climate change information
has not been well integrated into national development
planning processes or plans in most African countries
(Dirkx et al., 2008; Giorgis, 2011).

4. Barriers in the utility and uptake of weather and
climate information

Despite the growing volume of climate information across
Africa and India (Sections 3.1 and 3.2), there remain sub-
stantial gaps between the information held in scientific
institutions and that which is required to inform decision-
making (Waagsaether & Ziervogel, 2011; Ziervogel & Zer-
moglio, 2009). While the scientific community continues to
improve the coverage and quality of observational net-
works (e.g. Hou et al., 2014) and advance the skill of fore-
casts across time scales (Hoskins, 2013), there are
numerous scientific and practical barriers which impact
the utility and uptake of climate information in India and
Africa (Table 2).

Climate information must be locally relevant to be
useful in guiding decisions at the local level, as noted in
Table 2 with reference to India. However, this does not
imply the need for high spatial resolution model data. For
example, the baseline climate of two nearby locations
may differ (i.e. have different annual mean temperatures
and climatologies), but the range of projected climate
changes could be the same at both locations (Bunyan,
Krishnaswamy, Sanjay, Raskar, & Bazaz, 2015). Further-
more, information on climate phenomena at larger spatial
scales can be relevant, but to be usable by decision-
makers, the local manifestation of that phenomena must
be translated into variables and processes that matter to
end users (e.g. in local government), such as implications
for local water supplies, floods, or the possibility of heat-
stroke. This is evident when we see the discourse in India
regarding a recent sustained drought. In this case, coarse
spatial scale information about future changes in tempera-
ture could still have utility for decision-making at the
local level – communicating this in a way that is meaning-
ful for decision-makers is the key challenge to overcome.
This illustrates that barriers to uptake of climate infor-
mation (Table 3) are distinct from barriers in the utility of
climate information (Table 2). Yet, both forms of barrier
need to be overcome for climate information to be used
successfully.

The usability of climate information depends on the
level and quality of interaction between information
producers and users (Lemos et al., 2012) as well as how
the information ‘fits’ processes of decision-making

(Singh, Dorward, et al., 2016). However, there is a big dis-
connect between knowledge production and its use. There
exist significant challenges in the uptake of climate infor-
mation due to social factors, gaps in capacity and processes
to facilitate interpretation of climate information, and
limited integration with existing ways people perceive
and manage risks (Table 3). Supplementing climate fore-
casts with historical data may be one way to develop
usable climate information for agricultural producers
(Dorward et al., 2015; Haigh et al., 2015). To improve
information uptake, studies recommend education and out-
reach (Changnon, 2004; Haigh et al., 2015), demon-
strations of the utility of climate forecasts and historical
information (Changnon, Sonka, & Hofing, 1988; Haigh
et al., 2015), and participatory interpretation of information
showing direct links with livelihood outcomes (Dorward
et al., 2015; Lobo et al., 2017; Roncoli et al., 2009; Stone
& Meinke, 2006).

Crucially, barriers in climate information utility and
uptake stem from inadequate understandings around how
and why end users make decisions. Research has shown
that farmer decision-making is a complex process of itera-
tive adjustments that are mediated by their assets and
aspirations, sociocultural and perceptual environments,
and larger policy and market regimes (Gbetibouo, 2009;
Singh, Dorward, et al., 2016). Agricultural decisions,
especially by smallholders, also focus on short time hor-
izons such as seasons and years rather than decadal time
scales that impacts of climatic change are typically pro-
jected for. Thus, efforts to improve use of weather and
climate information need to factor in timing of information
delivery in the decision-making cycle (Lobo et al., 2017).

5. Discussion: establishing a framework for
integrating short-term and long-term climate
information

Confronted with urgent development needs, and in
response to proximate risks associated with a variable
and changing climate, decision-makers in Africa and
India must be guided by currently available climate infor-
mation to make informed choices, whilst acknowledging
that information availability, relevance and usability will
always evolve. Examples of the successful use of short-
term climate information for adaptation decision-making
span multiple sectors and actors, and have seen rapid inno-
vation in information creation and communication (Section
3.3). Long-term information tends to have a steering func-
tion rather than directly influencing decisions made in
response to, or anticipation of, more immediate risks, and
therefore examples of long-term climate information
being used in decision-making are harder to find. Neverthe-
less, the lack of successful examples found in this study
demonstrates that integrating long-term climate infor-
mation into decision-making remains a challenge, largely
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because the information is highly uncertain and, particu-
larly in current formats, harder to integrate into policy-
making processes.

Currently, short-term decisions (which utilize weather
and seasonal forecasts to manage more immediate risks)
are being taken mostly independent of their long-term
implications. For systems to transform and become resilient
to current and future climate risks, actions that acknowl-
edge short- and long-term implications must converge;
actions informed by short-term information without consid-
ering the broader long-term implications may be maladap-
tive (Hallegatte, 2009; Jones, Carabine, & Schipper, 2015).

Combining short- and long-term climate information
can contribute to transformative change (Kates, Travis, &
Wilbanks, 2012). It can aid decision-making across spatial
and temporal scales and start to challenge how risks and
uncertainty are perceived, prepared for and managed. Such
transformative change has to be understood as an incremen-
tal process with actions in the short-term providing the foun-
dation for long-term adaptation, including changing
behaviours. Setting up processes, institutions and infrastruc-
ture that align short-term and long-term thinking, coupled
with improvements in knowledge (both through weather
and climate science and through our ability to link it with

Table 2. Barriers to utility of weather and climate information (CI).

Barriers India Africa

Climate science . Lack of locally relevant downscaled climate
information (Bunyan et al., 2015).

. Seasonal climate forecasts are in probabilistic
language, which are difficult to understand.
Furthermore, they do not provide details like
location of rains, the timing, lead times, duration
and rainfall volumes which are key to decision-
making (Manjula & Rengalakshmi, 2015).

. There are difficulties in predicting the NE
monsoon accurately (Bunyan et al., 2015),
which is crucial for winter crops in southern
states, primarily due to complex climatology of
the region. The inability to predict the NE
monsoon is especially relevant to planning on
seasonal time scales.

. Data are sparse in parts of Africa and long-term
reliable observations (>30 years) are only
present in some countries, such as South Africa.
In some regions (e.g. Democratic Republic of
Congo), there are no long-term station data sets.

. Where models converge, current rainfall trends
and physical interpretations often counter IPCC
multi-model projections. Model uncertainties
constrain adaptation prioritization and
improvements in how projection uncertainties
are articulated are needed. (Conway & Schipper,
2011).

. Many national meteorological agencies lack the
skills and capacity to produce CI across multiple
timescales, particularly for longer term
projections (Ziervogel & Zermoglio, 2009).

. The quality and type of information supplied are
not sufficient for the complex decision-making
needs of end users (USAID, 2014).

. Understanding/modelling of key processes,
such as the impact of teleconnections (e.g.
ENSO) on regional and local climates, remains
incomplete, and this impacts the reliability of
model projections.

Communication and
outreach systems

Poor reach into remote areas and delay in
communicating climate information (Manjula &
Rengalakshmi, 2015).

Access to relevant CI remains a barrier to some
communities and the increase in CI has not been
supported by adequate growth in institutional
architecture that helps in enabling capacity building
to interpret and communicate this information
(Ziervogel et al., 2008).

Lack of timely
information to the
user

The time between short-term forecasts (e.g. heavy
rains) and farmer abilities to incorporate these
forecasts in their decision-making, is insufficient
(Manjula & Rengalakshmi, 2015).

The timing of forecast delivery affects the ability to use
it in some policy areas e.g. water and agriculture
management (Haigh et al., 2015; Lemos, Finan, Fox,
Nelson, & Tucker, 2002). At times, a mismatch is
noted in this aspect.

Temporal mismatch Farmers typically plan on short timescales (1-day to
1-week scale) going up to one season. However,
medium- to long-term CI is useful for community-
based resources (N. Kumar, pers., comm., December
2014) and needs to be communicated from a longer
term perspective.

Planning simultaneously for immediate and long-term
adaptation activities is a challenge (Spear et al.,
2015; pers. comm. respondent from GIZ Office,
Namibia March 2015).
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traditional knowledge), will help improve the utility of
climate information for decision-making. The principal
objective is to enable behaviour change and improved dialo-
gue across the continuum of knowledge producers, interme-
diaries that facilitate information flow (for example,
extension workers) and end users (Singh, Urquhart, et al.,
2016; Waagsaether & Ziervogel, 2011).

Using deductive reasoning, we have developed a fra-
mework to institutionalize the combined uptake of short-
and long-term climate information. Figure 1 shows a frame-
work for linking short- and long-term climate information
with the actions that are motivated at different spatial
scales. While there are not many examples of linking
decision-making across time scales from the domain of
climate services, we draw on experiences from diverse
fields such as biodiversity conservation (Krishnaswamy
et al., 2014) and watershed development (Badiger et al.,
2007) to identify ways in which short-term and long-term
information can be leveraged towards transformative
change. In the framework, temporal scales are referenced
along the x-axis and the y-axis denotes behavioural
change as a continuum from coping to adapting.

The proposed framework recognizes cross-scalar flows
of information and actions; note that actions at different

time scales are concurrent and discrete boxes are used
only for visual representation. Also, while the diagram is
shown as flat and two-dimensional, we recognize that
decision-making using climate information is nested and
interlinked, that is, farmer decisions taken both in the
short and long term are embedded in national and sub-
national policies and opportunities. The framework ident-
ifies three main cross-scalar flows (denoted by the num-
bered two-sided blue arrows in Figure 1) that shape how
climate information shapes adaptive behaviour:

(1) Incremental behavioural shifts: Short-term climate
information, such as weather advisories and seaso-
nal forecasts, helps users to plan for and manage
risks in the short term. For example, a weather
advisory may help farmers choose to irrigate their
crops in the next few days or not. Such short-
term decisions help users cope with variability in
their day-to-day functioning and contribute to
coping capacity. The two-way arrow suggests
that long-term climate information also impacts
decisions in the short-term. For example, climate
projections that demonstrate a warming trend can
motivate short-term responses to grow

Table 3. Barriers to uptake of weather and climate information.

Barriers India Africa

Social factors Men are main ‘receivers’ of CI because they tend to
own mobile phones and interact with extension
officers (Singh, 2014). Thus, women within
households and women of female-headed
households get lower access to CI (Ahmed &
Fajber, 2009).

The cultural context is also important to recognize,
as extreme events are seen by some to be
attributed to ‘the hands of the Gods’ (Spear et al.,
2015). Lack of trust by consumers in the CI
availed to them (Haigh et al., 2015).

Capacity to interpret climate
information

Only when forecasts (e.g. for deficit seasonal
rainfall) are linked to direct impacts (poor
germination) and risks to farmer livelihoods, do
they result in behavioural shifts (change in
sowing time) (Gadgil et al., 2002). Currently, lack
of skill in interpreting the forecasts a (Manjula &
Rengalakshmi, 2015).

Difficulties in interpreting CI and how climatic
conditions interact with non-climatic variables
(soil moisture) to affect livelihoods directly
(through sowing dates, disease incidence)
(Ziervogel et al., 2008). Limited capacity to
implement environmental interventions and
integration of climate change scenarios into
planning (Bourne, Donatti, Holness, & Midgley,
2012 in the Namakwa District Municipality,
South Africa; Ziervogel & Zermoglio, 2009).

Lack of linkages with
individual perceptions and
traditional knowledge

No examples of CI systems in India that demonstrate
how diverse knowledge systems can be
successfully integrated to improve decision-
making. This gap may be because traditional
knowledge tends to be held by older member of a
community while CI is communicated to
‘progressive’ or younger farmers (Manjula &
Rengalakshmi, 2015).

Perceptions of climate variability as held by
farmers may differ from meteorological data and
(Osbahr, Dorward, Stern, & Cooper, 2011) this
may constrain uptake of CI because of different
frames of constructing and planning for
uncertainty and risks.

Lack of involvement of all
stakeholders

There needs to be involvement and consultation
with multiple stakeholders on problem
identification, ascertain/generate demand,
implementation of interventions (most
importantly the local government), which is
critical to uptake (N. Kumar, NICRA, pers.
comm., December 2014).

Multi-stakeholder participation at different stages
of climate information delivery and meaning-
making help (Ambani & Percy, 2014).
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temperature-tolerant varieties. Examples of this are
already being seen in India (Lobo et al., 2017;
Manjula & Rengalakshmi, 2015; Nidumolu et al.,
2016) and across Africa (Dorward et al., 2015;
Ouma, Ogallo, & Onyango, 2013).

(2) Long-term systemic restructuring: Medium- to
long-term action and investment in setting up and
sustaining climate information institutional archi-
tecture and infrastructure contribute to restructur-
ing the entire system that is defined as involving
producers (what knowledge to produce), commu-
nicators (who and what) and users of climate infor-
mation (when and in what form) – for example,
Regional Climate Outlook Forums in Africa. In
India, national investments in the mid-2000s
helped to develop a robust system of climate infor-
mation services (producing forecasts, training
extension staff, field demonstration through
regional agriculture universities) (Singh, Urquhart,
et al., 2016) and this slowly fostered recognition of
the utility of climate information to manage risk.
Today, the benefits of those investments are
visible through farmer-led demands of better fore-
casts, the private sector seeing value in investing in
climate information delivery, and integration of
climate information in adaptation initiatives
(Lobo et al., 2017).

(3) Event-driven sudden change: High-impact extreme
events (e.g. cyclone in Odisha in 1999, flooding in
Mozambique in 2000 and flooding in Mumbai in
2005) motivate swift action in setting up

infrastructure (monitoring stations, scientific and
modelling capabilities), capacity building (training
communities for disaster preparedness and reading
early warnings), and once in place, these actions,
though done on a short time horizon, can lead to
long-term transformative change. For example, in
India, the supercyclone in Odisha (1999) led to
institutionalizing extensive EWS and inspired a
deep perceptual and behavioural change among
government staff, civil society and exposed
communities.

The framework aims to provide a way forward in demon-
strating how actions at one temporal scale are interlinked
with actions across different temporal scales. For
example, repeated use of seasonal forecasts equips
farmers to read and understand shifts in seasons that may
lead to a longer term change, such as a change in crops
grown (Stone & Meinke, 2006). The Participatory Inte-
grated Climate Services for Agriculture project in East
Africa already shows a promising example (Dorward
et al., 2015). Also, actions at one spatial scale, or govern-
ance level, can impact actions at multiple other scales.
For example, in India, a dedicated push towards watershed
development at the national level has prioritized water
saving behaviour at local levels with potential adaptation
co-benefits. Adopting this framework recognizes that resi-
lience to climate variability and change is only achieved
by considering how information is utilized at different
spatio-temporal scales, by different actors, and towards out-
comes. The challenge is to ensure coherency in the

Figure 1. Illustrative framework for using climate information in multi-scalar adaptation decision-making.
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production and communication of climate information
across multiple scales whilst recognizing the decision-
maker’s dilemma of addressing climate risks at the same
time as addressing non-climate imperatives.

The framework recognizes that short-term information
fits with farmer decision-making time scales better (Kandli-
kar & Risbey, 2000) and can support coping strategies
(bottom left box). However, it also argued that, for inform-
ing adaptive action, the institutions and demand created for
short-term information will have to be leveraged and used
to motivate an audience for long-term climate information
(upper right box). While the framework identifies synergies
between uptakes of short-, mid- and long-term climate
information, fructification of such synergies is possible
only in an enabling institutional environment. Thus,
having willing local institutions and government structures
with the capacity to bridge uptake of short-term and long-
term climate information is essential to leverage the gains
made in short-term actions to incrementally build towards
long-term action and uptake.

6. Conclusions

Drawing on existing literature and expert interviews, we find
multiple examples of successful uptake and utilization of
short-term climate information in Africa and India, but far
fewer examples of explicit traceable use of long-term
climate information. Despite the increasing amount of avail-
able climate information, and advances in the science, key
barriers persist. They include the challenge of considering
long-time horizons in managing immediate risks, challenges
in assessing the success of integrating long-term climate
information, issues around uncertainty and the coarse scale
of climate projections, and the lack of institutional capacity
to deal with long-term climate risks.

The evidence presented shows that participatory
approaches to designing and interpreting climate infor-
mation promote its uptake for use in decision-making.
We also find that, in the context of farming systems, there
has been notable traction in developing effective EWS for
climate-induced disasters across comparative geographies
of Africa and India. Insights and lessons in developing
information and warning systems on shorter time scales
should inform the type of information that is developed
to inform on long-term climate risks. Furthermore, the
analysis presented shows that the key enablers for the
uptake of climate information are building mutual trust
(in the context of information provision and mode of deliv-
ery) and contextualizing climate information to local con-
texts and realities.

Tailored climate products and information are being
increasingly recognized as important for enabling
climate-resilient decision-making in different sectors, par-
ticularly for vulnerable communities such as farmers
dependent on rain-fed agriculture systems. As evidenced

in this paper, there are many successful examples in
Africa and India of tailoring short-term climate information
for use in decision-making. Learning from these initiatives
and scaling them to incorporate long-term climate infor-
mation, where relevant, could enable informed climate
change adaptation planning whilst recognizing and addres-
sing important short-term needs and stressors. We also
present a framework that proposes how short- and long-
term weather and climate information can be integrated
across spatial scales in a manner where success in using
short-term information (e.g. increased recognition of the
utility of climate information in decision-making) can be
leveraged and fed into building processes for using long-
term information in an incremental manner. Through com-
bining information across time scales, decision-makers can
implement coping and transformative adaptation strategies,
thereby making communities more resilient to both present
and future climate risks.
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