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1 Introduction

In recent years, Artificial Intelligence (AI) has made tremendous advances in
identifying diseases from radiology images. Convolutional Neural Networks
(CNNs), a class of deep learning algorithm trained on large volumes of labelled
radiological images, have led these advances. Various results has shown that
CNNs improves the speed, accuracy and consistency of diagnosis [7].

However, the adoption of deep learning diagnostic system by healthcare prac-
titioners is prevented by two major challenges: 1) interpreting the prediction
outputs from a deep learning network is not trivial, and 2) Privacy of patient
data is not guaranteed when using online services that provides deep learning
models. These challenges are why healthcare practitioners remain wary of using
AI-driven diagnostic tools [10]

A medical practitioner cannot fully trust the CNN network except it can
explain its reason for its decision, semantically or visually. Earlier methods in
machine learning are transparent in how they compute the predictions but deep
learning models are not so. Deep learning models automate the hand crafted
feature engineering and hence no knowledge of how the predictions are com-
puted. Diagnosing with CNN involves studying image regions that contribute
most to prediction outputs at the pixel level. In interpretability, we expect the
CNN to explain its decision at the object-part level. Given an interpret-able
CNN, previous work reveals the distribution of object parts that are memorized
by the CNN for object classification [14].

In addressing the second motivation behind this work, a CNN model is being
deployed through a server client architecture which requires the data to be sent
online to the model for prediction. Deep learning models are large in memory
and computation. Hence, they need large computing power like GPUs that
requires an existing remote servers. To get predictions, doctors have to upload
the patient radiological scan through the internet exposing it to the risk of data
privacy. What we have done in this work instead, is to use solutions that make
such models run locally thereby solving the issue of privacy. This technique also
solves the challenge faced in developing countries where access to internet could
be expensive.
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2 Literature Review

In Breast Histopathological Image analysis, various approach have been used
for image segmentation, classification and feature extraction. Artificial Neural
Network, especially deep learning have been widely used for these tasks. This
review is limited to the related work that uses the BACH dataset [1]

In the experiment of [4], achieving an accuracy of 85% for the muliclass and
95% on a binary class (carcinoma or non-carcinoma) by using an Inception-V3
based deep learning network. Patches were extracted from the sample based on
the density of nuclei present and reject other patches that did not meet up to
the threshold of nuclei density.

[9] proposed a patch based technique that consists of a patch-wise convolu-
tional neural network (CNN) and an image-wise CNN. The former acts as an
auto-encoder that extracts the most salient features while the later acts as a
classification technique by first extracting the global information in the image.
A similar work to this two stage CNN is in [6] that uses AlexNet as a feature
extraction technique and the second sage uses a support vector machine (SVM)
as a classification achieving a 98.4% accuracy.

The use of transfer learning based approach in [13] was employed via Inception-
V3 and ResNet-50 pre-trained on ImageNet database. Similarly, [3] uses Incep-
tion and ResNet-V2 without the use of patch extraction or any data augmen-
tation to achieve a test accuracy of 90%.

Finally, [5] proposed a transfer learning approach with global pooling for
the multi-classification problem. In this work, they made use of a pre-trained
Xception network and a global average pooling was used on the extracted feature
from a convolutional layer after the mac-pooling layers. Patch extraction is a
common technique used in various literature during data processing. It s worth
mentioning that this work did not make use of patch extraction as used by
others but rather rely heavily on various data augmentation techniques after
the images were down-sampled.

3 Experiment and Results

This section details Some of the experiments and result performed in this work.

3.1 Dataset

We made use of the high resolution H&E breast histology data from the Breast
Cancer Histology Challenge (BACH) 2018 repository [2].The dataset consists of
400 images that are evenly distributed between four categories; (i) normal (ii)
benign, (iii) insitu carcinoma and (iv) invasive carcinoma. Each image in the
dataset is of RGB color channel with size of 2048 x 1536 pixels and a pixel scale
of 0.42µm x 0.42µm all represented in .tiff format.

Processing: Two key processing technique was used (i) staining normal-
ization [8] which solves the appearance variability in histopathology images and
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(ii) random H&E augmentation [11] that adjust the RGB color space of the
tissue into H$E color space.

3.2 Data Augmentation

Considering the low data sample we have and a multi-class problem, it get dif-
ficult for DNN to perform well. Data augmentation is a technique to artificially
expand the size of our dataset by creating a modified version of the initial data.
In this work, we made use of In techniques such as horizontal and vertical flips,
rotation, contrast adjustments and brightness correction. These were applied
to enlarge the dataset and improve the classification performance

3.3 Classification Method

The task of this work is not to achieve the state-of-the-art method in classifica-
tion of breast cancer diseases however, our methodology lies in having a strong
baseline classification. Various approached were made to achieve a higher ac-
curacy and performance for the multi-class problem. Most of the approaches
made were re-implementation of some papers reviewed in earlier section.

3.4 Experiment

The experiment in this work followed a standard procedure where we tested out
different models on the data. With the pre-processing stage constant along all
experiments, we report our results on (i), models with augmentation techniques
and (ii), models without the use of augmentation. In the former, we use the
augmentation as described in 3.2 which results in having 560 data samples
for training and validation across in each category and a hold out test set of
20 samples. While the latter make use of the 80 samples for training and
validation for each category with 20 held out test set. The models are trained
using keras framework with a learning rate of 0.01 using stochastic gradient
descent optimizer with momentum of 0.9. For callbacks, we set learning rate
scheduler with a factor of 0.5. The experiment was performed on a NVIDIA
Tesla P100 machine.

With Augmentation W/O Augmentation
Model Precision Recall Accuracy Precision Recall Accuracy
XceptionNet 0.83 0.22 0.62 0.79 0.21 0.60
XceptionNet GAP 0.65 0.19 0.55 0.64 0.16 0.53
InceptionNet 1.0 0.24 0.79 1.0 0.23 0.77
InceptionNet GAP 0.25 0.24

Table 1: Experiment results on different model comparison with and without
data augmentation.

On all experiments, we observe that all models gave a high precision but
low recall despite having high accuracy. This performance can be attributed to
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the inadequate samples, the quality of the augmentation techniques and also,
multi-class problems are difficult in a low data regime.

3.5 Interpretability Method

As mentioned earlier in 1, we want to take a step further in this work to ex-
plain the decisions behind our model predictions. In other words, making our
algorithm transparent. One technique of doing so is through visually exploring
the gradients of the computations by using Gradient Weighted Class Activation
Mapping (GRAD-CAM) [12] It works by looking at the gradient flow of any
target class in the final convolutional layer. It produces a coarse localization
map showing the regions that is most important in the image for the predicted
target this is shown in figure ??.

(a) Original Image (b) Heatmap

(c) Original (d) Heatmap

Figure 1: GRAD-CAM visualization technique

With the visualization, our aim is to guide pathologist to inspect where
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the algorithm focuses on in making its decision. These can be beneficial in a
deployed case where the visualization can be approved as the algorithm being
right or wrong.

4 Conclusion

Deep learning algorithms especially with CNNs, have improved various state
of the art techniques in diagnosing diseases from pathology images. While
these methods achieve comparable performance with human pathologists when
trained on large volume of data, they are not sufficient to inform a pathologist
for a decision. Hence, this work after having a baseline model for diagnosing
disease, adds another component of visual explanation of the algorithms deci-
sion to guide a pathologist in decision making. We observe however, to improve
the algorithms predicting power, careful considerations need to be paid to how
histology images are pre-processed. While we made use of the latest technique
in processing, much research and work need to be done in extracting patches of
the slides and at the same time better ways of normalizing the data.
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