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GRAPHICAL ABSTRACT

ABSTRACT

Deltas are especially vulnerable to climate change given their low-lying location and exposure to storm surges,
coastal and fluvial flooding, sea level rise and subsidence. Increases in such events and other circumstances are
contributing to the change in the environmental conditions in the deltas, which translates into changes in the
productivity of ecosystems and, ultimately, into impacts on livelihoods and human well-being. Accordingly, cli-
mate change will affect not only the biophysical conditions of deltaic environments but also their economic cir-
cumstances. Furthermore, these economic implications will spill over to other regions through goods and
services supply chains and via migration. In this paper we take a wider view about some of the specific studies
within this Special Issue. We analyse the extent to which the biophysical context of the deltas contributes to
the sustainability of the different economic activities, in the deltas and in other regions. We construct a set of
environmental-extended multiregional input-output databases and Social Accounting Matrices that are used to
trace the flow of provisioning ecosystem services across the supply chains, providing a view of the links between
the biophysical environment and the economic activities. We also integrate this information into a Computable
General Equilibrium model to assess how the changes in the provision of natural resources due to climate change
can potentially affect the economies of the deltas and linked regions, and how this in turn affects economic vul-
nerability and sustainability in these regions.

© 2018 Published by Elsevier B.V.
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Mid- and low-latitude deltas are home for over 500 million people
globally and have been identified for several decades as one of the
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most vulnerable coastal environments in the 21st century (Milliman
et al., 1989)(De Souza et al., 2015; Ericson et al., 2006; Myers, 2002;
Syvitski et al., 2009). They are vulnerable to multiple climatic and envi-
ronmental drivers such as sea-level rise, storm surges, subsidence,
changes in temperature and rainfall. These drivers of change operate
at multiple geographical and temporal scales (Nicholls et al., 2016). Fur-
thermore, their evolution is also affected by socioeconomic factors in-
cluding, among others, economic activity, lifestyles, urbanisation
trends and land use change and demographics. These complex chal-
lenges and potential impacts for populations and their livelihoods
(Day etal,, 2016; Szabo et al., 2016; Tessler et al,, 2015) require a holistic
understanding for planning appropriate adaptation policies (Chapman
and Tompkins, n.d.; Haasnoot et al.,, 2012; Kwakkel et al., 2015).

In this context, DECCMA (DEltas, vulnerability, and Climate Change:
Migration and Adaptation), as already introduced in this Special Issue by
(Hill et al., 2018) and (Kebede et al., 2018), is a large multi-disciplinary
research project which addresses these challenges within three case-
study deltas in Asia and Africa: the world's largest delta - the Ganges-
Brahmaputra-Meghna (GBM) in Bangladesh and India; the Volta in
Ghana and the Mahanadi in India. The maps of these study sites are
shown in Fig. A1 in the Appendix A (SM).

One of the main goals of DECCMA is the integration of biophysical,
socioeconomic and vulnerability hotspot modelling of future migration
and adaptation within and across the case study deltas (Lazar et al.,
2015), under different future climatic, socioeconomic and adaptation
scenarios' (Kebede et al., 2018).

The integrated modelling framework of DECCMA is summarized in
the editorial of this Special Issue (Hill et al., 2018) (see also Fig. S1 of
the Supplementary Material, SM). It consists of a set of models operating
in different spheres that are used to analyse the impacts of climate
change in deltas and to evaluate different adaptations options, with spe-
cial emphasis on migration. For example, in the climatic sphere the
CORDEX and PRECISE models are used to downscale the RCP scenarios
(Jin et al., 2018) and produce climatic parameters that are used by
other models of the integrated framework. The INCA model (see
(Whitehead et al., 2015a, 2015b), and (Whitehead et al., 2017) in this
Special Issue) is used for estimating the future evolution of key horolog-
ical parameters. This information is further used by the FAO/AEZ (Agro-
Ecological Zoning) model (Fischer et al., 2012) -which evaluates future
crop potential production- and the POLCOMS-ERSEM biogeochemical
mode- which focuses on the potential for fish production (Blanchard
et al, 2012).

In the economic sphere, within DECCMA we have developed for
each delta a dynamic Computable General Equilibrium (CGE) model
(Delta-CGE) that interacts at several stages with the biophysical models
of the integrated framework. The Delta-CGE model acts as an interface
between the climate and biophysical models and the integrated model
of migration, in the sense that it translates the biophysical impacts of cli-
mate change (e.g. reduction of crop productivity) into key socioeco-
nomic drivers of migration (e.g. changes in wages). It is important to
highlight that the Delta-CGE model does not seek to directly translate
changes in climatic conditions into migration flows. Rather, it aims to
take advantage of the biophysical models to capture the impacts of cli-
matic changes on some critical variables affecting specific economic
processes, and translates them into economic impacts. This information
is further passed to the Integrated System Dynamics model and Bayes-
ian Network model (Lazar et al., 2015)(Lazar and Al, 2017) where, in
combination with the outputs of other models, it is used to assess the
impact of climate change on human wellbeing and to evaluate different
coping strategies. At the same time, partial assessments of these

1 Scenario analysis has long been identified as a strategic management tool to explore
future changes and associated impacts for supporting adaptation decision-making under
uncertainty. Scenarios represent coherent, internally consistent, and plausible descrip-
tions of possible trajectories of changing conditions based on ‘if, then’ assertion to develop
self-consistent storylines or images of the future (Moss et al., 2010; O'Neill et al., 2014).

integrated models provide the Delta-CGE with an ex-ante exogenous
default set of migration figures.

In this context, the main goal of this paper is to introduce the frame-
work used in DECCMA to assess how different scenarios affect the eco-
nomic outcomes in the delta and how these in turn affect vulnerability
and sustainability in the region. This framework is innovative in several
ways: 1) for the first time Social Accounting Matrices (SAMs) for deltaic
areas have been constructed and used within a CGE model; 2) this CGE
model has been linked to different biophysical models in order to assess
the expected economic impacts of climate change under different sce-
narios, including information on the costs of extreme events, and
costs/benefits of adaptation options. We apply the framework to the
Mahanadi delta (MD)? in order to how it can be used to assess the socio-
economic future of deltas in a changing environment.

The remainder of the article is organized as follows. In Section 2 a lit-
erature review on linking biophysical and economic models is provided,
with special focus on CGEs, and introduces the new Delta-CGE model
that has been developed to analyse the economic impacts of climate
change in deltas. Section 3 introduces the scenario framework.
Section 4 presents the results of using the Delta-CGE to analyse the eco-
nomic future the MD under different climatic and socioeconomic sce-
narios. Section 4 presents the results of using the Delta-CGE to analyse
the economic future the MD under different climatic and socioeconomic
scenarios. Finally, Section 5 discusses the results and concludes.

2. Materials and methods

2.1. Linking biophysical and economic models to assess impacts of climate
change

From an economic perspective, the analysis of the impacts of climate
changes is challenging. First, it requires a deep understanding of the
functioning and interactions of complex socioeconomic and natural
systems.> Second, the analysis of the economic impacts is plagued
with uncertainties arising from the knowledge gap in natural and social
systems. Finally, in most cases, these analyses focus on the impacts of fu-
ture climatic and socioeconomic trajectories and, therefore, have the
uncertainty inherent to these trajectories. Different approaches have
been traditionally used to assess the socioeconomic impacts of climate
change and to link biophysical and economic spheres, such as Integrated
Assessment Models, CGEs, partial equilibrium models or social cost/
damage functions (Burke et al., 2015; Ciscar et al., 2010; Islam et al.,
2016). A review of and information from previous studies on the bio-
physical and economics link is provided in Appendix A. In DECCMA,
the integrated analysis is performed following a transdisciplinary,
multi-method and multi-model approach.

The suite of models plays a key role in the process of understanding
the environmental and socioeconomic implications of climate changes,
informing adaptation options and interacting with stakeholders. In this
sense, the link between the biophysical and economic models is critical
to provide a consistent vision of the futures in the deltas. Fig. 1 shows
main relations between the biophysical models (and modelled impacts
of climate change) and the Delta-CGE model.

Starting from the top in Fig. 1, we see the large-scale general circula-
tion models (GCMs) which have been used to simulate climate across
the region and to assess the impacts of increasing greenhouse gas con-
centrations on the global climate system.? These provide a starting

2 The DECCMA definition of the Mahanaid Delta includes the districts falling within the
5 m high contour: Puri, Kendrapara, Bhadrak, Jagatsingpur and Khurda.

3 Climate change affects directly or indirectly many different economic activities. For
example, in the case of agricultural sector, the main impacts of include increasing demand
and competition for natural resources as well as biotic and abiotic stresses, together with
geographic and temporal variability also add complexity (Islam et al., 2016).

4 GCMs typically have coarse spatial resolutions with horizontal grid boxes of a few
hundred kilometres, and cannot provide the high-resolution climate information that is
required for climate impact and adaptation studies.
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Fig. 1. Main relations of the biophysical effects of Climate Change and Socioeconomics (Delta-CGE) model.

Source: Own elaboration.

point for the regional climate models (RCMs), which dynamically
downscale the results of the simulations with the GCMs.> CORDEX and
PRECISE have been used by the UK Met Office to downscale the results
for Africa and South Asia respectively (see Macadam et al., 2017 in
this Special issue).

The set biophysical models take as inputs different outputs from the
climate models provide. The INCA hydrological model serves to gener-
ate information on biophysical processes and ecosystems taking

5 Using boundary conditions from GCMs, and providing resolution grids of around
50 km or smaller, typically representing better features such as local topography and coast
lines and their effects on the regional climate, such as rainfall.

information form the climatic models. The model also makes use of
some hypothesis on future evolution of human-driven drivers with in-
fluence in hydrological processes such as population, public water use,
effluent discharge, water demand for irrigation and public supply,
land use change, atmospheric deposition or water transfer
(Whitehead et al., 2017). The results of the INCA model are further
used by the crop and fisheries models described below.

The FAO/AEZ (Agro-Ecological Zoning) modelling (Fischer et al.,
2012; IIASA, 2018) is a comprehensive framework accounting for cli-
mate, soil, terrain and management conditions matched with specific
crop requirements under different input levels and water supply. It pro-
vides a georeferenced database at 1 km resolution of crop suitability and
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Table 1
Variables from other model components mapped to the variables of the CGE model.

Model
POLCOMS-ERSEM

Variable in model Variable in CGE

Fisheries catch and output Fisheries output (monetary

(PML) (physical, i.e. tons, and terms) and natural resources
monetary, $, for the baseline) (fisheries cell) endowment
and endowment (physical (natural resources
units) availability, in physical units)
Productivity change of Fisheries output change of
fisheries (%, yearly up to (yearly up to 2050)

2050)
FAO/AEZ Cropland used and available  Cropland coefficient (use)

and land endowment
(Baseline data)
Cropland endowment change

area (ha, Baseline data)

Cropland area potentials (ha,

yearly up to 2050) (yearly up to 2050)
Crop output potentials (tons, Crop output change (yearly
yearly up to 2050) up to 2050)

Source: Own elaboration.

potential productivity for current (baseline conditions averaged over
30 years of observations) and future scenarios for major crops. From
the economic perspective, the key output from the model is the evalua-
tion of current and future land suitability and the estimation of crop
yields, potential production and ecosystem services.

The POLCOMS-ERSEM biogeochemical model is used to drive a dy-
namic marine ecosystem model that explicitly accounts for food web in-
teractions by linking primary production to fish production through
predation. The model estimates potential for fish production by size
class, taking into account temperature effects on the feeding and intrin-
sic mortality rates of organisms (Blanchard et al., 2012). Hence it can
make climate-driven projections of changes in potential fish production.
Size-based methods like this capture the properties of food webs that
describe energy flux and production at a particular size, independent
of species’ ecology (Barange et al., 2014). It also incorporates species in-
teractions based on size-spectrum theory and habitat suitability
(Barange et al., 2013; Fernandes et al., 2017, 2016). Productivity
changes then are also derived for three GCMs in each delta.

As it can be seen in Fig. 1, biophysical models produce information
on the effects of changes in the environmental conditions on some pa-
rameters such as crop yield, land availability or fisheries productivity
that affect the economic system. In this regard, the biophysical models
serve as the between climatic models and the economic model.

Data from the biophysical models, together with information on
climate-related shocks directly affecting the economic systems (e.g.
damages in infrastructures due to floods) and adaption options are
used by the Delta-CGE model to analyse the economic implications of
climate change in the deltas. Specifically, Table 1 shows the links be-
tween the variables of the biophysical models and the Delta-CGE
model. Next, we describe in detail the Delta-CGE model.

2.2. The Delta-CGE model

The economic approach in DECCMA develops and makes use of a
comprehensive dataset, assembled in the Social Accounting Matrix
(SAM), and a flexible model in the form of a dynamic Computable Gen-
eral Equilibrium adapted to the delta level (Delta-CGE).®

The SAM represents the economic transactions between all institu-
tional agents (Households, Government, Firms and “Rest of the
World”) that take place within an economy. SAMs were created to iden-
tify all monetary flows from sources to recipients, within a disaggre-
gated national accounting system. The economic information of the
SAM is integrated into the Delta-CGE model which is further used to an-
alyse how the economy might react to changes in external factors.

5 Numerically, the model is implemented in GAMS software (Brooke et al., 1996) and
solved using PATH (Dirkse and Ferris, 1995).

CGE models are descended from the input-output (I0) models, but
with more flexible structures, especially in the production and con-
sumption blocks. Thus, where a classical Leontief demand-driven 10
model (Leontief, 1937, 1936) assumes for example, that a fixed amount
of production factors, such as labour or capital, is required to produce 1
unit worth of a product, a CGE model allows for some substitution
across factors which is influenced by their costs (e.g. wages and interest
rates). The equations then tend to be inspired by neoclassical econom-
ics, often assuming cost-minimizing behaviour by producers, average-
cost pricing, and household demands based on optimizing behaviour.
However, most CGE models conform only loosely to the theoretical gen-
eral equilibrium paradigm. In particular, they allow for non-market
clearing, especially for labour (unemployment) or for commodities (in-
ventories), imperfect competition (e.g., monopoly pricing) and for de-
mands not influenced by price (e.g., government demands) (see
(Mitra-Kahn, 2008) for a review of their historical development, and
debunking some of the misunderstandings or myths around them).

Appendix B presents the Delta-CGE model in more detail, and
Figs. B1-B3 provide a graphical exposition of the production structure.
Production is represented by three-level Constant Elasticity of Substitu-
tion functions (see Rutherford, 2002) including the inputs of capital (K),
labour (L), energy (E) and other intermediates (M). Substitution elastic-
ities between factors are obtained from (Koesler and Schymura, 2015).
In Fig. B “Scheme of the elasticities” in Appendix B the scheme is illus-
trated, and a more in depth review, and discussion on the functional
forms, elasticities and key parameters of CGEs for sensitivity testing is
provided in the Appendix C.

As suggested by many growth models (Domar, 1946; Harrod, 1939;
Romer, 1986; Solow, 1956; Swan, 1956) savings and, subsequently, in-
vestments are the major determinants of long-term economic growth.
Our dynamics of capital accumulation equation follows (Dellink et al.,
2004). The rate of return on investments is determined on the domestic
market, the capital stock and investment levels are fully endogenised,
and households decide the share of their income that is saved. These
savings in turn are used by the producers for capital investments and
the rate of return on investments equals the exogenous interest rate.
The forward-looking behaviour of the agents and the endogenous sav-
ings rate make this a model of the (Ramsey, 1928)-(Cass, 1965)-
(Koopmans, 1965)- type (see (Barro and Sala-i-Martin, 1995; Carroll,
2017; Heijdra, 2016)). Total factor productivity growth is introduced,
and adjusted to differentiate among agriculture, industry and services,
to reflect structural changes, as projected from the expert information
obtained from the questionnaires (see more in Appendix B and Fig. B1).

Within the dynamic Delta-CGE model, the sets of labour types are di-
vided as formal (related to the urban employed) and informal (more re-
lated to the pool of labour from rural areas that does not have a “regular”
job, either temporally or permanently). The model assumes different
wages for the different types of labour and two additional constraints
are added to the Delta-CGE model. The first is the “unemployment” con-
straint determining the relative price of the formal labour. The second is
the “mobility rate” constraint, which also determines the relative wage
of the informal labour to the formal labour, and which hence establishes
to what extent people will move due to an expected higher wage in the
urban area (i.e. the non-delta area). Finally, migration equations also
take into account that, due to several costs, migration does not occur
when the difference between the “expected wages” are not large
enough, and that mobility does not occur if the initial wealth is not
enough to cover migration costs (Lazar and Al, 2017; Safra de Campos
and Al, 2017a, 2017b).”

7 The main reason for migration claimed (by the majority of respondents) is “search for
employment”. In the Mahanadi also the reason of join spouse/marriage is very important
(around 20% of respondents), slightly above the reason of education. There is also a posi-
tively correlation in the migrant sending households with high in vulnerability (35%), be-
ing female headed household (13% of all), who furthermore takes further responsibility
with the typical male migration.
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Apart from the search of data for all these components, and espe-
cially for the calibration of the model, within the economic modelling
literature, and in particular in that of CGEs, sensitivity analyses tests
are partially conducted. Very rarely though are these done in a compre-
hensive way (typically rather in a discrete way with a few variations)
through Monte-Carlo simulations, with multiple combinations of values
of parameters, as has been done here. In this study we have explored
wide ranges of possible values for the parameters according to recent
literature. A more in-depth discussion on the functional forms, elastici-
ties and key parameters of CGEs for sensitivity testing is provided in the
Appendix C.

The database for the Delta-CGE model has been compiled from many
sources and combines official statistics with own estimations. As men-
tioned before, the IO tables of the deltas and associated SAM constitute
the core data of a Delta-CGE model (see (Arto and Cazcarro, 2017) and
(Arto etal., 2018). Appendix E (“I0 and SAM elaboration”) describes the
process of obtaining the SAM tables in DECCMA. The main sources of in-
formation were different Regional/District datasets and analytical re-
ports, such as the census, specific information from industrial,
agriculture and fisheries statistics in terms of production, value added,
employment, factor uses, intermediate consumption and final demand.
In the case of MD, these sources were the Primary Census and the
Odisha Economic Surveys and agricultural statistics (GoO, 2016, 2015;
PCA, 2011). Employment by district and gender (male/female) for the
main 12 activities/sectors® were compiled and further split into 57 sec-
tors. At the national level, some small corrections were applied to the
employment data in order to obtain consistent wages. Other key data
for the construction of the database, in particular for the agricultural
sector, are the agricultural land use, crop and animal production, prices,
data of livestock and fisheries stock and catches.

3. Scenario framework
3.1. General overview

(Kebede et al., 2018), in this Special Issue, describe in detail the sce-
narios framework of DECCMA, which is based on the new global sce-
nario framework developed for the Fifth Assessment Report (AR5) of
the IPCC. The framework provides a foundation for an improved inte-
grated assessment of climate change impacts and adaptation and miti-
gation needs under a range of climate pathways, socioeconomic
scenarios, and adaptation and mitigation policy assumptions. For each
of these three spheres the scientific community has developed a set of
quantitative and qualitative narratives, namely Representative Concen-
trations Pathways, RCP (van Vuuren et al., 2011), Shared Socioeconomic
Pathways, SSP (O'Neill et al., 2014) and Shared Policy Assumptions, SPA
(Kriegler et al., 2014).

From the climatic perspective, DECCMA focuses on the RCP8.5 sce-
nario in order to consider the strongest climate (a ‘high-end’) signal,
which shows the highest concentration of greenhouse gas concentra-
tions in the late 21st century. RCP 8.5 simulations (with three GCMs
for each delta®) represent a worst-case end of the 21st century
projected temperature increases and atmospheric CO2 concentrations.
In the case of the FAO/AEZ the outputs are provided under climate sce-
nario ensembles (ENS, that is to say, synthesized results from combina-
tions or averaging results from the different GCMs considered for each
delta).

8 Cultivators; Agricultural labourers; Plantation, Livestock, Forestry, Fishing, Hunting &
allied activities; Mining & Quarrying; Manufacturing; Electricity, Gas & Water Supply;
Construction; Wholesale & Retail Trade; Hotels & Restaurants; Transport, Storage & Com-
munications; Financial Intermediation, Real Estate, Renting & Business; Public Administra-
tion, Other Community, Social & Personal Services, Private Households Employing Persons.

9 Using the French GCM, CNRM-CMS5, and the UK GCM, HadGEM2-ES, both for Africa
and South Asia. Then for South Asia (see (IIASA, 2018)) it is also used the German GCM,
GFDL-CM3, and for Africa the CanESM2.

Up to 2050 the RCP8.5 was judged to be capable of being combined
with practically any SSP (see (Riahi et al., 2017)), as high divergence of
forcings from the different RCPs occur mainly beyond 2050s. However,
after 2050 only SSP3 and SSP5 can produce the required emissions, al-
though SSP2 is close. Fig. 5 in (Kebede et al., 2018) presents a summary
of the selected RCP and SSP scenario combinations and associated time
horizons considered for assessing different socioeconomic and biophys-
ical components of the delta systems investigated within DECCMA.

SSP3 presents a world of Fragmentation/Regional Rivalry (High mit-
igation and adaptation challenges), SSP5 presents a Conventional/Fossil-
fuelled Development (High mitigation and low adaptation challenges),
and SSP2 is known as the Middle of the Road (Intermediate mitigation
and adaptation challenges). Based on this three SSP, in DECCMA three
SSP-based scenario narratives have been identified up to 2050: Business
as Usual or Medium (~SSP2), Medium— (~SSP3) and Medium+
(~SSP5). These narratives are then used to downscale the global projec-
tions to regional and national levels, and to inform the development of
the participatory-based delta-scale scenarios and adaptation policy tra-
jectories up to 2050.

It is important to highlight, that in the simulations, all these scenar-
ios are considered as “baseline” scenarios, in the sense that they assume
that there is no climate change. In other words, climate change shocks
are simulated “on-top” of these three scenarios and the resulting eco-
nomic effects are analysed in terms of differences with respect the base-
line scenario.

At the national scale, the socioeconomic scenarios for the three
countries (Ghana, India, and Bangladesh) are based on the SSP Public Da-
tabase Version 1.1.'° This database provides historic trends and future
projections of the changes in population, share of population in urban
areas, and GDP in power purchasing parities (PPP) through the 21st
century for each country under the five SSP scenarios (Fig. 7 in Kebede
etal. (2018)). Together, these data are used as one of the boundary con-
ditions to inform the development of the delta-scale scenarios, that
were developed with the support of experts through questionnaires.

GDP is one of the few economic measures which are numerically es-
timated and projected for the different SSPs different futures.

Fig. 2 shows the ranges of paths of growth of the GDP per capita for
the India and the MD for the different SSPs. We may observe how the
gap between the regions increases over time, something which contrib-
utes to increase out migration from the delta.

Apart from the RCPs and SSPs, a number of adaptation policy trajec-
tories (ATPs), inspired in the SPA, are also taken into account in order to
provide a complete view of the possible futures in the deltas. Indeed,
these futures may be radically different depending on the adaption
pathways selected. This leads us to an approach in DECCMA, as schema-
tized in Fig. A3 in the Appendix A (reproduced from (Kebede et al.,
2018)), linking the RCPs, SSPs and APTs.

3.2. From general scenarios to biophysical impacts

Once the RCP8.5 is implemented in the GCM and the results down-
scaled with the support of the RCM, the resulting climatic parameters
for the case study areas are passed to biophysical models which report
the impacts of climatic change in a number of variables related to crop
production and fisheries.

In the case of the FAO/AEZ, Fig. 3 reports cropland production poten-
tials for the two climate scenario ensembles (ENS) as well as cropland
area, which includes the very suitable (>85%), suitable (55-70%) and
moderately suitable (40-55%) (IIASA, 2018). The main simulated
shocks (“CC_Agr” shock) to 2050 follow these potential reductions in
yield, which in the case of the delta of focus here, the MD,!! is 5% at
the end of the period with CO2 fertilization and 16% without it, and

10 See: https://secure.iiasa.ac.at/web-apps/ene/SspDb
1 The MD, like the GBM Delta, is fed by three rivers, the Mahanadi, Brahmani, and
Baiterani, which drain into the Bay of Bengal on the east coast of India.
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Fig. 2. GDP per capita of the MD and India
Source: Own elaboration.

suitable area, which implies a much larger reduction, of about 40% the
existent in the baseline, mainly driven by the reduction in the area for
oil seeds.

In the case of the results on productivity changes of fisheries from
the POLCOMS-ERSEM modelling, the inter-annual variation is quite no-
table. Also, contrary to the projections for the Volta delta where these
changes reveal relatively linear decreasing trends with the 3 GCMs, for
the deltas of the Bay of Bengal (Bangladesh and Indian ones) typically
one of the 3 models shows some positive change at the end of the period
analysed (year 2050). In the particular case of the MD studied here, the
results from these models are particularly erratic and different across
models, as shown in Fig. A3. While the full range of cases have been
analysed in the sensitivity analyses, in the main results we will focus
on the scenario with the CNRM-CM5, which is the one that may show
some impacts and be of interest under precautionary principles, as
well as being the least erratic one.

Climate change projections for Indian sub-continent indicate an in-
crease in temperature by 3.3-4.8 °C by 2080s relative to pre-industrial
times. There is already evidence of negative impacts on yields of
wheat and paddy in some parts of India due to increased temperature,

Potential Production change

|||JJ f|J

-100% -50%

BENS BENS+

water stress and reduction in number of rainy days. In the medium-
term (2020-2039), crop yield is projected to reduce by 4.5 to 9%, de-
pending on the magnitude and distribution of warming (NICRA,
2013). More general projections from combinations of data points
from crop model projections indicate decreases of between 10 and
25% in yield by 2050 in a RCP8.5 scenario (see Fig. 2.7 of the IPCC AR5,
(IPCC, 2014)). This implies up to around 0.5% loss per year, and so we
will also examine such paths in the Sensitivity analysis section.

Finally, as mentioned before, the economic analysis also takes into
account the direct economic impacts of climate change in the economic.
In particular, the model considers the progressive productivity or capital
losses (e.g. coastal erosion which affects infrastructure) and shocks such
as extreme events affecting infrastructures (“CC_Infr” shock). This infor-
mation does not come from other models in DECCMA, but simply from
literature review on the effects of past events. The most important
shocks to be modelled have to do with those extreme events that
have been documented for the MD, and more extensively for deltas
such as the ISD (see the summary and complementary information in
Table A2). These shocks typically affect sectors which need infrastruc-
tures or are located at the coast (see Fig. 1), and their projections are

Suitable Area change

Total cropland |

Crops nec.
Plant-based fibers
Sugar cane, sugar beet

Oil seeds e

Vegetables, fruit, nuts -
Cereal grains nec.

Wheat
Paddy rice

-100%-80% -60% -40% -20%
BENS BENS+

0%

Fig. 3. Production potential and Suitable area change for climate scenario ensembles (ENS) for 2050s with (+) and without CO2 fertilization for the MD.

Source: Own elaboration from (IIASA, 2018).
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Table 2
Documented extreme events impacts for the MD.
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Event Year MD districts Crop area affected (in Houses Crop loss (in Private house damaged (in Damaged to different public utility (in
affected hectare) damaged UsD) usD) usD)

Flood 2001 5 236,968 46,752 524,069 2,381,390 85,241,894

Flood 2004 1 13,340 42 32,023 3182 6,546,455

Cyclone 2005 3 78,770 209 362,161 15,107 5,814,227

Cyclone 2007 2 120,486 21,891 7,585,252 2,437,220

Flood 2008 5 196,765 106,643 11,517,901 12,607,934

Source: Own elaboration from several reports (SRC, 2017).

based on the documented frequency, intensity and damage
(Bahinipati, 2014; GoO, 1999; SRC, 2017). Table 2 provides key exam-
ples of these.

Summarising, in terms of impacts, four different types of effects are
considered: productivity losses in agriculture, productivity losses in
fisheries, capital losses affecting infrastructure sectors and other related
assets at the coast, and other associated sectors (insurance and financial
services).

3.3. Delta scenarios: Adaptation policies and interventions

The narratives and key characteristics of the APTs are based on the
expected evolution (between now and 2050) of broad adaptation cate-
gories (see Suckall et al.,, 2017 for details). Each of these broad categories
covers a number of specific adaptation interventions. Table 3 shows the
actual adaptation interventions modelled.

In general, most adaptations are directly or indirectly related to agri-
culture but also some to fisheries. The majority of these adaptation op-
tions are introduced in the Delta-CGE model as exogenous shocks,
typically as if subsidies or aid from external sources were made avail-
able. Alternatively, some shocks can be modelled as covered by the na-
tional budget but in “fiscal neutral” way, i.e. the associated expenditure
is compensated by an equivalent reduction in public expenditure
elsewhere.

The nature of the adaptation is typically of small scale, and their ef-
fects tend to be reflected either in the output expansion, input structure
change (technology improvements) or area expansion (in the case of
cropland) (GO, 2017; OSDMA, 2014). Agricultural adaptation options
and costs are shown in Table A4 and fisheries in Table A5.

Adaptation options related to Disaster Risk Reduction (DRR) tend to
be more related to final demand categories of government and invest-
ment, spending more on sectors such as construction activities, when
infrastructure needs to be put in place. Other adaptation options

Table 3
Selected adaptation interventions modelled with the CGE.
Sector Adaptation interventions Type® Main link to the DECCMA-economics model Costin  Source
type Million
$
Agr Agr 1. Salt tolerant Paddy seed I Exogenous subsidy to agriculture to be spent on the own sector  0.05 (Go0, 2017a, 2017b; NICRA, 2017
supply store (seeds). Agricultural output loss buffered. Seed_Freedom, 2012; Shiva et al., 2017;
Singh et al., 2006)
Agr Agr. 2. Input Subsidy in seeds, I Exogenous subsidy to agriculture to be spent on Chemical 10.3 (Go0, 2017a, 2017b)
fertilizers, biofertilizers products. Agricultural output loss buffered.
Agr Agr. 3. Subsidy under state I Exogenous subsidy to agriculture to be spent on capital. 4.2 (Go0, 20173, 2017b)
agriculture policy (capital Agricultural output loss buffered.
investment)
Agr Agr. 5. Promotion of System Rice | Exogenous subsidy to paddy rice to be spent on chemicals, 1.7 (Go0, 20174, 2017b; Prasad et al., 2008)
Intensification water, electricity and capital. Paddy rice output loss buffered.
Agr Agr. 27. Corpus Fund for OSSC for [ Exogenous subsidy to agriculture to be spent on the 10.0 (Go0, 2017a, 2017b)
seeds and quality planting self-purchases within the agricultural subsectors
materials
Agr Agr. 38. Sub mission on I Exogenous increase in land use endowment 2.465 (Go0, 2015, 20173, 2017b)
agriculture extension
Fsh Fsh. 15. Development of retail fish [ Exogenous subsidy to fisheries to be spent on trade sectors, and  0.17 (Go0, 2017c, 2017d)
markets and allied infrastructure to trade sectors to be spent on fisheries. Increased access to
markets.
Fsh Fsh. 24. Housing for fishers I Exogenous subsidy to fisheries to be spent on construction. 0.02 (Go0, 2017c, 2017d)
Fisheries output loss buffered.
Fsh Fsh. 26. Construction of 11 Exogenous subsidy to fisheries to be spent on the water sector. ~ 0.007 (Go0, 2017c, 2017d)
community hall with sanitation, Fisheries output loss buffered, water sector output increased
water supply
Fsh Fsh. 36. Solar power support I Exogenous subsidy to fisheries to be spent on the Electricity 0.025 (Go0, 2017c, 2017d)
system for aquaculture sector. Fisheries output loss buffered.
Infr Infr. 1. Several (10) embankments I Government expenditure increase on construction and 43 (GoWB, 2017) (OSDMA, 2014)
infrastructure. Agricultural and capital loss buffered
Infr Infr. 2. multipurpose cyclone Il Government expenditure increase on construction. Capital loss ~ 2.73 (ODSMA, 2017)
shelters buffered.
Infr Infr. 3. Post-disaster recovery and Il Government transfers to households and expenditure on 273" (SRC, 2017)

rehabilitation

construction and infrastructure. Capital loss buffered.

Source: Own elaboration.

¢ Note: Type of adaptation. Addressing drivers of vulnerability; Il. DRR, Ill. Landscape/ecosystem resilience.
b No specific documentation on this exists, based on (SRC, 2017) we find reasonable to implement it with the same amount than the DRR action of multipurpose cyclone shelters fo-

cused on government expenditure.
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affecting biodiversity and ecosystems in general are more difficult to be
captured by the economic model. The main documented information
about these DRR are the multipurpose cyclone shelters (OSDMA,
2014) that Indian government constructed in the most vulnerable
10 km band along 480 km of coastline in the Mahanadi'? for 112.6 mil-
lion $ (6756 million Rs), to which we apportion about 95 million $.

3.4. Summary of scenarios

In total we ran >100 scenarios resulting from combining the 3 socio-
economic scenarios considered in DECCMA (SSP2, SSP3 and SSP5), 3 dif-
ferent types (and combinations of them) of effects or shocks induced by
climate change, and 12 specific adaption interventions. Furthermore,
CGE model simulations are usually accompanied by sensitivity analyses
in terms of specific model parameters which are considered difficult to
measure (such as elasticities) and, therefore, it is highly convenient to
evaluate their role in varying the results. For all these, we implemented
a Monte Carlo analysis in order to run all these possible combinations of
variables and parameters. Apart from testing the uncertainty on some
key parameters of the economic model, we also requested the biophys-
ical modellers to provide us with ranges (if possible distributions) for
the main climatic impacts from the biophysical models, that were in-
cluded in the Monte Carlo analysis. The parameters for which we per-
form the Monte Carlo analysis are shown in Table A6 in the SM.

4. Results and sensitivity
4.1. Future economic impacts of climate change in the MD

The following results illustrate the economic implications of a com-
bination of climatic, socioeconomic and adaptation scenarios for the MD
and for the whole India. We use as headline indicator the change in the
GDP per capita due to climate change with respect the scenario without
climatic impacts. For the sake of simplicity, in terms of socioeconomic
scenarios, we just present the results of the SSP2 scenario, which is re-
ferred as Business As Usual (BAU). On top of this BAU, the different
shocks described in the previous section are implemented and analysed.
Finally, we provide a sensitivity analysis of simulated shocks.

In the following we examine the Cumulative Changes in macroeco-
nomic variables from Climate Change shocks for the Mahanadi Delta
with respect to BAU (up to 2050).

Climate Change (CC) shocks with respect to BAU scenario for the
Mahanadi delta.

Based on the SSP2 scenario for the Mahanadi delta and India (grey
line in Fig. 2 above) and also for the Mahanadi delta, which we call
BAU, we examine the projected shocks described in previous section.
We may see in Fig. 4 the “CC_Agr” shock, in which both consumption
and investment fall percent wise more than GDP per capita, which
reaches a cumulative loss of about 5% with respect to BAU.

As indicated above, in the case of the shock on fisheries (“CC_Fisher-
ies”), inter-annual variation is quite notable, particularly erratic and dif-
ferent across models for the case of the Mahanadi delta (this does not
happen e.g. for the Volta delta), leading in 2050 to marginal (<0.1% de-
crease in GDP per capita with the shock) changes compared to shocks
on agriculture and on infrastructures.

When we apply only the scenario of “CC_Infr” shock to the sectors
considered in Fig. 1, we get the results of Fig. 5. What we may observe
is that the shock is introduced yearly, and at some point in time
(based on frequency of events) the loss is much higher in specific
years of strong events, which furthermore trigger the effects across
the economy. For the cumulative loss (around 8% in 2050) we see
some increased steepness of the GDP per capita loss. We may observe
how the percentage losses in GDP per capita are largely driven by the

12 The districts covered where Puri, Kendrapara, Jagatsinghpur, Khordha, Bhadrak (the 5
included in the DECCMA definition of the MD) and Balasore.

modelled -according to current evidence and frequency- shocks in
infrastructure.

Finally, we examine the results of the adaptation interventions pre-
sented in Table 3.

In the scenario in which we assume equivalent buffering of shocks
per monetary unit of cost'> we observe that buffering the shock for all
activities, as typically agriculture, have downstream effects which re-
duce the shock on GDP per capita by more than the share of the activity
in GDP (in this case about 15%). For example, with the intervention “Agr
2. Input Subsidy in seeds, fertilizers, biofertilizers” buffering the shocks
in agriculture by 10%, buffers the GDP per capita shock by 3%. The inter-
vention “Fsh. 26. Construction of Community Hall with sanitation, water
supply” has differential notable positive effects in the economy and in
many social aspects related to development. In that regard, we consider
that the evaluation of interventions such as the DRR intervention of
multipurpose cyclone shelters (the adaptation option with the major in-
vestments in the delta) still depends too much on the value of
preventing a fatality, the valuation of damage (well documented mostly
for large infrastructure and housing) and of the statistical life. Even
when considering purely the economic benefits, interventions such as
“Infr. 1. Several (10) embankments” present great effects in terms of
avoided losses, as shown in Fig. 6. In particular, despite the initial costs
involved (red line) and maintenance costs involved, with the adaptation
intervention of embankments construction, we find a great buffering of
shocks on agricultural production (from a cumulative loss in 2050 above
2.2% to one around 1.5%), and especially on avoided infrastructural loss
(schools, houses, etc., from a cumulative loss in 2050 above close to 8%
to one below 3%). Further information is shown in Appendix D.

4.2. Sensitivity analysis of simulated shocks

The above shocks reveal a specific trajectory of changes under cli-
mate change shocks according to the climate and modelling ensembles
of the biophysical models, and the BAU parametrization. Sensitivity and
Monte Carlo analysis were performed for the parametrization, to exam-
ine wider ranges of trajectories. “Appendix D. Complementary results”
of the SM summarizes these analyses. We found that in order to under-
stand the growth of GDP (PPP) and GDP per capita, the most sensitive
parameters were total factor productivity and population pathways,
followed by the interest rates and the assumptions on the production
functions and trade. The changes in interest and depreciation rates
were also highly influential in the evolution of capital, investments,
and in general in the performance of adaptation options focused on Di-
saster Risk Reduction.

For the sake of comparison of the size of the resulting changes, we
also ran ranges of shocks from climate change for those same biophysi-
cal models. For example, the analogous figure to Fig. 4 of a yearly 0.5%
shock with respect to BAU in agricultural land cover is shown in Fig. D1.

Following Fig. 1, we examine in Table 4 ranges of change for each of
the 4 types of impacts explained, affecting the sectors considered in that
figure, adding also a general “CC_All above” shock which includes all
those impacts being studied all together. In order to put into context
some of the changes, we may examine the 2.25% of loss for the Maha-
nadi delta in GDP per capita for the shock on agriculture, via land
availability.

In the reference case, a yearly 0.5% loss in land availability implies a
cumulative loss of about 17% of land after 20 years. Interestingly as well,
in addition to the 2.25% of loss in GDP per capita in the delta, we may see
a cumulative 0.23% loss in the GDP per capita of the non-delta (of the
rest of India, representing agriculture also for the whole India around
16% of the value added). For the shocks on fisheries, we observe some
smaller effects given the size of the sector, but we find now big

13 Information on actual reach/benefits/accomplishments of the interventions is very
useful and allows for a few fair comparisons, but it lacks for many of them and so it is taken
from other interventions.
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Fig. 4. Yearly changes with respect to BAU (“CC_Agr” shock) for the Mahanadi delta.
Source: Model results.
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Fig. 5. Loss of GDP per capita under shock in infrastructures (“CC_Infr") with respect to BAU, yearly and cumulative
Source: Model results.
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Source: Model results.

differences in terms of how (in)substitutability of factors may affect
more or less this activity than agriculture. Shocks on infrastructures.

A relatively surprising insight from the modelling of these shocks is
the relative linearity (and symmetry with respect to the reference
shock) found, i.e., having a 50% higher (or lower) impact with respect
to the reference, creates also 50% lower (or higher) impact on the GDP
per capita, and a 50% higher (or lower) impact on prices.

In the case of infrastructures, the yearly shock modelled is smaller
because the loss of capital is likely to be less pronounced, more of a
slow process (except for the point in time shocks which could be asso-
ciated to extreme events) than for agriculture or fisheries. Still given
those shocks the effects on GDP per capita are relatively high given

Table 4

the simulated loss of capital in many key sectors, given the key role of
capital in the dynamics of the model. Furthermore, it is worth indicating
the different share that these factors of production represent. In terms of
monetary equivalent, the stock of fish for the fisheries sector represents
about 35% of the total of factors, while for agricultural sectors land rep-
resents about 44%. In both cases, possible substitutions (to a certain de-
gree, based on the elasticities) exist with capital and labour. In the case
of the sectors affected by the shock of infrastructures, capital can only be
substituted (to a certain degree) with labour, when the initial share of
capital in the total of factors is of the order of 77% (Communication),
86% (Dwellings), up to 96% (gas manufacture distribution). So in some
cases even small percentage loss shocks are relating to important losses

Cumulative (%) Changes in macroeconomic variables from Climate Change shocks with respect to BAU (up to 2050) for the Mahanadi Delta.

Cumulative (up to 2050) % change in variable with respect to BAU (reference path without

shocks)
Yearly shock on sectors Point in time (frequency depending on Land Natural resources GDP (PPP) per GDP (PPP) per capita Prices
affected event) shock endowment endowment capita delta non-delta
CC_Agr 0.1% —3.62 0.00 —0.42 —0.04 0.04
0.25% —9.07 0.00 —1.09 —0.12 0.11
0.5% —17.34 0.00 —2.26 —0.22 0.21
0.75% —24.88 0.00 —3.66 —0.34 0.32
CC_Fisheries  0.02% —-0.9 —0.05 0.00 —0.00
0.25% —4.48 —0.43 —0.01 0.01
0.5% —8.76 —0.85 —0.03 0.02
0.75% —12.86 —1.27 —0.04 0.03
0.0025%* 0.1%* —0.39 0.00 —0.00
CClInfrastr ~ 0.025%* 1% —5.22 0.03 —0.03
0.05%* 1% —7.32 0.04 —0.04
0.075%* 1%* —8.50 0.05 —0.05
CC_All above Very low =Infrastr —3.62 -0.9 —0.86 —0.04 0.04
Low =Infrastr —9.07 —4.48 —6.74 —0.10 0.08
Ref =Infrastr —17.34 —8.76 —10.44 —0.21 0.19
High =Infrastr —24.88 —12.86 —13.52 —0.33 0.30

Source: Model results.

¢ Shocks are simulated also independently and altogether under the hypothesis that some process, as damage on infrastructure, may be a regular process, but also specific point in time

shocks may occur with a certain frequency.
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of infrastructure for these sectors and the whole economy. For example,
the impacts of these sectors when shocked, as seen in Fig. 4, represent
three times the GDP per capita loss of the agricultural sectors, and
about 27 times more than the fisheries sectors, even though both of
these activities are greatly important in the delta and for the livelihoods
of much of population. We also see in Table 4 from the last 3 rows of
shocks taken together that all the climate change related changes con-
sidered, result (for the delta only) in cumulative (up to 2050) percent-
age losses in GDP per capita with respect to BAU of about 11% for the
delta, while barely of 0.25% nationally.

5. Conclusions

In this paper we have developed the conceptual and practical links
between the climate, biophysical and socioeconomics model in
DECCMA. In particular, we have focused on the background and the con-
ceptualisation of the links between the global climate (RCPs) and socio-
economic (SSPs) scenario narratives and policy assumptions (SPAs) for
developing appropriate adaptation policy trajectories and associated
specific interventions in the deltas. The review of the literature shows
how biophysical-economic models represent a diversity of approaches
to describing human-nature interactions. Following the line of dynamic
CGE models which connect with other Partial Equilibrium, biophysical,
crop/hydro/(...) models in this framework we have translated the bio-
physical changes (coming from simulations with a specific RCP 8.5)
into changes in our dynamic economic model (Delta-CGE). Further-
more, we have incorporated national and regional scenarios (3 SSPs)
and adaptation policy alternatives which have reasonable translations
to our parameters or variables.

Our model is set up to incorporate the outputs from various biophys-
ical models, harmonizing results into common metrics to be used as in-
puts in the economic models. Similarly to the recognition explained in
(Wiebe et al.,, 2015), obtaining these variables under a high emissions
pathway allows us to study and highlight how production and food se-
curity may be affected by climate change from various perspectives.
Furthermore, it can examine the impacts of climate change on yields,
production, area, prices, and trade across multiple socioeconomic and
policy pathways. For this reason, despite some possible feedbacks
among variables which ideally could be captured with the integrated
framework of the project, the DECCMA Economics model already repre-
sents the natural next step or way forward of analysing biophysical im-
pacts further in the supply chains.

Indeed, the main design of the model and scenarios analysis has
been done so that the robust Monte-Carlo type runs create an “emula-
tor” which can be implemented in the integrated (Bayesian type)
framework of the project. In this regard, we have performed a wide sen-
sitivity analysis on how the endogenous variables in the model respond
to the main parameters and exogenous information which enters it as
inputs. In particular, we found that in order to understand the growth
of GDP, the most sensitive parameters were total factor productivity
and population pathways, followed by the interest rates and the as-
sumptions on the production functions and trade. The modelling of
the climate change impacts via loss of land dramatically affected more
the agricultural outputs and GDP in general than the specification via
productivity losses. The changes in interest and depreciation rates
were also highly influential in the evolution of capital, investments,
and in general in the performance of adaptation options focused on Di-
saster Risk Reduction. As also found in (Eboli et al., 2010), one may also
observe how second-order, system-wide effects of climate change im-
pacts typically have significant distributional effects at the regional
and industrial level. The interaction between endogenous and exoge-
nous dynamics generates non-linear deviations from the baseline, am-
plifying or counteracting exogenous shocks on the long run.

The main future steps with the DECCMA Economics modelling have
to do with this further validation, and with the implementation with
much more data on scenarios, coming from all the different (notably

the biophysical, but also from the integrated Bayesian) models results,
and implemented for all the deltas under study in DECCMA. Inter-
comparison of results should also serve us to further disentangle how
the choice of parameters affects the results, and in general the uncer-
tainty of the modelling. Probably even more importantly, we should
then be able to fully address how the variables evolve, to be able to pro-
vide comprehensive measures on output, prices, welfare, income or
wages, for each of the scenarios and adaptation options, hopefully pro-
vide guidance on the socioeconomic implications of the different
choices, and on specific policy implications, such as the positive effects
found here of specific adaptation interventions, namely the input subsi-
dies in seeds and fertilizers, and the DRR interventions of building mul-
tipurpose cyclone shelters and constructing embankments. Also
possible future distinction of socioeconomic groups (from the Social Ac-
counting Matrices) may serve us to differentiate impacts on vulnerable
groups, based on their different patterns on migration and vulnerability
to climate change, leading to interesting results and discussion on distri-
butional issues and policy measures.
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