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INTRODUCTION

Aim
* To investigate the technological feasibility of deploying UGVs for
automated wildlife patrol.

Objectives

* Preliminary feasibility study based on metadata collected from
park officials

* Data collection of driving data from national park trails in Kenya

e Steering wheel prediction using deep learning



FEASIBILITY STUDY
Mara Triangle

Vehicles used in parks
e Models (4 WD off-road e.g
suzuki, land cruiser)
e Power requirements
e Fuel consumption
Costs
e Fuel/maintenance
e Labour

Terrain

Dirt roads

Clear feasible path used
daily by vehicles.

Changes in weather making
navigation difficult.



Preliminary analysis of data from Mara Triangle

Community/staff receptive to
technologies
Coverage area/ surveillance issues
- 510 sq km divided into 3 patrol
sectors, 3 patrol vehicles per
sector
Labour
- 91 rangers
- Shortage during peak season (July
to Nov)

Costs

- Total Fuel Costs = Ksh.
300,000 per month

- Maintenance costs = Ksh.
25,000 per month



Deployment feasibility

* Use hybrid power supply combination

e Specialized vehicle design for the terrain

* Cost benefit analysis - Economically feasible

e Duration (reliability)

e Season variability

e Better vantage of monitoring activities in larger areas



DATA COLLECTION

Data Acquisition System

Vehicle ECU

OBD-Il port

Dashcam

CAN bus

PiCAN2
(CAN Controller)




Data recorded

e 8.5hrs/115km from Nairobi National Park
e 2.5hrs/30km from Ruma National Park
* 9hrs/425km on paved roads (highways in Kenya)

Parameters recorded:
Driving video

Steering wheel angle
Steering wheel torque
Vehicle speed

Accelerator pedal position
Brake pedal position
Individual tyre speeds
GPS coordinates

W=
O N O W!



Challenges in data collection

* Decoding driving signals from CAN bus
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Challenges in data collection

 Camera lag when interfacing to Raspberry Pi

 Power limitations for laptop

* Driving a low-body vehicle on rough terrain

* Unreliable internet connectivity

e Data quality - windshield cleanliness, camera vibrations



STEERING PREDICTION

Data preprocessing:

1. Identifying and removing video segments containing:
— U-turns
— Reverse
— Overtaking
— Stopped
— Road view completely blocked by vehicle ahead
— Navigating around potholes/bad roads



Data preprocessing:

Uniform data distribution

Distortion correction

Image cropping and resizing

Extract driving signals from CAN logs

Match video timestamps to closest CAN timestamps to generate
data sample

Data augmentation - shadows, lighting, horizontal flips
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Sample data images



Network architecture

Output: vehicle control
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Results
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Future work

* Use more driving parameters for training

* Use a temporal method for training e.g. LSTM

 Conduct a more detailed feasibility study with the Mara
Conservancy
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