CANADA

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4 – 17 JANUARY 1989 The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Établi à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.

49363

PERIODICALS PERIODIQUES

IDRC-MR252e February 1990

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II

2. The Other Oil Crops Subnetwork-I

3. The Oil Crops Network Steering Committee-I

Edited by

Technical	Abbas Adviser,	Omran Oil Crops	Networ	IDRC UBRARY RELIOTHEQUE DU CRDI
				884172 0TTAWA

Organized by

Indian Council of Agricultural Research, New Delhi, India G.G. Pant University of Agriculture and Technology, Pantnagar, India Directorate of Oilseeds Research, Hyderabad, India International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.

CONTENTS

Foreword	V
List of Participants	vi
Introduction	xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH	2
Recent Development in Oilseed Brassicas. R.K.DOWNEY	4
The Interinstitutional Collaborative Research Program on White Rust	
(Albugo candida) Between India (ICAR) and Canada (IDRC) for	
Rapeseed-Mustard Improvement. P.R.VERMA	9
Stability Parameters for Seed Characters In Different Species of	
Oleiferous Brassica. H.SINGH, D.SINGH, and V.S. LATHER	14
Oilseed Brassica Research in India. P.R.KUMAR	17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.	
BASUDEO SINGH	24
Status of Breeding Research on brassica Oil Crops at Pantnagar. India.	
G.N. SACHAN	30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar, ARVIND	
KUMAR and R.P. SINGH	35
Disease Problems in Brassicas and Research Activities at Pantnagar.	
S.J.KOLTE. R.P.AWASTHI and VISHWANATH	43
Effect of Some Epidemiological Factors on Occurrence and Severity of	• =
Alternaria Blight of Rapeseed and Mustard, R.P. AWASTHI and	
S.J.KOLTE	49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar	-17
G.C.SACHAN	54
Economic Performance. Potential and Constraints in Toria Production	
L.R.SINGH	44
Represent in Fount BODR & FL-AHMAR	70
The Role of High-Vielding Variaties and Production Techniques	70
On Dileged Brassica Performance in the Control South-Eastern	
and North-Western Zonos of Ethionia, HIGHV PELAVNEL CETINET	
ALEMAN and NIGUSSIE ALEMAYER	70
The Achievements and Eutune of Practice in Kenve M I MAUACI	70
Represent Adaptation Trials in Commun. A MADIICUDISTONOULOU	7 / 7
The Represed (Reaction Franks /) Quality Recording Recorded in Characteria	00
Academy of Amicultural Sciences (SAAS) for Depart Veryn	
PLACENTY OF HERICUITURAL SCIENCES (SHH5/ TOP RECENT TEARS,	-
Statement on the Everytics of the Size Creative Decement Ducedian	92
Statement on the Execution of the Sino-Lanadian Rapeseed Breeding	.
A Publicianu Chudu an the Cartinian Atility a the iterian of the	94
A Freilminary Study on the Lombining Ability and Heritability of Main	
H9ronomic Unaracters in <i>B. Juncea.</i> WANG ZAU MU and WANG YAN FEI	
WHIND THIN FEI Cian Carl C	48
TEPUTION WE EXECUTION OF SINO-LANAGA Research Breeding Project.	
сто смемо фотмо and MONG MAI PING	103

A Review of Orobanche Problem in Nepal. M.L.JAYASWAL	106
Oil Crops in Bhutan. TAYAN RAJ GURUNG	119
Brassica Production and Research in Pakistan. REHMAT ULLAH KHAN and	
MASOOD A.RANA	127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT	130
Report on a Tour to Dilseed Brassica Growing Areas of India.	
GETINET ALEMAW	136
Discussions and Recommendations	138

Part 2. Other Dilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAD	144
India from January 9-13, 1989. V.RANGA RAO	147
Jappovegent in India. MANGALA RAI	149
Safflower Research in Fighties in Madhva Pradesh (India). A.R.SAWANT	154
Nigerseed in India: Present Status of Cultivation, Research	
Achievements and Strategies. S.M.SHARMA	159
Constraints and Opportunities for Increasing the Production and	
Productivity of Niger in India. S.M.SHARMA	166
New Potential Areas of Niger in India. S.M.SHARMA	169
Present Production, Research and Future Strategy for Niger in	
Maharashtra. A.V.JOSHI	171
Niger in Tribal Bihar. H.B.P.TRIVEDI	176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY .	180
Agronomic Management/Agro-Techniques for Improving Production of	
Niger and Linseed. G.L.MISHRA	186
The Present Status of Niger and Linseed Pathology Work in India.	100
6.S.SAHAKAN	207
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and	203
DILRUBA BEGUM	208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,	
MOHAMMAD SHARI, and ALTAF H.CHAUDHRY	213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR	218
Progress in Linseed On-station and On-farm Research in Ethiopia.	
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GELINET ALEMAW	220
Investigations on Some Biochemical Unaracteristics of Nigerseeds	220
(GUIZOTIA ADYSSINICA CASS), GETINET ALEMAW AND HIROT BELATNEH	227 977
The Status of Lingsond Rafflower and Niger Research and Production in	الدانية.
Me Status of Linseed, Saffiower and Niger Research and Froduction in	238
Summary and Wrap-up for Other Dilcrops Sub-Network Meeting.	
HUGH DOGGETT	241
Discussions and Recommendations	248

.

Part 3. Dilcrops Network Steering Committee-1

The Oilcrops Network for East Africa and South Asia, Achievements and	
Future. ABBAS OMRAN	256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT	265
IBMOR S New Concept for the Conservation and Utilization of Germpiasm;	
GIODAI LTOP NETWORKS. J.M.M.ENGELS	212
Technology Mission on Uilcrops for Self-Reliance in Vegetable Oils in	
India. MANGALA RAI	274
Dilseeds Research in India: Network, Its Set Up, Organization, Past	
Achievements and Current Research Thrusts. V.RANGA RAD	283
Groundnut and the Oilcrops Network. S.N.NIGAM	286
Dilcrops Production in Ethiopia Current Status and Future Prospects.	
SEME DEBELA	288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I.	
C.ZULBERTI and J.LUGOGO	293
Brassica Sub-Network Achievements and Activites, 1987-88.	
HIRUY BELAYNEH	320
The Present Situation and Main Achievements of Sesame Production in	
East Africa. MOHAMMED EL-HASSAN AHMED	324
Constituion of the Dil Crops Network (Second Draft) MASDOD A RANA and	an an I
ARRAS OMRAN	330
	000

.

180

CULTIVATION AND VARIETAL IMPROVEMENT OF LINSEED IN INDIA

R.N. Dubey

Linseed is an important oilseed crop on account of its drying oil which is an unparallel source of paints and varnish industries. The (Linum usitatissimum) Linseed great diversity displays in morphological and biochemical The varieties of characteristics. the same species, when cultivated for their seed, are called oil flax, seed flax or linseed and when grown for their fibre are known as flax. The seed flax or linseed varieties are dwarf. profusely branched having good seed yielding type of potentialities. Such varieties are under cultivation in warmer regions of the world viz., Argentina, Canada, India, part of the USSR and USA, etc. The fibre flax varieties are tall, scarcely having low yielding branched This group of varieties ability. is under commercial cultivation in temperate the more regions throughout the Northern hemisphere. In India, linseed is cultivated exclusively for seed. With an area of about 1.45 million hectares and production, 0.44 million tones India presently ranks first in followed USSR, acreage ЬУ Argentina, Canada and USA and third in production after Argentina and Canada on world map of linseed Though India shares cultivation. about 30% of the world acreage, the country contributes only 17% of the total world production because of productivity i.e., 299 its low kg/ha as against the average yield of 960 kg/ha of Canada, 913 kg/ha of Argentina, 819 kg/ha of USA and 552 kg/ha of the world. On acreage basis, the leading linseed growing states in this country, in their order of merit, are Madhya Pradesh, Uttar Pradesh, Maharashtra, Bihar and Rajasthan which together account for about 8.8% of the total linseed area and production. The

low productivity of the major linseed growing states forms the basis of the low national average yield.

<u>Constraints to productivity</u>

Linseed is rated as the second grade oilseed crop by the Indian farmer and is, therefore, religated to the marginal and sub-marginal under moisture stress lands using traditional condition low yielding varieties with low or no inputs resulting in low seed yield. Besides the prevailing practices of mixed cropping and intercropping, adoption of ages old Paira or Utera system of linseed cultivation in about 25% of the total area with an average yield of 1.0 q/ha is the single major factor to lower down the average productivity to a great extent. Though this is one of the best known dry land practices of utilizing residual paddy soil moisture when tillage is difficult, but due to compact soil structure root and shoot which restricts growth, high mortality of seedlings of particularly at harvesting paddy, complete lack of tillage and fertilizer use, substantial sharing of residual crop nutrients and soil moisture by weeds, very poor yields are recorded.

traditional varieties, apart The their poor response to from increased inputs in the form of fertilizer and irrigation, are prone to diseases and pests. Rust. wilt, powdery mildew and Alternaria blight among the diseases and linseed bud fly (Dasyneura lini) among the pests are the serious problems with varying intensity of infection and losses in different Monitoring of the regions. diseases and pests during the last few years by the AICORPO scientists

have revealed the dimensions of these problems in different regions. In north west region i.e., Jammu & Kashmir, Himachal Pradesh, Haryana, Punjab, and U.P. Hills, rust, powdery mildew, wilt and Alternaria blight have been the serious problem and merit in that order. Entire Gangetic alluvium of Uttar Pradesh, Bihar, West Benal including Assam have also the major problem of rust followed by Alternaria blight, powdery mildew and wilt. In Peninsular region and southern plateau comprising of Bundelkhand region Uttar Pradesh, Madhya Pradesh, Orissa. Karnataka, Maharashtra and Rajasthan, powdery mildew, wilt, rust and linseed bud fly cause losses to linseed crop. However, with the availability of the rust, powderv mildew and wilt resistant/tolerant varieties developed by the AICORPO centers, Alternaria blight and linseed bud fly are the only left serious problem to overcome.

<u>Linseed breeding and varietal</u> <u>improvement</u>

Linseed breeding was initiated in India in 1915 at the Imperial Agricultural Research Institute, Bihar Pusa. (now Indian Agricultural Research Institute, New Delhi). Later on, some state departments of agriculture and institutes at Kanpur, Indore, Pune, Bernampore, Kangrha, etc., also started improving linseed varieties for their situations. The research work was strengthened in 1947 by the Indian Central Oilseed Committee (ICOC) by way of sponsoring adhoc schemes to the state departments of agriculture and institutes. In view of the limited impact of ICOC schemes on linseed productions, Indian Council Agricultural Research started of All India Co-ordinated Research Project on Dilseeds (AICORPO) in 1967 with linseed as part of it having interdisciplinary approach,

free exchange of breeding material, information and ideas, planning of technical programs and research methods in annual workshop The intensified work meetings. under AICORPO aimed at developing disease resistant, early maturing, and oil high seed yielding varieties and their production technologies for maximum production. Consequently, the concerted efforts of some centers particularly kanpur, Raipur, Jabalpur and Kangrha resulted in the development of as much as 19 varieties for different systems and situation including 9 mono/multiple disease resistant/tolerant varieties: namely, Pusa-2, Pusa-3, Himalini, Jawahar-23, Garima, Shubhra, Sweta, Laxmi-27 and Kiran released in 1985 and onward. A11 these varieties have a yielding ability of 8-10 q/ha under rainfed and 15-20 q/ha under irrigated situation. Some varieties such as Neelum, K-2, Jawahar-23, and Garima yielded 25-30 g/ha under ideal management.

Double purpose linseed

It is well known that linseed fibre is one of the oldest vegetable fibre to be spun and woven. Ξn characteristics, it has been reported to be lustrous, stronger, less stretchy, more durable and better resistant to environmental fluctuations. The flax fibre has been highly regarded and rated indispensable particularly during war periods. In order to develop dual purpose varieties for high seed and fibre production, the efforts were made about 50 years back but unfortunately the matter could not be persuade in right perspective in the subsequent decades and the country is paying cost under the umbrella of a very However, very heavy import. recently, two double purpose varieties namely, Gaurav and Jeevan have been developed and released in 1987 for commercial cultivation.

In agronomic trials, Gaurav has yielded more than 22 g/ha seed and g/ha fibre. Both these 14 varieties will go a long way in maximizing the linseed production as it has been proved time and again that improved varieties of linseed respond well to inputs and enherit high yield potentials. The salient features of the varieties released from time to time for commercial cultivation are given in the region-wise Table 1 while varietal recommendation is given below:

1. <u>North west region</u>: K2, LC-185, Himalini, Pusa-2, Pusa-3, LC-54, and Jeevan.

2. <u>Gangetic alluvial region</u>: Mukta, Noelum, T397, Neela, Garima, Sweta, Shubhra, Gaurav, and Jeevan.

3. <u>Peninsular region; and southern</u> <u>plateau</u>: Hira, Laxmi-27, T-397, Jawahar-1, Jawahar-7, Jawahar-17, Jawahar-552, Jawahar-23, C429, S-36 Chambal, Pusa-2 and Kiran.

<u>Present activities for linseed</u>

Plan, the linseed Under Seventh improvement work has been increasing the strengthened Ьγ of AICORPO centres number considering the state-wise linseed cultivation, problems and existing AICORPO facilities. Some of the existing centres have been raised to the status of main centres providing the infrastructure for multidisciplinary approach while the others are to work as subcentre or joint centre with the provided staff under linseed and other crops at the centre under AICORPO.

With the technology mission on oilseeds in operation, the research work has been further intensified at some selected AICORPO centres on problem oriented activities assigned to them. The progress of work on such activities is regularly monitored. The centres are doing their best to achieve the time bound mandate assigned to them. These activities are listed below alongwith the centers working on them.

<u>Research activity</u>

<u>Centres</u>

Kota, Raichur region)

Kanpur

- Kanpur Kangrha 1. Double purpose variety Kanpur, Faizabad, 2. Alternaria resistance Raipur, Mauranipur, Kangrha, Kanke, Akola Kanpur, Mauranipur, 3. Budfly resistance Raipur, Akola Kaipur 4. Wilt resistance Faizabad, Kangrha 5. High yielding varieties (rainfed and irrigated conditions) Mauranipur, Raipur, 6. Short duration varieties (Central and peninsular Akola,

7. Germplasm unit

Breeder seed production

The breeder seed of the improved varieties is produced under the direct supervision of the breeder to supply the multiplying agencies in order to make continued flow of quality seed to the farmer after subsequent multiplication in stages. Recently, a centrally sponsored scheme on production of breeder seed of annual oilseed crops started functioning since September 1988 with its seed monitoring producing centres and systematically the production and supply of the quality seed.

Linseed improvement work at C.S.A. University of Agriculture and Technology, Kanpur

<u>Breeding</u>: Aiming at developing rust resistant high yielding varieties of linseed initiated in 1023 resulted in the recommendation of T.1 and T.477 for Bundelkhand and alluvial tracts, respectively, of Uttar Pradesh in the fourties.

	Duration	Ave. yield Oil		
<u>Variety</u>	(days)	(kg/ha) conte	ntSuitability	Assistance
K.2	170.175	1100 46	Irrigated	Rust, Wilt
C.429	120-125	500 44	Rainfed	·
S. 36	105-110	400 37	Rainfed/Inter-cropping	Wilt
T.397	120-125	1100 44	Rainfed; widely adoptable	Rust, Wilt, Drought
Hira	130-135	1200 43	Irrigated/rainfed	Rust, drought
Mukta	125-130	1200 45	Rainfed/irrigated	Rust. Wild
Neelum	135-140	1500 43	Irrigate/high fertility	Rust, Wilt
LC.185	165-170	500 46) Utera	Rust, Wilt
Himalini	155-170	1300 42	Rainfed/irrig. Utera	Rust, Wilt
LC. 54	155-170	1300 42	Irrigated	Rust
Jawahar-1	115-120	900 44	Rainfed/irrigated	Escapes linseed budfly,
Jawahar-7	115-118	300 Utera		••
		300 R.f 43	Utera	Rust
Jawahar-17	115-120	800 R.f 43	Rainfed/irrigated	Rust
		1300 Irr.	•	
Jawhar-552	115-120	900 44	Raifed/irrigated Utera	Rust, wilt, powdery mildew
Naela	125-130	850 40	Rainfed	wilt
Cnambal	115-120	900 44	Rainfed/irrigated	-
Jawhar-23	115-120	1000 43	High fertility	wilt, Powdery mildew
Pusa-2	140-145	730 R.f 43	Rainfed/irrigated	- · ·
		1300 Irr.	widely adoptable	
Pusa-3	140-150	1350 42	High fertility	-
Garima	125-130	1500 42	Irrigated/high	Rust; tolerant to
			fertility/delayed sowing	powdery mildew, wilt, Alternaria blight.
Shubhra	130-135	1400 Irr. 45	Irrigate/rainfed;	Rust; Tolerant to
		870 R.f	excellent oil quality	wilt and Alternaria blight.
Sweta	130-135	880 R.f 44	Rainfed	Rust, powdery mildew; Tolerant to Alternaria blight.
Laxmi-27	110-115	1020 R.f 45	Rainfed/irrigated	Rust, wilt, powdery wildew.
Kiran	120-125	750 R.f 43	Rainfed	Rust, wilt, powdery mildew, Alternaira blight.
Double purpos	e varieties			
Gaurav	135-140	1050-Seed 43	Irrigated best suited to Gangetic alluvium	Rust, tolerant to powdery mildew and Alternaria blight
Jeevan	175-180	1090-Seed 46 1000-Fibre	Irrigated; best suited to North-west region	Rust, Wilt, Powdery mildew

Table 1. Salient features of recommended varieties.

On the inception of ICOC scheme, the intensified breeding work led to the release of T.126 in 1958 to replace T.477 and T.603 alongwith T.397 in 1960 to replace T.1. Яn 1964, three more rust and wilt resistant varieties, namely, Hira for Bundelkhand, Mukta for eastern and Neelum for central western part of Uttar Fradesh were released for commercial cultivation. Amona these, T.397 and Neelum are still doing well in fields. T.397 has also been adopted by Bihar, Assam, Madhya pradesh and Rajsthan states. It is also being used as national check in AICORPO trials since 1976. On the inception of AICORPO in 1967, the research work was further intensified. The breeding work on resistance against rust, powdery mildew and wilt taken up in midseventies and on Alternaria blight in early eighties has resulted in the isolation of a large number of genotypes almost free from rust, and powdery mildew. Several promising genotypes tolerant to Alternaria blight and wilt were also developed. The varietal testing in early eighties resulted in the release of four seed varieties, namely: Garima, Shubhra, Sweta and Laxmi-27 and one double purpose variety i.e. Gaurav. Among these, Garima for irrigated, Sweta for rainfed, Shubhra for both the situations having excellent oil quality alongwith the double purpose variety. Gaurav has been recommended for Gangeticlluvial region of U.P. Bihar, West Bengal including Assam while Laxmi-27 has been recommended for Bundelkhand region of Uttar Fradesh. All these varieties have the yield potential of 20-25 g/ha under irrigated and 12-15 g/ha under rainfed situations with an oil content of 43-45%. The double purpose variety Gaurav has yielded more than 22 and 14 g/ha seed and fibre, respectively, in agronomic trials.

<u>Breeder seed production</u>: Under this program about 1509 breeder seed was produced and supplied to the seed multiplying agencies for further multiplication in subsequent stages in order to make available the quality seed to the farmers.

Agronomy: Under this discipline, the agronomic requirements of the varieties released, from time to time, were standardized, perfected and recommended. The experiments conducted with latest identified/released varieties on fertilizer and irrigation requirement, sowing time, spacing, seed rate, etc. for seed and double purpose varieties resulted in the of recommendation sowing of improved varieties in second fortnight of October with 30 kg/ha seed rate in rows, 25 cm, apart at 80:40 kg and 40:20 kg/ha N = $B_{0.5}$ /ha irrigated and rainfed under conditions. respectively. 1n Budelkhand region, the optimum sowing time has been found to be the first fortnight of October and 30 cm row distance due to the specific soil structure. The fibre yield in double purpose varieties is increased with the increase in seed rate (45 kg/ha) with closer row spacing (20 cm). Intercropping of linseed with gram or lentil in row ratios of 1:3 to 3:1 and with potato adjusting its three rows in place of the fourth row of potato appeared more remunerative than sole cropping. Linseed gave the lowest cost benefit ratio of 1:2.51 as compared with other oilseeds and cereals viz., mustard (1:1.95), toria (1:1.76), safflower (1:0.55), (1:0.13)sunflower castor (1:0.59), wheat (1:0.59) and barley (1:0.22).

<u>Plant protection</u>: Rust, *Alternaria* blight, powdery mildew and wilt in diseases and bud fly in pests have been the major problems of this region. The natural sources for resistance to rust, powdery mildew and wilt have been identified and transferred to improved varieties. Most of the varieties released from this institute are resistant/ tolerant to rust, wilt and powdery mildew. In screening, the cultures with E.C. Nos. 544, 15818, 1387, 19288, 41520, 41549, 41618, 41667, 41739, 41797, 158993, Fx165, KL169 and Chharpuran have been found to be resistant to *Alternaria* blight. Their resistance is being incorporated in the improved varieties. The screening of natural source of bud fly is in progress. However, the escaping varieties have been developed. The economic chemical control measures for the diseases and pests have been worked out and recommended accordingly.