
 

 
 

Guide to Localization of 
Open Source Software 

 

 
NepaLinux Team  

Madan Puraskar Pustakalaya 
 
 
 
 

 
 

      

www.mpp.org.np     www.idrc.ca 

 
 



 
ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Published by 
 

Center for Research in Urdu Language Processing 
National University of Computer and Emerging Sciences 

Lahore, Pakistan 
 

on Behalf of  
 

Madan Puraskar Pustakalaya 
Kathmandu, Nepal 

 
 

Copyrights © International Development Research Center, Canada 
 

Printed by Walayatsons, Pakistan 
 

ISBN: 978-969-8961-02-2 
 
 
 
 
 
 
 
 
 
 
 
This work was carried out with the aid of a grant from the International Development 
Research Centre (IDRC), Ottawa, Canada, administered through the Centre for Research 
in Urdu Language Processing (CRULP), National University of Computer and Emerging 
Sciences (NUCES), Pakistan. 



 

                                                                                                                                        
                                                                               
  

iii

Preface 
 
The release of NepaLinux 1.0 in December 2005, by Madan Puraskar Pustakalaya was a major 
breakthrough for software localization in Nepal. The open source nature and no licensing cost of NepaLinux 
provided a viable alternative to more costly proprietary software in Nepali.  This localization work was based 
on existing open source distributions in Linux.  While the open source movement has provided free, open 
and easy access to the source code, accelerating localization development, the need to document the 
processes involved has also become equally important to trigger further localization for under-resourced 
languages.  
 
This Linux localization guide is a compilation of the experiences of the Madan Puraskar Pustakalaya 
localization team while they worked on the localization of Debian and Morphix based GNU/Linux Distribution 
in Nepali. Special attention has been given in making the content useful to those undertaking the localization 
work for the first time for other languages in their respective languages. Illustrations in most cases are based 
on the works in the Nepali language.  However, information about the basic steps and procedures for 
localization has been made as generic as possible, in order to ensure that any language may fit into the 
description provided. During the preparation of this guide, a large number of resources invaluable to both 
beginners and experts of localization have been consulted. References have been provided for further 
reading for these topics.  
 
We would like to acknowledge G. Karunakar of SARAI and IndLinux, Javier Sola of the Khmer OS initiative, 
Jaldhar Vyas, Suyash Shrestha for their advice and help during the development of NepaLinux 1.0. Our 
acknowledgements are also due to networks like bytesforall, debian.org etc. 
 
This work has been made possible through the support of National University of Computer and Emerging 
Sciences (NUCES), Pakistan, and Pan Asia Networking (PAN) program of International Development 
Research Center (IDRC), Canada. 
 
Madan Puraskar Pustakalaya (MPP) and the PAN Localization Project 
 
MPP, a non-profit institution, is principally an archive house of published materials in the Nepali Language. It 
has been working in the field of software localisation and Nepali Language Computing since the year 2000. 
MPP’s involvement in computing began with the Pustakalaya’s decision to electronically catalogue its 
collections nearly a decade ago. Since the available technology (a number of Nepali fonts like Preeti, 
JagHimali, Kanchan, etc.) lacked data processing capabilities, as well as had inconsistencies in the 
keyboard mappings and layout, there was no alternative other than to develop a standard keyboard input 
method for Nepali. 
 
It was against this backdrop that MPP undertook the Font Standardization Project, supported by the United 
Nations Development Project and the Ministry of Science and Technology. A direct outcome of the project 
was the two keyboard drivers, Nepali Unicode Romanized and the Nepali Unicode Traditional, developed by 
MPP. This solved the problems of data processing constraints and the inconsistencies of keyboard mapping 
that existed for the Nepali language. To continue the work initiated in Nepali Language Computing, MPP 
collaborated in the PAN Localization Project (1) in the year 2004.  
 
PAN Localization, a multinational project developed for the purpose of enabling local language computing 
capacities in South- and Southeast Asia. Supported by the International Development and Research Centre 
(IDRC), Canada it is being run simultaneously in ten countries of South- and Southeast Asia, with MPP 
representing the Nepal component. MPP’s focus has been on reducing the distance prevalent among the 
general Nepali people and computers due to the language barrier. MPP released the NepaLinux 1.0, which 
was enthusiastically taken up by the users; MPP is presently working on improving and refining the existing 
release by incorporating user feedbacks. Work is also underway to localize handheld devices like the PDA 
and mobile devices into Nepali, due to be released in December 2006 through this project. In the second 
phase of the PAN Localization Project, MPP plans to develop the Nepali Optical Character Recognition 
system and deploy the existing NepaLinux system to the end-users. 
 
Natural Language Processing (NLP) applications like the Spell Checker for Nepali, Grammar Checker for 
Nepali, Machine Translation System for Nepali, Optical Character Recognition System for Nepali, Text-to-
Speech System  for Nepali  are also slowly emerging. However, Nepali continues to be an under resourced 
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language in terms of the NLP tools and linguistic resources required for conducting the computational 
linguistics. Work is underway to build these resources. 
 
Another factor that requires urgent attention is the dearth of NLP experts with adequate knowledge and 
expertise in language computing. MPP plans to establish a National Language and Technology Centre in 
Nepal which would serve as a common ground for conducting research and development in Nepali 
Language Computing, and also provide the institutional follow-up to all the activities carried out in the past 
decade. With the Centre established, the MPP also hopes to support the research works carried out by 
different individuals and institutions, in order to develop a strong NLP base in Nepal. 

 
NepaLinux Team 

Madan Puraskar Pustakalaya 
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PAN Localization Project 
 
Enabling local language computing is essential for access and generation of information, and also urgently 
required for development of Asian countries.  PAN Localization project is a regional initiative to develop local 
language computing capacity in Asia.  It is a partnership, sampling eight countries from South and South-
East Asia, to research into the challenges and solutions for local language computing development.  One of 
the basic principles of the project is to develop and enhance capacity of local institutions and resources to 
develop their own language solutions.   
 
The PAN Localization Project has three broad objectives:  
 

To raise sustainable human resource capacity in the Asian region for R&D in local language 
computing 
 
To develop local language computing support for Asian languages 
 
To advance policy for local language content creation and access across Asia for development 

 
Human resource development is being addressed through national and regional trainings and through a 
regional support network being established.  The trainings are both short and long term to address the needs 
of relevant Asian community.  In partner countries, resource and organizational development is also carried 
out by their involvement in development of local language computing solutions.  This also caters to the 
second objective.  The research being carried out by the partner countries is strategically located at different 
research entry points along the technology spectrum, with each country conducting research that is critical in 
terms of the applications that need to be delivered to the country’s user market.  Moreover, PAN Localization 
project is playing an active role in raising awareness of the potential of local language computing for the 
development of Asian population.  This will help focus the required attention and urgency to this important 
aspect of ICTs, and create the appropriate policy framework for its sustainable growth across Asia.    
 
The scope of the PAN Localization project encompasses language computing in a broader sense, including 
linguistic standardization, computing applications, development platforms, content publishing and access, 
effective marketing and dissemination strategies and intellectual property rights issues.  As the PAN 
Localization project researches into problems and solutions for local language computing across Asia, it is 
designed to sample the cultural and linguistic diversity in the whole region.  The project also builds an Asian 
network of researchers to share learning and knowledge and publishes research outputs, including a 
comprehensive review at the end of the project, documenting effective processes, results and 
recommendations. 
 
Countries (and languages) directly involved in the project include Afghanistan (Pashto and Dari), Bangladesh 
(Bangla), Bhutan (Dzongkha), Cambodia (Khmer), Laos (Lao), Nepal (Nepali), Sri Lanka (Sinhala and Tamil) 
and Pakistan, which is the regional secretariat.  The project started in January 2004 and will continue for 
three years, supporting a team of seventy five resources across these eight countries to research and 
develop local language computing solutions.  The project will be going into a second phase, extending the 
scope of partnership, countries and research, focusing on deploying the local language technology to the 
end-users.  The second phase of the project will continue till 2010.  Further details of the project, its partner 
organizations, activities and outputs are available from its website, www.PANL10n.net. 



 
vi

Contributors of the Guide 
 
Editing: Bal Krishna Bal, bal@mpp.org.np 
 
Chapter 1. Localization and Localization key concepts 
- Bal Krishna Bal 
 
Chapter 2. Locale Development 
- Paras Pradhan, Subir Bahadur Pradhanang, paras@mpp.org.np, subir@mpp.org.np 
 
Chapter 3.  Rendering and Rendering Engines 
- Paras Pradhan, Pawan Chitrakar, pawan@mpp.org.np, Minal Koirala, Sarin Pradhan, Srishtee Gurung, 
srishtee@mpp.org.np 
 
Chapter 4. GNU/Linux and Fonts 
- Subir Pradhanang 
 
Chapter 5. Input Methods for Linux 
-Paras Pradhan, Basanta Shrestha, basanta@mpp.org.np 
 
Chapter 6. Translation Aspects in Localization 
-Bal Krishna Bal, Pawan Chitrakar, Srishtee Gurung, Shiva Pokharel,shiva@mpp.org.np 
 
Chapter 7. GNOME Localization 
-Pawan Chitrakar 
 
Chapter 8. Mozilla Suite Localization 
-Basanta Shrestha 
 
Chapter 9. Mozilla FireFox Localization 
-Basanta Shrestha 
 
Chapter 10. Openoffice.Org Localization 
-Subir Bahadur Pradhanang, Prajol Shrestha, prajol@mpp.org.np 
 
Chapter 11. Linux Distribution Developement for Localization 
-Paras Pradhan 
 
Chapter 12. Developement of Internationalized Applications 
-Dibyendra Hyoju, dibyendra@mpp.org.np 
 
Chapter 13. Building Free Open Source Software (FOSS) Communities 
-Bal Krishna Bal, Subir Bahadur Pradhanang 
 
Chapter 14. Localization Project Management Techniques, Expertiences of Madan Puraskar 
Pustakalaya under the PAN Localization Project 
-Srishtee Gurung 
 
  

  



 

 

Table of Contents 
1 INTRODUCTION ...................................................................................................................................................... 1 

1.1 WH A T  IS  LO C A L IZ A T IO N ? ........................................................................................................................... 1 
1.2 FA C T O R S  T O  B E  CO N S ID E R E D  W H IL E  DE C ID IN G  T O  LO C A L IZ E  A  SO F T W A R E .......................... 2 
1.3 WH Y  IS  LO C A L IZ A T IO N  IM P O R T A N T ? ..................................................................................................... 2 
1.4 LO C A L IZ A T IO N  – KE Y  CO N C E P T S ............................................................................................................. 2 

1.4.1 Standardization .............................................................................................................................................. 2 
1.4.2 Character Sets and Encoding ........................................................................................................................ 3 
1.4.3 SingleByte and MultiByte Encodings ............................................................................................................ 3 
1.4.4 Different Encoding Systems........................................................................................................................... 3 
1.4.5 Encodings and Localization .......................................................................................................................... 3 
1.4.6 Fonts and Output Methods ............................................................................................................................ 3 
1.4.7 Characters and Glyphs .................................................................................................................................. 4 
1.4.8 Bitmap and Vector Fonts ............................................................................................................................... 4 
1.4.9 Output Methods.............................................................................................................................................. 4 
1.4.10 Input Methods............................................................................................................................................ 4 
1.4.11 Locales ...................................................................................................................................................... 5 
1.4.12 Basic Steps for Linux Localization ........................................................................................................... 5 

1.5 RE F E R E N C E S  F O R  FU R T H E R  RE A D IN G .................................................................................................... 5 
2 LOCALE DEVELOPMENT..................................................................................................................................... 6 

2.1. IN T R O D U C T IO N .............................................................................................................................................. 6 
2.2. LO C A L E  NA M IN G ........................................................................................................................................... 6 
2.3. LO C A L E  A N D  AP P L IC A T IO N S ..................................................................................................................... 6 
2.4. BA S IC S  ST E P S  O F   LO C A L E  DE V E L O P M E N T ........................................................................................... 6 
2.5. GL IB C  LO C A L E  DE V E L O P M E N T ................................................................................................................. 6 
2.6. GL IB C  LO C A L E  SU B M IS S IO N .................................................................................................................... 16 
2.7. RE F E R E N C E S  F O R  FU R T H E R  RE A D IN G .................................................................................................. 16 

3 RENDERING AND RENDERING ENGINES..................................................................................................... 17 
3.1. IN T R O D U C T IO N ............................................................................................................................................ 17 
3.2. RE N D E R IN G ................................................................................................................................................... 17 
3.3. RE N D E R IN G  EN G IN E S ................................................................................................................................. 17 

3.3.1. Pango ........................................................................................................................................................... 17 
3.3.2. ICU by IBM.................................................................................................................................................. 18 

3.4. BA S IC  ST E P S  F O R  TE X T  RE N D E R IN G ..................................................................................................... 18 
3.5. RE F E R E N C E S  F O R  FU R T H E R  RE A D IN G .................................................................................................. 19 

4 GNU/LINUX AND FONTS..................................................................................................................................... 20 
4.1 IN T R O D U C T IO N ............................................................................................................................................ 20 
4.2 TY P E S  O F  F O N T S .......................................................................................................................................... 20 
4.3 FO N T  SY S T E M S  IN  GNU/LIN U X ................................................................................................................ 20 
4.4 IN S T A L L IN G  FO N T S ..................................................................................................................................... 21 
4.5 FO N T  SE L E C T IO N ......................................................................................................................................... 21 
4.6 FO N T  RE S O U R C E S ........................................................................................................................................ 21 
4.7 FO N T  DE V E L O P M E N T  T O O L S ................................................................................................................... 21 
4.8 OP E N O F F IC E .OR G  FO N T S ........................................................................................................................... 21 
4.9 RE F E R E N C E S  F O R  FU R T H E R  RE A D IN G .................................................................................................. 22 

5 INPUT METHODS FOR LINUX .......................................................................................................................... 23 
5.1 IN T R O D U C T IO N ............................................................................................................................................ 23 
5.2 DIF F E R E N T  TY P E S  O F  IN P U T  ME T H O D S ................................................................................................ 23 

5.2.1 xkb Keyboard Layout for X11...................................................................................................................... 23 
5.2.2 IIIMF ............................................................................................................................................................ 24 
5.2.3 SCIM............................................................................................................................................................. 26 

5.3 RE F E R E N C E S  F O R  FU R T H E R  RE A D IN G .................................................................................................. 31 



 

                                                                                                                                        
                                                                               
  

6 TRANSLATION ASPECTS IN LOCALIZATION............................................................................................. 32 
6.1 IN T R O D U C T IO N ............................................................................................................................................ 32 
6.2 TR A N S L A T IO N  OV E R V IE W ........................................................................................................................ 32 
6.3 REQUIREMENTS OF THE TRANSLATION MANAGER ........................................................................................... 32 

6.3.1 Concurrent Versioning System .................................................................................................................... 32 
6.3.2 Translation Tools ......................................................................................................................................... 33 
6.3.3 PO File Format............................................................................................................................................ 39 
6.3.4 Standard Glossary for Translation.............................................................................................................. 41 

6.4 TR A N S L A T IO N  PR O C E S S  MA N A G E M E N T ............................................................................................. 41 
6.4.1 Forming the Translation Team.................................................................................................................... 41 
6.4.2 Human Resource Estimation ....................................................................................................................... 42 
6.4.3 Orientation and Training to the Translation Team .................................................................................... 42 
6.4.4 Orientation to the Translation Team Regarding Translation Guidelines .................................................. 42 
6.4.5 Making the Translation Team Familiar with the Translation Environment .............................................. 43 
6.4.6 Translation Monitoring and Tracking......................................................................................................... 43 
6.4.7 Testing and Verification .............................................................................................................................. 43 

6.5 RE F E R E N C E S  F O R  FURTHER READING ........................................................................................................ 44 
7 GNOME LOCALIZATION.................................................................................................................................... 45 

7.1 IN T R O D U C T IO N ............................................................................................................................................ 45 
7.2 WH A T  IS  X WIN D O W  SYSTEM AND WINDOW MANAGERS?........................................................................ 45 
7.3 AB O U T  GNOME............................................................................................................................................. 46 

7.3.1 Stable Releases of GNOME......................................................................................................................... 46 
7.3.2 GNOME Components .................................................................................................................................. 46 
7.3.3 Localization Framework in GNOME .......................................................................................................... 47 
7.3.4 Localizable Components of GNOME .......................................................................................................... 49 
7.3.5 GNOME versions and Localization............................................................................................................. 49 
7.3.6 Translation, Verification and Proof Reading.............................................................................................. 50 
7.3.7 Submitting Translated Files to GNOME Mainstream ................................................................................ 50 
7.3.8 GNOME Localization Status Page.............................................................................................................. 51 
7.3.9 Viewing GNOME Desktop in the Native Language.................................................................................... 51 

7.4 RE F E R E N C E S  F O R  FURTHER READING ........................................................................................................ 52 
8 MOZILLA SUITE LOCALIZATION................................................................................................................... 53 

8.1 IN T R O D U C T IO N ............................................................................................................................................ 53 
8.2 AB O U T  MO Z IL L A .......................................................................................................................................... 53 
8.3 MO Z IL L A  PR O D U C T  LO C A L IZ A T IO N ...................................................................................................... 53 

8.3.1 Basic information......................................................................................................................................... 53 
8.3.2 Localization framework ............................................................................................................................... 53 
8.3.3 Mozilla Suite Localization Steps ................................................................................................................. 54 
8.3.4 Translation Tools ......................................................................................................................................... 58 

8.4 CO M P L E X  TE X T  A N D  MO Z IL L A ............................................................................................................... 67 
8.5 BU IL D IN G  MO Z IL L A  SU IT E  F R O M  SO U R C E .......................................................................................... 68 
8.6 MO Z IL L A  PL U G -INS ...................................................................................................................................... 70 
8.7 SO M E  K N O W N  IS S U E S  T O  B E  A D D R E S S E D ........................................................................................... 70 
8.8 RE F E R E N C E S  F O R  FURTHER READING ........................................................................................................ 70 

9 MOZILLA FIREFOX LOCALIZATION............................................................................................................. 71 
9.1 IN T R O D U C T IO N ............................................................................................................................................ 71 
9.2 FIR E FO X  LO C A L IZ A T IO N ........................................................................................................................... 71 
9.3 CO M P L E X  TE X T  A N D  MO Z IL L A  FIR E FO X ............................................................................................. 75 
9.4 TO O L S  AVAILABLE FOR THE LOCALIZATION OF MOZILLA FIREFOX ............................................................... 75 
9.5 RE F E R E N C E S  F O R  FURTHER READING ........................................................................................................ 76 

10 OPENOFFICE.ORG LOCALIZATION............................................................................................................... 77 
10.1 IN T R O D U C T IO N ............................................................................................................................................ 77 
10.2 ST E P S  F O R  OP E N OF F IC E .OR G  LO C A L IZ A T IO N .................................................................................... 77 
10.3 DE V E L O P IN G  OP E N OF F IC E .OR G  LO C A L E  A N D  CO L L A T IO N ........................................................... 83 
10.4 TR A N S L A T IO N  W O R K S ............................................................................................................................... 93 



 

 

10.5 BU IL D IN G  LOCALIZED OPENOFFICE.ORG IN DEBIAN GNU/LIN U X -BASED SYSTEMS.................................... 94 
10.6 SP E L L  CH E C K E R  IN  OP E N OF F IC E .OR G .................................................................................................. 98 
10.7 TH E S A U R U S  IN  OP E N OF F IC E .OR G ........................................................................................................ 111 
10.8 RE F E R E N C E S  F O R  FURTHER READING ...................................................................................................... 113 

11 LINUX DISTRIBUTION DEVELOPMENT FOR LOCALIZATION........................................................... 114 
11.1 IN T R O D U C T IO N .......................................................................................................................................... 114 
11.2 LIN U X  DIS T R IB U T IO N ...............................................................................................................................114 
11.3 LIN U X  DIS T R IB U T IO N S  A N D  LO C A L IZ A T IO N .................................................................................... 115 
11.4 DE V E L O P M E N T  O F  A  LIV E  CD LIN U X  DIS T R IB U T IO N ..................................................................... 116 
11.5 RE F E R E N C E S  F O R  FURTHER READING ...................................................................................................... 130 

12 DEVELOPMENT OF INTERNATIONALIZED OPEN SOURCE APPLICATIONS ................................ 131 
12.1 IN T R O D U C T IO N .......................................................................................................................................... 131 
12.2 DE V E L O P IN G  A N D  L O C A L IZ IN G  QT-BASED APPLICATIONS ................................................................. 131 
12.3 RE F E R E N C E S  F O R  FURTHER READING ...................................................................................................... 135 

13 BUILDING FREE OPEN SOURCE SOFTWARE (FOSS) COMMUNITIES .............................................. 136 
13.1 IN T R O D U C T IO N .......................................................................................................................................... 136 
13.2 WH A T  IS  A  FOSS C O M M U N IT Y ? ............................................................................................................. 136 
13.3 WH A T  D O E S  A  FOSS CO M M U N IT Y  D O ? ............................................................................................... 136 
13.4 WH Y  B U IL D  A  FOSS CO M M U N IT Y ? ....................................................................................................... 136 
13.5 HO W  T O  B U IL D  A  FOSS CO M M U N IT Y ? ................................................................................................ 136 
13.6 EF F O R T S  IN  B U IL D IN G  FOSS CO M M U N IT IE S  IN  SO U T H  AS IA ....................................................... 137 

14 LOCALIZATION PROJECT MANAGEMENT TECHNIQUES, EXPERIENCES OF MADAN 
PURASKAR PUSTAKALAYA UNDER THE PAN LOCALIZATION PROJECT .............................................. 138 

14.1 IN T R O D U C T IO N .......................................................................................................................................... 138 
14.2 LO C A L IZ A T IO N  PR O JE C T  MA N A G E M E N T .......................................................................................... 138 

 



PAN Localization Guide to Localization of Open Source Software 

                                                                                                                                        
                                                                               
  

1

   

1 Introduction 
This Localization Guide comprises of fourteen chapters with an overview about localization basics in the first 
chapter followed by locale development in Chapter 2 which deals with the experiences collected by the 
Nepal Component Team, while working for the Nepali Language. The rendering issue vital to localization is 
dealt with briefly in Chapter 3. , A brief discussion in Chapter 4 about font technology and usage of fonts in 
GNU/Linux is followed in Chapter 5, by the different types of input methods available in Linux and the 
required procedures for their development.  Chapter 6 discusses  different aspects of translation, a major 
activity in localization, as well as the requirements of the Translation Manager, the translation process 
management, human resource estimation required for translation and translation tools . The next four 
Chapters (7,8,9 and 10) are dedicated to the details of localization of applications viz., Gnome Desktop, 
Mozilla Suite, OpenOffice.org, Mozilla FireFox and OpenOffice.org respectively, starting from general 
introduction, historical information, the localization components and frameworks, tools required for 
localization, procedures for building from source to the submission of the files to official sites. In Chapter 10, 
we deal with OpenOffice.org, as well as discuss the development and implementation of the Spell Checker 
and Thesaurus for non-English languages. Chapter 11 deals with the localization of Linux Distribution, 
different types of Linux Distributions and the development of the Live CD, Debian-based Linux Distribution. 
In Chapter 12, the development of Internationalized Open Source Applications and a brief overview on 
internationalization in terms of software development is discussed. An overview on developing QT based 
Applications and localizing them is also included. The issues on building Free and Open Source Software 
(FOSS) communities have been addressed briefly in Chapter 13. The localization guide concludes with a 
general overview of  the Localization Project Management Techniques gained by the Nepal Component of 
the PAN Localization Project in chapter 14.  
 
The final judgement to the quality of the Localization Guide rests with the readers. We do not claim this to be 
a complete guide to localization; however, in terms of writing the guide, we have tried to provide the 
information on the specified topics to the best of our knowledge and expertise. 

1.1 What is Localization? 
The widely accepted definition of localization defines it as the process of adapting, translating and 
customizing a product (software) for a specific market. Hence this involves dealing with a specific locale or 
cultural conventions. By locale, we generally understand convents such as sort order, keyboard layout, date, 
time, number and currency format.  
 
To many of us, localization might seem identical or similar to translation. However, the process of localization 
is much broader than simply translation. In this context, it would be highly relevant to put forward the 
definition of localization by the Localization Industry Standards Association (LISA). As per LISA, localization 
is defined as "the process of modifying products or services to account for differences in distinct markets". 
Hence, in order to have rightly called a software being localized in the truest sense, it should provide the 
local "look-and-feel" while working with it. This involves input support in the software, proper display of the 
input text, the support for date, currency and  time for a particular local language and locality. In practice, this 
means that localization needs to address  three main issues[1.5.a]: 
 

a) Linguistic Issues   
This essentially covers the translation of a product's user interface and documentation.  
 
b) Content and Cultural Issues 
This relates to adapting the information and functionality in products as per the norms acceptable to the 
local audience. Issues like the necessity of designing and developing specific software as per the locally 
accepted norms and regulations in terms of preference over colors, graphics, icons etc. is generally 
taken into consideration under content and cultural issues.    
 
c) Technical Issues 
While rendering support for local languages and content, there are certain issues that need to be 
addressed in localization. Handling bi-directional texts requires some extra effort in design and 
engineering. For example, the Arabic script as compared to Roman or Latin. Similarly, the fact that Far 
Eastern languages require twice the disk space as is required for English, where each character also 
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needs to be considered while dealing with the localization of software in these languages. 

1.2 Factors to be Considered while Deciding to Localize a Software 
The following factors need to be considered before deciding whether or not to localize a software. 
 

a) Nature and Scope of the Software Product 
The applicability of the software product in the local market needs to be taken into consideration. If the 
software has inapplicable features in the local context, one has to initially add the required features 
before translating it. 
 
b) Size of the Target Market and Audience 
The size of the target market and audience also plays a major role in the localization, especially to 
individuals and commercial companies working in the field of localization.  
             
c) Length of the Product Life Cycle and Anticipated Update Frequencies 
This issue also needs to be taken into consideration as unnecessarily lengthy product life cycles and 
high or low update frequencies also adversely effect the general usability of the software. 
 
d) Competitor Behavior 
The demand of any product in the market primarily depends upon the competitiveness it can offer as 
opposed to it's alternatives. Hence, this factor also needs to be taken into consideration. 
 
e) Market Acceptance 
Hand in hand with the analysis of the available features in the software, before localizing it one also has 
to take into consideration whether the software retains the quality of being accepted by the market in 
terms of qualitative service or not. 
 
f) National or International Legislation 
This involves the licensing issues, distribution, and redistribution rights related to the software. 

1.3 Why is Localization Important? 
Research has shown that the lack of availability of information in the locally understandable language is the 
main reason for the slow progress in Information and Communication Technology (ICT) sector by most of the 
underdeveloped countries. In today's age, access to ICT plays a major role in the overall development  of a 
country, it has become a challenge to bridge the digital divide caused by the language barrier. Even having 
learnt English, one has to pay hundreds of dollars to license foreign software, or take to widespread software 
piracy to gain access to ICT.  The solution to all these is using the localized Free Open Source Software 
(FOSS). 

1.4 Localization – Key Concepts 

1.4.1 Standardization 
Standardization is one of the baselines to be followed in localization. Standardization deals with certain 
universally accepted standards that need to be followed, so that two developers from any part of the globe 
could interact through the application developed without having to meet in person. Standardization becomes 
applicable in almost everything specific to the language – for instance, a standard glossary of terms for 
translation, a standard keyboard layout for input system, a standard collation sequence order for sorting and 
other data processing, a standard of fonts etc. 
 
Hence, standards provide ultimate contracts or agreements for all computing systems in the world. Software 
developers need such conventions to conform to prevent disorders. Therefore, standardization should be the 
very first step for any type of software construction[1.5.c]. 
 
To start localization, it is a good idea to study related standards and use them throughout the projects. 
Nowadays, many international standards and specifications have been developed to covermost of the  
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languages of the world. Important organizations on standardization include[1.5.c]: 
 

a) ISO/IEC JTC1 (International Organization for Standardization and International Electrotechnical 
Commission Joint Technical Committee 1) 

b) Unicode Consortium (http://www.unicode.org) 
c) Free Standards Group (http://www.freestandards.org) 

1.4.2 Character Sets and Encoding 
Every language is characterised by a set of characters. A character is a basic element of a text.  Characters 
are used to form larger textual units like words[1.5.d]. In mathematical terms, the character set defines the 
set of all characters used in a language. In order to store characters used  in human languages in a 
computer, we need to store them in a way the computer understands.  Since computers deal only with 
numbers, it is necessary to devise some kind of mapping whereby a particular character  corresponds to a 
particular number. This mapping, in other words is often  known as character encoding. Applications 
developed for internationalisation take into consideration the support required for representing the character 
sets of various different languages. Similarly, when localizing a software into a specific language, the 
application should take into consideration an encoding scheme that can represent characters of the target 
language. 
  
The first step in representing the human language in the computer is to identify the characters in the 
language and collect all of them to form a set of characters called the Character Repertoire. Once the 
Character Repertoire is formed, the next step is to define an encoding scheme which maps each character in 
the Character Repertoire to a unique integer, the mapping being the encoding. Encoding schemes refer to 
this unique integer as the code-point or encoded values[1.5.d]. 

1.4.3 SingleByte and MultiByte Encodings 
Encodings are classified as SingleByte or MultiByte[1.5.d].  SingleByte encoding schemes use a single byte 
to represent each character. They are regarded as the most efficient encodings available. They take least 
amount of space and are easy to process because one character is represented by one byte. 7-bit encoding 
and 8-bit encoding schemes come under this category. A 7-bit encoding scheme can define up to 128 
characters and normally support a single language. A 8-bit encoding scheme can define up to 256 
characters and generally support a group of related languages. 
 
MultiByte encoding schemes use multiple bytes to represent a single character. These schemes are either a 
fixed or variable number of bytes to represent a character. A fixed-width multibyte encoding scheme uses a 
fixed number of bytes to represent every character of its Character Repertoire. A variable width multibyte 
encoding scheme uses one or more bytes to represent a single character.  

1.4.4 Different Encoding Systems 
There are various encoding systems in use today. Since detailed information about them is easily available, 
we simply list them below.  
 

a) ASCII 
b) Base64 
c) CODE-PAGES 
d) ISO 8859-1 
e) UCS (defined by ISO 10646) 
f) Unicode (UTF-32,UTF-16,UTF-8,UTF-7) 
g) UCS 2 and UCS 4      

1.4.5 Encodings and Localization 
Encoding in localization plays a major role as the input and output text in a localized software would need the 
encoding information for data processing. Similarly, string processing and display also requires encoding 
information. For example, if the encoding used is not understood by the rendering engine, any text will 
appear as gibberish. 

1.4.6 Fonts and Output Methods  
Provided that the character set and encoding of a script are defined, the first step to enabling it onto a 
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system is to display it. Rendering text on screen requires some resource to describe the shapes of the 
characters i.e. the fonts, and some process to render the character images as per script conventions. The 
process is called the output method[1.5.c].  

1.4.7 Characters and Glyphs 
A font is a set of glyphs for a character set. A glyph is an appearance form of a character or a sequence of 
characters. It’s important to understand the concepts of characters and glyphs. For some scripts, a character 
can have more than one variation, depending on the context. In that case, the font may contain more than 
one glyph for each of those characters. On the other hand, the concept of ligatures, such as “®” in English , 
also allows some sequence of characters to be drawn together. This introduces another kind of mapping 
from more than one character into a single glyph[1.5.c].    

1.4.8 Bitmap and Vector Fonts 
Generally, there are two methods of describing fonts: bitmaps and vectors. While bitmap fonts describe 
glyph shapes by plotting the pixels directly into a two dimensional grid of determined size, vector fonts 
describe the outlines of the glyphs with line and curves. Both the font types have their own pros and cons. 
Since bitmap fonts are designed for a particular size, the quality of bitmap fonts always drops when scaled 
up. Such a problem does not apply to vector fonts. From this perspective, vector fonts seem to be a good 
choice. But at the same time, vector fonts have poor display in low resolution devices, such as computer 
screens, to which bitmap fonts are better alternatives.  

1.4.9 Output Methods 
An output method is a general procedure for drawing texts on output devices. It converts text strings into 
sequences of properly positioned glyphs of the given fonts. With English, the character-to-glyph mapping is 
straightforward but when it comes to other scripts of greater complexity, output methods are more 
complicated. 
 
Traditional font technologies do not store the information required for handling the complex scripts in the 
fonts itself. Owing to this, the output methods bear the burden. In contrast, OpenType fonts function 
according to the rules stored in the fonts. This makes the task for the output methods relatively easier as all 
that is required is the capability to read and apply the rules. Different output methods exist for different 
implementations. In case of X Window(for more details on X Window, refer to chapter 7, GNOME 
Localization.), the output method is the X Output Method(XOM). A separate module called Pango is used for 
GTK+. Output method is handled by some classes as far as Qt is concerned. 
 
OpenType fonts are now widely supported by modern rendering engines. So, basically OpenType fonts may 
be used with OpenType tables that describe rules for glyph substituions and positionings. But if TrueType or 
Type 1 fonts are used, an output method capable of processing and typesetting characters of the particular 
script is needed. 

1.4.10 Input Methods 
Many factors need to be considered relating to design and implementation of the input method. This involves 
the size of the character set for a particular language, the capability of the input device and so on. Consider 
typing English characters from a normal keyboard and from a mobile phone keypad. Again think of 
languages with huge character set like the CJK, the input turns out to be complicated even from the normal 
keyboard. Hence, it is understandable that analysis and design are important stages in the input method 
development. 
 
First and foremost, all the characters required for input should be figured out. This should include digits and 
punctuation marks. Once the decision on the required input characters has been finalized, then the input 
scheme may  be formulated, whether the characters be matched one-by-one with the available keys, or 
some combination or conversion is required for dealing with multiple keystrokes to input some characters. 
 
After deciding the input scheme, the next step  is designing the keyboard layout. While designing the 
keyboard layout, special attention should be given to make it easy and comfortable for the typists. From this 
view, the general principle is putting the most frequently used characters in the home row  followed by the 
upper and the lower rows. In case the upper case and lower case concepts do not exist for a certain 
language, rarely used characters are generally placed in the shifted positions. 
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In terms of implementation of the input method, there are two major steps required. First, the description of 
the keyboard layout has to be created looking at the available keyboard maps after which one has to write 
the input method module based on the keyboard map. The input method module developed may be plugged 
into the system to be used.   

1.4.11 Locales  
Locale is a term introduced by the concept of internationalization (I18N), in which generic frameworks are 
made so that software can adjust its behaviors to the requirements of different native languages, cultural 
conventions and coded character sets, without modification or re-compilation[1.5.c]. Locales, describing 
particular cultures are defined within such frameworks. Under such arrangement, users when configuring  
their systems find their locales picked up in the respective applications. Provided the locale definition file, 
internationalized applications may easily  accomplish functions specific to a particular locale of any 
country.Hence the only thing required for an internationalized software to support a new language or culture 
is creating a locale definition for the specific language and filling up the required information. The most 
interesting part is that things work perfectly without changing the actual source code. For more detailed 
information on locales, refer to Chapter 2, Locale Development. 

1.4.12 Basic Steps for Linux Localization 
As evident from the above information on localization, the basic procedures for Linux Localization are as 
follows: 
 

a) Creating locales 
b) Font development 
c) Choosing the input method and creating keyboard mappings 
d) Rendering engines (rendering engines need to be updated if necessary) 
e) Translation 
f) Localization of applications like OpenOffice.org, Gnome Desktop , Mozilla Suite etc for supporting 

local language support 

1.5 References for Further Reading 
a) The Localization Industry Primer, LISA- The Localization Industry Standards Association. 2nd Edition  

2003. Available on http://www.lisa.org/interact/LISAprimer.pdf 
b) http://www.lisa.org/products/primer 
c) The Primer: Localization of Free/Open Source Software. Anousak Souphavanh and Theppitak 

Karoonboonyanan. 
d) How-to Guide for Localization by International Open Source Network and Center for Development of 

Advanced Computing, Mumbai. Draft for Feedback Edition. Published October, 2004. 
e) http://nepalinux.org/docs/l10nhowtoguide.pdf 



PAN Localization Guide to Localization of Open Source Software 
 

 
6

 

2 Locale Development 

2.1. Introduction 
In Chapter 1, we have briefly touched upon the general introduction of locales and the actual need of locales 
in localization. In this Chapter, we will mainly focus on the technical aspects related to locale development. It 
is evident from the information on locales in Chapter 1 that every language has its own locale. In this regard, 
one needs to note that many localized softwares are dependent on locales. For example, gnome desktop, 
sort utilities etc. As noted earlier, a locale is built using the locale definition file. In Linux,the  locale definition 
file is part of the Glibc package. Installation of the Glibc package copies almost all of the Linux locale 
definition files created across the globe in the local computer which can be later used to build locale. For 
example, the  Nepali locale developed and submitted is named  'ne_NP' which denotes Nepali Language for 
the country, Nepal. 

2.2. Locale Naming 
The general naming convention of a locale is as follows: 
 
{lang}{territory}{codeset}[@{modifier}] 
 
A brief explanation follows:  
lang = 2 letter language code as defined in ISO 639:1988. Three letter language code is defined in ISO 639-
2 which is used in the absence of the two letter version. The ISO 639-2 Registration Authority at Library of 
Congress has a complete list of language codes. 
 
territory = 2 letter country code as defined in ISO 3166-1:1997. You can get these codes from the ISO 3166 
Maintenance agency. 
 
codeset = Character set used. 
 
modifiers = Optional and is meant to be used for adding more information to the locale by setting options. 
Options are separated by commas. Ex: fr_CA.ISO-8859-1, denotes French language spoken in Canada and 
the character set being used as defined by the  ISO-8859-1. 

2.3. Locale and Applications 
Individual applications may require separate locales to be developed. To cite an example, since Gnome or 
Gtk based applications use glibc library, the locale for glibc should be developed. However, in the case of 
openoffice, as the glibc locale is not used, the  development  of a separate locale is required. To simplify 
matters, provided that you intend to use just Gnome Desktop, Gnome/GTK based applications, and 
OpenOffice.org office suite only, then the development of glibc and OpenOffice.org locales are sufficient.  

2.4. Basics Steps of  Locale Development 
Locale development involves the following basic procedures: 
 

a) Gathering the standardized locale information for the specific country; 
b) Developing the Locale  Definition File; 
c) Submitting the developed locale in the main stream. 

2.5. Glibc Locale Development 
In the following section, we describe the glibc locale development for the country, Nepal. The information 
presented can be refered to by other countries for their own locale development. However, we do not claim 
the information to be complete. It is advisable to refer to the resources listed at the end of this chapter for 
further reading. As noted earlier, the locale definition file has some predefined sections in it, which must be 
defined in conformance with the standardized locale information of a particular country. Below, we explain 
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each section illustrating the case of Nepal and the Nepali language, thus named as ne_NP. 
  

a) LC_CTYPE 
This category begins with LC_CTYPE and ends with END LC_CTYPE. It defines character classification 
and specifies characters that are alphanumeric, numeric, punctuation, hexadecimal, blank, control 
characters etc. The following keywords are used inside LC_CTYPE. 
 
copy 
This specifies the name of the existing locale from which the definition of this category has to be copied. 
If this is specified, no other keywords can be used.  For example: copy “i18n” (refers to the default 
definition) 
 
upper 
Upper case letter characters. Cntrl, digit, punct or space characters cannot be specified here.  For 
example: upper <A>;<B>.......<Z> 
 
lower 
Lower case characters. Cntrl, digit, punct or space characters cannot be specified here.  For example: 
lower <a>;<b>.....<z> 
 
alpha 
All letter characters. Cntrl, digit, punct or space characters cannot be specified here.   For example: 
alpha <A>;<a>........<z> 
 
digit 
All the digit characters.  For example: digit <zero>;<one>;<two>;<six> 
 
alnum 
All the alphanumeric characters. Alpha and Digit category are included automatically. Cntrl, punct or 
space characters cannot be specified here.  For example: alnum <A>;<B>;<one> 
 
space 
All whitespace characters. Characters specified with the blank keyword must be specified. Cntrl, alpha, 
upper, lower,graph,digit,xdigit characters cannot be specified here.  For example: space 
<tab>;<newline>;<carriage-return>;<space> 
 
cntrl 
All control characters. Alpha, upper, lower,digit,graph,punct,print,space or xdigit cannot be specified 
here.  For example: cntrl <alert>;<backspace>;<tab>;<ESC> 
 
punct 
Specifies punctuation characters. However alpha, upper, lower,digit, space or xdigit cannot be specified 
here.  For example: punct <exclamation-mark>;<quotation-mark>;<dollar-sign>;<colon>;<backslash> 
 
x. graph 
All printable characters excluding <space> character. If not specified, all characters defined by 
alpha,upper,lower,digit,xdigit and punct are automatically included in this category. Cntrl characters 
cannot be specified here. 
 
print 
All printable characters including <space> character. If not specified, all characters defined by alpha, 
upper, lower, digit, xdigit and punct are automatically included in this category. Cntrl characters cannot 
be specified here. 
 
xdigit 
Hexadecimal digit characters.  For example: xdigit <zero>;<nine>;<A>;<F>;<a>;<f> 
 
blank 
Defines blank characters.  For example: blank <space>;<tab> 
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charclass 
For example: toupper (<a>,<A>);(<z>,<Z)) 
 
Given below is a sample  of the LC_CTYPE. 
 
LC_CTYPE sample: 
LC_CTYPE 
# The following is the POSIX locale LC_CTYPE. 
# "alpha" is by default "upper" and "lower" 
# "alnum" is by definition "alpha" and "digit" 
# "print" is by default "alnum", "punct", and the <space> 
# "graph" is by default "alnum" and "punct" 
# 
upper    <A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\ 
         <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z> 
# 
lower    <a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\ 
         <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z> 
# 
digit    <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\ 
         <seven>;<eight>;<nine> 
# 
space    <tab>;<newline>;<vertical-tab>;<form-feed>;\ 
         <carriage-return>;<space> 
# 
cntrl    <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\ 
         <form-feed>;<carriage-return>;\ 
         <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\ 
         <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\ 
         <ETB>;<CAN>;<EM>;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\ 
         <IS1>;<DEL> 
# 
punct    <exclamation-mark>;<quotation-mark>;<number-sign>;\ 
         <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\ 
         <left-parenthesis>;<right-parenthesis>;<asterisk>;\ 
         <plus-sign>;<comma>;<hyphen>;<period>;<slash>;\ 
         <colon>;<semicolon>;<less-than-sign>;<equals-sign>;\ 
         <greater-than-sign>;<question-mark>;<commercial-at>;\ 
         <left-square-bracket>;<backslash>;<right-square-bracket>;\ 
         <circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\ 
         <vertical-line>;<right-curly-bracket>;<tilde> 
# 
xdigit   <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\ 
         <eight>;<nine>;<A>;<B>;<C>;<D>;<E>;<F>;<a>;<b>;<c>;<d>;<e>;<f> 
# 
blank    <space>;<tab> 
# 
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);\ 
        (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\ 
        (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\ 
        (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\ 
        (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>) 
# 
tolower (<A>,<a>);(<B>,<b>);(<C>,<c>);(<D>,<d>);(<E>,<e>);\ 
        (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\ 
        (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\ 
        (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\ 
        (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>) 
END LC_CTYPE 
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LC_CTYPE used in ne_NP: 
 
LC_CTYPE 
copy "i18n" 
END LC_CTYPE 
 
b) LC_COLLATE 
This category is related to sorting and is assumed to be the most complicated among all the locale 
categories. Collation of Unicode strings follow the standard ISO/IEC 14651. International string ordering 
and glibc locale is based on this standard. 
Given below is the sample of the LC_COLLATE.  
 
LC_COLLATE sample: 
order_start 
forward;backward 
UNDEFINED 
IGNORE;IGNORE 
<LOW> 
<space> 
<LOW>;<space> 
... 
<LOW>;... 
<a> 
<a>;<a> 
<a-acute> 
<a>;<a-acute> 
<a-grave> 
<a>;<a-grave> 
<A> 
<a>;<A> 
<A-acute> 
<a>;<A-acute> 
<A-grave> 
<a>;<A-grave> 
<ch> 
<ch>;<ch> 
<Ch> 
<ch>;<Ch> 
<s> 
<s>;<s> 
<eszet> 
"<s><s>";"<eszet><eszet>" 
order_end 

LC_COLLATE in ne_NP 
 
The standardized collation for the Nepali language is implemented in ne_NP locale definition file. The 
sample of LC_COLLATE category defined in ne_NP is like the one presented below. 
 
LC_COLLATE 
collating-element <ksha> from "<U0915><U094D><U0937>" 
collating-element <tra> from "<U0924><U094D><U0930>" 
collating-element <jna> from "<U091C><U094D><U091E>" 
order_start forward 
<U0901> 
<U0902> 
<U0903> 
<U0905> 
<U0906> 
<U0907> 
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<U0908> 
<U0909> 
<U090A> 
<U090B> 
<U090F> 
<U090E> 
<U0913> 
<U0914> 
<U0915> 
<U0916> 
<U0917> 
<U0918> 
<U0919> 
<U091A> 
<U091B> 
<U091C> 
<U091D> 
<U091E> 
<U091F> 
<U0920> 
<U0921> 
<U0922> 
<U0923> 
<U0924> 
<U0925> 
<U0926> 
<U0927> 
<U0928> 
<U092A> 
<U092B> 
<U092C> 
<U092D> 
<U092E> 
<U092F> 
<U0930> 
<U0932> 
<U0935> 
<U0936> 
<U0937> 
<U0938> 
<U0939> 
<ksha> 
<tra> 
<jna> 
<U093C> 
<U093D> 
<U093E> 
<U093F> 
<U0940> 
<U0941> 
<U0942> 
<U0943> 
<U0947> 
<U0948> 
<U094B> 
<U094C> 
<U094D> 
<U0950> 
<U0951> 
<U0952> 



PAN Localization Guide to Localization of Open Source Software 

                                                                                                                                        
                                                                               
  

11

<U0953> 
<U0954> 
<U0964> 
<U0965> 
<U0966> 
<U0967> 
<U0968> 
<U0969> 
<U096A> 
<U096B> 
<U096C> 
<U096D> 
<U096E> 
<U096F> 
<U0970> 
order_end 
END LC_COLLATE 
 
c) LC_MONETARY 
This deals with the format  to show monetary numbers, currency symbols, comma or period, columns 
etc. 
 
LC_MONETARY 
# This is the POSIX locale definition for 
# the LC_MONETARY category. 
# 
int_curr_symbol      "" 
currency_symbol      "" 
mon_decimal_point    "" 
mon_thousands_sep    "" 
mon_grouping         -1 
positive_sign        "" 
negative_sign        "" 
int_frac_digits      -1 
p_cs_precedes        -1 
p_sep_by_space       -1 
n_cs_precedes        -1 
n_sep_by_space       -1 
p_sign_posn          -1 
n_sign_posn          -1 
# 
END LC_MONETARY 

LC_MONETARY used in ne_NP is as follows: 
 
LC_MONETARY 
 
int_curr_symbol "<U004E><U0050><U0052><U0020>" 
currency_symbol "<U0930><U0942>" 
mon_decimal_point "<U002E>" 
mon_thousands_sep "<U002C>" 
mon_grouping 3;2 
positive_sign "<U002B>" 
negative_sign "<U002D>" 
int_frac_digits 2 
frac_digits 2 
p_cs_precedes 1 
p_sep_by_space 1 
n_cs_precedes 1 
n_sep_by_space 1 
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p_sign_posn 1 
n_sign_posn 1 
% 
END LC_MONETARY 
 
d) LC_NUMERIC 
Specifies number format, position of decimal digit separators. 
 
Example: 
LC_NUMERIC 
# This is the POSIX locale definition for 
# the LC_NUMERIC category. 
# 
decimal_point    "<period>" 
thousands_sep    "" 
grouping         -1 
# 
END LC_NUMERIC 

Sample used in ne_NP is as: 
 
LC_NUMERIC 
decimal_point "<U002E>" 
thousands_sep "<U002C>" 
grouping 3 
END LC_NUMERIC 
 
e) LC_TIME 
This category is related to the formatting of date and time information. The following keywords are used 
in this category: 
 
copy 
abday: Abbreviated week names as: sun, mon. 
day: Full spelling of week names: Sunday, Monday. 
abmon: Abbreviated month names as: Jan, Feb. 
mon: Full spelling of month named as: January, February. 
am_pm: Represent AM and PM. 
d_f_fmt: Standard date and time format 
d_fmt: Standard date format 
t_fmt: Standard time format 
t_fmt_ampm_time: Specifies 12-hour clock format that includes the am_pm value. 
 
Example of LC_TIME 
 
LC_TIME 
# This is the POSIX locale definition for 
# the LC_TIME category. 
# 
# Abbreviated weekday names (%a) 
abday      "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\ 
           "<T><h><u>";"<F><r><i>";"<S><a><t>" 
# 
# Full weekday names (%A) 
day        "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\ 
           "<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\ 
           "<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\ 
           "<S><a><t><u><r><d><a><y>" 
# 
# Abbreviated month names (%b) 
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abmon      "<J><a><n>";"<F><e><b>";"<M><a><r>";\ 
           "<A><p><r>";"<M><a><y>";"<J><u><n>";\ 
           "<J><u><l>";"<A><u><g>";"<S><e><p>";\ 
           "<O><c><t>";"<N><o><v>";"<D><e><c>" 
# 
# Full month names (%B) 
mon        "<J><a><n><u><a><r><y>";"<F><e><b><r><u><a><r><y>";\ 
           "<M><a><r><c><h>";"<A><p><r><i><l>";\ 
           "<M><a><y>";"<J><u><n><e>";\ 
           "<J><u><l><y>";"<A><u><g><u><s><t>";\ 
           "<S><e><p><t><e><m><b><e><r>";"<O><c><t><o><b><e><r>";\ 
           "<N><o><v><e><m><b><e><r>";"<D><e><c><e><m><b><e><r>" 
# 
# Equivalent of AM/PM (%p)      "AM";"PM" 
am_pm      "<A><M>";"<P><M>" 
# 
# Appropriate date and time representation (%c) 
#    "%a %b %e %H:%M:%S %Y" 
d_t_fmt    "<percent-sign><a><space><percent-sign><b>\ 
            <space><percent-sign><e><space><percent-sign><H>\ 
            <colon><percent-sign><M><colon><percent-sign><S>\ 
            <space><percent-sign><Y>" 
# 
# Appropriate date representation (%x)   "%m/%d/%y" 
d_fmt      "<percent-sign><m><slash><percent-sign><d>\ 
            <slash><percent-sign><y>" 
# 
# Appropriate time representation (%X)   "%H:%M:%S" 
t_fmt      "<percent-sign><H><colon><percent-sign><M>\ 
            <colon><percent-sign><S>" 
# 
# Appropriate 12-hour time representation (%r) "%I:%M:%S %p" 
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\ 
            <percent-sign><S> <percent_sign><p>" 
# 
END LC_TIME 

 

Sample of LC_TIME used in ne_NP locale definition file is as follows: 

LC_TIME 
% Abbreviated weekday names (%a) 
abday "<U0906><U0907><U0924><U0020>";/ 
"<U0938><U094B><U092E><U0020>";/ 
"<U092E><U0919><U094D><U0917><U0932><U0020>";/ 
"<U092C><U0941><U0927><U0020>";/ 
"<U092C><U093F><U0939><U0940><U0020>";/ 
"<U0936><U0941><U0915><U094D><U0930><U0020>";/ 
"<U0936><U0928><U093F><U0020>" 
% 
% Full weekday names (%A) 
day "<U0906><U0907><U0924><U092C><U093E><U0930><U0020>";/ 
"<U0938><U094B><U092E><U092C><U093E><U0930><U0020>";/ 
"<U092E><U0919><U094D><U0917><U0932><U092C><U093E><U0930><U0020>";/ 
"<U092C><U0941><U0927><U092C><U093E><U0930><U0020>";/ 
"<U092C><U093F><U0939><U0940><U092C><U093E><U0930><U0020>";/ 
"<U0936><U0941><U0915><U094D><U0930><U092C><U093E><U0930><U0020>";/ 
"<U0936><U0928><U093F><U092C><U093E><U0930><U0020>" 
% 



PAN Localization Guide to Localization of Open Source Software 
 

 
14

% Abbreviated month names (%b) 
abmon "<U091C><U0928>";/ 
"<U092B><U0947><U092C>";/ 
"<U092E><U093E><U0930><U094D><U091A>";/ 
"<U0905><U092A><U094D><U0930><U093F>";/ 
"<U092E><U0947>";/ 
"<U091C><U0942><U0928>";/ 
"<U091C><U0941><U0932><U093E>";/ 
"<U0905><U0917>";/ 
"<U0938><U0947><U092A><U094D><U091F>";/ 
"<U0905><U0915><U094D><U091F>";/ 
"<U0928><U094B><U092D><U0947>";/ 
"<U0921><U093F><U0938><U0947>" 
% 
 
% Full month names (%B) 
mon "<U091C><U0928><U0935><U0930><U0940>";/ 
"<U092B><U0947><U092C><U094D><U0930><U0941><U0905><U0930><U0940>";/ 
"<U092E><U093E><U0930><U094D><U091A>";/ 
"<U0905><U092A><U094D><U0930><U093F><U0932>";/ 
"<U092E><U0947>";/ 
"<U091C><U0942><U0928>";/ 
"<U091C><U0941><U0932><U093E><U0908>";/ 
 
 <U0905><U0917><U0938><U094D><U0924>";/ 
"<U0938><U0947><U092A><U094D><U091F><U0947><U092E><U094D><U092C><U0930>";/ 
"<U0905><U0915><U094D><U091F><U094B><U092C><U0930>";/ 
"<U0928><U094B><U092D><U0947><U092E><U094D><U092C><U0930>";/ 
"<U0921><U093F><U0938><U0947><U092E><U094D><U092C><U0930>" 
% 
% Equivalent of AM PM 
am_pm "<U092A><U0942><U0930><U094D><U0935><U093E><U0939><U094D><U0928>";/ 
"<U0905><U092A><U0930><U093E><U0939><U094D><U0928>" 
% 
% Appropriate date and time representation 
% %Y %B %d %I:%M:%S %p (%Z-->optional) EX: 2004 November 01 11:30:40 PM 
d_t_fmt 
"<U0025><U0059><U0020><U0025><U0042><U0020><U0025><U0064><U0020><U0025><U0049><

U003A><U0025><U0 
04D><U003A><U0025><U0053><U0020><U0025><U0070><U0020>" 
% 
% Appropriate date representation 
% %Y %B %d %A 
d_fmt 

"<U0025><U0059><U0020><U0025><U0042><U0020><U0025><U0064><U0020><U0025><U004
1><U0020>" 

% 
END LC_TIME 
 
f) LC_MESSAGES 
This category is related to the language in messages, which the software outputs. This category is used 
for gettext. For more detailed information on gettext, please refer to Chapter 7, GNOME localization. 
 
Sample of LC_MESSAGES: 
 
# This is the POSIX locale definition for 
# the LC_MESSAGES category. 
# 
yesexpr  "<circumflex><left-square-bracket><y><Y><right-square-bracket>" 
# 
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noexpr   "<circumflex><left-square-bracket><n><N><right-square-bracket>" 
# 
yesstr   "yes" 
nostr    "no" 
END LC_MESSAGES 
 
ne_NP Sample of LC_MESSAGES: 
 
yesexpr "<U005E><U005B><U0079><U0059><U005D><U002E><U002A>" 
noexpr "<U005E><U005B><U006E><U004E><U005D><U002E><U002A>" 
yesstr "<U0059><U003A><U0079><U003A><U0079><U0065><U0073><U003A><U0939><U094B>" 
nostr 

"<U004E><U003A><U006E><U003A><U006E><U006F><U003A><U0939><U094B><U0907><U0
928>" 

END LC_MESSAGES 
       
g) LC_PAPER  
Specifies standard paper width and height. 
 
Sample used in ne_NP: 
 
LC_PAPER 
height 297 
width 210 
END LC_PAPER 
 
h) LC_NAME 
Specifies the standard format to write name. 
 
Sample used in ne_NP: 
 
LC_NAME 
name_fmt 
"<U0025><U0070><U0025><U0074><U0025><U0067><U0025><U0074><U0025><U006D><U0025>

<U0074><U0025><U0066>" 
name_gen "<U091C><U094D><U092F><U0942>" 
name_mr "<U0936><U094D><U0930><U0940><U092E><U093E><U0928><U094D>" 
name_mrs "<U0936><U094D><U0930><U0940><U092E><U0924><U0940>" 
name_miss "<U0938><U0941><U0936><U094D><U0930><U0940>" 
% salutation_fmt "<U0928><U092E><U093A><U094D><U0915><U093E><U0930>" 
END LC_NAME 
       
i) LC_ADDRESS 
Specifies the standard way of writing Address. 
 
Sample used in ne_NP: 
 
% %f %N %h %s %N %T 
postal_fmt 

"<U0025><U0066><U0025><U004E><U0025><U0068><U0025><U0073><U0025><U004E><U00
25><U0054>" 

END LC_ADDRESS 
 
j) LC_TELEPHONE 
Specifies the standard way of writing telephone numbers. 
 
ne_NP Sample: 
 
LC_TELEPHONE 
tel_int_fmt 
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"<U002B><U0025><U0063><U0020><U0025><U0061><U0020><U0025><U006C><U0020>" 
int_prefix "<U096F><U096D><U096D>" 
END LC_TELEPHONE 
 
k) LC_MEASUREMENT 
Specifies default measurement unit. 
 
Sample used in ne_NP: 
 
LC_MEASUREMENT 
measurement 1 
END LC_MEASUREMENT 

2.6. Glibc Locale Submission 
After the development of locale, you have to submit it to the glibc main stream following  the URL 
http://sourceware.org/bugzilla/ 
 
For this, you would need to create  a new account,, login and start the process using NEW link under 
Actions. Then you will need to choose glibc link under "Enter Bug" and continue the process.   

2.7. References for Further Reading  
a) http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/Locale_Definition.htm 
b) http://www.opengroup.org/pubs/online/7908799/xbd/locale.html 
c) http://www.khmeros.info/tools/ 
d) http://www.it46.se/localegen/            
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3 Rendering and Rendering Engines 

3.1. Introduction 
In this Chapter, we briefly introduce the term "rendering". Among the different rendering engines available, 
we will give a brief introduction of Pango and ICU along with their features. Other rendering engines like 
Gecko will be dealt with in Chapter 8 and 9 under Mozilla Suite and FireFox Localization. We do not give 
details on rendering and rendering engines, as they do not relate to our expertise. The links for further 
reading on rendering and rendering engines are provided at the end of the Chapter, which can be  referred 
to, after having gained an idea of  the  topic through the information provided. 

3.2. Rendering 
The glossary developed as per the Unicode Standard. Version 3 defines the term rendering as  the process 
of selecting and laying out glyphs for the purpose of depicting characters on display devices.  
 
Rendering internationalized text is often assumed to be a simple matter of dealing with fonts, however it 
entails several complications.This is justified by a number of languages like Arabic and Hebrew, which are 
written from right-to-left, instead of from left-to-right. In order for the text in these languages to appear on the 
screen properly, the rendering process needs to be able to deal with that ordering. The situation is made 
even more complicated by the fact  that text in these languages usually consists of a mix of right-to-left and 
left-to-right text (numbers, foreign words). So, a complicated reordering process is needed between the in-
memory representation and the actual drawing process. One more complication related to theArabic 
language is the varying shape of each character depending upon the actual occurrence of the character 
whether at the beginning of the word, in the middle of the word, at the end of the word, or by itself. In this 
context, the right glyph needs to be selected depending upon the situation. The languages of South Asia, 
often known as complex text languages also require special attention. In these languages, the characters 
making up a syllable interact in complex ways to produce the final rendered form. This can involve 
reordering, combining characters to make ligatures that appear very different from the original character, and 
stacking multiple glyphs on top of each other vertically. Similarly, a group of characters interact with each 
other, known as a cluster in some of the languages which follow the Devanagari script. All these facts need 
to be addressed fully for the proper rendering of the texts in these languages. Other issues like line-breaking 
algorithms being used for the rendering process would require specific linguistic information of the language 
in terms of implementation. This is because languages of East Asia or  Thailand, as opposed to English do 
not use white spaces at all. 

3.3. Rendering Engines                       

3.3.1. Pango 
Pango is a library, which provides an open-source framework for layout and rendering of the 
internationalized text. Having used Unicode for all of its encodings, it aims to support output in all of the 
major languages. Pango can work on top of multiple display systems – including traditional X fonts, or client-
side OpenType fonts. 
 
The architectural and design features of Pango are characterized by the following[3.5.a]: 
 

a) Unicode is used as a common character set throughout the system; 
 

b) It is modular in terms of design; 
 
The code specific to each language is contained in a separate, dynamically loaded module. This has several 
benefits. Firstly, it reduces the amount of code that is contained in the main library. Secondly, it allows 
modules for specific languages to be developed and distributed by teams familiar with those languages, 
instead of tying the development of support for a particular language to the release cycle of the core system.  
                 

c) Pango language module is divided into pieces, the language module and the shaper module. 
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The Language module takes into consideration system independent rendering – the same tasks needs to be 
performed whether using Xfonts to draw to the screen, drawing into an off-screen buffer in some other 
fashion, or printing to paper.   
 
The Shaper module takes into consideration system dependent rendering – this deals with the positioning of 
the glyphs with respect to each other. 

 
d) Pango has an abstract class named “Pango Font” which determines overall metrics of a font, metrics 

for an individual glyph and finds out which Unicode characters a font covers. “PangoXfont” subclass 
is used for handling Xfonts. 
 

e) Pango Layout object is the higher level abstraction class which is initialized with a block of Unicode 
text, attributes for the text (font family, size, color, line-width, line spacing, indention etc). Pango 
layout deals with interactive editing also such as cursor movement with arrow keys etc). 

3.3.2. ICU by IBM   
ICU (International Components for Unicode) is the set of C/C++ and java libraries for Unicode support. 
Before, ICU was the internalization API of JDK 1.1 and later on it turned out to be the most advanced 
Unicode/i18n support. ICU supports the most current version of the Unicode standard. It produces the same 
results across various platforms without sacrificing performance. 
 
The features of ICU are characterised by the following[3.5.b]: 
 

a) Handles Unicode text; 
b) Has the Locale and Resource Bundle packed; 
c) Supports language sensitive collation and searching; 
d) Supports Normalization, case conversion and script transliterations; 
e) Has the features for the representation of comprehensive locale data;   
f) Supports MultiCalendar and time zone; 
g) Has the features for formatting and parsing of time, date, numbers, currency etc. 

3.4. Basic Steps for Text Rendering 
Text rendering basically involves the following steps[3.5.a]: 
 

a) Itemization 
In itemization , the input text is divided into Unicode strings, which are analyzed and broken into items. 
Each item is handled by a single language module dealing with a single direction, either left-to-right or 
right-to-left. If the font size and style is also set for the text, the items are further sub-divided into pieces 
of the same font category. 

 
b) Boundary resolution 
In this step, textual boundaries  such as word boundaries and line breaks are determined for each item. 
The boundary resolution is handled by the function pango_break(). 

 
c) Shaping 
Characters are taken within each item which are later converted into glyphs. The pango_shape() 
function is used for this purpose. 

 
d) Line breaking   
The results of shaping and boundary resolution are used to choose where to break lines that need to be 
wrapped. However, pango_shape() might need to be used further in case breaking lines involves 
dividing items. 

 
e) Rendering 
Rendering is the result of the shaping and line breaking process, which is a set of glyph strings (a list of 
glyphs from the font) along with positioning information for each glyph. Libpangox is used for rendering X 
fonts and libpangoft2 for rendering True type and postscript fonts via the free type library. 
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3.5.  References for Further Reading 
a) Pango: internationalized text handling, Owen Taylor, Red Hat, Inc. 
b) Research report for rendering Nepali in Linux. Paras Pradhan, Pawan Chitrakar, Minal Koirala, Sarin 

Pradhan and Srishtee Gurung, Madan Puraskar Pustakalaya, Nepal. 
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4 GNU/Linux and Fonts 

4.1 Introduction 
In Chapter 1, we briefly discussed fonts. In this Chapter, we will further deal with different types of fonts, font 
systems in GNU/Linux and general instructions for installing fonts. We also list the font resources and font 
development tools. Lastly, we deal with Openoffice.Org fonts. As evident from the discussion in Chapter 1, 
the primary prerequisites for Localization are encoding of the script of the language in Unicode, development 
of Unicode compatible fonts etc. Basically fonts are classified as: 8 bit True Type Font, which is limited to 
256 glyphs out of which only 200 are usable,16 bit Unicode true type font covering Unicode range supporting 
65000 glyphs, Open Type for advanced typography in which GSUB, GPOS tables are used for complex 
scripts like Indic. 

4.2 Types of fonts 
In Chapter 1, we briefly talked about Bitmap and Vector fonts. Here we add a few others in the category of 
the two fonts and briefly introduce them [4.9.b]. 
            
BitMap fonts 
These are matrices of dots. Two types of bitmap fonts exist: 

a) bitmap printer fonts (eg: pk) 
b) bitmap screen fonts for use in X windows and console ( eg: bdf, pcf )  

 
Vector/Outline fonts 
 

a) Type1 fonts 
These fonts are devised by adobe and are supported by adobe's postscript standard. Distributed as: afm 
(adobe font metric) or pfm (postscript fonts for windows) and outline file as pfb (printer font binary) or pfa 
( printer font ascii).The outline file contains all the glyphs and the metric file contains the metrics. 
 
b) Type 3 fonts 
These fonts are distributed similar to type 1 but are not supported by X. They are only supported by the 
Postscript standard. 

c) Type 42 fonts 
These fonts are the same as true type fonts in addition to the headers that enable them to be rendered 
by a postscript interpreter. 

d) Open Type Fonts 
OTF font format is an extension of TTF adding support for postscript font data. OTF is developed jointly 
by Microsoft and Adobe. As withTTF fonts, OTF fonts allow the handling of large glyph sets using 
Unicode encoding. 
 

4.3 Font Systems in GNU/Linux 
Xfree86 includes two independent font systems: 
 

a) Core X11 font system 
This system previously could only handle bitmap fonts but it can now support scalable fonts like Type1, 
Speedo, TrueType and OpenType. Xfree86 has a font path and font servers where it searches for fonts. 

Example:  
Font path: In file /etc/X11/XF86Config-4 or /etc/X11/xorg.conf file and written as: 
FontPath “/usr/lib/X11/fonts/misc” 
Font Server: In file /etc/X11/XF86Config-4 or /etc/X11/xorg.conf and written as 
FontPath “Unix/:7100” 
which looks for the path  /etc/X11/fs/config file. 
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b) X freetype interface library for font system ie Xft 
Xft provides client side font API for X applications. They were written to provide X applications witha 
convenient interface to the FreeType font rastarizer and X rendering extension.It uses fontconfig library 
to select fonts and X protocol to render them. 

4.4  Installing Fonts 
The following section looks at the instructions required for installing fonts in the three different font systems, 
X11 core fonts system, X font server and Xft font system respectively. 
 
Using the X11 core fonts system 

a)  mkdir /usr/local/share/fonts/truetype 
b)  copy fonts to the directory just created by the above command 
c)  mkfontscale /usr/local/share/fonts/truetype 
d)  mkfontdir /usr/local/share/fonts/truetype 

 
Here are the commands, 
mkfontdir creates fonts.dir file making the current directory a font directory. 
mkfontscale is used for indexing all the fonts using font.scale file.  
mkfontdir cannot recognize scalable fonts without indexing so this should be used first. 
   
Using X font server 

a) Add font path to /etc/X11/fs/config 
b) ii) Restart font server 

Using Xft font system 
Fontconfig installs fonts in a set of well known directories including Xfree86 directories and also in theuser's 
home directory as ~/.fonts. Run fc-cache after copying fonts. You can use fc-list to view all the installed 
usable fonts. 

4.5 Font Selection 
When an application requests a particular font, X system searches in  all of  the directories in the font path 
one at a time until it finds the best match for it. It selects true type fonts over bitmap and unscalable bitmaps 
over bitmaps and so on. 

4.6 Font Resources 
Below we have listed the links to some useful font resources. 

a) Free fonts 
http://cgm.cs.mcgill.ca/~luc/fonts.html 

b) TrueType Indic fonts from NCST (indix) 
http://www.ncst.ernet.in/projects/indix/download.shtml 

c) OpenType Unicode Indic fonts for Debian GNU/Linux 
http://packages.debian.org/testing/x11/ttf-indic-fonts 

4.7 Font Development tools 
Below we have listed the links to some of the useful font development tools. 

a) Fontforge ( http://fontforge.sourceforge.net) 
b) GNU font editor ( http://www.gnu.org/software/gfe/gfe.html) 
c) Fontlab ( http://www.fontlab.com) 
 

4.8 Openoffice.Org Fonts 
Next we look at the basics required for dealing with fonts in Openoffice.Org.  

Changing the user interface font [4.9.a]: 
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To change the user interface font: 
-go to Tools -> Options -> OpenOffice.org -> Fonts 
-check the ‘Apply Replacement Table’ check box 
-replace the font Andale Sans UI with the desired font 

   
Note: You will probably have to write ‘Andale Sans UI’ manually into the ‘Font’ field.  
 
- please choose one of the fonts from the dropdown list box for the ‘Replace with’ entry and press the ‘OK’ 
button. 
 
Installing Fonts [4.9.b] 
The number of fonts vary in OpenOffice.org depending on the type of the document being used. The reason 
being that not all of the fonts can be used in every case. In the case of HTML document or in online layout, 
only those fonts that are available on the screen are offered whereas in the case of text document, only 
those fonts are shown which can also be printed. On the other hand, in the case of spreadsheets and 
drawings, all of the fonts that can be either printed or shown on the screen can be used. 
 

a) Adding Fonts 
In order to integrate additional fonts in OpenOffice.org, the following steps need to be performed: 

1. Go to the <OOo_install_path>/program directory and start spadmin by entering ./spadmin 
2. Click Fonts 
3. The dialog lists all the fonts added for OpenOffice.org. The fonts can be added with the Add button 

whereas they can be removed with the Remove button. 
4. When you click Add, the Add Fonts dialog will appear. 
5. Enter the directory from which you want to add the fonts by pressing the ... button and selecting 

the directory from the path selection dialog or by entering the directory directly. 
6. Select the fonts you want to add from the list of fonts that appears from this directory. In order to 

add all the fonts, click Select All. 
7. You can either copy the fonts in the OpenOffice.org directory (for cases when data medium is not 

always available such as CD-ROM, the fonts must be copied) or create only the symbolic links 
with the Create soft link only check box. 

8. By clicking OK, the fonts will be added. 
 

b) Deleting fonts 
In order to delete fonts, the following steps have to be performed: 

1. Start spadmin as mentioned in step 1 of ‘Adding Fonts’ 
2. Click Fonts. 
3. Select the fonts you want to delete from the list that will appear from the dialog box out of all the 

fonts that are added to OpenOffice.org and click Delete. 
 
Note: You can delete only the fonts that have been added for OpenOffice.org. 

c) Renaming Fonts 
In order to rename the fonts that have been added for OpenOffice.org, the following steps have to be 
performed: 

1. Start spadmin as mentioned in step 1 of ‘Adding Fonts’ 
2. Click Fonts. 
3. Select the fonts that you want to rename and click Rename. 
4. Enter a new name in the dialog that appears. In cases where the font contains several names, 

these names will come up as suggestions in the combo box where you can enter the new name. 
5. Click OK. 
Note: This is especially useful for fonts that contain several localized names. 
 

In order to rename several fonts, one dialog appears for each selected font.           

4.9 References for Further Reading 
a) http://www.openoffice.org/FAQs/fontguide.html 
b) http://documentation.openoffice.org/online_help/htmlhelp/text/shared/guide/spadmin.html 
c) http://nepalinux.org/docs/l10nhowtoguide.pdf 
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5 Input Methods for Linux 

5.1 Introduction 
In Chapter 1, we briefly introduced Input Methods. We discussed the crucial parts of the design and 
implementation of the Input Method. In this chapter, we will concentrate on the three different input methods 
available for Linux, viz., xkb, iiimf and scim. References to some important links on input methods are 
provided at the end of the chapter for further reading. 

5.2 Different Types of Input Methods 

5.2.1 xkb Keyboard Layout for X11 
The X Window System used on most Unix-like systems today uses X Keyboard Extension (xkb) for 
translating keystrokes into character codes. While creating the xkb layout for a particular language, we have 
to map symbols according to the layout of the keyboard as illustrated below. This input method can be used 
in any type of applications that are based on X as Gtk based applications , Qt based applications etc. 
 

 
 

Figure 1: Keyboard layout for mapping the symbols 
 
Steps to create a new layout 
This section will guide you on how to create a new xkb input.Execute the steps below to create a new 
keyboard layout. 
 

a) Create a file named using your language code. For eg: ne in case of Nepali Language 
 

b) The content of the file would be similar to the one below: 
 

partial default alphanumeric_keys 
xkb_symbols "basic" { 
      name[Group1]= "FullLanguageName"; 
 
      key <AD01> { [      0x100091F,  0x1000920         ]       }; 
  
  }; 
 
This defines that key AD01 ie Q key has 2 letters (the second letter can be used by pressing the shift 
key while typing) which are denoted by their respective Unicode values. Like wise for every key you 
need to assign the Unicode values. Refer to the above picture for creating the layout. 

 
c) Save it and copy it to /usr/X11R6/lib/X11/xkb/symbols/pc and /usr/X11R6/lib/X11/xkb/symbols/.  

 
Then, add the following lines to /usr/X11R6/lib/X11/xkb/rules/xorg.xml or  
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/usr/X11R6/lib/X11/xkb/rules/xfree86.xml file.  
 
<layout> 
<configItem> 
<name>xx</name> 
<description>yy</description> 
</configItem> 
<variantList/> 
</layout> 
 
Where, xx = language code and yy = Any Description 
 
Note that in xkb only one to one keystrokes and character mappings can be achieved but not the 
combination of three characters to a single keystroke. Instead, use scim or iiimf for these kinds of 
purposes. 

  
d) Using xkb 
On the top panel: 

1. Right click the mouse 
2. Click "Add to Panel" 
3. Click "Keyboard Layout Indicator" 
4. Click the "ADD" button 
5. Right click the added icon 
6. Click "Open keyboard preferences" 
7. Click the "Layout" tab 
8. Select "FullLanguageName" from available layouts 
9. Click "ADD and Close" 
10. Open any text editor applications and type 

5.2.2  IIIMF 
IIIMF is the framework that is directed towards platform independence when entering input texts. It has three 
major components[5.3.d]: 
 

a) IIIMP : IIIM protocol is a platform independent protocol, window system independent and language 
independent. 

 
b) IIIMCF: IIIM client framework uses IIIMP to access input methods of the IIIM server. This is 

independent of the operating system. 
 

c) c)IIIMSF: IIIM server framework acts as agent and provides the IM services to IIIMCF using IIIMP 
 
IIIMF can handle one to many symbols mapping, i.e a single keystroke can produce a compound character. 
 
Creating a keyboard layout for IIIMF 

a) Install iiimf binary and development packages using source files or using distribution packages. The 
following example will show you how to install iiimf in Debian GNU/Linux system 

 
Run as root : apt-get update && apt-get install iiimf* 

 
b) The input methods are stored in /usr/lib/im/locale. There are directories for different locales, there is 

one called UNIT - which is a Unicode table based input method. It is similar to keymaps, but is more 
flexible in the sense that you can assign any string of characters to any sequence of keystrokes. 
Inside UNIT dir , you will see directories for languages which have files like HINDI/data/inscript.data, 
GUJARATI/data/inscript.data etc. In this directory, create a new folder with your language name as: 
NEPALI, HINDI. Shift to the newly created directory and create a directory named data in it. 

 
c) Create a file named myinput.txt . In this file we will do the actual key mapping. The file should look 

like the following: 
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-------------------------------------------------------------------- 
## HANZI codetable input table 
 
[ Description ] 
Locale Name:  Your Locale Name 
Layout Name:  YourLayoutName  
Encode:  UTF-8 
UsedCodes: 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890!@#$%^&*()_-
+=|\~`:;"'{[}]<,>.?/ 
 
WildChar:  
MaxCodes: 1 
 
[ Function_Key ] 
PageUp 
PageDown 
BackSpace 
 
[ Options ] 
KeyByKey_Mode:  ON 
HelpInfo_Mode:  ON 
AutoSelect_Mode:  ON 
KeyPrompt_Mode:  ON 
SelectKey_Mode:  Number 
 
[ Single ] 
s x 
 
## where x = a single character typed by your desired input method.  
 
[ Phrase ] 
q y 
 
## where y = a  character formed by pressing two or more than two characters using desired input 
method 
---------------------------------------------------------------- 
 
Note that in the above file:  
 
Section [Single] is a mapping of single keys to single characters. 
Section [ Phrase ] is a mapping of a single key to multiple characters ( conjunctsmay be inserted) 

  
d) Save the file inside the folder UNIT/common. There are binaries bin2txt and txt2bin. Run it as follows 

(assuming you are in /usr/lib/im/locale/UNIT/common). 
 

# ./txt2bin myinput.txt ../YOURLANGUAGENAME/data/myinput.data 
 

e) 5.Then add an entry in UNIT/sysime.cfg for your language , like 
 

[ xx_XX ]  
myinput common/ctim.so YOURLANGUAGENAME 

 
Using IIIMF input 

a) Open xterm 
b) Export GTK_IM_MODULE=iiim 

c) Run gedit , swriter etc 
d) Press ctrl +o and Type 
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5.2.3 SCIM 
Smart Common Input Method platform, SCIM, provides user friendly, full featured input method user 
interface for POSIX-style operating systems (including Linux, FreeBSD and other Unix). SCIM also is a 
development platform to make input method development easier [5.3.c]. SCIM is highly modular. It consists 
of 4 basic modules, each provided by different packages. Listed below are the package names and their 
brief module descriptions [5.3.e].  
 

a) SCIM 
SCIM is the core package, which provides the fundamental routines and data types. This package 
contains the main binary "scim" and other support programs. it provides a common platform for various 
modules to be plugged in. It also includes a set of programs and modules of its own. 

 
b) SCIM-GTK2-immodule 
This is the GTK+2 input method module with scim as backend. This means, if GTK_IM_MODULE  is set 
to use scim, this package is  responsible for making gtk+ application( eg. gedit, firefox) to use scim as 
input module by default. This input method should work within all GTK+ 2.x platforms, including gtk-x11.  

 
c) SCIM-modules-socket 
This package provides the socket modules for SCIM. 

 
d) SCIM-tables-additional 
This package  contains data tables for several languages.  

 
Steps for SCIM installation in Debian GNU/Linux 
 

1. Install SCIM core packages 
#apt-get update  
#apt-get install scim  
#apt-get install scim-gtk2-immodule 

(Note: This will also install package scim-modules-socket)  
#apt-get install scim-modules-tables  
 (Note: The above package provides "scim-make-table" binary which we will use in the  example 
below to create a new input method data table) 
2. Creating a new Input Module Data Table  
Create a file named myinput.txt. The fileshould look like this  and can be divided into 2 sections:  
• TABLE DEFINITION: Entries like table name, language code, locale & author name are defined. 
• TABLE DATA : Character mapping is done in this section  
 

---------------------------------------------------------- 
### File header must not be modified 
### This file must be encoded into UTF-8. 
### This files tries to implement the Traditional 
### keyboard layout modified by MPP for PAN Project 
SCIM_Generic_Table_Phrase_Library_TEXT 
VERSION_1_0 
 
### Begin Table definition. 
BEGIN_DEFINITION 
 
### An unique id to distinguish this table among others. 
### Use uuidgen to generate this kind of id. 
UUID = 16f49d28-677b-4ac7-a93c-9f714b070a5a 
 
### A unique number indicates the version of this file. 
### For example the last modified date of this file. 
### This number must be less than 2^32. 
SERIAL_NUMBER = 20051103 
 
ICON = /usr/share/scim/icons/Nepali.png 
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### The default name of this table 
NAME = Traditional 
 
### The local names of this table  
NAME.ne_NP = शेिडःनल 
 
### Supported languages of this table 
LANGUAGES = ne_NP 
 
### The author of this table 
AUTHOR = Harkhe <harkhe@gmail.com> 
 
### Prompt string to be displayed in the status area. 
STATUS_PROMPT = NP 
 
### If true then the first candidate phrase 
### will be selected automatically during inputing. 
AUTO_SELECT = TRUE 
 
### If true then a multi wildcard will be appended 
### at the end of inputing string automatically. 
AUTO_WILDCARD = FALSE 
 
### If true then the result string will be committed to client automatically. 
### This should be used with AUTO_SELECT = TRUE. 
AUTO_COMMIT = TRUE 
 
### If true then the inputed string will be automatically splitted during inputing. 
AUTO_SPLIT = FALSE 
 
### If true then the phrases' frequencies will be adjusted dynamically. 
DYNAMIC_ADJUST = FALSE 
 
### If true then the preedit area will be filled up by the current candidate phrase automatically. 
AUTO_FILL = FALSE 
 
### If true then the lookup table will always be shown if there is any candidate phrase. 
### Otherwise the lookup table won't be shown unless the user requires it by moving the pre-edit caret 
left. 
ALWAYS_SHOW_LOOKUP = FALSE 
 
### Enable full width punctuation property 
USE_FULL_WIDTH_PUNCT = FALSE 
 
### Use full width punctuation by default 
DEF_FULL_WIDTH_PUNCT = FALSE 
 
### Enable full width letter property 
USE_FULL_WIDTH_LETTER = FALSE 
 
### Use full width letter by default 
DEF_FULL_WIDTH_LETTER = FALSE 
 
### The maxmium length of a key. 
MAX_KEY_LENGTH = 1 
 
### Valid input chars. 
VALID_INPUT_CHARS = 
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abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890!@#$%^&*()_-
+=|\~`:;"'{[}]<,>.?/ 
 
### Single wildcard char, can have multiple chars. 
SINGLE_WILDCARD_CHAR = ? 
 
### Multi wildcard char. 
MULTI_WILDCARD_CHAR = * 
 
### The key strokes to split input string. 
SPLIT_KEYS = quoteright 
 
### The key strokes to commit the convert result to client. 
COMMIT_KEYS = space 
 
### The key strokes to forward the inputed string to client. 
FORWARD_KEYS = Return 
 
### The key strokes to select candidiate phrases. 
SELECT_KEYS = 1,2,3,4,5,6,7,8,9 
 
### The key strokes to page up the lookup table. 
PAGE_UP_KEYS = Page_Up 
 
### The key strokes to page down the lookup table. 
PAGE_DOWN_KEYS = Page_Down 
 
END_DEFINITION 
 
### Begin Table data. 
BEGIN_TABLE 
" ◌ू 
# घ 

% छ 

^ ट 

& ठ 

* ड 

' ◌ु 
( ढ 

) ण 

+ ◌ं 
= 0x200c 
, ऽ 
- औ 

. । 
/ र 
0 ० 
1 १ 
2 २ 

3 ३ 

4 ४ 
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5 ५ 

6 ६ 
7 ७ 

8 ८ 

9 ९ 
; स 

< ङ 

?  

@ ई 

A आ 

B ◌ौ 
C ऋ 

E ऐ 

F ◌ँ 
H झ 

J ◌ो 
K फ 

L ◌ी 
O इ 

P ए 

U ऊ 

V ॐ 

\ ◌् 
] ◌े 
_ ओ 

` ञ 

a ब 

b द 

c अ 

d म 

e भ 

f ◌ा 
g न 

h ज 

i ष 

j व 

k प 

l ि◌ 

m ◌ः 
n ल 

o य 
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p उ 

r च 

s क 

t त 

u ग 

v ख 

w ध 

x ह 

y थ 

z श 

{ ◌ृ 
| 0x200d 
} ◌ै 
~ ॥ 
### PHRASES 
!  

$  

: ठ 

> ौ 

D ग 

G  

I  

M ड 

N  

Q  

R  

S क 

T ट 

W ढ 

X  

Y ठ 

Z क 

[ र ्
q ऽ 
END_TABLE 
______________________ 
 
3. Converting the table into binary format and installing 
# scim-make-table myinput.txt -b -o myinput.bin  
#mkdir -p /usr/share/scim/tables 
#cp myinput.bin /usr/share/scim/tables/  
 
Please refer to following page for more information on creating new table data. 
http://www.scim-im.org/development/contribute/how_to_create_a_new_ime_in_about_15_minutes 
_with_scim_and_scim_tables 
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4. Installing already available Input Method data tables 
 
If the input method data table for your language has already been uploaded into scim upstream and is 
available in debian, you can simply install the package as: 
 
#apt-get install scim-tables-additional   
 
This package contains IM data tables for non CJK languages. Currently it supports Arabic, Nepali, 
Russian, Thai, Vietnamese, Bengali, Gujrati, Hindi etc.  

 
Using SCIM 
 
Create a file /etc/X11/Xsession.d/95scim_start and export following environment.  
 
#touch /etc/X11/Xsession.d/95scim_start 
#vi /etc/X11/Xsession.d/95scim_start 
 
------------------------------------------ 
export XMODIFIERS=@im=SCIM 
export GTK_IM_MODULE=xim 
/usr/bin/scim -d  
---------------------------------------------- 
Execute any program and hit cntrl+space to activate scim input.                       

5.3 References for Further Reading 
a) http://hektor.umcs.lublin.pl/~mikosmul/computing/articles/custom-keyboard-layouts-xkb.html 
b) http://www.charvolant.org/~doug/xkb/html/xkb.html 
c) http://www.openi18n.org/subgroups/im/iiimf/whitepaper/whitepaper.html 
d) http://packages.debian.org/unstable/utils/scim-gtk2-immodule  
e) http://www.scim-im.org 

                    



PAN Localization Guide to Localization of Open Source Software 
 

 
32

6 Translation Aspects in Localization 

6.1 Introduction 
In this Chapter, we deal with an important part i.e.the translation aspects of Localization. We will give a brief 
overview of translation then discuss the requirements of the translation manager which covers Concurrent 
Versioning System (CVS), translation tools, PO file conversion tools etc. Later, we move to the essence of 
Glossary Development for translation and translation process management. In the translation process 
management, we will discuss issues like team formation, orientation and training of the translation team, 
testing and verification etc., References to links for further reading are given at the end of the chapter. 

6.2 Translation Overview 
Translation is a very important aspect of localization. This involves translating messages in programs, 
including menus, dialog boxes, button labels, error messages etc thus being an immediate means for 
bringing the software to the local users, who are not familiar with English. This task, can be done once the 
output methods and fonts are ready, otherwise the translated messages become useless. Input methods, if 
available, also help ease the translation process.  
 
There are many message translation frameworks available, but the general concepts are the same. 
Messages are extracted into a working file to be translated and compiled into a hash table. When the 
program executes, it loads the appropriate translation data as per locale. Messages are quickly looked up for 
translated version for use in the outputs. 
 
Translation is a labor-intensive task. It takes time to translate the huge number of messages. Hence, it is 
always done by a group of people. When forming a team, make sure all members are using consistent 
languages over all parts of the programs. It is a good idea to work together in a closely discussed forum and 
build the glossary database collected from the settled decisions. Sometimes, however, you will need to run 
the program to see the context surrounding the message in question to find proper translation, or investigate 
the source code in case of conditional messages, such as error messages. Literally translating message by 
message without running the program can often result in incomprehensible messages. 
 
Like other FOSS development activities, translation is a long term commitment. New messages are usually 
introduced in every new version. Even though you have completed all messages in the current version, be 
sure to check for any new messages again in the new release. It is important to note that there is usually a 
string freeze period before the final release, when no new strings are allowed in the code base, and hence 
the time slot is allocated for translators[6.5.a].  

6.3 Requirements of the Translation Manager 
The next section discusses requirements a Translation Manager would need to manage the translation 
process. 

6.3.1 Concurrent Versioning System 
The URL link en.wikipedia.org/wiki/CVS  defines CVS as the Concurrent Versions System (CVS).  It is also 
known as the Concurrent Versioning System. The CVS implements a version control system: it keeps track 
of all work and all changes in a set of files, typically the implementation of a software project, and allows 
several (potentially widely separated) developers to collaborate. CVS has become popular in the open-
source world. CVS is released under the GNU General Public License.  
 
An important component of Source Configuration Management (SCM), it has a  similar role to the free 
software RCS, PRCS, and Aegis packages. While CVS stores individual file history in the same format as 
RCS, it offers the following significant advantages over RCS[6.5.b]: 
 
 * It can run scripts which you can supply to log CVS operations or enforce site-specific polices. 

 * Client/server CVS enables developers scattered by geography or slow modems to function as a single 
team. The version history is stored on a single central server and the client machines have a copy of all the 
files that the developers are working on. Therefore, the network between the client and the server must be 
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up to performing CVS operations (such as checkins or updates) but need not edit or manipulate the current 
versions of the files. Clients can perform all the same operations which are available locally. 

  * In cases where several developers or teams want to maintain their own version of the files, because of 
geography and/or policy, CVS's vendor branches can import a version from another team (even if they don't 
use CVS), and then CVS can merge the changes from the vendor branch with the latest files if desired. 

 * Unreserved checkouts, allowing more than one developer to work on the same files at the same time. 

 * CVS provides a flexible modules database that provides a symbolic mapping of names to components of a 
larger software distribution. It applies names to collections of directories and files. A single command can 
manipulate the entire collection. 

 * CVS servers run on most unix variants, and clients for Windows NT/95, OS/2 and VMS are also available. 
CVS will also operate in what is sometimes called server mode against local repositories on Windows 95/NT.  

For getting acquainted with basic CVS installation and commands, please refer to “Essential CVS, Jennifer 
Vesperamen” available at www.oreilly.com/catalog/cvs/  
 
From the above, it is understandable that CVS installation and usage is the first requirement for any 
translation manager. With the help of CVS, multiple translators from the translation team may check in  and 
check out from a single central CVS repository devised for translation files directory. Logs and revision 
history of individual files can be well maintained. This helps to keep track of the actual amount of work done 
by each translator. In addition to this, the work distribution can also be managed and monitored efficiently. In 
case of file loss in the local machines, considerable amounts of work as submitted in the previous 
submissions can be retrieved. This is extremely important as there is always the risk of file or data  loss 
because of system failure or unexpected crashes. 

6.3.2 Translation Tools 
Several translation tools for all platforms, either windows, linux or others are available on the web. Some of 
them can be downloaded for free while others demand some amount of money to be paid for downloading. 
Free open source translation tools relate to the first category while proprietory translation tools relate to the 
latter catagory.  
 
A list of translation tools and their respective characteristics is given below: 
 

S.No. Tools free/non-free Licensed 
Under Online/Offline Plateform dependency

1. Pootle  Free GNU GPL Online N/A 
2. Rosetta  Non-free        - Online N/A 
3. Kartouche Free GNU GPL Online N/A 
4. KBabel Free GNU GPL Offline Widows/Linux 
5. poEdit Free       - Offline Widows/Linux 
6. Attesoro Free  GNU GPL Offline Linux 
7. passolo Free  GNU GPL Offline Windows 
8. IniTranslator Free GNU GPL Offline Windows 
9. GTranslator Free GNU GPL Offline  Linux 
10. LocFactoryEditor Free GNU GPL Offline Mac OS 

 
Table 1.  List of translation tools and their respective characteristics 

 
Source: http://www.i18nguy.com/TranslationTools.html 
 
From the table above, Kbabel, Gtranslator, poEdit, LocFactoryEditor are po file editors. For more information 
on the po file format, please refer to the “po file format” section of this guide. Besides, we can also use the 
text editor tools, openoffice and gedit as translation tools for small translation works. 
 
In the following section, we discuss different features of Kbabel as a translation tool. Kbabel is being used as 
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a translation tool for the localization works at the Madan Puraskar Pustakalaya, Nepal, mainly because  it is 
OpenSource and furnished with a rich set of features essential for the translators. 
 
Translating with Kbabel 
Kbabel has different features that assist the translation work[6.5.f]:  
 

1) User-friendly user interface; 
2) Automatically searches fuzzy or translated strings; 
3) Suggests a list of possible translations for a string; 
4) Performs checks on syntax and spell check thus maintaining the format of the file; 
5) Handles Unicode encoded files without any problem; 
6) Help files on using individual features of Kbabel are available; 
7) Statistics of translated messages,untranslated messages, fuzzy translations are displayed on the 

status bar; 
8) Keeps track of the modifications incurred in the file thus keeping the record of the last modification 

date; 
9) Powerful navigational features allowing the translator to move forward or backward or even to a 

particular string; 
10)  Drag and drop support; 
11) Font configuration support for the message editor;  
12) Tips or aids as comments for contextual translation of the strings; 
13) Supports GNU gettext tool for PO files (including plural forms) and Qt Linguist catalogs; 
14) Multiple views of the same file possible; 
15) Spell checking facility available; 
16) Syntax highlighting; 
17) Word count facility; 
18) Automatic file header updates; 
19) Automatic translation generation by the system on the basis of the database formed by the system 

out of already translated terms, known as “Fuzzy Translation”; 
20) Support for easy insertion of tags and URLs; 
21) Validation and highlighting of tags and XML entities; 
22) Automatic syntax check with msgfmt when saving and in cases of errors; 
23) Has inbuilt support for running CVS operations.  

 
Among the several features of Kbabel listed above, the automatic translation generation needs explaining. 
Kbabel maintains a dictionary of the already translated terms in English with their counterpart translations in 
the target language.While doing so, it scans all files and folders or directories which contain the translated 
strings. As a result of the scan, a dictionary of translated terms is maintained. Kbabel, with the help of this 
dictionary, facilitates rough or exact translation thus minimizing the time required for translation.The 
translation obtained by such means could be word-to-word rather than being contextual and at times require 
some post-editing . 
 
Catalogue Manager 
Catalog manager is yet another facility within Kbabel. It lists all the PO files along with their stastistical and 
other properties. On the basis of the information displayed regarding the files, the translator can then decide 
whether further work on the respective files is required or not.  
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Figure 2.  Catalogue manager in KBabel 

 
Project Settings 
This is yet another important feature of Kbabel.With the help of this informative window, we can set the path 
of the PO and POT files. One just needs to choose Project-> Configure from the main menu. In the window 
that pops up after having chosen Project-> Configure, we may set several attributes like identity of the 
translator,his/her email id, name of the target language, plural forms of translation etc. 
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Figure 3. Project settings in KBabel 

 
There is also a timezone field to track your “last modified” time for PO files. You can specify it as character 
sequence like GMT time. This information is used when updating file headers. You can find the options that 
control what fields in the header should be updated in the Save section of the Preferences dialog. 
 
Number of singular/plural forms in Kbabel translation: 
For GNU gettext tool, plural forms may be formulated as below: 
nplurals=2;plural=(n!=1)  
For KDE, number of plural forms could be 1 or 2 or it could even be 3 according to the patricular  language 
pattern. 
 
Saving and updating your translated work in Kbabel 
This lets you set the save options for files, auto save time setting, header updates etc. Among these, update 
of header in PO file is the crucial part when working in CVS .  
 
Update header when saving 
Check this button, to update the header information of the file every time it is saved. The header normally 
keeps information about the date and time the file was last updated, the last translator, who worked on the 
file etc. You can choose which information you would want to update from the Fields to update by checking 
the checkboxes available. If you want to add additional fields to the header, you can edit the header 
manually by choosing Edit->Edit Header in the editor window.  
 
Checking the syntax of the file when saving 
Check this to automatically check syntax of file with msgfmt tool when saving a file. You should keep this 
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validation enabled unless you know what you are doing.  
 
If you do not want to touch some fields in a PO file header or want to force updating of specific fields, there 
are five checkboxes which control this: revision date, PO file language, text encoding, last translator name, 
charset. If a field does not exist, it is appended to the header. If you want to add other information to the 
header, you have to edit the header manually by choosing Edit->Edit Header in the editor window. 
Deactivate Update header when saving above if you don't want to have the header updated. 
 
For date and time of the header field PO-Revision-Date, you can choose one of the formats: Default, Local, 
Custom. 
 
Warning 
An error generation is very certain if the same file is tried for getting access simultaneously by more than one 
translator.Further, if attempted to multiple commit  to a single file, it will result in a conflict. Hence it is 
recommended that one person works exclusively on a single file. The work could also be locally saved in the 
local computer. Later through a user-friendly interface, the locally saved copy may be committed to the CVS 
server.   
 
Important 
You should keep the default setting to Default. The two other settings make the generated PO file, not a 
standard GNU gettext PO file , so this should be avoided.  
     
Default is the format normally used in PO files. 
Locale is the format specific to your country. 
Custom lets you define your own format, where you can use the following  format strings: 
 

Year Setting   
%y ranges between    00   to 99 
%Y ranges between 0001 to 9999 
   
Month Setting   
%m sets months as  01 to 12     format 
%f sets months as 1 to 12       format 
%b,%h  sets months as Jan to Dec  format 
   
Day Setting   
       
%j    is for  day of the year setting in  001 to 366 format 
%d    is for  day of the month setting in 01   to 31   format 
 %e    is for  day of the month setting in 1     to 31   format 
%a     is for weekday abbreviation setting in  Sun to Sat  format 
   
Hour Setting   
        
%H  sets hours as  00    to 23 format 
 %k    sets hours as  0      to 23 format 
%i     sets hours as 1      to 12 format 
 %I     sets hours as  01    to 12 format 
 %p     is for AM or PM setting  
   
Minute, Second, 
Timezone setting      
%M for setting minutes 00 to 59 format 
%S for setting minutes 00 to 59 format 
%Z for setting timezone (given in identity settings) 
%z for setting timezone (numeric offset as specified 
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by system settings 
 
The lower group covers encoding options for PO files when saving. If you work on the KDE project you 
should be aware that at least PO files must be UTF-8 encoded in KDE. Alternatively you can select the 
encoding corresponding to your locale. If, for some reason, you do not want to accidentally change the 
current PO file encoding, turn on “Keep the encoding of the file.” 
 
Remember 
The encoding correspondig to your locale might not be suitable sometimes. So KBabel may not be able to 
handle them. But UTF-8 is always supported by GNU gettext. 
 
Spell Check 
With this feature enabled, spell checking is possible in Kbabel. This also aids the translators while 
translating. Note that you must install an appropriate dictionary for your language. Check your ispell or aspell 
distribution to find out if you have one.  
 
CVS operations from within KBabel 
As listed in the general features of Kbabel, another outstanding feature is the inbuilt support for CVS 
operations.Once the working copy of the translation files is checked out and the path to the directory of files 
pointed in the “Project Settings”, by right clicking on any of the files in the Catalogue Manager Window, one 
will generally see the contextual menu as shown above. But while saying so, it is assumed that both the CVS 
server and client application is installed respectively in the server machine and the local machine of the 
translator.Kbabel has the inbuilt support for popular CVS operations like update and commit. In order to bring 
into effect the changes made in the working copy of the file to the one in the CVS repository, we first run the 
command “update” and then “commit”. On the consecutive launching of the application Kbabel, the updated 
information on the files would be depicted in the catalogue manager.   
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Figure 4.  CVS operations from within KBabel 

 

6.3.3 PO File Format 
The PO File is Portable Object file where the translatable strings are placed. This file contains some 
information about the file and its author and contact information. 
  
This file is divided into two parts, one being the header, where the information about file and author, 
copyright,language and team information is placed and other being message strings which is the one to be 
actually translated. 
 
Every PO has a "header", containing the copyright information, charset, package name, etc. An example of a 
blank header is shown below. 
 
# SOME DESCRIPTIVE TITLE. 
# Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER 
# This file is distributed under the same license as the PACKAGE package. 
# FIRST AUTHOR <EMAIL@ADDRESS>, YEAR. 
# 
#, fuzzy 
msgid "" 
msgstr "" 
"Project-Id-Version: PACKAGE VERSION\n" 
"POT-Creation-Date: 2003-05-01 13:15+0200\n" 
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" 
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n" 
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"Language-Team: LANGUAGE <LL@li.org>\n" 
"MIME-Version: 1.0\n" 
"Content-Type: text/plain; charset=CHARSET\n" 
"Content-Transfer-Encoding: 8bit\n" 
 
Header for Nepali translation 
# Nepali Translation Project. 
# Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER 
# This file is distributed under the same license as the PACKAGE package. 
# FIRST AUTHOR <EMAIL@ADDRESS>, YEAR. 
# 
msgid "" 
msgstr "" 
"Project-Id-Version: Gnome 2-10\n" 
"POT-Creation-Date: 2006-02-01 13:15+0200\n" 
"PO-Revision-Date: 2006-02-01 13:15+0200\n" 
"Last-Translator: Jyotsana Shrestha <jyotsana@mpp.org.np>\n" 
"Language-Team: Nepali <info@mpp.org.np>\n" 
"MIME-Version: 1.0\n" 
"Content-Type: text/plain; charset=UTF-8\n" 
"Content-Transfer-Encoding: 8bit\n" 
     
After the header information, the actual message strings starts 
It is paired with msgid and msgstr as an example shown below 
#: src-/01/main.c:500 
msgid "GNOME" 
msgstr "" 
 
The line  #: src-/01/main.c:500 is the message id and the location where it occurs . 
 
Line msgid "GNOME" is the main message to translate 
Line msgstr "" is the translatedmessage.  
 
so after translation this example will be  
 
#: src-/01/main.c:500 
msgid "GNOME" 
msgstr " जनोम" 
 
Fuzzy translations 
If the translator is not sure about the translation then s/he can mark the translated string as fuzzy so that the 
file when converted to machine readable MO Form ignores the strings being marked as fuzzy. 
eg. 
 
#: src-/01/main.c:500 
#,fuzzy 
msgid "GNOME 2-2" 
msgstr " जनोम 2-2" 
 
Managing the version of PO Files 
The version of the PO files must match with the version of the application itself . In order for the application 
interfaces to be displayed fully in the local language, the PO files and the applications versions should 
conform to each other.  
 
For example, if one is doing the translation of Gedit application and if he picks the file for version 2.10 then 
he has to use this translation in the Gedit – 2.10 version. 
 
Once the exact version of file obtained, the translation can be initiated. 
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Conversion of PO Files 
Some applications do not provide PO files or they don't use gettext format for the message translation and 
localization. To work with such files, there is a translation tool named translation-toolkit which has the 
features for format conversion from different formats to PO format and viceversa. 

 
For instance, the docbook xml file can be converted to PO format by using xml2po tool and then translated 
using PO translation tools like KBabel, after which the translated file may be converted back to xml format 
with the po2xml tool. 
 
Likewise the translation tool contains different features for converting PO to other formats and other formats 
to PO. 

 
Some of formats possible for conversion are as listed below: 
ts - po  
moz - po for mozilla suite formats 
sdf - po for openoffice formats 

6.3.4 Standard Glossary for Translation 
One of the prime issues concerning translation in localization is the glossary development. Without the 
glossary development, translators would be facing a hard time in maintaining a consistent translation 
throughout the project as with multiple translators working in the team, multiple translation variants are 
bound to come up. In order to develop a glossary, first and foremost, widely used technical terms, most of 
them being computer related should be collected from different sources. Then the collected glossary terms 
have to be provided the translation. The translated glossary of terms has to be approved by an authorised 
body, preferably representing the Government. The approval should be preceeded by formal discussion and 
consultations among multiple stakeholders like the linguists, enterpreneurs, scientists, technical experts, 
grammarians and so on. While developing the glossary, it must be properly researched in the sense of 
providing the translation. This is to prevent changing the translation of a given term as frequent changes in 
the translation part of the glossary might result in inconsistent translation and confusion among the end-
users of localized software. However, there has to be periodical addition of terms making the glossary 
development a continuous and an evolving process. 

In the year 2005, a glossary of 2,300 technical terms was translated from English to Nepali. The initiative of 
this work was taken by Nepali Language in Information Technology steering committee (NLIT) formed under 
High Level Commission for IT for National Standardization, a body formed under the then His Majesty's 
Government, Ministry of Science and Technology, Nepal. It has already been felt that the existing glossary is 
insufficient in terms of its word coverage as works on software localization gather momentum. Necessary 
homework is currently being done by Madan Puraskar Pustakalaya for supplementing the already existing 
glossary. In addition, proposals for changing the translation currently being used in the glossary is also being 
worked out. 

6.4 Translation Process Management 

6.4.1 Forming the Translation Team 
It might be surprising but experiences collected have shown that in under developed countries, where the 
translation profession has not taken much appeal among the people, it is a challenging job to hire competent 
and professional translators. Hiring competent translators for the software localization adds a few more 
challenges to the market as noted below: 

a) It is not conventional translation and hence the knowledge of a general translator would not suffice. 
The translator to be involved in software localization should be aware of the computing terminologies 
used in the English language and also should know the equivalent counterpart in the target 
language. 

b) The translator to be involved in software localization has to be somebody comfortable using software 
tools, preferably in the Linux Operating System. Besides he/she should also have some basic 
concepts on Linux commands to be able to work on the terminal. 

c) Prior knowledge or basic concepts of Concurrent Versioning System (CVS) as a groupware for file 
sharing and revision control would be highly preferable.  
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As per the practical experiences collected, a combination of a qualified translator with all or at least some of 
the the technical expertise as listed above is a rare fact. Often potential candidates for translators are people 
from the computer science background with some interest and expertise in the target language but again 
people from this sphere are not interested in the translation profession. This profession is taken to be not 
matching their qualification which is indeed misleading. 
 
Having said this, the only option left for managers is to compromise in the qualification and skills of the 
translators to be hired. Not surprisingly, instead of professional translators, the management ends up hiring 
enthusiasts with basic computer skills, a good grasp of English as well as satisfactory knowledge of the 
target language. 

6.4.2 Human Resource Estimation 
Yet another challenging job for the translation manager, as the exact number of human resource required for 
translation can hardly be objective. The stastical measure of the required translator may be achieved by 
looking at the number of strings required for translation and the average number of strings translated by a 
translator on an average per day. Experiences have shown that the increased number of translators does 
not necessarily help accomplish qualitative translation on time. Rather qualified and competent manpower, 
though small in number may effectively complete the work in time and without the necessity later on to spend 
several hours for verification. Hence the human resource estimation has to be subjective rather than 
objective. 

6.4.3 Orientation and Training to the Translation Team 
First and foremost, the translation team has to become familiar with the standard glossary of terminologies 
that they would be following throughout the translation process. This implies that the standard glossary is a 
pre-requisite for starting up any translation work for software localization in order to to produce consistent 
translation from all those involved in the translation process. Without a common standard, the translation 
may lack uniformity and consistency leading to unproductive work. 

6.4.4 Orientation to the Translation Team Regarding Translation Guidelines 
Translation is the most important aspect in localization. Metalanguage works or works that discuss language 
could be very difficult to translate. Comic texts can also be very difficult to translate. Translating the 
messages and menus in an application is a heavy budget process and inaccurate translation would result in 
making the application unusable in that particular language. In short, translation should be complete, 
grammatically correct and should be terminology consistent. 
 
Below are some suggested guidelines which should be followed during the translation process[6.5.c,d,e]: 

1. First of all  find out if someone is already working on your language. If so, contact them to get 
assistance for translating the commonly used terms. 

2. The translator should be very well acquainted with both the source and target languages. 
3. The translator should also be aware of the context of translation. For example, in the sentence 'Sita 

made him a duck' , the word 'duck' can be translated only if the context is understood. Such issues 
will come up when you are translating multiple paragraphs of texts. 

4. Join a mailing list. You can use this to discuss translation of difficult words. 
5. It would be a good idea to create a website to tell people about your work, keep glossaries etc. 
6. You should make sure that your translation consistently uses the same terms. 
7. Maintaining a glossary of terms would ensure that you don't use multiple terms to refer to the same 

thing. As far as possible avoid creating new terms.  
8. Try to find out a standard body for your language to get terms. 
9. The gettext is a good package with tools for internationalisation, managing different versions of the 

application etc. If you do not know about gettext, it would be a good idea to learn about it from 
different sources. 

10. Avoid word-to-word translation and try to perform sense-to-sense translation.This means that the 
translator should always bear in mind the intended meaning in the source language. 

11. The translator should take care to produce the intended overall effect with the appropriate tone by 
making the right choice of words. 

12. Be sure not to use terms that are jargon or slang. 
13. Do not use terms that have several meanings. 



PAN Localization Guide to Localization of Open Source Software 

                                                                                                                                        
                                                                               
  

43

14. Do not use the same words for different meanings. 
15. Person and number should be retained wherever possible in translation so that singular does not 

change to plural and third person statements do not change to first or second person statements. 
16. In some cases, a sentence would be highly compressed in English but would run into 2 or 3 

sentences when translated. Such sentences need special attention. In such cases word-to-word 
translation would cause problems. 

17. Be sure that the reference to menus and buttons (like "EDIT" ) matches the term used in the 
localized operating system. 

18. Try to get the translation work reviewed by at least two translators independently. 

6.4.5 Making the Translation Team Familiar with the Translation Environment 
The newly recruited translation team members should be made familiar with the translation environment. For 
this, he/she has to be trained in the following: 
 

a) General concepts of CVS; 
b) Training with the translation tools; 
c) Concept of the Standard Glossary to be followed; 

 
Our experience has shown that a new translation team member will get trained best and be familiar with the 
system if he/she undergoes a two weeks to a month's training by translating some sample translation strings. 
Specific feedbacks from the lead translator or the translation team manager at this period will be highly 
beneficial. 

6.4.6 Translation Monitoring and Tracking 
Translation monitoring and tracking is indeed a tedious job for the translation manager. Periodical meetings 
may be used for updating the status of the translation activity. However, greater efficiency will be achieved 
by taking the help of the CVS and the translation tools like KBabel, which takes the log of the exact amount 
of work done by a perticular translator by date. The fact that translation would require close monitoring and 
tracking, it is advisable that the works be conducted in the same organization. Decisions of outsourcing may 
be very risky unless an on-line viewing and monitoring provision is maintained. 

6.4.7 Testing and Verification 
This process is about carefully scanning, detecting and implementing remedial measures to the errors  found 
in the targeted text.  However, it needs to be noted that soemtimes the source strings may be faulty 
themselves and could mislead translators to bring a completely different meaning in the text. 
         
The testing and verification can be divided into two phases: 
 

a) Phase I 
In this phase, the following list of actions should be implemented: 

1. Checking all the User Interface cases. It depends on the level of menus and sub menus we would 
be required to check. 

2. Linguistic competence like correct spelling and writing grammatically correct sentences.  
3. Ensuring whether all the interface elements have come out in the target language or not.  
4. Target language translation not fitting into the UI elements  (Menus, Sub Menus, Tool bar) 
5. Reporting of bugs:  All the anomalies or errors should be recorded in a file as bugs and submitted 

to the translation manager. A sample of the bug report form is shown below in table 2. 
 

b) Phase II 
A much more rigorous translation testing should be conducted at this phase. Any deviation from the 
conformance as dictated by the guidelines should immediately be reported to the translation manager. 
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GUI 

Application 
String where the bug was 

found 
(ENG) 

String where the bug 
was found 

(NEP) 

Resolved 
(y/n) 

gedit Save this file यो फाइललाई संमह गर…  

gedit Columns to the left ःत भ…..  

    
 

Table 2. Sample of the bug report form 
 
List of  Bugs 
Given below is a list of bugs or errors, that the targeted or the translated text may have. It will be a good idea 
to record these types of bugs in a file and distribute it to the translators in the testing phase. 
  
       1)   Untranslated English Strings in UI elements 

2) Non-Fitting Translated Strings in UI elements 
3) Inconsistent meaning of a term 
4) Spelling Errors in Strings 
5) Forceful Translation of English strings into Nepali which ought to be left in English. 
6) Honorific Language Usage 
7) Non-Contextual Translation   
 

Reviewing the Translation 
Peer reviews turn out to be best suited for reviewing translation. This approach is effective in  that one can 
find bugs and errors in files completed by others, also it creates healthy competition among the translators. 
This process, in our case took almost 20% of the translation time. Corrective actions need to be taken after 
finding the errors in the translation. Two translators could do the correction in the files. 
  
One of the most important factors that can affect the reviewing phase is the faulty strings in the file. 
Translation files need to be free of faulty strings as much as possible otherwise translated strings may not 
come in the User Interface element or only partial translation may be displayed. In an extreme case, the file 
will crash while compiling and may take time to correct the errors.  
 
Generally faulty strings are translated strings with some arguments missing or have  errors in syntax. Such 
errors can be corrected without much effort. However, there may be a situation where strings are shown as 
faulty even when they seem to be correct from every aspect. In such a case, some time should be dedicated 
to looking for possible errors in the file that caused the faulty strings.        

6.5  References for Further Reading  
a) The Primer: Localization of Free/Open Source Software. Anousak Souphavanh and Theppitak 

Karoonboonyanan. 
b) http://www.non.gnu.org/cvs 
c) Principles of translation (http://www.completetranslation.com/principles.htm) 
d) A how-to on translating GNOME applications (http://developer.gnome.org/projects/gtp/l10n-guide/) 
e) Specific rules about how-to write translation 
f) (http://developer.gnome.org/documents/style-guide/locale-5.html) 
g) http://docs.kde.org/development/en/kdesdk/kbabel/ 
h) http://l10n.kde.org/tools/ 
i) http://www.i18nguy.com/TranslationTools.html 
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7 Gnome Localization 

7.1 Introduction 
In this Chapter, we discuss different aspects of Gnome Localization involving the Gnome Desktop 
Environment and its components, the localization frameworks, the issues of Gnome versions, gettext tools, 
official gnome site for submission of the translated files etc. References to useful links for further reading are 
included at the end of the chapter. 

7.2 What is X Window System and Window Managers? 

X Window System 
The X Window System which is commonly known as X11 or X is the standard windowing system in the Unix 
world. It was developed in the mid-1980s at MIT as Project Athena. The original purpose of the system was 
to allow users of the then emerging graphic terminals to access remote graphics workstations, irrespective of 
the workstation’s operating system or the hardware. As the source code to write X is available, it has 
become the standard layer for the management of graphical and input/output devices and for developing 
both local and remote graphical interfaces on almost all Unix, Linux and Unix-like operating systems. 
 
The interesting feature of X windowing system is that it allows a graphical terminal user to get access to the 
remote resources on the network as if they were accessible locally to the user. Running a single module of 
the software called the X server is all that is required for this purpose. The software running on the remote 
machine is called the client application. X’s network transparency protocols allow the separation of the 
display and input portions of any application from the remainder of the applications and the service is 
available to any number of remote users.   
 
For detailed information on the historical and relevant background information on X Windowing System, 
please refer to [7.4.b].  

The X Client-Server Model and Network Transparency 
X, with it’s unique feature of allowing applications to run on a network server and rendering the output on to a 
desktop machine, was very significant in the 1980s and 1990s. In the first days of X, the widely used “X 
terminals” were dedicated X Window hardware. The terminal accepted input, rendered output but did not 
perform application processing. 
 
X works on a client-server model. X server communicates with various client programs accepting requests 
for graphical output (windows) and sending back user input (from keyboard, mouse, or touchscreen). 
 
The communication protocol between server and client operates network in a transparent manner. The client 
and the server may run on the same machine or on different ones, possibly with different architectures and 
operating systems, without any incompatibility problem. They can even communicate securely over the 
Internet through an encrypted network session. 
 
For Example: In order to make a remote client display to a local server, the user will typically telnet or ssh to 
the remote machine via the terminal window, commanding it to display to the user’s machine (e.g. export 
DISPLAY=[user’s machine]:0 on a remote machine running bash), then start the client. The client will then 
connect to the local server and the remote application will display to the local screen and accept input from 
the local input devices. Alternatively, the local machine may run a small helper or program to connect to a 
remote machine and start the desired application. 

Working with X Window System and Window Managers 
X Window, by itself, only generates borderless windows in fixed screen locations. A “window manager” is 
required to add borders and buttons and enable the users to resize and move the windows on screen. The 
default X window manager is the Tabbed Window Manager (twm). However, more than three dozen others 
have been used, including AfterStep, Blackbox and Enlightenment. The KDE and GNOME user interfaces 
for Linux use Kwin and Metacity respectively as their window managers. 
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When the X Window System is run, the X server manages the display, based on requests received from the 
window manager. Hence, the window manager is in itself an X client, which has the responsibility for 
managing the appearance, behavior and placement of windows on the screen.  
 
X itself does not have any role in determining the appearance of the screen, or what users are allowed to do 
with windows. That is the job of the window manager. For example, some window managers roll up the 
window into the title bar like rolling up a window shade when double-clicked in a window’s title bar. This 
process is referred to as shading. Other window managers maximize the window to fill the desktop area as a 
response to the same action. 
 
The X server’s job is to provide the low-level support to the window manager. On the other hand, window 
managers are responsible for icon title bars and behavior of windows for applications, handling input and 
mouse gestures, clicks etc. apart from the responsibility for fixing window positions. 
 
The window could be a terminal window (called an xterm) where the user is supposed to run standard Unix 
commands, or it could be an X client application like the xcalc calculator, a web browser, or an Emacs 
session or even more complex programs.  

7.3  About GNOME 
GNOME stands for GNU Network Object Model Environment. The desktop environment is one of the 
measures to put a user friendly working environment on top of UNIX and UNIX-like operating systems such 
as Linux. GNOME, which is developed as a Free Software offers a reasonably complete developer toolkit 
and application infrastructure and in addition to that an end-user working environment. The user interface 
elements are similar to the windowing environments that have been in use since the early eighties with the 
classic Window, Icon, Mouse, Pointer (WIMP) paradigm. 
 
For detailed information on the history and relevant background information on GNOME, please refer to 
[7.4.d].  

7.3.1 Stable Releases of GNOME 
Each component included in the GNOME project, has its own version number and release schedule. In this 
regard, module maintainers co-ordinate their efforts to create a full GNOME stable release roughly once 
every six months. The latest stable version of GNOME as per March 2006 was 2.14. For a detailed list of 
stable releases of GNOME starting from version 1.0, please refer to [7.4.d].  

7.3.2 GNOME Components 
Given below is a general overview of the different components of GNOME. 
 

a) Display Manager 
The GNOME Display Manager(GDM) is a sophisticated XDM replacement. 
It is an entirely new implementation of XDMCP (the X Display Manager Control Protocol) and associated 
functionality. It consists of four separate parts:  

1. small daemon 
2. graphical login program  
3. host chooser  
4. configurator  

 
The GDM implements a rich feature set required for managing local and remote displays. With this 
manager, one can login to the remote computer and use the GNOME Desktop Window as if running in 
the local computer. 

       
b) File System  
GNOME interacts well with the the Linux File System. Among the popular file types and operations that it 
handles include VFS, Mime types, Metadata etc. Files are managed and stored  in different formats and 
different file systems like ext2 ,reiserfs, fat32 etc. in GNOME. 

 
c) Control Center 
GNOME uses the Control Center to customize the user’s desktop environment according to it’s 
preferences. The user may set his/her preferences of the GNOME environment making use of some 
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configuration dialog boxes. For instance, the desktop’s background color, mime-type handling and 
setting the mouse properties are all handled by the Control Center. You also may add your own 
configuration dialogs. 

 
d) Panel 
The Panel refers to a generic term used to describe a particular control interface between the user and 
the desktop environment. Typical example of a panel would be a bar at the bottom of the screen, with a 
menu from which users can launch applications (the GNOME Menu), a button bar with buttons 
representing launch targets, as well as running applications. A clock or an email notification program 
also may serve as panel applets. 
 
Multiple panels also exist in the form of a full-size panel across the bottom of the screen and a smaller 
panel running down on the right side of the screen. In addition, panels can also be set to auto-hide, or 
can be manually slid in and out of view with a button on each end. 
 
The panel works in communication with the Session Manager. Typical cases include notifying about the 
session managed applications to shut down as the users log out and shut down GNOME. 
 
All changes need to be reacted by the panel dynamically. For example, if the GNOME Menu has been 
changed by the user taking the help of a menu editor, the panel needs to be notified in order to properly 
re-construct its GNOME Menu instantly without the need to completely restart the panel to get the 
changes in the GNOME Menu. 

 
e) Desktop Icons and File Manager 
A comfortable and an appealing interface is a very important part of a complete desktop environment. 
This is handled by Nautilus, which provides the desktop icons and file system windows for GNOME. 
Common operations such as Open/Delete/Copy/Move can be performed by using the appropriate 
mouse button. Similarly, changing the desktop icons and permission of files is also possible. A variety of 
Views (tree, icon and listview) as well as file searching and selection are some of the other features 
available in the GNOME file system windows. Drag and Drop is also fully supported. 

 
f) Session Management  
GNOME adopts session management to handle logging in and logging out. The states of programs are 
saved and restored providing a mechanism for the user to take “snapshots” of their desktop. In addition, 
the window behavior and customized menus are also maintained. 

 
g) Window Managers  
Interaction between the X server and its clients is redirected through the window manager. For instance, 
whenever an attempt to show a new window is made, the query or request made is redirected to the 
window manager for taking note of the initial position of the window. Apart from this, the Window 
Manager also handles input and mouse gestures, clicks etc. For GNOME, Metacity is the default window 
manager. Enlightment and Sawfish used to be the previous window managers for GNOME before 
Metacity was implemented. 

7.3.3 Localization Framework in GNOME 
English is the language usually used for programming and documentation. A common language like English 
is quite handy for communication between developers, maintainers and users around the globe. At the same 
time, a considerable portion of the population is less comfortable with English and would prefer to work in 
their respective native language. This has been made possible by the Translation Project. For this a 
translation framework is required for translating the software, manuals and documentations in English in the 
local language. 
 
GNU gettext Translation Framework 
The translation framework most commonly used in FOSS is GNU gettext [7.4.h]. GNU gettext is an important 
tool or framework for localization, as it is an asset on which we may build many other steps. It is  an 
integrated set of tools and documentation for  programmers, translators for making world ready software 
which can be localized and translated to local languages. Specifically, the GNU gettext utilities are a set of 
tools that provide a framework within which other free packages may produce multi-lingual messages. These 
tools include 
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• A set of conventions about how programs should be written to support message catalogs. 
• A directory and file naming organization for the message catalogs themselves. 
• A runtime library supporting the retrieval of translated messages. 
• A few stand-alone programs to message in various ways the sets of translatable strings,  or already 

translated strings. 
 
GNU GetText is designed to minimize the impact of internationalization on program sources,hence keeping 
this impact as small and hardly noticeable as possible. Internationalization has better chances of succeeding 
if it is minimal , or at least, appears to be so, when observing program sources. 
 
The Translation Project also uses the GNU gettext distribution as a vehicle for documenting its structure and 
methods. This goes beyond the strict technicalities of documenting the GNU gettext properly. By doing so, 
translators will find in a single place, as far as possible, all they need to know for properly doing their 
translating work. Also, this supplemental documentation might also help programmers, and even curious 
users, in understanding how GNU gettext is related to the remainder of the Translation Project, and 
consequently, have a glimpse of the big picture 
 
Technical aspects of GNU gettext 
Messages in the program's source code are put in a short macro that call a gettext function to retrieve the 
translated version. At program initialization, the hashed message database corresponding to 
LC_MESSAGES locale category is loaded. Then, all messages covered by the macros are translated by 
quick glances at the program execution. 
 
Therefore, the task of translation is to build the message translation database for a particular language and 
get it installed in appropriate place for the locale. With that preparation, the gettext programs are 
automatically translated as per locale setting without a touch in source code [7.4.h]. 
 
GNU gettext also provides tools for creating the message database. There are three kinds of files in the 
process: 
 

• POT (Portability Object Template) file. This is a file in human readable form to be used as 
template for the PO file where only the english msgid string are available. 

 
• PO (Portability Object) file. This is a file in human-readable form for the translators to work with. 

It is named so because of its plain-text nature which is portable to other platforms. 
 
• MO (Machine Object) file. This is a hashed database for machine to read. It is the final format to 

be loaded by the gettext program. Note that there are other translation frameworks in commercial 
Unixes, and their MO files are not compatible. You may also find some GMO files as immediate 
output 

 
gettext Tools 
“gettext” is a package which contains tools for extracting strings from source files into translatable format, 
turning those strings into a list which can be translated, updated and later converted into a format, the 
computer can use. Someone from your localization team (as many as possible really) needs to be familiar 
with these tools. 
The following commands or utility tools are available with gettext Framework: 
msggrep   
The `msggrep' program extracts all messages of a translation catalog that match a given pattern or belong to 
some given source files. 
msgunfmt  
Converts binary mo file to human readable po file format 
msgcat      
Builds message catalogue combining many message (PO) files. Merges PO files to retrive unique messages 
msgconv 
Converts character encoding of message in PO file like latin1 to utf-8  
msginit 
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Initializes a message catalogue file. Creates  a  new  PO file, initializing the meta information with values 
from the user’s environment.  
msguniq 
Unifies  duplicate translations in a translation catalog.  Finds duplicate translations of the same message ID. 
msgcmp 
Compares  two  Uniforum  style  message catalogue PO files to check that both contain the same set of 
 msgid strings.  
msgfmt 
Generates binary message catalog from textual translation description. Compiles message catalogue in 
binary format to use with application 
msgmerge 
Merges message catalogue PO file with the new and updated message template POT file. 

7.3.4 Localizable Components of GNOME 
The GNOME Desktop Environment comprises of developer libraries and set of applications. In order to have 
the GNOME Desktop Environment fully localized, translation of the menus, desktop files and mime-type files, 
alone is not sufficient. In addition, some application specific files as well as the core libraries of GNOME 
gtk+, glib, gconf, libgnome, libgnomegui, libbonobo, libgnomecanvas etc, all need to be translated and 
localized. 
 
Among some of the main applications of GNOME are gdm (login window), gedit (text editor), evolution (mail 
client), metacity (window manager), nautilus (file explorer) and gnome – desktop (menus on the desktop). It 
also has various applications for audio/video, file viewers (including gpdf, gv etc), CD writing, desktop theme 
selection, printing etc. GNOME also includes office tools like gnumeric (spreadsheet), dia (diagram editor), 
planner etc. After the translation of a minimum number of files of gnome – desktop, menus, panel and some 
associated packages like nautilus and printing libraries, the GNOME desktop would start appearing in the 
local language.  

7.3.5 GNOME versions and Localization 
GNOME programs are designed in such a way that they may be localized as per the needs of a particular 
location. This applies for instance to printed pages in America appearing in a different size from printed 
pages in Europe; weather temperatures being displayed according to Fahrenheit and Celsius scales in 
different places; and the language seen in programs as per the user’s native language. 
 
Translation is a major part of the localization process. The translators take sentences in the original English, 
supply the appropriate translation, and add the file containing this information to the GNOME CVS repository 
so that the next release of the software contains the new language.  
 
To begin with, you will need to find out what your language code is. This is a two - or three-letter code. More 
popular languages will tend to have two-letter codes, whereas more obscure languages will tend to get stuck 
with a three-letter one. For languages spoken in more than one country, a translation specific to a country 
will be followed by an underscore and the two-letter country code capitalized. This can further be appended 
with an at-sign and more qualifying information. For now, you need to know that language codes typically 
look like "ne" (Nepali) or "ne_NP" (Nepali used in Nepal) or "ne_IN"  (Nepali used in India).  
 
Language code is used to identify your localization, for example in the form of locales and files. Once you 
have your code, you can start translating. The language code will be  defined in the GNOME Locale (Please 
refer to Chapter 2 for detailed information on Locale and Locale Development).  
 
For the GNOME Desktop Environment to be displayed in a particular language, the locale selected has to 
match with the language being employed for the translation. For example, the locale ne_NP and the 
translation in the Nepali language in the case of Nepal.  
 
Different versions of GNOME will have different number of strings to be translated. Generally the latest 
version will have more and older version lesser strings to translate. Similarly, the number of applications that 
have to be translated will also vary upon the versions. While undertaking the translation of any version of 
GNOME, one has to take note of the version number as translation work for one version may not necessarily 
work for another version. 
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7.3.6 Translation, Verification and Proof Reading 
Basically, the file from GNOME that has to be translated is in the PO format(Please refer to PO format in 
Chapter 6 on Translation.) with "msgid" and "msgstr".  The msgid will have the string in ENGLISH and 
msgstr will have the translation in the native language. The po file will be available for almost all the 
packages or application that is included in GNOME.   
 
A major part of localizing GNOME and its applications is translating the PO files. Verification of the translated 
strings in terms of the meaning conveyed is vital once the translation process is complete. Besides, 
consistency in the translation must be checked, rechecked and verified so that a word e.g. "File" does not 
get translated into different forms in the Native Language.  
 
Translators can use various editors for the translation work,. In our case, we chose KBabel (Please refer to 
the Chapter 14 under the section Translation Tools for a detailed information on KBabel). 
 
Proof Reading is yet another vital part of translation. Spelling errors make the user interface unpleasant, 
unattractive and inefficient, so must be handled with great care. Preferably a linguist or someone with a 
sound linguistic knowledge would need to be involved in proof reading. Consulting individual words in strings 
from hundred of files is tedious and hectic. For this reason, freely available applications handling the Unicode 
input regular expressions might aid in finding and replacing one or more spelling errors in multiple files. 
 
Once verified and proof-read, the translation must be tested in the real applications and checked if the 
formatted strings show up correctly in terms of the essential  grammar structure. For instance, Nepali follows 
the  SOV (Subject Object Verb) sentence pattern as opposed to ENGLISH which follows the SVO (Subject 
Verb Object) sentence pattern. For this purpose, it is advisable to arrange for opening two applications, one 
using the English user interface and the other with the user interface in the native language. A comparative 
look would determine the changes to be made. 

7.3.7  Submitting Translated Files to GNOME Mainstream 
Once the po file is translated, verified and tested in the application itself, the file has to be submitted in the 
GNOME CVS so that the new release of GNOME will have the translated strings incorporated. 
 
Following are the steps required for submitting the translated files to GNOME. 
 

1) The following two CVS commands download the two files “ChangeLog” and “ne.po” in the local 
machine from the GNOME central CVS. 
 
cvs checkout modulename/po/ChangeLog 
cvs checkout modulename/po/ne.po 

 
2) Assuming that you have translated the ne.po file. Next you need to add  comments in ChangeLog 

Name  <email>     
 

         *ne.po: Updated Nepali Translation  
Here ne.po referes to  Updated Nepali Translation po File 

 
For example,  
 2006-01-01  Pawan Chitrakar  <pchitrakar@gmail.com>   
  * ne.po: Updated Nepali Translation 
 
Please note the format of the comments 
1st line ------date (YYYY-mm-yy)  two spaces Name two spaces <email> 
2nd line------Blank 
3rd line------{TAB} * space filename:  message 

 
3) Overwrite the old file in the central GNOME CVS with the new and updated ne.po file (The file which 

has been translated locally.) 
 

4) Commit the changes 
 cvs commit -m " Updated Nepali Translation" 
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7.3.8 GNOME Localization Status Page 
The Gnome status for the translation can be viewed in the gnome localization status page. The url address is 
http://l10n-status.gnome.org. On this page, you can browse by language name (language code) .  
This covers two major section: 

a) Developer Library Section 
b) Desktop Section 

The status page provides information on the translated strings of the files. 
 
For Example, in the Desktop section for Nepali Language, the translation status looks as in the figure shown 
below. 
 

 
Figure 5. GNOME localization status page 

7.3.9 Viewing GNOME Desktop in the Native Language 
After translation is complete and locale is set to the native language, the GNOME Desktop interface will 
show up in native langauge This provides the user with the desktop and other applications in their native 
language. A screenshot of the localized GNOME Desktop in the Nepali Language is shown below. 
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Figure 6. Localized Gnome desktop in Nepali 

 

7.4 References for Further Reading 
a) Linux in a Nutshell, fourth Edition. A Desktop quick reference. Ellen Siever, Stephen Figgins, Aaron 

Weber. 
b) http://www.answers.com/topic/history-of-the-graphical-user-interface 
c) http://en.wikipedia.org/wiki/X11 
d) http://en.wikipedia.org/wiki/GNOME_desktop 
e) http://www.gnome.org 
f) http://www.fifi.org/cgi-bin/man2html/usr/share/man/man1/gnome.1.gz 
g) http://l10n-status.gnome.org/    
h) The Primer: Localization of Free/Open Source Software. Anousak Souphavanh and Theppitak 

Karoonboonyanan.                
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8 Mozilla Suite Localization 

8.1 Introduction 
In this Chapter, we begin with a short introduction about Mozilla. Next we will talk about Mozilla localization 
basics and the Mozilla Localization framework. A detailed discussion on the Mozilla Suite Localization Steps 
followed by an overview  of the available translation tools. Similarly, the issue regarding complex text and 
Mozilla is also dealt with in this chapter. Other information on Mozilla in this chapater includes “Building 
Mozilla Suite from Source”, “Mozilla Plug-ins” and “Known Issues”., References for further reading are listed 
at the end of the chapter. 

8.2 About Mozilla     
Mozilla is a free/open source cross-platform Internet suite. Mozilla suite bundles Internet browser, Mail client, 
Composer, Address book and IRC chat client. Its development was initiated by Netscape Communications 
Corporation. Mozilla Suite works on multiple platforms like Linux/Unix, Microsoft Windows and Mac OS.   
 
Most of the Mozilla Code has been written in C++. Other language used include  Javascript, XUL, CSS, 
HTML etc.  
 
Apart from being an Internet Suite,  Mozilla is also a framework that allows developers to create cross-
platform applications.  
 
Evolution History 
The information on the evolution history of Mozilla covered below in this section has been based on [9.4.c]. 
 
Mozilla as a project, was the continuation of the  Netscape Communicator as an open project. In January 23, 
1998, Netscape made an announcement that it would give away the source code for its Netscape 
Communicator suite. This announcement came as a huge surprise even to the Open Source community, 
never before had a major software company opened up its proprietary code. Netscape, however, couldn't 
release this code under GNU GPL license because the source code also included many third-party 
components and the owner of these components didn't want to give away their code. It was decided that a 
new license would  be written to release this source code. 
 
On 31 March 1998, Netscape finally released the source and named it Mozilla. They released it under a 
newly made Mozilla Public License(MPL). The Netscape Public License (NPL), under which the commercial 
version of Netscape, Netscape Communicator is released, is almost identical to MPL, except that the NPL 
includes amendments granting Netscape some additional rights. 
 
All the source code for Mozilla is available under the Mozilla Public Licenses, which are accepted as free 
software licenses by the Free Software Foundation. 

8.3 Mozilla Product Localization 

8.3.1 Basic information 
The Mozilla user interface is composed of several XML files. These pages are rendered by the layout engine 
at runtime [9.4.a]. Mozilla user interface is contained in resource files and are kept separate from the Mozilla 
core binary. Mozilla uses XUL  language, pronounced “zool” (XML-based User-interface Language) for 
storing these UI layout. The XUL file produces the User Interface Layout, while strings to be displayed on it 
come from the separately placed .dtd and .properties file.  

8.3.2 Localization framework 
The following directory structure will help you to get a general idea of how different resource files work 
together in mozilla to give localized interface. It shows the format/structure  generally followed when a new 
component (xfly) is added to mozilla. This is the minimum structure that has to be maintained in order to  add 
a new component and be able to localize it.  
 
An Example of Directory Structure of mozilla component is as shown below [9.4.c]: 
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MOZILLA/CHROME/ 
        XFLY/ 
            CONTENT/ 
                    XFLY.XUL 
                    XFLY.JS 
                    CONTENTS.RDF 
           LOCALE/ 
                  EN-US/ 
                       XFLY.DTD  
                       CONTENTS.RDF 
            NE-NP/ 
   XFLY.DTD 
   CONTENTS.RDF 
 SKIN/ 
                   XFLY.CSS 
                   CONTENTS.RDF 
  
XFLY.XUL: In the directory structure above, the xfly.xul file is the most important file. This file creates the 
actual application's widget  Let us assume that xfly as a xml based hello world program which produces a 
small box  and displays "Hello World" in it.  
 (Note: xul: pronounced zool is XML-based User-interface Language):  
 
XFLY.JS : Javascript creates the functionality for a Mozilla-based application. 
 
XFLY.CSS: Cascading Style Sheet formats the look and feel.   
 
XFLY.DTD: The .dtd file holds the string which is displayed in the user interface. These strings are the ones 
which are to be localized while localizing. In the example above, there are two instance of xfly.dtd file. The 
xfly.dtd file inside the folder en-US holds the English string while the one inside ne-NP contains the 
translated string.  
 
Now, when following command is executed,  
#./mozilla -chrome chrome://xfly/contents  -uilocale en-US 
 
The xfly.xul file gets the strings(i.e english) from the xfly.dtd file inside the locale/en-US folder and displays 
the content on the widget and when executing, 
 
 #./mozilla -chrome chrome://xfly/contents  -uilocale ne-NP,  
 
the xfly.xul file gets the strings(i.e. Translated ones) from the xfly.dtd file from the locale/ne-NP folder and 
displays on the widget.  Hence the interface is localized.  

8.3.3 Mozilla Suite Localization Steps 
Registration 
Before considering thelocalization of any application, one should always check if somebody else has already 
started the localization work. If not, then you may start off by registering yourself in order to prevent 
duplication of the same work.  
 
Check to see if somebody has already registered for localization of the intended product  
 
For Mozilla Application Suite, you need to check,  
http://www.mozilla.org/projects/l10n/mlp_status.html 
 
For Firefox, 
http://wiki.mozilla.org/L10n:Localization_Teams 
 
For Thunderbird, http://www.mozilla.org/projects/l10n/mlp_otherproj.html#thunderbird 
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Registration and Localization Process for Mozilla Suite 1.7 for locale code ne-NP is shown below:  
 
Registration Requirements 

a) Your locale code: The locale code is usually assigned in ab-CD format. The first two characters(ab) 
represent the language and the second two characters(CD) represent the Country Name. For Nepali 
language spoken in Nepal, it would become ne-NP. For French language spoken in Canada it is fr-
CA.  

 
b) A valid email address: An email address is needed to subscribe to the mailing list.  

 
Registration Steps  

a) Go to page http://www.mozilla.org/projects/l10n/registration.html and subscribe to the mailing-list 
dev-l10n@lists.mozilla.org, or to its newsgroup mirror mozilla.dev.l10n.  

b) File a bug  in Bugzilla 
 
From the above page, file a bug in bugzilla. Details should be as follows:  
 
Product: "Mozilla Localizations", component : "Registration & Management".  
  
Build Identifier: This identifies the exact version of product you are using. This is the line beginning 
"Mozilla/5.0" in Help | About. 
 
Details : Provide the following details.  
 
    * the product you want to localize ( e.g:  Mozilla Suite) 
    * the language + country code ( e.g. :  ne-NP) 
    * your contact details (name + e-mail, web-page if available). ( e.g: Basanta Shrestha,     
basanta@mpp.org.np, www.mpp.org.np)  
 
Downloading Mozilla Build 
The latest official build for Mozilla Suite can be downloaded from the following location:  
http://www.mozilla.org/releases/   
 
Alternatively, you may download the latest mozilla source and compile it yourself. But this is only 
recommended if you explicitly want some option to be enabled in the build. A very good example for this is a 
case where mozilla has to be built with CTL(Complex Text Layout) enabled, so that complex text like 
Devanagari can be rendered. Building mozilla from source will be discussed later in "Building Mozilla Suite 
from Source". Latest mozilla source  can also be downloaded from the above location.  
 
Working on Files 
 Chrome Files 
In Mozilla, most UI resources are located in the chrome/  folder of the install directory. The original 
localization files are packaged as:     

1. en-US.jar: contains nearly all the UI language resources. 
2. en-win.jar: contains all the Windows specific UI resources.  
3. en-unix.jar :contains all the Unix specific UI resources and  
4. en-mac.jar: contains all the Mac OS specific UI resources. 
5. US.jar: contains all the regional contents (URLs) resources. 

 
Localizing mozilla technically means adapting the above mentioned 5 files for your desired locale,  based on 
the above 5 files for English. That is to say, we have to extract and translate the translatable resources of  
en-US.jar and package it back with a new name (ab-CD.jar). For example, for Nepali language spoken in 
Nepal, one will have to prepare following files: ne-NP.jar, ne-win.jar, en-unix.jar, ne-mac.jar, NP.jar . 
 
Listed below are the file types that we will come across while unpacking the above mentioned jar files. These 
are the files that actually hold the localizable strings and are needed to be translated into required language.  
 
.dtd Files 
Text files UTF-8 encoded 
A DTD file contains a list of entities that need to be localized. The DTD files have most of the localizable 
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strings in Mozilla suite. 
A part of a .dtd file is shown below:  
 
---------------------------------------- 
<!ENTITY openCmd.label "Open Web Location..."> 
<!-- LOCALIZATION NOTE  throbber.url: DONT_TRANSLATE --> 
<!ENTITY throbber.url "http://www.mozilla.org"> 
-------------------------------------------- 
 
In the sample above, "openCmd.label" is the entity and its value, "Open Web Location...", is what needs to 
be localized/translated.  
 
Where translation need not be done, the author of the file has added a comment “DONT_TRANSLATE”as 
shown in 2nd line of the above sample.  
     
Note that these documents are UTF-8 encoded. Hence, you'll either need a text editor which is  able to save 
the file in UTF-8 once modified, or you will have  to convert it back to UTF-8 afterwards. Actual translations 
are usually done using appropriate tools like kBabel and not by directly editing the file in text editors.   
 
.properties Files 
These are text files with “escaped Unicode” encoded.  
The .properties Files contain strings that are accessed by Javascript, C++, and possibly other scripting or 
component files.  
A part of .properties file is show below. 
 
--------------------------------------------- 
openButtonLabel=Open 
chooseFileDialogTitle=Choose File 
existingNavigatorWindow=Existing Navigator window 
----------------------------------------------- 
 
The string on the right side of the equal symbol is to be translated. Again, localization notes and comments 
are often useful to explain what the string's usage in the UI is or a particular behavior the localizer should 
follow working on them: 
 
Some Files contain symbols like %s or $1%s.  
---------------------------------------- 
InstallFile=Installing: %s 
ReplaceFile=Replacing: %s 
---------------------------------------- 
They will be substituted at runtime by relevant words. Place them in your strings as they make sense in the 
whole sentence, typing them exactly as found originally. 
 
.rdf (Resource Description Framework) Files 
Text files, UTF-8 encoded, if not otherwise specified. 
 
Each folder within chrome/ab-CD contains a copy of contents.rdf file. This acts as a manifest file which sits 
within a package and interacts with Mozilla's chrome directory.  There is not much to change in this file, just 
change the chrome name en-US to ab-CD.  
 
HTML and XHTML 
UTF-8 encoded  
Help contents are usually in .html or xhtml format.  
 
One can directly open .dtd/.properties file and start translating using any text editor, capable of saving 
contents in UTF-8 format. But this is only good for testing and getting ideas on mozilla localization. For actual 
localization, you will need to use dedicated tools like Kbabel or Mozilla Translator.  
 
Translation using MozPOTools 
Translating using MozPOTools involves a very clever technique of converting  mozilla style file format ( .dtd 
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& .poperties) to GNU's gettext style po files for translation.  Once the files have been converted to .po format, 
translators have the freedom to use any translation tools they prefer.  
 
MozPOTools ( collection of many commands including moz2po, po2moz, pomerge, pocount) are available in 
the package called translate-toolkit.  
 
Using common tools like Kbabel is a bit more complicated than using the  dedicated Mozilla Translator but 
the latter provides the following benefits over using Mozilla Translator 
 

i) Work can be divided among translators 
ii) Gives an overall idea of jar file XPI.  

 
Profile Default 
Profile Default includes user profile template files which are used when a new profile is created. It resides 
inside the defaults/profile/[country-code]/  folder. The localization is optional.  
 
Copying/Registering the new packages 
Copy all newly prepared set of .jar files into the chrome folder of mozilla installation. Now make mozilla 
chrome aware of this. This can be done manually by adding the following line in the file  
 
mozilla/chrome/installed-chrome.txt 
(Note: This is done automatically by  install.js file when installing XPI. ) 
 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/global/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/necko/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/communicator/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/editor/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/mozldap/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/pipnss/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/pippki/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/navigator/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/cookie/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/wallet/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/content-packs/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/help/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/p3p/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/autoconfig/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/messenger/ 
locale,install,url,jar:resource:/chrome/ne-NP.jar!/locale/ne-NP/messenger-smime/ 
locale,install,url,jar:resource:/chrome/ne-unix.jar!/locale/ne-NP/global-platform/ 
locale,install,url,jar:resource:/chrome/ne-unix.jar!/locale/ne-NP/navigator-platform/ 
locale,install,url,jar:resource:/chrome/ne-unix.jar!/locale/ne-NP/communicator-platform/ 
locale,install,url,jar:resource:/chrome/NP.jar!/locale/NP/editor-region/ 
locale,install,url,jar:resource:/chrome/NP.jar!/locale/NP/navigator-region/ 
locale,install,url,jar:resource:/chrome/NP.jar!/locale/NP/communicator-region/ 
locale,install,url,jar:resource:/chrome/NP.jar!/locale/NP/global-region/ 
locale,install,url,jar:resource:/chrome/NP.jar!/locale/NP/messenger-region/ 
Now, run the following command and check the localized Interface. 
#./mozilla -uilocale ne-NP  
 
Packaging XPI 
XPI Definition 
 
XPI stands for cross platform installer and is pronounced as “zippy”[9.4.d]. XPI is a technology used by 
Mozilla products for installing extensions to add functionality. XPI is nothing but an archive of files. Along with 
other .jar files, a XPI typically contains  a Javascript (install.js) file which extracts and copies  files to 
specified locations. 
 
In more recent XPIs, the install script has been replaced by a chrome manifest and a RDF file (install.rdf). 
Creating XPI 
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Mozilla Translator can create language pack XPI itself. Those using MozPOTools, can archive all the .jar 
files along with install.js file using jar command to generate XPI. To get install.js file, download and extract 
“langenus” file, downloadable from  
http://ftp.mozilla.org/pub/mozilla.org/mozilla/releases/mozilla1.7/windows-XPI/ 
 
(Note: replace mozilla1.7 with the appropriate version ) 
 
Maintain the following folder structure and then create archive to generate XPI.  
/xpi/bin/chrome/ne-NP.jar 
/xpi/bin/chrome/ne-win.jarh 
/xpi/bin/chrome/ne-unix.jar 
/xpi/bin/chrome/ne-mac.jar 
/xpi/bin/chrome/NP.jar 
/xpi/install.js   
 
Now from the /xpi folder, run following command, 
#jar cvf ne-NP.xpi .  
 
Testing the XPI 
After you have packed the jar files and made XPI, it is very important that you check if the XPI is installable. 
Sometimes during the process of translation and file format conversion, permission of files get altered and 
XPI eventually fails to get installed.  
 
Often, the XPI does not get installed when the user doesn't have enough permission to write in the chrome 
folder -in such cases you will have to execute mozilla as root and install XPI.  
 
To install XPI, just open the XPI file in the browser. If XPI is ok, it will ask to restart the browser.  
In case of error in translation, mozilla prompts you with the file name that contains the error. There usually is 
.xul file with the same file name  and you can open that particular file in the browser and check the error.  
 
A .dtd file is used by a xul file with the same name. (E.g. abSelectAddressesDialog.xul uses the strings 
placed in abSelectAddressesDialog.dtd). 
 
To open this file, type the following url in the address bar in the mozilla browser.  
chrome://messenger/content/addressbook/abSelectAddressesDialog.xul 
 
Submitting 
Once the XPI has been made, mozilla.org can make your work publicly available from their ftp site 
http://ftp.mozilla.org/pub/mozilla.org/mozilla/l10n/lang 
 
For this, put the XPI file somewhere from where  mozilla people can download  and send an email to the 
mailing list mlp-staff@mozilla.org  about this. Your XPI will be uploaded to mozilla.org. 

8.3.4 Translation Tools 
Available Translation Tools 
Some common tools used  for mozilla localization are listed below [9.4.e]. Among these tools, Mozilla 
Translator and MozPOTools are discussed in detail.  
 

• MozExpTool 
• L10NZilla 
• Mozilla Translator 
• MozPOTools 

 
MozExpTool 
MozExpTool is a Visual C++ based project. It is designed to address the localization and leveraging the need 
of languages in single-byte charsets.  
 
MozExpTool allows you to create text files (we call them glossaries) from dtd/xul files which can be given to 



PAN Localization Guide to Localization of Open Source Software 

                                                                                                                                        
                                                                               
  

59

translators . When the translators have finished their translations, you can re-import them into the dtd/xul 
files.  
 
L10NZilla 
L10NZilla is a tool based on  MySQL, Java and PHP. It allowsthe user  to perform localization work using a 
browser. It offers the possibility of having a centralized maintenance of your translated resources. 
 
Mozilla Translator 
Mozilla Translator is a localization tool for Mozilla and other XUL based Application. It  is based on Java. You 
can download the latest Mozilla Translator from http://sourceforge.net/projects/moztrans/. The latest version 
of Mozilla Translator  during the time of writing this guide  is 5.03.  
 
Requirement 
JAVA SDK 
First, locate where the .jar files for English are.  They will most probably be in the /usr/lib/mozilla/chrome/ 
folder. For making jar files of your language, mozilla translator uses these .jar files of english ( en-US.jar, en-
win.jar, en-unix.jar, en-mac.jar and US.jar ) as templates.  Take a note of where these files are located.  
 
Run mozilla translator  
# java -jar mt502.jar 
 
Goto File > Manage Products > Add 
Fill in the fields as shown in this screen shot.  

 
Figure 7.  Screenshot of the Mozilla Translator 

 
When all the files have been added, the final screen should look like this. 
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Figure 8. Screenshot of the Mozilla Translator 
 
Go to File > Update Products . 
Chrome View screen is displayed. Select the columns as shown in the following screen shot.   
 
Click on ok.  
You will get following screen.  
 
Now you are ready to do the translation. There is an option in the Mozilla translator that will list all the 
redundant strings together.  Hence you can simply translate one and copy paste the rest. For this goto Edit > 
Redundant Strings and click on “ok” on the next dialog box. You will get the following screen. 
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Figure 9. Screenshot of the Mozilla Translator  
 

 
Figure 10.  Screenshot of the Mozilla Translator 
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Now goto File > Update  once again.  
In following the steps above, if some times you don't get the screen as expected  try “Update Product”. 
 
Now we are ready to produce jar file of our own ( eg. ne-NP.jar, ne-unix.jar etc.) . For this go to Export > Jar 
File. Fill the values as shown in the screen shot. Be careful while giving the version number. If the version is 
not correct, there will be problem while installing the XPI in the browser.  
 
If you are making XPI for  
1.7  -> put 1.7 
1.7.x  -> put 1.7 
1.8  -> put 1.8 
1.8a1->put 1.8   
 
 

 
 

Figure 11.  Screenshot of the Mozilla Translator 
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Check to see that the ne-NP.jar file has been created. 
 
You have to repeat the above process for making rest of the files by appropriately selecting in the “Export”  
Field. ne-unix.jar is shown in the screen shot below. 
 
 

 
 

Figure 12.  Screenshot of the Mozilla Translator 
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Click on “ok”. Check to see that ne-unix.jar has been created. Repeat  the above steps for ne-win.jar,         
ne-mac.jar and NP.jar.  

 
 

 
Figure 13.  Screenshot of the Mozilla Translator 
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Figure 14.  Screenshot of the Mozilla Translator 
 
Now when all 5 jar files have been created, you have to make a XPI to be able to install through the browser.  
XPI file is the combination of jar file and a install.js ( java script) file. 
(Note:ne-NP.xpi =ne-NP.jar+ne-unix.jar+ ne-mac.jar+ne-win.jar+NP.jar + install.js). 
 
Go to export > XPI install. Fill the fields as show in the following screen shot.        
 
Click on “ok”. Now check and see if the ne-NP.xpi file has been created.  
 
Now, Install the XPI into the browser.  
 
Open the browser. Go to file > open file  
choose the ne-NP.XPI  
if the XPI gets installed successfully, you will get the following screen.        
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Now close the browser and open it again. The translated interfaces will appear as follows. 
 

 
Figure 15.  Localized Mozilla Nepali Browser 

 
Creating Glossary File for further amendments 
Translation is a tedious job and mistakes are almost unavoidable. Mozilla Translator provides you with a 
special feature of saving your work in a file called Glossary.zip and retrieving the work later when necessary 
so that modifications can be made easily.  
 
For this, you need to save the Glossary in Mozilla Translator.  Backup the  following two files which are 
located in the same directory as your mt40x.jar file. 

1. Glossary.zip 
2. mozillatranslator.properties.  

 
Later, to retrieve the translation in Mozilla Translator, copy the two above files in the folder where mt40x.jar 
exists and make a new folder "cache" inside that folder. Execute mozilla translator as usual. 
# java -jar mt502.jar 
Now make the changes and make a new Glossary.zip for further changes.  
 
MozPOTools 
Localizable resource files (.dtd, & .properties) are converted into  .po files and translated using common 
translation tools e.g. Kbabel. moz2po command is used for converting .dtd and .properties files to .po format 
and po2moz is used to convert it back to dtd & properties format. These commands are provided by package 
"translate-toolkit".   
 
Installing Translate Toolkit 
Download translate toolkit from  
http://translate.sourceforge.net/releases/ 
#tar xzf translate-toolkit-0.8rc5.tar.gz 
#cd translate-toolkit-0.8rc5 
#su -c ./setup.py install 
Apart from the two above mentioned commands, it also provides number of other useful commands like 
pocount, pomerge etc.  
 
Gathering Localizable Resources 
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The following commands need to be followed for gathering the localizable resources. 
#mkdir /localization 
#cp /usr/lib/mozilla/chrome/en-US.jar /localization 
#cp /usr/lib/mozilla/chrome/en-unix.jar /localization 
#cp /usr/lib/mozilla/chrome/en-mac.jar /localization 
#cp /usr/lib/mozilla/chrome/en-win.jar /localization 
#cp /usr/lib/mozilla/chrome/US.jar /localization 
 
Converting Files to PO format (moz2po) 
The following commands need to be followed for converting Files to PO format. 
# cd /localization 
# unzip en-US.jar  
# mv locale locale_orig 
# moz2po -i locale_orig -o locale_po 
 
Translation 
All the localizable resource files .dtd and .properties are converted to .dtd.po and .properties.po respectively. 
Import the folder locale_po in Kbabel or other tools and start the translation. 
 
Converting PO files back to Original format (po2moz) 
The following command is used to convert PO files back to Original format.  
# po2moz -i locale_po -o locale -t locale_orig -l ne-NP 
(Note: Here, locale_po is the folder where all the translation has been done, locale is the output folder which 
will be created, locale_orig is used as template folder and ne-NP is language code ) 
 
Packing the Work (Generating .jar) 
Rename the folder name from locale/en-US to locale/ne-NP and make jar file 
# mv locale/en-US locale/ne-NP 
# jar cvf ne-NP.jar locale  
 
(The above steps have to be repeated for all the en-unix.jar, en-mac.jar, en-win.jar and US.jar files. Before 
continuing with the other 4 jar files, you might want to take a backup of locale_po folder in case you need to 
make some changes in the translation.) 
 
Building XPI 
The following commands need to be run to build XPI. 
 
# mkdir -p /XPI/bin/chrome/ 
# cp /localization/ne-NP.jar /XPI/bin/chrome/ 
# cp /localization/ne-unix.jar /XPI/bin/chrome/ 
# cp /localization/ne-mac.jar /XPI/bin/chrome/ 
# cp /localization/ne-win.jar /XPI/bin/chrome/ 
# cp /localization/NP.jar /XPI/bin/chrome/ 
# cp /download/install.js /XPI    
[Refer to “Creating XPI” in previous section to download appropriate version of install.js file] 
 
# cd /XPI 
# jar cvf ne-NP.XPI . 
 
[Please note the trailing . in above command. ]   
The language pack XPI is ready now. To check,  open the file in Mozilla and restart the browser.Examine the 
localized Interface  

8.4 Complex Text and Mozilla 
Complex Text Language 
Complex Text Layout languages or CTL languages are languages whose writing systems require complex 
transformations of text. Devanagari, Thai, Hebrew are example of the languages which require complex text. 
For further information on Complex Text Languages refer to [9.4.l] 
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Gecko Layout Engine 
Gecko is an open source web browser layout engine mostly used by Mozilla and Netscape browsers. For 
further information on Gecko Layout Engine, please refer to [9.4.m].  
Gecko, NGLayout, XPFE, Rapter are the key words that we generally come across while talking about 
Layout Engines used by mozilla. All these words generally refer to the Layout Engine or Gecko. Gecko is the 
word generally used by Netscape.  

Here are a few things that gecko provides [9.4.f] : 

a) Layout engine and complementary browser components 
b) Parsing for various document types ( HTML, XML, CSS) 
c) Advanced rendering capabilities to browser 
d) Image rendering library 
e) Networking library  
f) Font library 
g) Security library 
h) Cache management system  

 
Complex Text Rendering in Mozilla 
Mozilla official builds are compiled without enabling CTL support.  Complex text like Devanagari can only be 
rendered when mozilla is compiled with CTL support. Enabling CTL support in mozilla builds can be done in 
number of ways such as: 

a) enabling pango shaper to render the text or  
b) using ICU and mozilla XFT or  
c) extending the CTL functionality to XFT back end itself 

 
Here in this guide, a patch made by Mr. Jungshik Shin has been used to extend CTL functionality to XFT 
back end.  

8.5 Building Mozilla Suite from Source 
Build Requirements [9.4.f] 

1) A recent POSIX Shell; 
2) gcc 3.2 or higher; 
3) g++ 3.2 or higher; 
4) Perl 5.6 or higher; 
5) CVS 1.11 or higher ( needed for CVS build only ); 
6) gtk2 or gtk (1.2.0); 
7) Gtk-devel; 
8) libXt-devel for X11/Intrinsic.h, X11/Shell.h; 
9) libIDL 0.6.3 or higher; 
10) libIDL-devel 0.6.3 or higher; 
11) libORBit;  
12) libORBit-devel; 
13) zip 2.3 (or higher); 
14) freetype 2.1.0 (or higher); 
15) fontconfig; 
16) pkgconfig 0.9.0 (or higher).  

 
Mozilla Source Download 
The Mozilla Source may be downloaded from the following link.    
http://ftp.mozilla.org/pub/mozilla.org/mozilla/releases/mozilla1.7/src 
 
Patch Download 
Download the patch from the following location. This patch from Jungshik Shin re-uses the shapers to extend 
CTL functionality to XFT backed.  
http://bugzilla.mozilla.org/attachment.cgi?id=152102 
 
Note that later versions of mozilla might not need to be patched.  
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Applying the Patch 
The following commands have to be run to apply the patch. 
 
# tar jxvf mozilla-source-1.7.tar.bz2 
# cd mozilla 
rename the patch to ctl.patch and copy it into the mozilla folder.  
# mv attachment.cgi?id=152102 ctl.patch  
#patch -Np0 -i ctl.patch 
 
The following 2 files are patched.  

a) mozilla/configure.in 
b) mozilla/gfx/src/gtk/nsFontMatricsXft.cpp 

 
Once the patching is successful you are ready for compilation. 
 
Generating build environment  
export MOZILLA_OFFICIAL=1 
export BUILD_OFFICIAL=1 
export MOZ_INTERNAL_LIBART_LGPL= 1 
 
Preparation for compilation 
Prepare for compilation with following options 
./configure --enable-mathml --enable-crypto --enable-xft --enable-default-toolkit=gtk2 --disable-ctl --enable-
optimize=-O2 --disable-debug --disable-tests --without-system-nspr --without-system-zlib --without-system-
jpeg --without-system-png --without-system-mng --disable-xprint --disable-freetype --enable-pango   
 
Compilation 
Compilation involves the following: 
#make 
After build is successful, execute and check the rendering by visiting site.  
#mozilla/dist/bin/./mozilla 
 
If the rendering is satisfactory,  go ahead with the preparation of  the mozilla-installer as mentioned in the 
following section. 
 
Generating the Mozilla Installer 
The following commands have to be run for generating the Mozilla Installer. 
# cd mozilla/XPInstall/packager/unix 
# perl deliver.pl 
you will get erroran complaining about not finding the mozilla-installer.bin file. 
To eliminate this error, download a mozilla-installer from mozilla.com, unzip it and copy this particular file 
“mozilla-installer.bin” to the following folder 
mozilla/XPInstall/wizard/unix/src2/ 
Run the perl script again. The mozilla-installer.tar.gz will be available in the following location: 
mozilla/installer/sea/ 
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Generating mozilla.tar.gz 
The following commands need to be run in order to generate mozilla.tar.gz. 
# cd mozilla/XPInstall/packager  
# make 
 
The mozilla tar.gz “mozilla-i686-pc-linux-gnu.tar.gz” is created in the “mozilla/dist” folder.  

8.6 Mozilla Plug-ins 
Adding Flash Plug-in 
Download "install_flash_player_7_linux.tar.gz" from macromedia.com 
Unpack it. “install_flash_player_7_linux” is created.  
Navigate to this directory and from the command line type ./flashplayer-installer. Follow the process and 
provide the installation path for Mozilla. 
 
To verify that the plug-in has been installed, restart Mozilla and choose Help > About Plug-ins from the 
browser menu. 
 
Adding Java VM Plug-in 
Install JRE or  JDK  
Make a link as follows 
#ln -s /usr/lib/PATH TO JAVA FOLDER/jre/plugin/i386/ns610-gcc32/libjavaplugin_oji.so 
/usr/local/mozilla/plug-ins/ 
 
To verify, restart Mozilla and choose Help > About Plug-ins from the browser menu. You can also verify by 
opening up the following site “http://java.sun.com/applets/other/TumblingDuke/index.html”. 

8.7 Some known issues to be addressed 
Display problems 
Mozilla built using the above CTL patch solved the rendering problem, but still there are a few small 
problems like: 

a) inconsistent spacing between the characters 
b) cursor movement while doing text selection  

 
Printing problems 
While printing Devanagari characters from mozilla,  the text is not rendered as it is seen on the screen.  This 
problem still remains to be solved in mozilla and firefox during the time of writing this guide.  

8.8 References for Further Reading  
Since we will be discussing Mozilla FireFox Localization in the next Chapter and, as Mozilla Suite and 
Mozilla FireFox are almost similar, references for further reading for Chapters 8 and 9 is provided collectively 
at the end of Chapter 9. 
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9 Mozilla FireFox Localization 

9.1 Introduction 
In this Chapter, we will discuss Mozilla FireFox Localization. We have decided to dedicate a separate 
chapter on Mozilla FireFox Localization, as the previous Chapter on Mozilla Suite Localization does not 
include just a browser but much more than that, which covers the Mozilla Web Composer, Mozilla mail client, 
Mozilla browser etc. At the end of this Chapter, references for further reading are provided applicable both 
for Chapter 8 and Chapter 9. 
    
About FireFox 
Firefox is a free, open-source web browser. Firefox is becoming increasingly  popular because of its 
availability for all popular platforms like Linux, Mac OS X and MS windows. Besides being cross platform, it 
is small, fast and easy to use.   
 
The main advantages offered by Firefox over conventional browsers are: 

a) Tabbed browsing 
b) Pop-up blocker 
c) Live bookmarks 
d) Extension mechanism for adding functionality  

 
Evolution History 
Firefox was developed by the Mozilla Corporation. Because of the popularity of firefox, firefox development 
has become the main focus of the Mozilla Foundation. Firefox is developed as a division of browser-only 
from Mozilla Application Suite. But, please note that Firefox cannot be considered as standalone mozilla 
browser. The user interface in Firefox differs from mozilla browser in many ways. For example, customizable 
toolbars are the features that mozilla browser does not have [9.4.h].  
 
Firefox has become one of the most downloaded free and open source application. Please refer to 
http://en.wikipedia.org/wiki/Mozilla_Firefox for further information.  
 
Differences between FireFox and Mozilla 

Mozilla Application Suite (also known as SeaMonkey) and Mozilla Firefox are both products of the 
Mozilla Corporation. The prime difference between the two is that Firefox is just a browser whereas 
Mozilla Suite is the collection of the following 5 components; 
 
1) Navigator -> Browser 
2) Mail & Newsgroups  ->Mail Client 
3) Composer ->Web Page Designer 
4) Address Book -> Address Manager 
5) IRC Chat -> Internet Relay Chat Client. 

 

9.2 FireFox Localization 
Firefox Localization is similar to Mozilla suite localization as firefox also use the same localizable resource 
file format as Mozilla Suite - that is .dtd and .properties. So localization of  Firefox can be done using mozilla 
Translator as well as MozPOTools.  
 
Building a Localized Firefox Build using CVS 
By default, Firefox source tree pulls and builds only the English(en-US) localized files. To build Firefox in 
another language, you must pull locales of your language from CVS  and pass the special option while 
compiling.  If your locale is not available in CVS, then you can manually create your locale directory structure 
matching the locale directory structure of the other language.  
 
Pulling FireFox Source Code 
Firefox 1.5 (code name Deer Park)  and locale code “nl” has been taken as example. Always use password. 
“anonymous”.  
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#mkdir /deerpark/ 
#cd /deerpark 
#cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot login  
#cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot co -r 
FIREFOX_1_5_RELEASE mozilla/client.mk 
#cd mozilla 
#make -f client.mk checkout MOZ_CO_PROJECT=browser 
 
(Note : Check http://developer.mozilla.org/en/docs/CVS_Tags to find out which branch should be selected.) 
 
Pulling Locale 
The following operations in central CVS server of Mozilla have to be performed to pull the locale: 
#cvs logout 
#cd .. 
#cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/l10n login 
#cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/l10n co -r FIREFOX_1_5_RELEASE l10n/nl 
 
Creating a new locale 
If no one else has initiated the localization for your language, it is likely that there is no l10n folder for your 
language in the central CVS server.  In that case, you will have to make your l10n structure manually. Make 
folders in different levels so that it is an exact matche  to the one you downloaded ( here l1on/nl).  
 
If your locale is available in CVS then you can skip this section.  
After the folders have been created, copy the contents into the newly created folder as follows. Copy 
everything under  /deerpark/mozilla/browser/locales/en-US/ into /deerpark/l10n/ab-CD/browser/.  
 
Populate other folders in the same way respectively.  
 
mozilla/browser/locales/en-US/ 
/deerpark/mozilla/dom/locales/en-US/ 
/deerpark/mozilla/editor/ui/locales/en-US/ 
/deerpark/mozilla/extensions/reporter/locales/en-US/ 
/deerpark/mozilla/mail/locales/en-US/ 
/deerpark/mozilla/netwerk/locales/en-US/ 
/deerpark/mozilla/other-licenses/branding/firefox/locales/en-US  
/deerpark/mozilla/security/manager/locales/en-US/ 
/deerpark/mozilla/toolkit/locales/en-US/ 
 
l10n/ab-CD/browser/ 
/deerpark/l10n/ab-CD/dom/ 
/deerpark/l10n/ab-CD/editor/ui/ 
/deerpark/l10n/ab-CD/extensions/reporter/ 
/deerpark/l10n/ab-CD/mail/ 
/deerpark/l10n/ab-CD/netwerk/ 
/deerpark/l10n/ab-CD/other-licenses/branding/firefox/ 
/deerpark/l10n/ab-CD/security/manager/ 
/deerpark/l10n/ab-CD/toolkit/ 
 
Now translate everything under /deerpark/mozilla/l10n/ab-CD/.  Almost all localizable resource files are 
located inside the chrome folder. Translation can be done folder by folder.  The process using MozPOTools 
is shown below. 
 
#cd /deerpark/l10n/ 
#mv ab-CD ab-CD_orig 
#moz2po -i ab-CD_orig -o ab-CD_po 
 
In the command above, ab-CD_orig is the original folder under l10n folder and ab-CD_po is the new folder 
that will be created.   
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After the command has been successfully executed, check to see if .dtd and .properties files have been 
converted to .dtd.po and .properties.po respectively. Now, open the ab-CD_po folder in translation tools like 
kbabel and start translating. If you just want to see the translation process, open any po file in editors like 
gedit and translate a few strings.  
After the translation is done, convert the po files back to mozilla native format as follows: 
 
#po2moz -i ab-CD_po -o ab-CD -t ab-CD_orig -l ab-CD 
Here ab-CD is the new folder to be created. ab-CD_orig folder works as A template folder, -l ab-CD indicates 
locale code.  
 
Preparation for building 
Create a file named mozconfig-firefox as follows and copy it into the mozilla folder  
------------------------------------------ 
. $topsrcdir/browser/config/mozconfig 
mk_add_options MOZ_OBJDIR=@topsrcdir@/ffbuild 
ac_add_options --prefix=/usr 
ac_add_options '--mandir=${prefix}/share/man' 
ac_add_options '--infodir=${prefix}/share/info' 
ac_add_options --enable-default-toolkit=gtk2 
ac_add_options --with-default-mozilla-five-home=/usr/lib/firefox 
ac_add_options --enable-pango 
ac_add_options --with-user-appdir=.mozilla 
ac_add_options --with-system-png=/usr 
ac_add_options --with-system-jpeg=/usr 
ac_add_options --disable-mailnews 
ac_add_options --disable-composer 
ac_add_options --disable-ldap 
ac_add_options --enable-postscript 
ac_add_options --disable-installer 
ac_add_options --enable-xprint 
ac_add_options --enable-crypto 
ac_add_options --enable-strip-libs 
ac_add_options --enable-canvas 
ac_add_options --enable-svg 
ac_add_options --enable-svg-renderer=cairo 
ac_add_options --enable-system-cairo 
ac_add_options --enable-mathml 
ac_add_options --disable-tests 
ac_add_options --disable-gtktest 
ac_add_options --disable-debug 
ac_add_options --enable-xft 
ac_add_options '--enable-optimize=-pipe\\ -w\\ -O2' 
ac_add_options --with-system-zlib=/usr 
ac_add_options --without-system-nspr 
ac_add_options --enable-xinerama 
ac_add_options --enable-extensions=default 
ac_add_options --disable-pedantic 
ac_add_options --disable-long-long-warning 
ac_add_options --enable-single-profile 
ac_add_options --disable-profilesharing 
ac_add_options --enable-gnomevfs 
ac_add_options --disable-installer 
ac_add_options --disable-updater 
ac_add_options --enable-chrome-format=flat 
ac_add_options –enable-ui-locale=nl 
--------------------------------- 
 
Option,  . $topsrcdir/browser/config/mozconfig sources the parameters given in the file 
/deerpark/mozilla/browser/config/mozconfig.  
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mk_add_options MOZ_OBJDIR=@topsrcdir@/ffbuild, enables you to build firefox with an objdir. This 
option facilitates in building firefox in a directory (/deerpark/mozilla/ffbuild ) other than the source directory 
itself, thus, preventing the source folder from contamination.  
 
ac_add_options –enable-pango forces firefox to use pango engine for advanced font rendering 
 
ac_add_options –enable-ui-locale=nl builds localized firefox build.  
 
To pass this option to build a localized Firefox, you must have your l10n CVS folder next to the mozilla 
folder. E.g. /deerpark/mozilla/ and /deerpark/l10n/nl 
  
Now we are ready to build a localized firefox build. Set environment as follows:  
#export MOZCONFIG=/deerpark/mozilla/mozconfig-firefox  
[Note: Always provide full path here] 
 
Building 
Run the following command for building. 
#make -f client.mk build_all 
 
Executing/Checking build option 
When the build is successful, execute firefox from objdir. In our case,  
/deerpark/mozilla/ffbuild/dist/bin/firefox.  
 
Check the exact version of firefox from Help menu. Type about:buildconfig in the address bar to examine 
compilation option. And also check if thecomplex text has been rendered correctly by visiting some bilingual 
sites.  
 
Generating a tarball of localized firefox build 
Now, in order to obtain a tarball of the build run the following commands. 
#cd /deerpark/mozilla/ffbuild/XPInstall/packager/ 
#make  
 
The tarball firefox-1.5.nl.linux-i686.tar.gz will be created under /deerpark/mozilla/ffbuild/dist folder.  
 
Generating an installable language pack (XPI) 
It is not always necessary to compile firefox to localize it. One can also create language pack xpi only and 
localize firefox. Po2moz is the proper way to generate language pack xpi but our attempt to do so was 
unsuccessful.  Instead xpis for locales may be used, which are available in mozilla or created automatically 
and put in mozilla.org.  
 
A manual process of generating xpi locally is shown here. This will give an insight into xpi structure and its 
working.  
 
In the example below, a new xpi, ne-NP.xpi will be generated with the help of  already available xpis, 
en-US.xpi and nl.xpi.  
 
en-US.xpi will be used as template for extracting localizable resource while nl.xpi will to used to create xpi 
directory structure.  
 
Follow the exact steps below. Lines with # are the actual command to be issued.  
#mkdir /enxpi 
#mkdir /nlxpi 
#cd /enxpi 
#download en-US.xpi  
 from http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/1.5/linux-i686/xpi/en-US.xpi 
#cd /nlxpi 
download nl.xpi  
from http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/1.5/linux-i686/xpi/nl.xpi 
#cd /enxpi 
#unzip en-US.xpi 
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#cd bin/chrome 
#unzip en-US.jar 
#locale folder will be created 
#mv locale/en-US/ locale/ne-NP 
now translate everything under the folder locale.  
#jar cvf ne-NP.jar locale 
#cd /nlxpi 
#unzip nl.xpi 
#rm nl.xpi 
#cd chrome 
#rm nl.jar 
#cp /enxpi/bin/chrome/ne-NP.jar . 
#cd .. 
Now, open the file chrome.manifest and replace all entries of nl and nl.jar with ne-NP and ne-NP.jar 
respectively.Open the file install.rdf. Change em:id, em:name and em:contributer entry to match your 
specification. DO NOT edit anything under em:targetApplication.Now generate ne-NP.xpi as follows.  
 
# jar cvf ne-NP.xpi .  
 
Installing XPI 
Execute firefox and open this newly created ne-NP.xpi file and install it Restart firefox to see the localized 
interface. You might have to execute Firefox with “./firefox -uilocale ne-NP” sometimes. 

9.3 Complex Text and Mozilla FireFox 
Mozilla and mozilla firefox use their own rendering engine for font rendering. Firefox built with CTL support is 
able to render indic scripts.  Firefox binaries supplied by fedora core 4 and Ubuntu Linux are compiled with 
CTL. So executing firefox with environment MOZ_ENABLE_PANGO=1 in these distros will render indic 
script.  Firefox official builds will have CTL integrated by default only around the beginning of 2007 [9.4.j].  
 
Pango is not turned on by default in firefox official builds because Latin texts are rendered better by mozilla's 
default rendering engine rather than pango. Besides, enabling pango also increases the application's 
executing time.  
 
Complex Text Rendering in Firefox is much more satisfactory than in Mozilla Suite. 

9.4 Tools Available for the Localization of Mozilla FireFox 
Localization of Mozilla based products is a specific task and cannot be managed with common localization 
tools and scripts. There are a number of tools/scripts available for the Localization of Mozilla based products.  
 
Mozilla Translator 
Mozilla Translator is the easiest tool for localization of mozilla suite and thesame may be used for 
localization of Mozilla Firefox.But due to huge changes in the locale structure in firefox, Mozilla Translator is 
becoming increasingly less appropriate because of the extra work that has to be done manually. 
 
Build Requirements [9.4.f] 
 

a) A recent POSIX Shell 
b) gcc 3.2 or hgher 
c) g++ 3.2 or higher 
d) Perl 5.6 or higher 
e) CVS 1.11 or higher ( needed for CVS build only )  
f) gtk2 or gtk (1.2.0) QT and plain xlib configure options are available, but they are not well tested or 

supported 
g) libXt-devel for X11/Intrinsic.h, X11/Shell.h 
h) libIDL 0.6.3 or higher  
i) libIDL-devel  0.6.3 or higher 
j) libORBit 
k) libORBit-devel 
l) zip 2.3 (or higher) 
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m) freetype 2.1.0 (or higher) 
n) fontconfig 
o) pkgconfig 0.9.0 (or higher) 

 
MozPOTools 
MozPOTools is yet another  tool that you can always use for any mozilla  product localization. You have to 
convert mozilla's native resource file format to GNU PO format and use the available translation tool like 
KBabel. When the translation is done, change the resource file format back to mozilla's native .rdf and 
.properties format.   
 
Command moz2po  is used to change the format to po format and po2moz is used to change it back to .rdf 
format.  Commands like pomerge and pocount are useful commands that come along with others when 
installing translate-toolkit.  
 
MozLCDB 
MozLCDB is a Tool made for localization of various Mozilla (Gecko) based products. Besides Firefox, this 
tool can conveniently be used for localization of Thunderbird, Mozilla and Netscape. This tool can be used 
for both CVS and downloaded ZIP language packs [9.4.k]. 

9.5 References for Further Reading  
a) http://www.mozilla.org/projects/l10n/mlp_chrome.html 
b) http://l10nzilla.mozdev.org/  
c) http://docs.mandragor.org/files/Misc/Mozilla_applications_en/ 
d) mozile.mozdev.org/0.6/docs/WWW/mozileDevelopment.html 
e) http://www.mozilla.org/projects/l10n/mlp_tools.html 
f) http://developer.mozilla.org/en/docs/Linux_Build_Prerequisites 
g) http://developer.mozilla.org/en/docs/Gecko_FAQ 
h) http://www.mozilla.org/support/firefox/faq 
i) http://www.mozilla.org/projects/firefox/l10n/index.html 
j) http://blacksapphire.com/firefox-rtl/ 
k) http://www.moztw.org/tools/mozlcdb/ 
l) http://en.wikipedia.org/wiki/Complex_Text_Layout_languages 
m) http://en.wikipedia.org/wiki/Gecko_(layout_engine 
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10 OpenOffice.Org Localization 

10.1 Introduction 
In this Chapter, we will talk about OpenOffice.Org Localization(OOo). We begin with a short introduction 
about OpenOffice.Org followed by the procedures required for OpenOffice.Org Localization. We then move 
to the development of the OpenOffice.Org localeand the collation sequence . After giving a general overview 
of the translation process. We, will also talk about the Spell Checker and Thesaurus Development under the 
OpenOffice.Org framework. General procedures for building localized OpenOffice.Org in Debian GNU/Linux-
based systems are also discussed. References to important links for further reading are provided at the end 
of the Chapter. 
 
About OpenOffice.Org 
OpenOffice.org (OOo) is an office productivity suite comprising of a word processor (Writer), a spreadsheet 
application (Calc), presentation software (Impress), etc. It supports a variety of file formats and not only does 
it work with OpenDocument standard from OASIS, it also works with file formats like that of Microsoft Office 
[10.8.f]. 
 
OpenOffice.org is available in a number of languages, with the number increasing with the support of the 
community. It runs on a number of operating systems such as GNU/Linux, Solaris, Mac OS X, Windows, etc. 
 
There are two major versions in OpenOffice.org till now: 
 

• OpenOffice.org 1.1.x (645er series) 
• OpenOffice.org 2.x (680er series) 

 
The build instructions and the localization steps for OpenOffice.org 1.1.x and 2.x are different. This guide 
discusses how to go about localizing and building the 2.x series. The developmental versions in between the 
major and minor versions are referred to as 'milestones' and are released frequently. Eg. SRC680_m175. 
 
The official website for OpenOffice.org project is www.openoffice.org and for more information about 
OpenOffice.org, please refer to [10.8.f]. 
 
Historical Background 
Sun Microsystems acquired StarDivision, the original author of the StarOffice suite, in 1999 and released 

StarOffice 5.2 in 2000. Beginning with 6.0, StarOffice software has been built using the 
OpenOffice.org source, APIs, file formats,  and reference implementation. The development of 
OpenOffice.org is sponsored by Sun and that it is the primary contributor of code to OpenOffice.org. 
For details about the ‘Historical Background’, please refer to  [10.8.f]. 

 
Licenses 
OpenOffice.org uses LGPL (GNU Lesser General Public License) for the source code [10.8.g]: 
 
For details, please visit http://www.openoffice.org/license.html 
 
In order to contribute code to the project, you must submit the Joint Copyright Assignment (JCA) form. This 
form jointly assigns copyright over your work to yourself and to Sun Microsystems. Details are available on 
the "Contributing" page: http://contributing.openoffice.org/programming.html#jca. 

10.2 Steps for OpenOffice.Org Localization 
As OpenOffice.org is an Open Source project, much of the work depends on the contributions of the 
volunteers from all around the world. The contributions need not be only in the form of development of 
source code, but can be in the form of localization and others. So in order to contribute, first register in the 
OpenOffice.org official site and then join the dev@l10n.openoffice.org mailing list. 

The next step is to check whether your language is listed in the http://l10n.openoffice.org/languages.html. If it 



PAN Localization Guide to Localization of Open Source Software 
 

 
78

already exists, then you can contact the lead for that particular language and express your interest in 
contributing. If not, then you can write to the dev@l10n.openoffice.org list and express your interest in 
initiating the contribution in the form of translation. 
 
Adding new language to OpenOffice.org source 
Certain files, which are given below, need to be modified in order to incorporate new language into 
OpenOffice.org [10.8.i]. 
 
Modification of files becomes much easier and faster when patches are created, submitted and applied. 
Patch is the difference between the original file and the new changed file. When creating a patch, you make 
a copy of the original file (eg. lang.h) and change the new copied file. The ’diff’ command is used between 
the original or the old one and the new one [10.8.j] 
 
The syntax of the ‘diff’ command is: 
diff -u [oldfile] [newfile] > [patchfile] 
 
The extension of the file can be either ‘.diff’ or ‘.patch’. 
 
For instance in our case, diff –u lang.h lang_new.h > lang.h.diff, where -u is for unified diff format. 
 
The simplest way to use the patch is to use the command: 
patch -po <patchfile.diff 
 
in the directory where the file to be patched exists and the patchfile.diff is the file to be patched. 
 
When you are done with the file, create an issue in the Localization (L10n) project, and submit a patch for 
the file. The way to submit an issue for the l10n project in openoffice.org website is  [10.8.i]: 
 

• go to http://www.openoffice.org/ and login to the site (if you are already registered that is) 
• then go to ‘My issues’ on the left navigation menubar and click on ‘New’ 
• choose ‘l10n’ as the component after that one 
• select the 'version', 'subcomponent' as code, 'Issue type' as PATCH, and 'Summary' as appropriate 
• write a short and precise description for the issue and hit the 'Submit issue' button 
• you will be asked if you want to attach a file and the type of the file. Attach the patch and submit it 

 
This is all what you need to do while submitting a patch. The above procedure also applies to other patches, 
but the only thing that might vary is the component part. 
 
Adding new language to the file i18npool/inc/i18npool/lang.h 
Entries for most of the languages are already there in this file. In this file, LANGID’s can be found for most of 
the languages. Sample of the file: 
------------------------------------------------------------------- 
#define LANGUAGE_MONGOLIAN 0x0450 
#define LANGUAGE_MONGOLIAN_MONGOLIAN 0x0850 
#define LANGUAGE_NEPALI 0x0461 
#define LANGUAGE_NEPALI_INDIA 0x0861 
#define LANGUAGE_NORWEGIAN 0x0014 
-------------------------------------------------------------------- 
The LANGID's, which are defined by Microsoft, can be found at: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_238z.asp 
 
Note: The location and name of the file tools/inc/lang.hxx has changed to i18npool/inc/i18npool/lang.h from 
previous OOo source.  
 
Creating a unique back and forth mapping between the LANGID and its ISO names in the file 
i18npool/source/isolang/isolang.cxx 
 
Sample for the file: 
-------------------------------------------------------------------- 
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{ LANGUAGE_MARATHI, "mr", "IN" }, 
{ LANGUAGE_KONKANI, "kok", "IN" }, 
{ LANGUAGE_NEPALI, "ne", "NP" }, 
{ LANGUAGE_NEPALI_INDIA, "ne", "IN" }, 
{ LANGUAGE_ORIYA, "or", "IN" }, 
-------------------------------------------------------------------- 
 
Note: The location and name of the file tools/source/intntl/isolang.cxx has changed to 
i18npool/source/isolang/isolang.cxx from previous OOo source. 
 
Modifying the file svx/source/dialog/langtab.src 
Add an entry for your language in the file svx/source/dialog/langtab.src to see your locale in the listbox of 
locales. Although English_US and German Entries have to be provided, this might not be needed in the 
future. 
 
 Sample of the file: 
-------------------------------------------------------------------- 
< "Manipuri" ; LANGUAGE_MANIPURI ; > ; 
< "Marathi" ; LANGUAGE_MARATHI ; > ; 
< "Nepalesisch (Nepal)" ; LANGUAGE_NEPALI ; > ; 
< "Nepalesisch (Indian)" ; LANGUAGE_NEPALI_INDIA ; > ; 
-------------------------------------------------------------------- 
-------------------------------------------------------------------- 
< "Manipuri" ; LANGUAGE_MANIPURI ; > ; 
< "Marathi" ; LANGUAGE_MARATHI ; > ; 
< "Nepali (Nepal)" ; LANGUAGE_NEPALI ; > ; 
< "Nepali (India)" ; LANGUAGE_NEPALI_INDIA ; > ; 
-------------------------------------------------------------------- 
 
Defining default fonts for your language 
In order to define default fonts for your language, you need to modify a file called 
officecfg/registry/data/org/openoffice/VCL.xcu [10.8.i]. In this file, you need to define the fonts which, by 
default, will be used on the user interface of the localized applications such as wordprocessor, spreadsheet, 
presentation, etc. Not only the user interface, but also the default font to be used in the document can be 
defined in the file. 
 
Definition of the font default table for any language requires the modification of the file 
officecfg/registry/data/org/openoffice/VCL.xcu. 
 
A node or a block similar to the following should be added for the language you would like to define the 
default fonts: 
 
<node oor:name="ne" oor:op="replace"> 
<prop oor:name="UI_SANS" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
</prop> 
<prop oor:name="CTL_DISPLAY" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
</prop> 
<prop oor:name="CTL_HEADING" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
</prop> 
<prop oor:name="CTL_PRESENTATION" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
</prop> 
<prop oor:name="CTL_SPREADSHEET" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
</prop> 
<prop oor:name="CTL_TEXT" oor:op="replace" oor:type="xs:string"> 
<value>Lohit Nepali;Kalimati;Samanata;Sans</value> 
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</prop> 
</node> 
 
Points to remember while defining the default fonts for your language [10.8.i]: 
 

• the fonts have to be separated by semi-colon (;) character 
• the internal name of the fonts should be used - the one that appears on the font menu when 

selecting the fonts in OpenOffice.Org or any other program and not the name of the file that contains 
the font 

• though their names might have spaces, this is not a problem, just include them 
• while entering different fonts, do not put spaces before or after the ';' signs, nor at the beginning or 

the end of the font list 
 
Making the required changes when including locale and collation files 
The following files have to be modified for the inclusion of locale data [10.8.k]. Please refer to the section 
'Developing OpenOffice.org Locale and Collation' for more on the development of locale and collation. 
 
Sample of the file: 

i18npool/source/localedata/localedata.cxx 
-------------------------------------------------------------------- 
{ "he_IL", lcl_DATA_OTHERS, "he" }, 
{ "hi_IN", lcl_DATA_OTHERS, "hi" }, 
{ "ne_NP", lcl_DATA_OTHERS, "ne" }, 
{ "kn_IN", lcl_DATA_OTHERS, "kn" }, 
{ "ta_IN", lcl_DATA_OTHERS, "ta" }, 
i18npool/source/localedata/data/makefile.mk 
-------------------------------------------------------------------- 
$(MISC)$/localedata_he_IL.cxx \ 
$(MISC)$/localedata_hi_IN.cxx \ 
$(MISC)$/localedata_ne_NP.cxx \ 
$(MISC)$/localedata_hr_HR.cxx \ 
-------------------------------------------------------------------- 
and also the following file for CTL languages with around 16 entries: 
i18npool/source/localedata/data/localedata_others.map 
-------------------------------------------------------------------- 
getAllCalendars_ne_NP; 
getAllCurrencies_ne_NP; 
getAllFormats_ne_NP; 
getCollationOptions_ne_NP; 
getCollatorImplementation_ne_NP; 
getContinuousNumberingLevels_ne_NP; 
getFollowPageWords_ne_NP; 
getForbiddenCharacters_ne_NP; 
getIndexAlgorithm_ne_NP; 
getLCInfo_ne_NP; 
getLocaleItem_ne_NP; 
getOutlineNumberingLevels_ne_NP; 
getReservedWords_ne_NP; 
getSearchOptions_ne_NP; 
getTransliterations_ne_NP; 
getUnicodeScripts_ne_NP; 
 
Collation is the sorting order of strings of characters. The following files have to be modified for the inclusion 
of collation data [10.8.l]. 
 
This file has to be created in the source for your langauge: 
i18npool/source/collator/data/xx_charset.txt 
where, xx corresponds to a two-letter code for your language. In addition, it could also be a four-letter code 
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for a language, for instance, zh_TW for traditional Chinese charset. 
Please refer to the section 'Developing OpenOffice.org Locale and Collation' for more on the development of 
collation. 
 
The second step is to modify the file i18npool/source/collator/data/collator_data.map 
A line similar to the following in bold should be added for your language: 
-------------------------------------------------------------------- 
    get_km_charset; 
    get_ne_charset; 
    get_dz_charset; 
-------------------------------------------------------------------- 
 
The final step is to modify the locale file for your language/country by making sure that the 
LC_COLLATION section of the file looks like: 
-------------------------------------------------------------------- 
  <LC_COLLATION> 
    <Collator default="true" unoid="charset" /> 
    <CollationOptions> 
      <TransliterationModules>IGNORE_CASE</TransliterationModules> 
    </CollationOptions> 
  </LC_COLLATION> 
-------------------------------------------------------------------- 
All the locale files are located in the i18npool/source/localedata/data/ directory. 
 
Including your language in the build environment 
In order to include your language in the build environment, the language code as defined in 
http://l10n.openoffice.org/languages.html must be included in the list specified in file solenv/inc/postset.mk 
[10.8.i]. Sample of the file: 
-------------------------------------------------------------------- 
completelangiso=af ar bg ca cs cy da de el en-US eo es et eu fi fr gl he hi-IN hu it ja kn-IN ko lt ms nb ne nl 
nn ns pl pt pt-BR ru sk sl sv th tn tr zh-CN zh-TW zu 
-------------------------------------------------------------------- 
Adding Support for using native numbers 
For a script that is new to to OpenOffice.org, things such as Unicode code-points of the digits in the script, 
separation characters etc have to be included so the numbers in that script can be used in Calc, or for 
numbered lists. 
 
The following files need to be modified in order to add support for native numbers, separation characters, 
etc. in OpenOffice.org[10.8.i]: 
 

• i18npool/source/nativenumber/data/numberchar.h 
• i18npool/source/nativenumber/nativenumbersupplier.cxx 

 
In the first file, changes needed are something like this: 
--------------------------------------------------------- 
static const sal_Int16 NumberChar_he            = 28; 
static const sal_Int16 NumberChar_ne     = 29; 
static const sal_Int16 NumberChar_dz            = 30; 
--------------------------------------------------------- 
--------------------------------------------------------- 
 { 0x0020, 0x05D0, 0x05D1, 0x05D2, 0x05D3, 0x05D4, 0x05D5, 0x05D6, 0x05D7, 0x05D8 }, // Hebrew 
 { 0x0966, 0x0967, 0x0968, 0x0969, 0x096A, 0x096B, 0x096C, 0x096D, 0x096E, 0x096F }, // Nepali 
 { 0x0F20, 0x0F21, 0x0F22, 0x0F23, 0x0F24, 0x0F25, 0x0F26, 0x0F27, 0x0F28, 0x0F29 }, // Dzongkha 
--------------------------------------------------------- 
for number character. 
--------------------------------------------------------- 
    0x0000, // Hebrew 
    0x0000, // Nepali 
    0x0000, // Dzongkha 
--------------------------------------------------------- 
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for decimal character. 
--------------------------------------------------------- 
    0x0000, // Hebrew 
    0x0000, // Nepali 
    0x0000, // Dzongkha 
--------------------------------------------------------- 
for minus character. 
--------------------------------------------------------- 
    0x0000, // Hebrew 
    0x0000, // Nepali 
    0x0000, // Dzongkha 
--------------------------------------------------------- 
for separator character. 
In the second file, you need to include your script in both the natnum1Locales[] and natnum1[] arrays. 
 
--------------------------------------------------------- 
static const sal_Char *natnum1Locales[] = { "zh_CN", "zh_TW", "ja", "ko", "he", "ar", "th", "hi", "or", "mr", "bn", 
"pa", "gu", "ta", "te", "kn", "ml", "lo", "bo", "my", "km", "mn", "ne","dz" }; 
--------------------------------------------------------- 
--------------------------------------------------------- 
 NumberChar_mn, NumberChar_ne, NumberChar_dz 
--------------------------------------------------------- 
It is suggested to send in a single patch that covers changes to these two files. 
If this is already done, then you can - for example - format cells in Calc by using: 
[NatNum1] 
 
Adding support for numbering in local language numbers and letters 
The number lists in OpenOffice.org Writer can be used in local language numbers instead of Latin numbers. 
This defined styles in OOo Writer can be found in Format>Bullets and Numbering->Numbering type tab. To 
change these styles, the necessary changes have to be done in this part of your locale file [10.8.k]: 
 
----------------------------------------------------------------- 
<LC_NumberingLevel> 
    <NumberingLevel NumType="12" Prefix=" " Suffix="."/> 
    <NumberingLevel NumType="12" Prefix=" " Suffix=")"/> 
    <NumberingLevel NumType="4" Prefix=" " Suffix="."/> 
    <NumberingLevel NumType="4" Prefix=" " Suffix=")"/> 
    <NumberingLevel NumType="34" Prefix=" " Suffix="."/> 
    <NumberingLevel NumType="34" Prefix=" " Suffix=")"/> 
    <NumberingLevel NumType="2" Prefix=" " Suffix="."/> 
    <NumberingLevel NumType="2" Prefix=" " Suffix=")"/> 
</LC_NumberingLevel> 
----------------------------------------------------------------- 
If you want to use numbers in the script of your locale, you need to use NumType="12". For more 
information, please see the file: offapi/com/sun/star/style/NumberingType.idl. 
 
It is a little more complicated to use the letters of the script instead of numbers (equivalent to using 
A,B,C,D... in English). We have to define the style first, only after which the letters included in the 
<IndexKey> of the locale file will be used. 
 
Using letters requires patching a few files [10.8.i]: 
 
In the file offapi/com/sun/star/style/NumberingType.idl, you need to add a new line with a new number, 
including something like this: 
--------------------------------------------------------------- 
    /** Numbering in Nepali alphabet letters 
 
        @since OOo 2.0.1 
         */ 
    const short CHARS_NEPALI = 34; 
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----------------------------------------------------------------- 
in which the number is the next one after the last that you find in the file. For instance, the number '34' is the 
next number after the last one ('33' in this case) that you find in the file. 
 
In the file i18npool/source/defaultnumberingprovider/defaultnumberingprovider.cxx, 
you need to include an entry of the type 
------------------------------------------------------------------ 
  case CHARS_NEPALI: 
  lcl_formatChars(table_Alphabet_ne, sizeof(table_Alphabet_ne) /   sizeof(sal_Unicode), number - 1, result); 
 break; 
------------------------------------------------------------------ 
in DefaultNumberingProvider::makeNumberingString 
 
and then include a line of the type: 
 
----------------------------------------------------------------- 
        {style::NumberingType::CHARS_NEPALI,    NULL, LANG_CTL}, 
----------------------------------------------------------------- 
 
in the correct position in static const Supported_NumberingType aSupportedTypes[] 
 
Note that the last element is LANG_CTL, defining the language as CTL (this will appear in the menus only if 
CTL is activated), here you can also use LANG_CJK or LANG_ALL. 
 
Finally, you have to define the table of permitted characters (table_Alphabet_ne) in the file 
i18npool/inc/bullet.h with a block such as: 
----------------------------------------------------------------- 
static sal_Unicode table_Alphabet_ne[] = { 
        0x0915, 0x0916, 0x0917, 0x0918, 0x0919, 0x091A, 0x091B, 0x091C, 
        0x091D, 0x091E, 0x091F, 0x0920, 0x0921, 0x0922, 0x0923, 0x0924, 
        0x0925, 0x0926, 0x0927, 0x0928, 0x092A, 0x092B, 0x092C, 0x092D, 
        0x092E, 0x092F, 0x0930, 0x0932, 0x0935, 0x0936, 0x0937, 0x0938, 
        0x0939 
}; 
----------------------------------------------------------------- 
 
Getting the 'Help' contents in your script 
In order to have the help contents of OpenOffice.org in your script (if other than Latin), it is necessary to 
localize some stylesheets besides translating the help files [10.8.i]. 
 
The directory where the files for different languages are located is: 
helpcontent2/source/auxiliary/ 
 
The contents of the en-US directory should be copied to a directory of your iso name and the files have to be 
localized. Special attention should be given to the fonts defined in the css files as they mark the script that 
will be used in the help. If the first font in the lists does not contain your script, then the help will not be 
displayed correctly. 

10.3  Developing OpenOffice.Org Locale and Collation 
Note: Most of this section has been based on [10.8.k] and  [10.8.l]. 
 
Locale in OpenOffice.org 
Programs that are localized to many languages tend to place all the data related to a language or to a 
country (region) in a file called a LOCALE for that culture. 
 
OpenOffice.org requires that you place all the cultural data for your language/region in a file that has a 
format specific to OpenOffice.org. This file is an XML file that is plain text (utf-8 if your language requires it). 
It can be edited with any plain text editor. 
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All locale files are located in the i18npool/source/localedata/data directory. Eg. ne_NP.xml, en_US.xml, etc. 
The file name of the locale file in OpenOffice.Org always uses both the language code and the country code 
(language code in small letters and country code in capital letters), separated by an underscore (not a 
hyphen) and with an .xml extension. 
 
Locale Developement 
Earlier, the locale file had to be created manually with the help of a template file, the template file being 
en_US.xml. But this process has been made much easier with "Locale Generator", which is a web based 
tool to support creation of locale files. Please visit http://www.it46.se/localegen/ for the above purpose. 
 
The first part of the locale contains Locale File Specific Information such as: 
 

• Filename version 
• OpenOffice.org DTD Version 

 
A sample of this part: 
<?xml version="1.0" encoding="UTF-8" ?> 
<!DOCTYPE Locale SYSTEM 'locale.dtd'> 
<Locale versionDTD="2.0" allowUpdateFromCLDR="yes" version="1.2"> 
 
The default values for this part need not be modified. 
The locale file is divided into the following sections: 
 
<LC_INFO> 
In this section, you need to provide the Language Specific Data: 

• Language Code (Available in ISO-639) 
• Language Name 
• Country Code (Available in ISO-3166. Capital letters) 
• Country Name 

 
Sample of this section: 
 
 <LC_INFO> 
   <Language> 
     <LangID>en</LangID> 
     <DefaultName>English</DefaultName> 
   </Language> 
   <Country> 
     <CountryID>US</CountryID> 
     <DefaultName>United States</DefaultName> 
   </Country> 
 </LC_INFO> 
 
<LC_CTYPE> 
In this section, you need to provide Separators and Quotation Marks. 
 
Separators: 
 

• Thousand 
o 1,000 - 1.000 - 1 000 

• Decimal 
o 10.00 - 10,00 

• List 
o a, b, c - a; b; c 

• Date 
o 19/02/2006 - 19-02-2006 - 19.02.2006 

• Time 
o 12:30 - 12.30 - 12,30 

• Miliseconds 
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o 1.12 secs - 1,12 secs - 1:12 secs 
• Day of Week, Long name 

o When using long date format as in: Wednesday, March 12, 2023.  
The separator after Wednesday is ', ' 

• Day of Week, Number 
o When using long date format as in: Wednesday, March 12, 2023.  

The separator after 12 is ', ' 
• Month, Long name 

o Wednesday, March 12, 2023. 
The month separator after March is one space 

• Year 
o When using four digits instead of two 

 
Quotation Marks: 
 

• Quotation Start 
• Quotation End 
• Double Quotation start 
• Double Quotation end 

 
You also need to provide TimeAM and TimePM and the Measurement System metric US UK. 
 
Sample for this section: 
 
 <LC_CTYPE> 
   <Separators> 
     <DateSeparator>/</DateSeparator> 
     <ThousandSeparator>,</ThousandSeparator> 
     <DecimalSeparator>.</DecimalSeparator> 
     <TimeSeparator>:</TimeSeparator> 
     <Time100SecSeparator>.</Time100SecSeparator> 
     <ListSeparator>;</ListSeparator> 
     <LongDateDayOfWeekSeparator>, </LongDateDayOfWeekSeparator> 
     <LongDateDaySeparator>, </LongDateDaySeparator> 
     <LongDateMonthSeparator> </LongDateMonthSeparator> 
     <LongDateYearSeparator> </LongDateYearSeparator> 
   </Separators> 
   <Markers> 
     <QuotationStart></QuotationStart> 
     <QuotationEnd></QuotationEnd> 
     <DoubleQuotationStart></DoubleQuotationStart> 
     <DoubleQuotationEnd></DoubleQuotationEnd> 
   </Markers> 
   <TimeAM>AM</TimeAM> 
   <TimePM>PM</TimePM> 
   <MeasurementSystem>US</MeasurementSystem> 
 </LC_CTYPE> 
 
<LC_FORMAT> 
In this section, you need to provide Date format, Currency format,  MS Locale Identifier (LCID), and 
Percentage. 
 

• Default order of Year, Month and Date 
o Choose the most common order of Day, Month and Year in a date 

• Decimal places 
o Number of decimal (digits) used with the currency 

• Currency format for positive values 
o Position of symbol, space between symbol and digits 

• Currency format for negative values 



PAN Localization Guide to Localization of Open Source Software 
 

 
86

o Position of symbol and minus sign, space between symbol and digits 
• MS Locale Identifier, LCID 
• Percentage (short)  

o Without using decimals 
o 0%0 % 

• Percentage (long)  
• When using decimals 

 
Sample for this section: 
 
 <LC_FORMAT replaceFrom="[CURRENCY]" replaceTo="[$$-409]"> 
 <FormatElement msgid="FixedFormatskey1" default="true" type="medium" usage="FIXED_NUMBER" 
formatindex="0"> 
 <FormatCode>General</FormatCode> 
 </FormatElement> 
 <FormatElement msgid="FixedFormatskey2" default="true" type="short" usage="FIXED_NUMBER" 
formatindex="1"> 
 <FormatCode>0</FormatCode> 
 </FormatElement> 
 . 
 . 
 . 
   <FormatElement msgid="PercentFormatskey1" default="true" type="short" usage="PERCENT_NUMBER" 
formatindex="8"> 
     <FormatCode>0%</FormatCode> 
   </FormatElement> 
   <FormatElement msgid="PercentFormatskey2" default="true" type="long" usage="PERCENT_NUMBER" 
formatindex="9"> 
     <FormatCode>0.00%</FormatCode> 
   </FormatElement> 
   <FormatElement msgid="CurrencyFormatskey1" default="true" type="short" usage="CURRENCY" 
formatindex="12"> 
     <FormatCode>[CURRENCY]#,##0;-[CURRENCY]#,##0</FormatCode> 
   </FormatElement> 
   <FormatElement msgid="CurrencyFormatskey2" default="false" type="medium" usage="CURRENCY" 
formatindex="13"> 
     <FormatCode>[CURRENCY]#,##0.00;-[CURRENCY]#,##0.00</FormatCode> 
   </FormatElement> 
 . 
 . 
 . 
   <FormatElement msgid="DateFormatskey1" default="true" type="short" usage="DATE" formatindex="18"> 
     <FormatCode>M/D/YY</FormatCode> 
   </FormatElement> 
 . 
 . 
 . 
 </LC_FORMAT> 
 
<LC_COLLATION> 
Please refer to the Collation section for more detailed information on this. 
 
 <LC_COLLATION> 
<Collator default="true" unoid="alphanumeric" /> 
<CollationOptions> 
<TransliterationModules>IGNORE_CASE</TransliterationModules> 
</CollationOptions> 
 </LC_COLLATION> 
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<LC_SEARCH> 
 
Sample of this section: 
 
<LC_SEARCH> 
<SearchOptions> 
<TransliterationModules>IGNORE_CASE</TransliterationModules> 
</SearchOptions> 
 </LC_SEARCH> 
 
<LC_INDEX> 
 
In this section, you need to provide Enumeration and Scripts. 
 

• Character range for indexes 
o A-Z Å Ä Ö 

• Abbreviation used for 'the following page (singular)' 
o p. s. Стр. 

• Abbreviation used for 'the following pages (plural)'  
o pp. ss. Стр. 

• Unicode Script 
 
Sample of this section: 
 
 <LC_INDEX> 
   <IndexKey phonetic="false" default="true" unoid="alphanumeric">A-Z</IndexKey> 
   <UnicodeScript>0</UnicodeScript> 
   <UnicodeScript>1</UnicodeScript> 
   <FollowPageWord>p.</FollowPageWord> 
   <FollowPageWord>pp.</FollowPageWord> 
 </LC_INDEX> 
 
<LC_CALENDAR> 
In this section, you need to provide Days of the week, Months of the year,i.e. Gregorian Calendar Specific 
Information. 
 

• Days of the week: 
o Gregorian Calendar, Short and Long names of days of the week 

 Sun : Sunday 
 Mon : Monday 
 Tue : Tuesday 
 Wed : Wednesday 
 Thu : Thursday 
 Fri : Friday 
 Sat : Saturday 

 
• Months of the year: 

o Gregorian Calendar,abbreviated  and full names of months of the year 
 Jan : January 
 Feb : February 
 Mar : March 
 Apr : April 
 May : May 
 Jun : June 
 Jul : July 
 Aug : August 
 Sep : September 
 Oct : October 
 Nov : November 
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 Dec : December 
 

• Gregorian Calendar Specific Information: 
• BC : Before Christ  
• Short and Long names for BC 
• AD : Anno Domini 
• Short and Long names for AD 
• First day of the week 
• In a calendar, indicate what is the first day of the week 
• sun mon tue wed thu fri sat 

 
• Minimum number of days in first week of the year 

o The number of days of a week that must reside in the beginning of a year to make a week 
the first week of the year 

 1 2 3 4 5 6 7 
 
Sample of this section: 
 
 <LC_CALENDAR> 
   <Calendar unoid="gregorian" default="true"> 
     <DaysOfWeek> 
       <Day> 
         <DayID>sun</DayID> 
         <DefaultAbbrvName>Sun</DefaultAbbrvName> 
         <DefaultFullName>Sunday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>mon</DayID> 
         <DefaultAbbrvName>Mon</DefaultAbbrvName> 
         <DefaultFullName>Monday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>tue</DayID> 
         <DefaultAbbrvName>Tue</DefaultAbbrvName> 
         <DefaultFullName>Tuesday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>wed</DayID> 
         <DefaultAbbrvName>Wed</DefaultAbbrvName> 
         <DefaultFullName>Wednesday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>thu</DayID> 
         <DefaultAbbrvName>Thu</DefaultAbbrvName> 
         <DefaultFullName>Thursday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>fri</DayID> 
         <DefaultAbbrvName>Fri</DefaultAbbrvName> 
         <DefaultFullName>Friday</DefaultFullName> 
       </Day> 
       <Day> 
         <DayID>sat</DayID> 
         <DefaultAbbrvName>Sat</DefaultAbbrvName> 
         <DefaultFullName>Saturday</DefaultFullName> 
       </Day> 
     </DaysOfWeek> 
     <MonthsOfYear> 
       <Month> 
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         <MonthID>jan</MonthID> 
         <DefaultAbbrvName>Jan</DefaultAbbrvName> 
         <DefaultFullName>January</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>feb</MonthID> 
         <DefaultAbbrvName>Feb</DefaultAbbrvName> 
         <DefaultFullName>February</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>mar</MonthID> 
         <DefaultAbbrvName>Mar</DefaultAbbrvName> 
         <DefaultFullName>March</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>apr</MonthID> 
         <DefaultAbbrvName>Apr</DefaultAbbrvName> 
         <DefaultFullName>April</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>may</MonthID> 
         <DefaultAbbrvName>May</DefaultAbbrvName> 
         <DefaultFullName>May</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>jun</MonthID> 
         <DefaultAbbrvName>Jun</DefaultAbbrvName> 
         <DefaultFullName>June</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>jul</MonthID> 
         <DefaultAbbrvName>Jul</DefaultAbbrvName> 
         <DefaultFullName>July</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>aug</MonthID> 
         <DefaultAbbrvName>Aug</DefaultAbbrvName> 
         <DefaultFullName>August</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>sep</MonthID> 
         <DefaultAbbrvName>Sep</DefaultAbbrvName> 
         <DefaultFullName>September</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>oct</MonthID> 
         <DefaultAbbrvName>Oct</DefaultAbbrvName> 
         <DefaultFullName>October</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>nov</MonthID> 
         <DefaultAbbrvName>Nov</DefaultAbbrvName> 
         <DefaultFullName>November</DefaultFullName> 
       </Month> 
       <Month> 
         <MonthID>dec</MonthID> 
         <DefaultAbbrvName>Dec</DefaultAbbrvName> 
         <DefaultFullName>December</DefaultFullName> 
       </Month> 
     </MonthsOfYear> 
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     <Eras> 
       <Era> 
         <EraID>bc</EraID> 
         <DefaultAbbrvName>BC</DefaultAbbrvName> 
         <DefaultFullName>BC</DefaultFullName> 
       </Era> 
       <Era> 
         <EraID>ad</EraID> 
         <DefaultAbbrvName>AD</DefaultAbbrvName> 
         <DefaultFullName>AD</DefaultFullName> 
       </Era> 
     </Eras> 
     <StartDayOfWeek> 
       <DayID>sun</DayID> 
     </StartDayOfWeek> 
     <MinimalDaysInFirstWeek>1</MinimalDaysInFirstWeek> 
   </Calendar> 
 </LC_CALENDAR> 
 
<LC_CURRENCY> 
In this section, you need to provide the Currency details for your locale. 
 

• Bank code 
o Three letter code in capitals 

• Currency symbol 
• Currency name 
• Localized name of currency (singular) 
• Decimal places 

o Number of decimal (digits) used with the currency 
 
Sample for this section: 
 
 <LC_CURRENCY> 
   <Currency default="true" usedInCompatibleFormatCodes="true"> 
     <CurrencyID>USD</CurrencyID> 
     <CurrencySymbol>$</CurrencySymbol> 
     <BankSymbol>USD</BankSymbol> 
     <CurrencyName>US Dollar</CurrencyName> 
     <DecimalPlaces>2</DecimalPlaces> 
   </Currency> 
 </LC_CURRENCY> 
 
<LC_TRANSLITERATION> 
This section is used to specify character conversion algorithms. Languages that use Latin characters do use 
upper to lowercase conversion algorithms, such as the ones mentioned in this file. 
 
Some languages, such as Japanese, Chinese or Korean, have complicated transliteration schemes. Specific 
transliteration could be used, but it has not been used in other scripts before. Transliteration procedures 
need to be written before they are included here. If your language is not Chinese, Korean or Japanese, just 
leave this as it is and if it is one of them, then it has already been done. 
 
If you really want to do transliteration, please look into:  
http://l10n.openoffice.org/i18n_framework/HowToAddLocaleInI18n.html 
 
Sample of this section: 

 <LC_TRANSLITERATION> 
   <Transliteration unoid="LOWERCASE_UPPERCASE"/> 
   <Transliteration unoid="UPPERCASE_LOWERCASE"/> 
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   <Transliteration unoid="IGNORE_CASE"/> 
 </LC_TRANSLITERATION> 
 
<LC_MISC> 
In this section, you need to provide the Reserved Words. 
 

• Reserved Words 
o True 
o False 
o Quarter 1 (full name) 
o Quarter 2 (full name) 
o Quarter 3 (full name) 
o Quarter 4 (full name) 
o Quarter 1 (abbreviation) 
o Quarter 2 (abbreviation) 
o Quarter 3 (abbreviation) 
o Quarter 4 (abbreviation) 
o Above 
o Below 

 
Sample for this section: 
 
 <LC_MISC> 
   <ReservedWords> 
     <trueWord>true</trueWord> 
     <falseWord>false</falseWord> 
     <quarter1Word>1st quarter</quarter1Word> 
     <quarter2Word>2nd quarter</quarter2Word> 
     <quarter3Word>3rd quarter</quarter3Word> 
     <quarter4Word>4th quarter</quarter4Word> 
     <aboveWord>above</aboveWord> 
     <belowWord>below</belowWord> 
     <quarter1Abbreviation>Q1</quarter1Abbreviation> 
     <quarter2Abbreviation>Q2</quarter2Abbreviation> 
     <quarter3Abbreviation>Q3</quarter3Abbreviation> 
     <quarter4Abbreviation>Q4</quarter4Abbreviation> 
   </ReservedWords> 
 </LC_MISC> 
 
<LC_NumberingLevel> 
In this section, you need to provide the Numbering styles for paragraphs. Please refer to 'Adding support for 
numbering in local language numbers and letters' section for more on this. 
 
Sample of this section: 
 
 <LC_NumberingLevel> 
   <NumberingLevel NumType="4" Prefix=" " Suffix=")"/> 
   <NumberingLevel NumType="4" Prefix=" " Suffix="."/> 
   <NumberingLevel NumType="4" Prefix="(" Suffix=")"/> 
   <NumberingLevel NumType="2" Prefix=" " Suffix="."/> 
   <NumberingLevel NumType="0" Prefix=" " Suffix=")"/> 
   <NumberingLevel NumType="1" Prefix=" " Suffix=")"/> 
   <NumberingLevel NumType="1" Prefix="(" Suffix=")"/> 
   <NumberingLevel NumType="3" Prefix=" " Suffix="."/> 
 </LC_NumberingLevel> 
 
If you want to use numbers in the script of your locale, you need to use NumType="12". 
 
<LC_OutLineNumberingLevel> 
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In this section of the locale file, you have to define what styles will be included in OpenOffice.org Writer in 
Format-->Bullets and Numbering-->Numbering type tab. Each <OutlineStyle> block in the locale file defines 
one of the 8 squares in this page. Each block has five lines defining the first five levels of heading. The first 
line of a block (for example) will define how paragraphs with style 'Heading 1' will be numbered (including 
number style, and characters to be placed before and after the number), if some bullet characters should be 
used, the left margin of Heading 1 numbered paragraphs, etc. In subsequent levels (other lines), it is 
important to say how many levels of headings will be named in this specific number. For example, if we are 
defining the numbering of level 3 (Heading 3), the ParentNumbering could be 0 (in which case only one 
number will be shown) or could be 1 (two numbers will be shown, as in 1.1) or 2, in which case we will have 
numbers of the style 1.1.1. 
 
Sample of this section: 
 
 <LC_OutLineNumberingLevel> 
<OutlineStyle> 
<OutLineNumberingLevel Prefix=" " NumType="4" Suffix="." BulletChar="0020" BulletFontName="" 
ParentNumbering="0" LeftMargin="0" SymbolTextDistance="50" FirstLineOffset="0"/> 
 . 
 . 
 . 
 <OutLineNumberingLevel Prefix=" " NumType="6" Suffix=" " BulletChar="2022" 
BulletFontName="StarSymbol" ParentNumbering="0" LeftMargin="200" SymbolTextDistance="50" 
FirstLineOffset="0"/> 
   </OutlineStyle> 
</LC_OutLineNumberingLevel> 
 
</Locale> 
 
OpenOffice.org Locale submission 
When you have completed works with the locale definition file,  you need to create an issue in the 
Localization (L10n) project, and submit a patch for the locale file. 
 
To submit an issue 
 

• go to http://www.openoffice.org/ and login to the site (if you are already registered that is) 
• then go to ‘My issues’ on the left navigation menubar and click on ‘New’ 
• choose ‘l10n’ as the component after that one 
• select the 'version', 'subcomponent' as code, 'Issue type' as ENHANCEMENT, and 'Summary' as 

appropriate 
• write a short and precise description for the issue and hit the 'Submit issue' button 
• you will be asked if you want to attach a file and the type of the file. Attach the locale file and submit 

it 
 
This is all what you need to do while submitting a locale file. 
 
Collation mechanism in OpenOffice.Org 
The following file related to the collation sequence  has to be created in the source in the  location [10.8.l]: 
i18npool/source/collator/data/xx_charset.txt 
 
This above file  contains one or more reordering sequences with a syntax of the style: 
---------------------------------------------------------- 
&n < ñ <<< Ñ < o 
---------------------------------------------------------- 
Need to add that the file should be in UTF-8 format.  
 
To know exactly how the collation mechanism works, please refere to the following document, which 
explains in detail the tailoring syntax and philosophy: 
http://icu.sourceforge.net/userguide/Collate_Customization.html 
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10.4 Translation works 
Translation strings for OpenOffice.org 
The translation of OpenOffice.org consists of the OpenOffice.org software itself and the help files. There are 
about 25,000+ messages to be translated with additional 43,000+ messages in the help files [10.8.n]. All the 
the standard PO (portable objects) file format.  
 
Translation Tools   
There are a variety of translation tools available for both GNU/Linux and Windows environment. Some of the 
widely used translation tools are: 
 

1) Kbabel 
2) POEdit 

 
Web-based translation tools like Pootle, Rosetta, Entrans are also becoming increasingly popular as they 
allow people spread across different places to contribute to the translation process. For detailed information 
on the translation tools, please refer to Chapter 13, Tools for Localization under Translation tools. 
 
Prerequisites for Translation  
We will discuss the different prerequisites for translation below,. 
 
Downloading the POT files and the GSI files 
The first step in the translation of OpenOffice.org is the downloading of the POT files and the GSI file which 
can be found at [10.8.m]: 
 
http://ftp.linux.cz/pub/localization/OpenOffice.org/devel/POT/ 
 
Here, you will find the latest tarred version of the POT files. The downloaded file consists of the .pot files and 
the en-US version of the GSI/SDF file, which would later be needed for the creation of the language-specific 
OpenOffice.org-format file called GSI/SDF file after the completion of the translation. Please note that the 
same GSI/SDF file will be needed later when converting the .po format files to the language-specific 
GSI/SDF file. 
 
Installing Translate Toolkit 
It is a toolkit to convert various translation formats (such as gettext-based .po formats, OpenOffice.org 
formats, and Mozilla formats). This makes it possible to stay in one format across all your localization. It 
consists of tools to help process and validate localizations, etc [10.8.o]. 
 
The toolkit can be downloaded from the following location: 
http://translate.sourceforge.net/ 
 
In order to install it, you can use the following sequence of commands: 
 
tar zxvf translate-toolkit-0.8rc5.tar.gz 
cd translate-toolkit-0.8rc5 
./setup.py install 
 
Generating PO files from POT files 
The downloaded POT file has to be converted into a PO file first in order to start the translation [10.8.p]. First 
untar the file: 
 
tar zxvf OpenOffice.org-SRC680_m<MILESTONE>-POT.tar.gz 
 
Then use the command 'pot2po' from the translate toolkit to get the PO files: 
pot2po -i pot -o po 
 
where pot is the directory containing pot files and po is the resulting directory containing po files with 
OpenOffice.org's own directory structure. 
pot2po --help on the command line will list all the options. 
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It is also to be noted that the same command with different options can be used when upgrading from one 
milestone (or version) to another since the newer milestone can have added words for translation. 
 
Translation activity 
The next step is the translation itself. As already mentioned above, there are quite a number of translation 
tools available. Translation can done using any of the tools like KBabel, POEdit, etc. 
 
After the completion of all translations, the po files should be converted to OpenOffice.org format i.e. to 
GSI/SDF file which is explained below. 
 
Generating the final GSI/SDF file from po files 
With the translation completed, you have everything ready to transform your PO files to GSI/SDF 
(OpenOffice.org format) file using the following command[10.8.p]: 
 
po2oo -i po -o GSI_ne.sdf -t en-US.sdf -l ne 
 
where ne is the ISO code for your language (ne if the language is Nepali), en-US.sdf is one of the GSI/SDF 
files used for generating POT files. po is the name of the directory with PO files and GSI_ne.sdf is the final 
GSI/SDF file that can be used with localize tool to merge into the source. 
 
The final GSI/SDF file should be submitted as an issue to OpenOffice.org to be included in the official 
source. 

10.5 Building Localized OpenOffice.org in Debian GNU/Linux-Based Systems 
Building OpenOffice.org is a big challenge in the sense that it is time-consuming and that there are lots of 
modules inside OpenOffice.org to be compiled. Though the compilation time varies for different systems with 
different configurations, compiling in GNU/Linux-based systems takes more than 12 hours in a system with 
high resources. For any questions or suggestions/comments related to development and building, you 
should write to the dev@openoffice.org mailing list. 
 
This part of the localization guide describes the process to build localized OpenOffice.org on GNU/Linux. 
And the GNU/Linux distribution that has been used is a Debian-based Linux system. 
 
Note: $ooo_src will denote the directory in which the source code of OpenOffice.org is stored. 
 
Build requirements [10.8.r] 
Hardware requirements: 
 

• Intel Pentium II (P4 recommended) 
• 256 MB RAM (highly recommended) 
• 4 Gb free disk space, add approximately 2 Gb to build with --with-lang=ALL option 

 
Software requirements: 
 

• glibc 2.1.x or higher: The GNU C Library - It contains the standard libraries that are used by nearly 
all programs on the system. This package includes shared versions of the standard C library and the 
standard math library, as well as many others. Timezone data is also included. 

• gcc: The GNU C compiler - It is a fairly portable optimized compiler for C. 
• g++: The GNU C++ compiler – It is a fairly portable optimized compiler for C++. 
• The X11 development libraries and header files should be installed. These should be in place 

with most GNU/Linux distributions. 
• PAM: Pluggable Authentication Module -  It should come with most GNU/Linux distributions. The 

development package must be installed for your distribution. 
• JDK 1.3.1 or JDK 1.4.2: It is to be noted that not just the JRE (Java Runtime Environment), but the 

SDK (Software Development Kit) is also needed. JDK 1.5.0 is supported starting from milestone 
m158. 

• To install JDK 1.4.2, 
• Go to http://java.sun.com/j2se/1.4.2 and download the required package 
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• Then, execute the file like this: ./j2sdk-1_4_2_02-linux-i586.bin 
• If you are building with JDK 1.3.1, you need to download crimson.jar from 

http://xml.apache.org/crimson/ and xalan.jar and xml-apis.jar from http://xml.apache.org/xalan-
j/index.html and add these to the compilation classpath 

• Perl 5: Practical Extraction and Report Language - Perl is optimised for scanning arbitrary text files 
and system administration. It has built-in extended regular expression matching and replacement, a 
data-flow mechanism to improve security with setuid scripts and is extensible via modules that can 
interface to C libraries. 

• tcsh – It is  an  enhanced  but  completely compatible version of the Berkeley UNIX C shell, csh. 
Although the build can be started in bash,   all the scripts in the build system are actually csh scripts. 

• zip and unzip - Archiver and De-archiver for .zip files respectively 
• General Polygon Clipper library (gpc): A flexible and highly robust polygon set operations library 

for use with C applications. 
• To get gpc files, 
• Go to http://www.cs.man.ac.uk/aig/staff/alan/software/ and download the required file 
• Unpack the tarball like this: unzip gpc232.zip 
• You should have the files gpc.c and gpc.h in $ooo_src/external/gpc by doing as follows: 
• cp gpc232/* ooo_SRC680_m<MILESTONE>_src/external/gpc/ 
• Ant: Apache Ant is a Java-based build tool. 

• To install Apache-Ant, 
• Go to http://ant.apache.org/ and download the required package 
• Then unzip the file like this: unzip apache-ant-1.6.2-bin.zip 

• Mozilla libraries: Some Mozilla libraries are needed. You can choose one of the following three 
options: 
Build the libraries 

• Get the source from 
http://ftp.mozilla.org/pub/mozilla.org/mozilla/releases/mozilla1.7.5/source/, copy it into 
$ooo_src/moz/download and remember to configure with --enable-build-mozilla . 

• Use pre-built libraries 
• Get the files from http://tools.openoffice.org/moz_prebuild/680/ 
• Place LINUXGCCI{inc,lib,runtile}.zip into $ooo_src/moz/zipped. 

Don't use the libraries 
• By using the --disable-mozilla switch for configure, you waive the extra functionality. 

• Perl Modules: 
• Archive::Zip - It is used for packing image lists, eventually for further zipping needs 
• XML::Parser – It is used for expat-based parser for the new XML based build lists 

 
To install a perl module [10.8.r], 
Start the CPAN module. 
$ perl -MCPAN -e shell 
CPAN is the Comprehensive Perl Archive Network, a large collection of Perl software and documentation. 
Note that CPAN is also the name of a Perl module, CPAN.pm, which is used to download and install Perl 
software from the CPAN archive [10.8.r]. 
 
If this is the first time you use this module you have to answer some questions for this module. Just follow 
the directions on your screen. 
 
This will get you into cpan shell. 
For example, if you want to install the Archive::Zip module: 
cpan> install Archive::Zip 
 
Typing help gets you some online help. 
cpan> help 
And typing quit quits the module. 
cpan> quit 
 
For details, please visit http://wiki.services.openoffice.org/wiki/CPAN_install 
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Getting the source code 
There are two options to get the source code: 

1. Downloading the source code tarball 
a) http://download.openoffice.org/2.0.0/source.html 

For example, OOo_2.0.0_src.tar.gz in case of the 2.0 stable release. 
b) Unpack the tarball as follows: 

tar zxvf OOo_2.0.0_src.tar.gz 
cd Ooo_2.0.0rc3_src 
Note: This will be $ooo_src from now on. 

        2.  Checking out the code from cvs as anoncvs if you don't have a username and password 
a) cvs -d:pserver:anoncvs@anoncvs.services.openoffice.org:/cvs login 

Just press enter when prompted for the password. 
b) cd $ooo_src 

cvs -d:pserver:anoncvs@anoncvs.services.openoffice.org:/cvs co -r OpenOffice_2_0_0 
OpenOffice 

 
Setting up the build environment and generating the build tools 
The configure script, which is used to check/prepare the build environment, checks all the requirements such 
as software, hardware and system requirements for the build and creates a configuration file called 
LinuxIntelEnv.Set. This configuration file is used to set all necessary build environment variables. 
 
The environment variables CC and CXX should point to c and c++ compiler if the compiler running has a 
non-standard name or location. 

export CC=/your/path/to/gcc 
export CXX=/your/path/to/g++ 
 
To run the configure script, first go to the config_office directory and run the configure script: 
$ooo_src> cd config_office 
config_office> ./configure --with-lang="ne" 
 
The –with-lang option is for the inclusion of Nepali language in the build, which could of course be any other 
language. Here,  Nepali is used as an example. 
 
A number of options can be used with the configure script. Type the following command: 
 
config_office> ./configure --help 
 
to display a list of options. 
 
After running the configure script, change to tcsh shell:  
 
$ooo_src> tcsh 
 
The next step is to create the dmake make utility needed for the OpenOffice.org build:  
 
$ooo_src> ./bootstrap 
 
Now source the above-created configuration file to set all the environment variables: 
 
$ooo_src> source LinuxIntelEnv.Set 
 
Preparing  Localization Tools: Building transex3 module first [10.8.q] 
The transex3 module is required to build first in order to build the tools for merging the translations into the 
source code. If this module is not built first, then the build would have to be performed twice for the localized 
builds.  
 
To build transex3 module, 
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$ooo_src> cd transex3 
transex3> build --all 
transex3> deliver 
 
The required localization tools for OpenOffice.org are built after the transex3 module is built. It is a good 
practice to check the GSI/SDF file created for your language. It can be done with the 'gsicheck' command. 
The 'gsicheck' command: 
 

• checks the syntax of tags in GSI-Files and SDF-Files 
• checks for inconsistencies and malicious UTF8 encoding 
• checks tags in Online Help 

 
Commonly, gsicheck is used like this: 
 
$SRC_ROOT> gsicheck -c -l "" GSI_ne.sdf 
 
where, 
 
-c is to add context to error message i.e. to print the line containing the error 
-l is the ISO language code or numerical 2 digits identifier of the source language. The default is en-US. Use 
"" (empty string) or 'none' to disable source language dependent checks.  
And of course, the last one is the filename of the language-specific GSI/SDF file. 
 
For more options, 
 
$SRC_ROOT> gsicheck --help 
 
Removing existing language-specific translations from source 
If the translation has not been merged into the source previously, then this step can be ignored. Only if some 
translation exists in the source, are you required to remove existing language-specific translations from the 
source code. Your need to remove the lines which contain the language-specific translations from all the 
localize.sdf files [10.8.q]. The localize.sdf files are those files which contain the translations for all the 
languages and into which the translations are merged, which is explained in the next section. 
 
$ooo_src> for localize in `find . -name localize.sdf` 
> do 
>  grep -v "     ne      " $localize >$localize.tmp 
>  mv -f $localize.tmp $localize 
> done 
 
Merging the latest translations to source 
After the removal of all the translations for a specific language, the next step is the merging of the latest 
translations to source before starting the actual build [10.8.q]. The same localized tool can be used, but with 
different options, to extract the translations.  
 
This is how the merging can be done: 
 
$ooo_src> localize -m -l ne -f GSI_ne.sdf 
 
where, 
 
-m is the merge mode 
-l is the comma separated languages 
-f is the filename of the language-specific GSI/SDF file 
 
For more options, 
 
$ooo_src> gsicheck –help 
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Building a full build 
With the environment created to build the entire suite, all that is required is to run dmake from the top-level 
directory. This will take more than 12 hours depending upon the available resources. 
 
$ooo_src>> dmake 
 
Similarly, the 'build --all' inside the instsetoo_native directory is equivalent to the dmake command in the root 
of the source directory. 
 
cd $ooo_src 
cd instetoo_native 
build --all 
 
Built packages will be in different directories in  $ooo_src/instsetoo_native/unxlngi6/OpenOffice/deb/install/ 
depending on the built language(s). But note that the en-US language will always be built by default even if 
you don't specify it when configuring. 
 
To clean up a previous build, you have to delete all the output directories: 
 
$ooo_src> rm -rf */unxlngi6.pro 
 
To rebuild a module or build each module individually, you will have to use the ‘build’ tool and then the 
‘deliver’ tool will copy all created binaries, libraries etc. into the solver tree: 
 
$ooo_src/(module)> build 
$ooo_src/(module)> deliver 
 
Please refer to [10.8.r] for more details on building OpenOffice.org 2.x (680er series) under GNU/Linux. 
 
Building Localized Language Packs 
 
As for building localized language packs for different languages, the following steps have to be performed: 
$ooo_src> cd instsetoo_native/util/ 
$ooo_src> dmake ooolanguagepack 
 
Built language packs will be in $ooo_src/instsetoo_native/unxlngi6.pro/OpenOffice_languagepack/deb/install/ 
 

10.6  Spell Checker in OpenOffice.Org 
History 
Spell checker is an important component of the OOo. Initially the available Spell checker in OOo was 
MySpell. Only recently from OOo 2.0.2, MySpell has been replaced by HunSpell, which is a Hungarian spell 
checker written by  László Németh, because of its better performance and support to non-latin characters. 
 
Character Encoding Issues 
The problems of 8 bit encodings covered in this section is based on the documentation of Hunspell [10.8.a].  
 
Myspell uses the 8-bit ASCII character encoding, which is a major deficiency when it comes to scalability. 
Even with languages like Hungarian which has a standard ASCII character set (ISO 8859-2), MySpell fails to 
allow a full implementation of Hungarian orthographic conventions. For instance, the ’--’ symbol (n-dash) is 
missing from this character set contrary to the fact that it is not only the official symbol to delimit parenthetic 
clauses in the language, but also can be in compound words as a special ’big’ hyphen. 
 
MySpell uses 8-bit encoding tables, but there are languages whose character sets are not covered by the 
standard 8-bit encoding, too. For example, Nepali and a lot of African languages have non-latin or extended 
latin characters. 
 
Even in  the Hungarian language with its standard ASCII character set (ISO 8859-2), problems arise when 
dealing with foreign words like Ångström or Molière as the characters ’Å’ and ’è’ are not part of ISO 8859-2. 
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When these words combine with inflections containing characters only in ISO 8859-2 (like elative -bo=l, 
allative -to=l or delative -ro=l with double acute), they result in words (like Ångströmro=l or Molière-to=l.) 
which can not be encoded using any single ASCII encoding scheme. 
 
These problems related to 8-bit ASCII encoding have long been figured out by proponents of Unicode. 
Unfortunately, switching to Unicode (e.g., UTF-16 encoding) will require a great deal of code optimization 
and also have an impact on the efficiency of the algorithm. The Dömölki algorithm used in checking affixing 
conditions utilizes 256-byte character arrays, which would grow upto 64k with Unicode encoding. Since 
online affixing for a richly agglutinative language can easily have several hundreds of such arrays (in the 
case of the standard Hungarian resources , this number is ca. 300 or more since redundant storage of 
structurally identical affix patterns improves efficiency), switching to Unicode would incur high resource 
costs. Nonetheless, it is clear that trading efficiency for encoding-independence has its advantages when it 
comes to a truly multi-lingual application. 
 
In this regard, recently a memory and time efficient Unicode handling has been implemented. In non-UTF-8 
character encodings, Hunspell works with the original 8-bit algorithms, but this time with UTF-8 encoded 
dictionary and affix file. Hunspell uses a hybrid string manipulation and conditional checking to support 
Unicode which are as listed below: 
 
I) Affixes and words are stored in UTF-8.  
While analyzing they are handled mostly in UTF-8, and for conditional checking and suggestion they are 
converted to UTF-16. 
 
II) Dömölki-algorithm is used for storing and checking 7-bit ASCII (ISO 646) conditional characters, and 
sorted UTF-16 lists of other Unicode characters with conditional patterns. 
 
III) Hunspell supports only the first 65,536 character (Basic Multilingual Plane) of the  Unicode Standard till 
date. 
 
Different Spell Checker Formats in OpenOffice.Org 
Kevin Hendriks started MySpell, written in C++, to integrate various open source spelling checkers into the 
OpenOffice.org build. For more information on MySpell please refer to [10.8.g]. 
 
As MySpell has been replaced by Hunspell from OOo 2.0.2, we will not go in details about MySpell. 
Hunspell is a spell checker and morphological analyzer library. It has the ability to handle languages with rich 
morphology and complex word compounding or character encoding. Hunspell interfaces: Ispell-like terminal 
interface using Curses library, Ispell pipe interface, OpenOffice.org UNO module.  
 
Hunspell's code base comes from the OOo MySpell. The main features of Hunspell spell checker and 
morphological analyzer are as listed below [10.8.a]: 
 

1. It has Unicode support (first 65535 Unicode character) 
2. Morphological analysis can be done (in custom item and arrangement style) 
3. Max. 65,535 affix classes and twofold affix stripping (for agglutinative languages, like Azeri, Basque, 

Estonian, Finnish, Hungarian, Nepali, Turkish, etc.) 
4. It supports complex compounding (for example, Hungarian and German) 
5. It supports language specific algorithms (for example, handling Azeri and Turkish dotted i, or 

German sharp s) 
6. It can handle conditional affixes, circumfixes, fogemorphemes, forbidden words, pseudoroots and 

homonyms. 
7. It has been released under GPL/LGPL/MPL tri-license 

 
Hunspell consists of language files for different language specific territory. It requires two files in order to 
define the language that it is spell checking. The first file is a dictionary containing words for the language, 
and the second is an "affix" file that defines the meaning of special flags in the dictionary. Every locale 
(language for a specific territory) can have files for HunSpell. These files are located together in one folder, 
~openofficefolder/share/dic/ooo/. The spell checking is done using the .aff file for the language together with 
the .dic file. The .dic file is a list of words along with a group of characters which refer to the affixes found in 
the .aff file. This saves space because instead of including all forms of a word, for example , drink (drinking, 
drinks, drunk), the .dic file will include the word once and the references to the affixes in the .aff file allow the 
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construction of all the other forms. It is not enough to copy the files for a language into the folder. As there 
could be a many numbers of languages, there would be a considerable overhead if the dictionaries for every 
language are automatically loaded. Hence, only those languages listed in the dictionary.lst file are loaded. 
The file dictionary.lst can be edited with a simple text editor [10.8.e].  
 
The dictionary.lst has the following format as shown below: 
 
#dictionary.lst for OOo 
 
DICT ne NP ne_NP 
THES ne NP th_ne_NP 
HYPH ne NP hyph_ne_NP 
 
#end of the dictionary.lst 
 
The '#' indicates the commented lines in the file. Each entry in the list has the following space delimited fields 
 Field 1: Entry Type "DICT" - spellchecking dictionary 
                        "HYPH" - hyphenation dictionary 
                            "THES" - thesaurus files 
 
Field 2: Language code from Locale "en" or "de" or "ne" ... 
Field 3: Country Code from Locale "US" or "GB" or "NP" 
Field 4: Root name of file(s) for the corresponding field 1 "ne_NP" or "hyph_en_US" or "th_ne_NP (do not 
add extensions to the name like .dic,.aff etc.)  
 
For Hunspell the line starting from DICT is the only line required. The other two lines are required for the 
hyphenation and thesaurus. 
 
Writing the Dictionary and affix files for HunSpell 
All of the examples in presented in this section have been based on the documentation of Hunspell [10.8.a] 
for better understanding. 
 
Hunspell needs two files as mentioned earlier to check the spelling. A dictionary file (*.dic) contains a list of 
words, one per line. The first line of the dictionary (except personal dictionaries) contains the approximate 
word count (for optimal hash memory size). Each word may optionally be followed by a slash ("/") and one or 
more flags, which represent affixes or special attributes. Default flag format is a single (usually alphabetic) 
character. A possible dictionary file, dict1.dic, could be as shown below: 
 
3 
hello 
try/B 
work/AB [NOUN] 

In the above dictionary file, the first line has the number "3", which gives the optimal hash memory size and 
the number of words, which are "hello", "try", and "work". The first word hello does not have any flag. The 
word "try" has one flag which is separated by a "/" back slash.  The flag "B" points to a rule named "B" in the 
affix file.  Similarly in the next line, the word "work" and it's field AB are separated by a "/". The flag "AB" 
points to the rule name "A" and rule name "B" in the affix file. 

Hunspell also has an optional morphological description field. There is a similar optional field in the dictionary 
file, separated by tabulator: 
word/flags morphology 
We define a simple resource with morphological informations. 
Dictionary file: 

drink/X   [VERB] 

The "[VERB]" informs us that the word "drink" is a verb.  
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The affix file consists of the rules that will add affixes to the words which are present in the .dic file. As 
mentioned earlier, the flag, which is usually a character, in the dictionary file points to these rules. To clarify 
the concept of the affix file consider the following  example of an affix file,affix1.aff: 

SET UTF-8 
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’ 
 
REP 2 
REP f ph 
REP ph f 
 
PFX A Y 1 
PFX A 0 re . 
 
SFX B Y 2 
SFX B 0 ed [^y] 
SFX B y ied y 

An affix is either a  prefix or a suffix attached to root words to make other words.  For example supply -> 
supplied by dropping the "y" and adding an "ied" (the suffix), or work->rework by simply adding "re".  

An affix file (*.aff) may contain a lot of optional attributes. For example, the first line consisting of SET 
specifies the character set used for both the dictionary file and the affix file (should be all uppercase). The 
above affix file example defines UTF-8 character encoding.  TRY, in the second line,  sets the change 
characters for suggestions. It is used in building suggestions for misspelled words, for example, the 
misspelled word "agg" will have a suggestion "egg" by substituting the "a" with an "e".  The characters in the 
string should be listed in order or according to the character frequency (highest to lowest). The suggestions 
produced using the 'TRY' option differs from the bad word with a single English letter or an apostrophe.  A 
good way to develop this string is to sort a simple character count of a word list. REP sets a replacement 
table for multiple character corrections in suggestion mode. The first line that consists of REP informs that 
there are two entries for the REP option. With these REP definitions, Hunspell can suggest the right word 
form, when the misspelled word contains f instead of ph and vice versa, for example, if we write 'fase' it can 
suggest the right word 'phase'. PFX and SFX defines prefix and suffix classes named with affix flags. 

The affix file is space delimited and case sensitive. So we can interpret the affix file's rule lines , as follows: 
 
 
SFX D Y 4 
SFX D   0     d          e 
SFX D   y     ied        [^aeiou]y 
SFX D   0     ed         [^ey] 
SFX D   0     ed         [aeiou]y 

In the first line there are four fields, whose description are given in the table below: 
     

Field Name Description 
1 SFX indicates that this is a suffix(PFX indicates a prefix) 

2 D this is a name for the suffix it represents which should be unique for every 
different suffix or prefix entry(or the name for the prefix when PFX is present) 

3 Y indicates it can be combined with prefixes(cross product) 

4 4 indicates that sequence of 4 affix entries are needed to properly store the affix 
information 

 
Table 3. Affix file information 

The remaining lines describe the unique information for the 4 affix entries that make up this affix. All the 
fields in the remaining line are the same, fields in the second line are described below:                                
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Field Name Description 
1 SFX indicates that this is a suffix(PFX indicates a prefix) 

2 D this is a name for the suffix it represents which should be unique for 
every different suffix or prefix entry 

3 y the string of chars to strip off at the end before adding affix (a 0 here 
indicates the NULL string, and in case of PFX, the chars are stripped 
off at the beginning of the word) 

4 ied the string of affix characters to be added at the end of the word(a 0 
here indicates the NULL string,and in case of PFX, the chars are 
added at the beginning of the word) 

5 [^aeiou]y the conditions which must be met before the affix can be applied, 
which represents a regular expression("." a dot means there is no 
condition) 

 
Table 4. Affix file information contd.. 

 
Field 5 might be confusing.  Since this is a suffix, field 5 tells us that there are 2 conditions that must be met.  
The first condition is that the character next to the last character in the word must *NOT* be any of the 
following "a", "e", "i", "o" or "u".  The second condition is that the last character of the word must end in "y". 

If we have a dictionary file (*.dic) as shown below: 

1 
supply/D 
marry/D 
and the rule given above in our affix file, then Hunspell will be able to show that the words supply, marry, 
supplied and married are all correct, by dropping the "y" and adding "ied". 

To make more combinations with the dictionary file and affix file we could look at the dictionary file dic1.dic 
and affix file affix1.aff given above. With the two files we could figure out that  Hunspell would detect hello, 
try, tried, work, worked, rework and reworked as correct words. 

The above examples show a single stripping of affixes. Hunspell allows us to strip another one. The twofold 
suffix stripping is a significant improvement in handling of immense number of suffixes, that characterize 
agglutinative languages. Consider the example given below: 

Affix file: 
SFX Y Y 1 
SFX Y 0 s . +PLUR 
 
SFX X Y 1 
SFX X 0 able/Y . +ABLE 
Dictionary file: 
drink/X   [VERB] 
Correct Words: 
drink 
drinkable 
drinkables 
In the dictionary file, the word "drink" has the flag X indicating the rule named X in the affix file will be applied 
to it resulting into "drinkable". In the rule named X in the affix file, you will notice a "/Y", this indicates that 
after the application of the rule X, go to the rule named Y and further apply the rule resulting into drinkables. 
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In the affix file, optional morphological description fields could also be present, separated by tabulator as in 
the dictionary file: 

Rule morphology 

Below is an example of a simple affix file with morphological informations: 

Affix file: 

SFX X Y 1 
SFX X 0 able . +ABLE 

The morphology can indicate that the rule named "X" is for adding the affix "able" to the words. 

Till now, we have had a general overview of the affix and dictionary files and their working mechanisms. 
Using only the above format will work just fine for Hunspell to check for misspelled words, but there are 
many other options in Hunspell that will help make a better spell checker for  languages, especially if the 
language is complicated and if the above format is insufficient to define the language. Below are other 
options to define such a language. The options and their respective explanations are based on the 
documentation of HunSpell [10.8.a]. Choose options that would define your language efficiently. 

GENERAL OPTIONS 
The heading of each option is the syntax in which it should be kept, in the affix file. 
 

1. SET encoding 
This option allows you to set the character encoding of words and morphemes in both the affix and 
dictionary files. Possible values for the encoding are: UTF-8,ISO8859-1,ISO8859-10, ISO8859-15,KOI8-
R,KOI8-U,microsoft-cp1251,ISCII-DEVANAGARI. 

 
2. FLAG value 
This option allows you to set the flag type. The flag type is the type of the name of the rule. In the above 
examples we wrote single characters like "D", "A","B" etc. For English language, the number of affix 
rules are less so the characters from A to Z will cover the number of rules. Other languages like Nepali 
may have more affix rules which will not be covered by these single characters. The 'num' value sets the 
decimal number flag type. Decimal flags numbered from 1 to 65535, and in flag fields in the dictionary 
file (*.dic), they are separated by commas.  
 
FLAG num command sets numerical flags separated by comma as shown in the example below: 
FLAG num 

SFX 65000 Y 1 
SFX 65000 0 s 1 

Dictionary example: 

foo/65000,12,2756 

There is yet another syntax for giving flags in the affix and dictionary files. 

FLAG long command sets 2-character flags: 

FLAG long 
SFX Y1 Y 1 
SFX Y1 0 s 1 

Dictionary record with the Y1, Z3, F? flags: 



PAN Localization Guide to Localization of Open Source Software 
 

 
104

foo/Y1Z3F? 

The default type is the extended ASCII(8-bit) character. 'UTF-8' parameter sets UTF-8 encoded Unicode 
character flags. The 'long' value sets the double extended ASCII character flag type. However, the UTF-
8 flag type doesn't work on ARM platform. 

3. COMPLEX PREFIXES 
This option sets the twofold prefix stripping (but single suffix stripping) for agglutinative languages with 
right to left writing system. 
 
4. LANG langcode 
The language code can be set through this option. In Hunspell,  language specific codes can be enabled 
by LANG code. At present there are az_AZ, hu_HU, TR_tr specific codes in Hunspell ( for further 
information please have a look in the source code). 
 
5. AF number _of_flag_vector_aliases 
AF flag_vector 
Hunspell can substitute affix flag sets with a natural number in affix rules(alias compression). Let us take 
an example to make it clear, with an alias compression: 
let us take the dictionary (*.dic) file which has the following lines: 

3 
hello 
try/1 
work/2 [NOUN] 

Then the AF definitions in the affix file will be 

SET UTF-8 
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’ 

AF 2 
AF A 
AF AB 

Now, comparing the dictionary file with the dict1.dic file given previously, we can see that the dictionary 
file has been replaced by numbers 1 and 2 rather than placing B and AB. This also shows that the AB 
can be compressed to a single number 2. This could be quite helpful, to compress the aff and dic files. If 
the affix file contains the FLAG parameter, one needs to define it before the AF definitions. 

6. AM number_of_morphological_description_aliases 
AM morphological_description 
Hunspell can also substitute morphological descriptions with a natural number in the affix rules (alias 
compression) through this option. 
 

Options for suggestion 
1. TRY characters 
Hunspell can suggest right word forms, when the typed one differs from the bad form by one TRY 
character. The parameter of TRY is case sensitive. This option has already been discussed in the 
beginning of the chapter. 
 
2. NOSUGGEST flag 
Words that have been signed with NOSUGGEST flag are not suggested.  This flag may come in handy 
for vulgar and obscene words. The flag should be an English character. 
 
3. MAXNGRAMSUGS num 
This option sets the number of n-gram suggestions. Value 0 switches off the n-gram suggestions. 
4. NOSPLITSUGS 
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This option disables the split-word suggestions. For instance, if the word “into” is not in the dictionary 
and we type “into”, then hunspell will give “in to” in the suggestion list. To prevent such type of 
suggestions, this option is used. 
 
5. SUGSWITHDOTS 
With this option Hunspell adds dot(s) to suggestions, if the input word terminates in dot(s). ( Not for 
OpenOffice.org dictionaries, because OpenOffice.org has an automatic dot expansion mechanism.) 
 
6. REP number_of_replacement_definitions 
REP the replacement 
 
We can define language-dependent phonetic information in the affix file (.aff) by a replacement table. 
First REP is the header of this table and one or more REP data line follows it. With this table, Hunspell 
can suggest the right forms for the typical faults of spelling when the incorrect form differs by more than 
1 letter with the right form. For example a possible English replacement table definition to handle 
misspelled consonants is shown below: 

REP 4 
REP f ph 
REP ph f 
REP k ch 
REP ch k 

for the misspelled word “phan”, Hunspell can give a suggestion “fan” in the suggestion table. 

NOTE: It is very useful to define replacements for the most typical one-character mistakes too, with REP 
you can add higher priority to a subset of the TRY suggestions (suggestion list begins with the REP 
suggestions) and the replacement table can be used for a stricter compound word checking (forbidding 
generated compound words, if they are also simple words with typical faults, see the option 
CHECKCOMPOUNDREP). 

7. MAP number_of_map_definitions 
MAP string_of_related_characters 
 
We can define language dependent information on characters that should be considered related ( i.e. 
nearer than other characters not in the set ) in the affix file (.aff) by a character map table. With this 
table, Hunspell can suggest the right forms for words, which incorrectly choose the wrong letter from a 
related set more than once in a word. For example a possible mapping could be for the German 
umlauted ü versus the regular u; the word Frühstück really should be written with umaluted u's and not 
regular ones 

MAP 1 

MAP uü 
 
Options for compounding 

1. BREAK number_of_break_definitions 
BREAK character_or_character_sequence 

 
This option defines break points for breaking words and checking word parts separately. It is useful for 
compounding with joining character or strings (for example, hyphen in English and German or hyphen 
and n-dash in Hungarian). Dashes are often bad break points for tokenization, because compounds with 
dashes may contain invalid parts, too.) With BREAK, Hunspell can check both sides of these 
compounds, breaking the words at dashes and n-dashes: 

BREAK 2 
BREAK - 
BREAK -- #n-dash 
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with these rules the breaking becomes recursive, so foo-bar, bar-foo and foo-foo--bar-bar would be valid 
compounds. 

Note: COMPOUNDRULE is better (or will be better) for handling dashes and other compound joining 
characters or character strings. BREAK, should be used if one wants to check words with dashes or 
other joining characters. COMPOUNDRULE has handled only the last suffixation of the compound word 
till date. 

2. COMPOUNDRULE number_of_compound_definitions 
COMPOUNDRULE  compound_pattern 
This optioin enables the user to define custom compound patterns with a regex-like syntax. The first 
COMPOUNDRULE is a header with the number of the following COMPOUNDRULE definitions. 
Compound patterns consist ofcompound flags and star or question mark meta characters. A flag 
followed by a ‘*’ matches a word sequence of 0 or more matches of words signed with this compound 
flag. A flag followed by a ‘?’ matches a word sequence of 0 or 1 matches of a word signed with this 
compound flag. 

Note: ‘*’ and ‘?’ meta characters work only with the default 8-bit character and the UTF-8 FLAG types. 
COMPOUNDRULE flags haven’t been compatible with the COMPOUNDFLAG, COMPOUNDBEGIN, 
etc. compound flags yet (use these flags on different words). 

3. COMPOUNDMIN num 
This defines the minimum length of words in compound words. The default value is 3 letters. see 
Example of compounding 

4. COMPOUNDFLAG flag 
Words signed with COMPOUNDFLAG may be in compound words (except when word shorter than 
COMPOUNDMIN). Affixes with COMPOUNDFLAG also permits compounding of affixed words. For 
example: 

#affix file 
COMPOUNDFLAG X 

dic file: 

2 
foo/X 
bar/X 

With this resource, foobar and barfoo also are accepted words. 
This has been improved upon with the introduction of direction-sensitive compounding, i.e., lexical 
features can specify separately whether a base can occur as leftmost or rightmost constituent in 
compounds. This, however, is still insufficient to handle the intricate patterns of compounding, not to 
mention idiosyncratic (and language specific) norms of hyphenation. 

5. COMPOUNDBEGIN flag 
This option makes the flagged words (or with a signed affix) be the first elements in compound words. 
see Example for compounding 

6. COMPOUNDEND flag 
This option makes the flagged words (or with a signed affix) the last elements in compound words.  see 
Example for compounding 

7. COMPOUNDMIDDLE flag 
This option makes the tagged words (or with a signed affix) the middle elements in compound words. 
see Example for compounding 
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8. ONLYINCOMPOUND flag 
Suffixes signed with ONLYINCOMPOUND flag may be only inside compounds (Fuge-elements in 
German, fogemorphemes in Swedish). ONLYINCOMPOUND flag also works with words. see Example 
for compounding 

9. COMPOUNDPERMITFLAG flag 
This option allows the prefixes at the beginning of compounds, suffixes are allowed at the end of 
compounds by default. Affixes with COMPOUNDPERMITFLAG may be inside compounds. see Example 
for compounding 

10. COMPOUNDFORBIDFLAG flag 
Suffixes with this flag forbid compounding of the affixed word. 

11. COMPOUNDROOT flag 
COMPOUNDROOT flag signs the compounds in the dictionary (Now it is used only in the Hungarian 
language specific code). 

12. COMPOUNDWORDMAX number 
This option sets the maximum word count in a compound word. (Default is unlimited). 

13. CHECKCOMPOUNDDUP 
This option forbids word duplication in compounds (eg. foofoo). 

14. CHECKCOMPOUNDREP 
This option forbids compounding, if the (usually bad) compound word may be a non compound word 
with a REP fault. This is useful for languages with 'compound friendly' orthography. 

15. CHECKCOMPOUNDCASE 
This option will forbid upper case characters at word bound in compounds.  see Example for 
compounding. 

16. CHECKCOMPOUNDTRIPLE 
This option forbids compounding, if the compound word contains triple letters (eg. foo|ox or xo|oof). 
There is a bug in this option,i.e. the missing multi-bytecharacter support in UTF-8 encoding (works only 
for 7-bit ASCII characters). 

17. CHECKCOMPOUNDPATTERN number_of_checkcompoundpattern_definitions 
 CHECKCOMPOUNDPATTERN endchars beginchars 

18. This option forbids compounding, if first word in compound ends with enchars, and next word begins 
with beginchars. 

19. COMPOUNDSYLLABLE max_syllable vowels 
This option is needed for special compounding rules in Hungarian. First parameter is the maximum 
syllable number, that may be in a compound, if words in compounds are more than 
COMPOUNDWORDMAX. Second parameter is the list of vowels (for calculating syllables). 

20. SYLLABLENUM flags 
This option is usually required for special compounding rules in Hungarian. 

Example for compounding 

Example Affix file: 
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# This example is for German compounding 
 
# set language to handle special casing of German sharp s 
 
LANG de_DE 
 
# compound flags 
 
COMPOUNDBEGIN U 
COMPOUNDMIDDLE V 
COMPOUNDEND W 
 
# Prefixes are allowed at the beginning of compounds, 
# suffixes are allowed at the end of compounds by default: 
# (prefix)?(root)+(affix)? 
# Affixes with COMPOUNDPERMITFLAG may be inside of compounds. 
 
COMPOUNDPERMITFLAG P 
 
# for German fogemorphemes (Fuge-element) 
# Hint: ONLYINCOMPOUND is not required everywhere, but the 
# checking will be a little faster with it. 
 
ONLYINCOMPOUND X 
 
# forbid uppercase characters at compound word bounds 
 
CHECKCOMPOUNDCASE 
 
# for handling Fuge-elements with dashes (Arbeits-) 
# dash will be a special word 
 
COMPOUNDMIN 1 
WORDCHARS - 
 
# compound settings and fogemorpheme for ‘Arbeit’ 
 
SFX A Y 3 
SFX A 0 s/UPX . 
SFX A 0 s/VPDX . 
SFX A 0 0/WXD . 
 
SFX B Y 2 
SFX B 0 0/UPX . 
SFX B 0 0/VWXDP . 
 
# a suffix for ‘Computer’ 
 
SFX C Y 1 
SFX C 0 n/WD . 
 
# for forbid exceptions (*Arbeitsnehmer) 
 
FORBIDDENWORD Z 
 
# dash prefix for compounds with dash (Arbeits-Computer) 
 
PFX - Y 1 
PFX - 0 -/P . 
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# decapitalizing prefix 
# circumfix for positioning in compounds 
 
PFX D Y 29 
PFX D A a/PX A 
PFX D Ä ä/PX Ä 
 . 
 . 
PFX D Y y/PX Y 
PFX D Z z/PX Z 

  
 

Example dictionary: 

 4 
Arbeit/A- 
Computer/BC- 
-/W 
Arbeitsnehmer/Z 

 Accepted compound compound words with the previous resource: 

 Computer 
Computern 
Arbeit 
Arbeits- 
Computerarbeit 
Computerarbeits- 
Arbeitscomputer 
Arbeitscomputern 
Computerarbeitscomputer 
Computerarbeitscomputern 
Arbeitscomputerarbeit 
Computerarbeits-Computer 
Computerarbeits-Computern 

 Not accepted compoundings: 

 computer 
arbeit 
Arbeits 
arbeits 
ComputerArbeit 
ComputerArbeits 
Arbeitcomputer 
ArbeitsComputer 
Computerarbeitcomputer 
ComputerArbeitcomputer 
ComputerArbeitscomputer 
Arbeitscomputerarbeits 
Computerarbeits-computer 
Arbeitsnehmer 
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Other options 
1. CIRCUMFIX flag 

Conditional affixes implemented by a continuation class are not enough for circumfixes, because a 
circumfix is one affix in morphology. We also need CIRCUMFIX option for correct morphological 
analysis. 

 # circumfixes: ~ obligate prefix/suffix combinations 
# superlative in Hungarian: leg- (prefix) AND -bb (suffix) 
# nagy, nagyobb, legnagyobb, legeslegnagyobb 
# (great, greater, greatest, most greatest) 
 
CIRCUMFIX X 
 
PFX A Y 1 
PFX A 0 leg/X . 
 
PFX B Y 1 
PFX B 0 legesleg/X . 
 
SFX C Y 3 
SFX C 0 obb . +COMPARATIVE 
SFX C 0 obb/AX . +SUPERLATIVE 
SFX C 0 obb/BX . +SUPERSUPERLATIVE 

 Dictionary: 

 1 
nagy/C [MN] 

     

 Correct Words: 

 nagy 
nagyobb 
legnagyobb 
legeslegnagyobb 

 

2. FORBIDDENWORD flag 
This flag assigns the forbidden word form. Because affixed forms are also forbidden, we can subtract a 
subset from set of the accepted affixed and compound words. 

 
3. KEEPCASE flag 
This option forbids uppercased and capitalized forms of the words signed with KEEPCASE flags. Useful 
for special ortographies (measurements and currency often keep their case in uppercased texts) and 
writing systems (eg. keeping lower case of IPA characters). 
 
Note: With CHECKSHARPS declaration, words with sharp s and KEEPCASE flag may be capitalised 
and uppercased, but uppercased forms of these words may not contain sharp s, only SS. See 
germancompounding Example in the tests directory of the Hunspell distribution. 

 
 

4. LEMMA_PRESENT flag 
Generally, there are dictionary words as lemmas in output of morphological analysis. Sometimes 
dictionary words are not lemmas, but affixed (not real) stems and virtual stems. In this case lemmas (real 
stems) need to put into morphological description, and forbid not real lemmas in morphological analysis 
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adding LEMMA_PRESENT flag to dictionary words. 
 

5. NEEDAFFIX flag 
This flag signs virtual stems in the dictionary. Only affixed forms of these words will be accepted by 
Hunspell. Except, if the dictionary word has a homonym or a zero affix. NEEDAFFIX works also with 
prefixes and prefix + suffix combinations. 

 
6. WORDCHARS characters 
WORDCHARS extends the tokenizer of Hunspell command line interface with an additional word 
character. For example, dot, dash, n-dash, numbers, percent sign are word characters in Hungarian. see 
Example for compounding 

 
7. CHECKSHARPS 
SS letter pair in uppercased (in German) words may be upper case sharp s (ß). Hunspell can handle this 
special casing with the CHECKSHARPS declaration (see also KEEPCASE flag) in both spelling and 
suggestion. 

10.7 Thesaurus in OpenOffice.Org 
History 
MyThes is a thesaurus made by Kevin Hendricks. This thesaurus has the facility to provide a words meaning 
and synonym but not it's antonym, which a thesaurus should be able to provide. MyThes was made specially 
to provide OOo with a thesaurus. It is the first thesaurus for OOo and is still being used with some 
enhancements from the OOo community. Originally, it did not support UTF-8 encoding, which was a big 
setback for countries lacking their own 8-bit ASCII character set. Recently,  László Németh, the creator of 
Hunspell, provided a patch for MyThes to support unicode. This patch could be patched to MyThes if  
versions of OOo older than 2.0.2 were present. In versions OOo 2.0.2 and above, the patch has been 
automatically integrated into OOo.  The creation of this patch has been a milestone in the internationalization 
(I18n) of  MyThes, because non-latin languages now can be integrated into the thesaurus of OOo. 
 
Thesaurus implementation in Ooo 
MyThes is a very simple  thesaurus. This thesaurus does not only provide information on synonyms, but also 
meanings and theparts-of-speech of a word. The main features of MyThes are listed below: 
 

1. 1.It is written in C++ to make it easier to interface with Pspell, OpenOffice, AbiWord, etc. 
2. It is stateless, as no static variables are used and should be completely reentrant with no ifdefs  . 
3. It compiles with -ansi, -pedantic, and -Wall with no warnings, making it quite  portable. 
4. It uses a simple perl program to read the structured text file and generate the index file which 

contains the index needed for binary searching. 
5. It is very simple with “lots” of comments. The main "smarts" are in the structure of the text file that 

makes up the thesaurus data. 
6. It comes with a ready-to-go structured thesaurus data file for en_US extracted from the WordNet-2.0 

data. 
7. The source code has a BSD license (and  no advertising clause). 

 
Making the Data files for MyThes 
 
The thesaurus depends entirely upon the data file which should be provided. The program is very simple, 
which implements binary search. The format of the data file is simple. The example that is presented in this 
section is taken from the data_layout file of the MyThes thesaurus [10.8.d]. A top portion of the data file 
which includes one word entry for “ simple” is shown below: 
 
ISO8859-1 
simple|9 
(adj)|simple|elemental|ultimate|oversimplified|simplistic|simplex|simplified|unanalyzable|undecomposable|un
complicated|unsophisticated|easy|plain|unsubdivided 
(adj)|elementary|uncomplicated|unproblematic|easy 
(adj)|bare|mere|plain 
(adj)|childlike|wide-eyed|dewy-eyed|naive |naif 
(adj)|dim-witted|half-witted|simple-minded|retarded 
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(adj)|simple |unsubdivided|unlobed|smooth 
(adj)|plain 
(noun)|herb|herbaceous plant 
(noun)|simpleton|person|individual|someone|somebody|mortal|human|soul 
 
The general format for the data file is assimple as shown above. In this file, there should be no binary data 
and lines should end in a '\n' and not in a carriage return or a line feed. The first line of the file data file is the 
encoding that the file uses. Encodings that are recognized by MyThes are listed as below: 
     ISO8859-1 
     ISO8859-2 
     ISO8859-3 
     ISO8859-4 
     ISO8859-5 
     ISO8859-6 
     ISO8859-7 
     ISO8859-8 
     ISO8859-9 
     ISO8859-10 
     KOI8-R 
     CP-1251 
     ISO8859-14 
     ISCII-DEVANAGARI 
     UTF-8  The remaining structure of the data file will be as shown below: 
 
entry|num_mean 
pos|syn1_mean|syn2|... 
. 
. 
. 
pos|mean_syn1|syn2|... 
 
The fields in the remaing part are delimited by a pipe '|', and can be described as below: 
 
For the first line: 
FIELD DESCRIPTION 
entry All lowercase versions of the word that is being described for the 

synonym 

num_mean The number of  different meanings of the entry. Indirectly it also indicates 
the remaining number of lines. 

 
For the second line: 
FIELD DESCRIPTION 
pos The Parts-of-Speech or other meaning specific descriptions of the word 

being described 

syn1_mean The meaning of the word,which could be a synonym 

syn2 The synonym of the word having the same meaning 
 
The fields for the remaining lines of a word is the same as in the second line. This type of entry has to be 
made for each word which should be in the thesaurus. The data file that was given above as an example can 
be interpreted as “the file is encoded in ISO8859-1, and consists of the word “simple” which has 9 different 
meanings and each meaning having it's part of speech and at least one synonym, if present, following on the 
same line. MyThes software, by default has files for English, which could be looked into as a reference. 
 
MyThes uses the data file to store the words along with it's synonym,meaning, and part of speech. Along 
with MyThes, a perl program “th_gen_idx.pl” is shipped. This program is used to generate a file that will help 
index the words in the data file for MyThes. The proper way to run the program is by executing the following 
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command in the terminal.  
 
#cat th_en_US_new.dat | ./th_gen_idx.pl > th_en_US_new.idx 
 
In the above command “th_en_US_new.dat” is the name of the data file that the user creates. The file name 
that the program th_gen_idx.pl generates is “th_en_US_new.idx”. The name of the .dat file and the .idx file 
must be same. This command should be executed from the terminal, and the directory from where the .pl 
program is executed should be where both the .dat file and the .pl file exists. 
 
The .idx file that is generated will look as shown below: 
ISO8859-1 
1 
simple|10 
 
The first line indicates the encoding of the file. The second  indicates that there is only one word entry, and 
the next line indicates that the word “simple” in the .dat file is after 10 bytes from the beginning of the file. 
After this information MyThes will start to read the information on the word from the location mentioned in 
bytes. 
 
The complicated portion is over if  both the .dat and .idx file have been generated. The only part remaining is 
letting the OOo know where the files for MyThes is present. This is done by making an entry into the 
dictionary.lst file which is present in the Ooo_directory/share/dict/ooo/ folder, as mentioned in the 
SpellChecker section of this guide and placing both the .dat and .idx file in the same directory where the 
dictionary.lst is placed. 
     

10.8  References for Further Reading 
a) http://sourceforge.net/docman/display_doc.php?docid=29374&group_id=143754  
b) http://lingucomponent.openoffice.org/ 
c) READ ME file of MyThes : http://lingucomponent.openoffice.org/MyThes-1.zip 
d) data_layout.txt file of MyThes :http://lingucomponent.openoffice.org/MyThes-1.zip 
e) http://en.wikipedia.org/wiki/Myspell 
f) http://about.openoffice.org/ 
g) http://www.openoffice.org/license.html 
h) http://www.it46.se/localegen/ 
i) http://www.khmeros.info/tools/localization_of_openoffice_2.0.html 
j) http://www.khmeros.info/tools/how_to_patch.html 
k) http://www.khmeros.info/tools/openoffice_locale_.htm 
l) http://www.khmeros.info/tools/Collation_in_ooo_2.0.html 
m) http://www.khmeros.info/tools/oo2.0_program_translaltion.html 
n) http://ne.openoffice.org/stats/ 
o) http://translate.sourceforge.net/ 
p) http://www.khmeros.info/tools/translate.html 
q) http://ftp.linux.cz/pub/localization/OpenOffice.org/devel/build/build 
r) http://tools.openoffice.org/dev_docs/build_linux.html 
s) http://wiki.services.openoffice.org/wiki/CPAN_install 
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11 Linux Distribution Development for Localization 

11.1 Introduction 
In this Chapter, we deal with the Live CD based Linux Distribution. We have primarily focused on Debian 
GNU/Linux. Linux Distributions and Localization have also been dealt with. Next, we also discuss the 
development of a Live CD Linux Distribution. References for further reading are provided at the end of the 
chapter. 
 
About Linux    
Linux is an operating system initially created by Linus Torvalds in the early 90s. Since then thousands of 
developers worldwide have contributed to its development and have also been supported by major 
corporations as: IBM, Novell , HP etc. Linux is the name of the core kernel which has all the functionality of 
an operating system. The kernel, at the heart of all Linux systems, is developed and released under the GNU 
and its source code is freely available to everyone. Linux is also popularly known as Gnu/Linux. It is one of 
the most prominent examples of free software and open source development. It is this kernel that forms the 
base around which a Linux operating system is developed and we call this  the Linux Distribution. The 
distribution consists of several GNU applications and tools. Some of the most popular Linux distributions are 
RedHat, Debian, SuSe etc. Since Linux and some of the distributions are released under GNU and are open 
source, we can modify and redistribute them. A wide range of applications for Linux are developed and used 
today in various sectors. The main reasons for the popularity of Linux applications are it's low cost, flexibility 
and stability. 

11.2 Linux Distribution 
Linux distribution, is a Unix-like system comprising of software components such as the GNU/Linux kernel 
and assorted free, open source, and possibly proprietary software. There are currently over three hundred 
Linux distribution projects in active development, their respective distributions being revised and improved. A 
Linux Distribution can be derived from another Linux distribution by the necessary customizations to the 
original ones. Some of the most popular Linux Distributions are: 
  

• Debian GNU/Linux 
• Red Hat Linux 
• Fedora Core 
• SuSe Linux 
• Knoppix 

    
Distributions are developed and supported by communities or commercial companies. Debian GNU/Linux for 
example is supported by the community. It is up to the user, which one to use, either commercial or the 
other. Distributions are developed according to their  usage . For example : desktops, servers, routers, 
multimedia, clusters etc. So, one may choose the distribution according to his/her need. 
 
Distributions are normally segmented into packages, each package holding a specific application or service. 
This is achieved with the aid of the package management system. A package management system is a 
collection of tools to automate the process of installing, upgrading, configuring, and removing software 
packages from a computer. Some of the popular package management tools are: rpm , dpkg etc. 
 
Few of the different Linux distributions available today are  

• Hard Disk based distributions 
• Live CD Linux distributions 
• Embedded Linux distributions 
• Floppy based Linux distributions 
• Diskless terminal Linux distributions 
• Handheld/PDA Linux distributions 
• Flash Disk based Linux distributions 

 
Hard Disk based Linux Distributions 
This type of Linux distribution is the most common type Distribution. The method of installing Linux is by 
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booting from a CD that contains the installation program and installable software. The CD can be burned 
from a downloaded ISO image, purchased alone for a low price, or can be obtained as part of a box that may 
also include manuals and additional commercial software. The most popular Red Hat Linux falls into this 
category. 
 
Live CD Linux distributions 
Live CD based Linux distribution has the operating system kernel, scripts and software stored on a bootable 
CD or DVD that can be run directly from the CD or DVD drive, without installing into permanent memory, 
such as a hard drive. It runs with the help of Ramdisk. A Ramdisk is a virtual solid state disk that uses a 
segment of active computer memory. Ramdisk provides a role typically functioned by hard drives. A live CD 
does not alter the current operating system or files without a user's intervention. The system returns to its 
previous OS state when the live CD is ejected and the computer is rebooted. Morphix and Knoppix are the 
most popular Live CD Linux Distributions. 
 
Debian GNU/Linux 
Debian is a widely used distribution of free software developed by the joint efforts of volunteers from around 
the world. It consists of a lot of basic tools of the operating system from the GNU project and supports the 
common computer architectures like: x86, Power PC etc. Debian GNU/Linux is the basis for several other 
distributions, including Knoppix, Ubuntu Linux, linspire, etc. Debian is also supported by donations made 
available by the Software in the Public Interest, a non-profit umbrella organization for free software projects. 
Debian is also well known for its package management system, especially APT, the Advanced Packaging 
Tool. APT simplifies the process of installing and removing software on Debian systems, by automating the 
retrieval, the configuration, the compiling (sometimes) and the installation of software from APT sources. 
 
Lots of Debian derivatives exist today. Debian Derivatives are subsets of Debian which are configured to 
support a particular target group out-of-the-box. For example: Debian aimed for science, Debian aimed for 
schools etc. In our case, NepaLinux, which is also a Debian Based Linux Distribution, is targeted specially 
towards Desktop users in the Nepali Language. Popular Debian Derivatives are: 

 
• DebianGIS: a CDD for Geographical Information and Earth Observation Systems  
• Debian Junior: For children 
• Debian Med: For Medical 
• DebianNeo: Debian Stable for newbies 
• Skolelinux (built by the DebianEdu project): aimed for schools. 
• Knoppix 
• Mepis 
• Linspire 
• Gnoppix 
• Morphix 

11.3 Linux Distributions and Localization 
The idea behind the development of the Linux distribution by the localizers is to install all the localized and 
related software  in one CD or DVD. For this kind of Linux distributions, most preferred type of Linux 
distribution is a Live CD or a Live DVD, which can run directly without installing in the Hard disks. This will 
help the community with a single source of all the localized applications and users do not have to deal with 
the complexity of the manual installation of localized applications and tools. Some of the applications that a 
typical Live CD or Live DVD Linux distribution includes: 
 

• Unicode Support 
• Language and Culture Locales 
• Different types of Input Methods 
• Open type and true type fonts 
• Localized Desktop 
• Localized Icons and themes 
• Localized Office suite and Internet browsers 
• Spell Checkers 
• Thesaurus 
• Many more applications 



PAN Localization Guide to Localization of Open Source Software 
 

 
116

 
The following section will guide you in developing a Localized Live CD Linux distribution based on the 
popular Debian GNU/Linux and Morphix Live CD Linux distribution. 

11.4 Development of a Live CD Linux Distribution 
This section will cover the following topics regarding the development of the Live CD Linux Distribution. 

 
• Setting up the Build Environment 
• Creating the Main Module consisting of Localized Desktop, Input Methods etc 
• Base Module Modification and Customization, adding Language option on the boot menu, using 

customized Images, tweaking etc. 
• Generating the ISO to burn on CD 

 
Morphix and Debian Gnu/Linux for the Live CD 
Morphix is a modular Linux distribution, based on Knoppix. Morphix uses the Live CD features of Knoppix, 
but it is more modular. Different modules can be combined on a CD for varying purposes, making Morphix a 
sort of Live CD construction kit. For example, a Morphix CD can contain a normal base system and use the 
Localized Gnome Desktop as a module. Other modules can be constructed for other specific purposes, such 
as a firewall, a rescue disk, a basic office suite etc.  A base module can be considered as a core image of  
the Live CD and a main module is a compressed image containing the software applications. In this section, 
we will look at the steps required for creating a Morphix and Debian GNU/Linux for the Live CD. 
 
For this, we need to download the Morphix base module and create a Main Module consisting of Gnome 
Desktop using Debian Repositories.  A Debian repository is either anftp or httpd source which contains 
software packages. 
 
There are different methods of creating a Main Module for the Live CD. One popular method is to use the 
Debian repositories. Basically there are 5 Debian  Repositories. 
 

1. Stable 
This repository is the latest official release of the Debian GNU/Linux distribution. This is stable and well 
tested software, which changes only if major security or usability fixes are incorporated. Presently, Sarge 
is a codename for the Debian stable distribution. 

 
2. Testing 
Testing repository contains packages that are intended to become part of the next stable distribution and 
are less stable as compared to the packages from the stable repository. Testing does not get the timely 
security updates from the security team. Currently, Etch is the codename for the testing distribution. 

 
3. Unstable 
Unstable area contains the most recent packages in Debian. Once a package has met our criterion for 
stability and quality of packaging, it will be included in testing. "Unstable" is also not supported by the 
security team. Sid is the current codename of the unstable repository. 

 
4. Woody 
Woody is considered as the obsolete Debian stable release. It was the stable version from July 19th  to 
June 6th 2005, when Sarge took over. 

 
5. Experimental 
The experimental repository is the part of Debian where the most bleeding-edge and the  unstable 
software is being soaked before it will be robust and tested at least to be able to get into the unstable 
repository. 

 
Setting up the Build Environment 
Build environment is the system in which we are actually undertaking all the distribution development. 
Following are the detailed steps to setup a build environment. 
 
Downloading Debian GNU/Linux   
Different flavors of Debian like:  sarge, etch or sid  CD/DVD images  can be downloaded from the website 
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http://www.debian.org/CD/. It depends on the user which one to use, either CD image, DVD images or other 
available options. The easiest route for most people will be to use a set of Debian CDs. So, in this document 
we will be considering the Debian Sarge Distribution that can be downloaded from the url 
http://cdimage.debian.org/debian-cd/current/i386/iso-cd/ . There are altogether 14 CDROM iso files which 
can be burnt to the blank CDs using GnomeBaker , cdrecord or Nero CD burning utility. For setting up the 
build environment, download first 2 iso named debian-testing-i386-binary-1.iso and debian-testing-i386-
binary-2.iso.  The number of iso, version, and codename can subjected to change later. The name and 
version used in this guide is the one released at the time of writing this guide. You can get more information 
regarding releases on the site http://www.debian.org/releases/ . 
 
Installing Debian Sarge 
Basic Steps for installing Debian Sarge from the CD images are described below. 
 
Making the system bootable  from CD 
In order to install Debian in your computer, you need to boot the computer with the Sarge first CD. Follow the 
steps below to make the system bootable from the CD. 
 

a) As the  computer starts, press the keys to enter the BIOS utility. Often, it is the Delete key.   
However, consult the hardware documentation for the exact keystrokes. 

b) Find the boot sequence in the setup utility. It's location depends on your BIOS, but you are looking 
for a field that lists the drives.  Common entries on IDE machines are C, A, cdrom or A, C, cdrom.  C 
is the hard drive, and A is the floppy drive.  

c) Change the boot sequence setting so that the CD-ROM  is first. Usually, the Page Up or Page Down 
keys cycle through the possible choices.  

d) Save your changes. Instructions on the screen tell you how to save the changes on your computer.  
 
  Booting Debian Sarge from the first CD and Continuing the Installation 

 
• Turn on your computer and insert the Debian Sarge first CD in your CDROM Drive. 
• Type linux26 and press Enter to Boot. Using linux26 option will install the 2.6.x series kernel into the 

system and simply pressing Enter will install 2.4.x series Kernel. Here we will use linux26 option. 
• Choose 

 Language = English 
 Country or Region = United States 
 Keymap = American English 

• If  the “Configure the Network” screen appears, Press Continue and select “Do not configure the 
network at this time” . We are installing Debian just from CDs, so it's OK to proceed without 
configuring the network. Note that if your computer is connected to the network and your network is 
DHCP enabled network, the screen will not appear. 

• Next, type any name like “Buildmachine” when prompted  for the Hostname 
• The Partition disks screen appears now. First you will be given the opportunity to automatically 

partition either an entire drive, or free space on a drive. This is also called “guided” partitioning. If 
you do not want to autopartition, choose Manually edit partition table from the menu. If you choose 
guided partitioning, you will be able to choose from the following schemes as shown in the table 
below. 
 

Partitioning scheme Minimum 
space Created partitions 

All files in one partition 600MB /, swap 
Desktop machine 500MB /, /home, swap  
Multi-user workstation 1GB /, /home, /usr, /var, /tmp, swap  

 
Table 5. Schemes for guided partioning 

 
If you select Manually edit the partition table, you need to create at least a Linux ext3 partition and a 
Linux swap Partition. To make a new partition, 

 
a) Select the FREE SPACE entry and press Enter. 
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b) Choose Create a New Partition. 
c) Use any size you may wish . But since we are installing the system for the development of the 

Live CD, more disk space will be more comfortable to work with . Hence we choose 15.0  GB. 
d) Next choose “Primary” following with the “Beginning” option. Note that if you have other 

operating system installed already, you may have to choose Logical partition also. Reading 
more on Disks and partitions is highly recommended. 

e) By default, the Debian installer will choose the ext3  file system for the created partition and 
automatically selects the mount point as / 

f) Linux ext3 partition is created and as per the requirement Linux swap has also  to be created. 
So, Select the FREE SPACE entry and press Enter once again. 

g) Choose Create a New Partition. Linux swap partition size must be double the size of the 
physical RAM of the computer. For example: I have 256 MB of RAM, so i decided the Linux 
Swap partition to be 512 MB. Hence, provide the size which best suits your case. 

h) Repeat step 'd'. 
i) Under Partition settings, Press Enter on the menu “Use as”. Select “swap area” and press Enter. 
j) Now run “Done Setting up Partition”. 
k) Press Enter on “Finish partitioning and write changes to disk” menu. 
l) Finally, Click“Yes” to “Write the changes to disk?”. 

 
• Base Installation process starts from this point  and after the installer will prompt you whether to 

Install the Grub boot loader in the master boot record. Choose “Yes”  
• After writing Grub to the master boot record, the installer will eject the CD . Then press Continue. 

This will restart the machine and boot into the new installed system. But note that this is not the end 
of the installation and only half way to the completion. 

• Now, the Welcome Screen appears . Choose “Ok”. 
• Choose 

 
a) Hardware clock set to GMT = yes. 
b) Time Zone = Your Zone. 
c) root password =  any strong password. 
d) re-type password = password you typed just a step before. 
e) Full name for the new user = Firstname Lastname. 
f) Username for the new user = Firstname or any other preferred. 
g) Password for the new user= any strong password. 
h) re-type password for the new user= password you used for the new user. 
i) Use a PPP connection to install the system = No 
 

• After following the above steps , the Apt configuration screen appears. APT is the mechanism Debian 
uses to manage and install software packages. We are installing from CDs so insert the CD 1 and 
select the “cdrom” method and press Ok on the next Screen. This will scan the inserted CD and put 
information of packages of the CD.Afterwards, apt will ask you to Scan another CD. Just opt yes and 
all the CDs that you have will be scanned. Press OK on the next screen. 

• Then it will ask you to insert the CD 1. Insert the CD 1 and press Enter. The necessary packages will 
be installed in this phase. 

• “Debian Software Selection” screen will appear now. Press Space bar to select/deselect your choice. 
Here we will choose the “Desktop Environment” option for our purpose and then press OK. Selecting 
this option will install a Debian Sarge system with a Gnome Desktop Environment which will be more 
than enough for our Live CD development task. If the installer prompts the questions, answer them 
which best suits your system or  use the default options. In most of the cases default option should 
work except while answering the choice for the mouse configuration,  you need to use PS2 if ps2 
mouse is connected to your PC . 

• The installation process will take some time at this stage depending on the configuration of you PC. 
While installation, the process may ask you the required CDs , so insert the right CD if prompted. 

• After the completion of the packages installation, few configurations will be remaining for finishing the 
entire process. 

• Choose, General Type of Mail configuration: no configuration at this time. 
• Choose Yes and the installer will ask where to have administrative email sent. This will normally be 

your own user account or email address. 
• Finally Gnome Login Prompt will appear .  Use the cerated user name and password to login to the 
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gnome desktop.  
 

 This completes the Debian Sarge Installation and Now you can log in to your new Debian system. 
 
Network Configuration 
Build machine needs numerous packages to be download for the development of the Live CD. Hence we will 
configure our build machine to access the Internet with the following steps: 
 
Steps: 

1. Login to the system using the account created at the install time. 
2. Go to Applications --> System Tools --> Networking. 
3. It will ask the Administrator Password. This is the root password that was created at the install time. 

So, use the root password. 
4. Click Forward. 
5. Check Ethernet or any other possible media. 
6. Select Manual or Automatic. 
7. If you select Manual, insert IP address, netmask and Gateway address. Consult your network 

administrator for the information. 
8. Click Forward. 
9. Check Apply and active connection. 
10. Click Forward and then Apply button. 
11. Next, Click the DNS tab and type the DNS server IP address of hostname. Consult your network 

administrator for the DNS information. 
12. Click Add and Press OK. 

 
Upgrading the System 
The installed Debian System can be upgraded to the latest version by using the Debian online repositories. 
This is not mandatory but recommended. Following are the basic steps required to upgrade the system. 
 

a) Add the following lines to the /etc/apt/sources.list file using your favorite text editor like vi, gedit etc 
deb http://ftp.debian.org/debian/ sarge main contrib non-free 
deb http://security.debian.org/ sarge/updates main contrib 

b) Run: apt-get update  
c) Now upgrade your system using: apt-get dist-upgrade. In this process, the apt tool will download all 

the necessary packages and may ask question while configuring those. You can use the default 
ones or make the choice that suits your system 

d) Restart the system. 
 
Installation of the required tools for building and customization of the Live CD 
Tools required to a build Live CD: 
 
debootstrap:  
debootstrap  bootstraps  a  basic Debian system into the target folder from the debian mirror. After 
debootstrap, the downloaded debian system will only contain the basic minimal packages. Install 
debootstrap using the following command. 
apt-get install debootstrap 
 
cloop tools: 
Compressed loopback device or cloop is mostly used as a convenient way to compress conventional file 
systems onto LiveCDs. Cloop is a module for the Linux Kernel.  The module image that is used on the 
Morphix , Knoppix based or some other Live CDs uses cloop system for the compression. A compression 
ratio of about 2.5:1 is common for software. While building the module for the LiveCD cloop tools must be 
installed. Use the steps to install cloop tools. 

a) apt-get install cloop-utils 
b) apt-get install cloop-src 

 
morphing tools: 
A number of command line tools and scripts are provided in order to create the modules for the Live CD.  
Basic steps to install morphing tools is  
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a) Add "deb http://www.morphix.org/debian ./" to your /etc/apt/source.list  
b) apt-get update  
c) apt-get install morphing-tools  

Note that if the installation of morphing-tools failed due to dependencies you can only install morphix-
modulebuilder . Use the following command to install it. 

apt-get install morphix-modulebuilder 

Downloading the Base ISO 
A base module can be referred as a heart of the Live CD.  When we download the base ISOs , we can find 
the base module by mounting the downloaded ISO. Two flavours of Base ISOs can be downloaded. 

Downloading the Base ISO from the morphix website downloads; URL: http://www.morphix.org/ 
Downloading from the Daily autobuilds; URL:  http://www.morphix.org/autobuilds/base/ 

The base ISO that can be downloaded from the morphix website is considered more stable than the one 
which can be downloaded from the autobuilds. For those, who need the latest kernel with the latest 
packages are recommended to use the ISO from the autobuilds. Otherwise, use the ISO from the morphix 
download section. 

Extracting the Base ISO 
The Base ISO can be mounted to some folder and all the contents can be copied to a folder. The following 
steps need to be followed. 

a) mkdir /iso 
b) mount -o loop basemod-2.6.15-2006-05-17_0015.iso /iso 
c) Where basemod-2.6.15-2006-05-17_0015.iso is the downloaded file from morphix autobuilds  
d) mkdir /mylivecd 
e) cd /iso 
f) cp -Rp * /mylivecd 
g) umount /iso 

 
Main Module Construction 
The Main Module is a compressed image consisting of software packages like: Gnome Desktop, Office 
applications etc. In this section, we will create a main module for our Live CD which is considered as a major 
task. 

1. First, debootstrap the base system to some folder  
mkdir /mainmodule 
debootstrap sarge /mainmodule 
Instead of sarge you can use etch or sid, whichever you like while debootstraping. Since sarge is very  
stable, it is the one that is highly recommended.  

 
2. Chroot to the folder mainmodule.  
Chroot is an operation which changes the root directory. Root directory is the first or top-most directory 
in a hierarchy. 
chroot /mainmodule 

 
3. Make entry for the apt sources.  
Here we will use the Debian sarge repositories 
Add the following lines to the /etc/apt/sources.list file using your favorite text editor  like vi, gedit etc 
 
deb http://ftp.debian.org/debian/ sarge main contrib non-free 
deb http://security.debian.org/ sarge/updates main contrib 

 
4. Run: apt-get update 

 
5. Now install the packages of your choice.  
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Here we install xfree86 or xorg X server, x window system (X libraries, a set of fonts, group of basic X 
clients and utilities,etc), and gnome desktop. xfree86  is an implementation of the x window system. It is 
a free and open source software under the XFree86 License version 1.1. It is developed by the XFree86 
Project, Inc. The XOrg Server is the official reference implementation of the x window system . It is a free 
and open source software released under MIT License. X11R6.7.0. The first version of the X.Org Server 
was forked from xfree86 4.4 RC2. The immediate reason for the fork was a disagreement with the new 
license for XFree86 4.4 final, as several disagreements among the contributors surfaced prior to the 
split. When the fork was created changes were folded in from X11R6.6 creating a common codebase. 
Many of the previous XFree86 developers have joined the X.Org Server project. Debian sarge 
repositories have xfree86 packages. Hence we consider xfree86 in this document. 
 
 Run: apt-get install xserver-xfree86  or xserver-xorg 
 Opt Y  
 Run: apt-get install x-window-system 
 
Note that after you install x windows by using the above commands,you need to  make sure that the 
folder /tmp has sticky bit on and looks like drwxrwxrwt . If not, you can use the following commands to 
change the permission 
 
chown 1777 /tmp -R  
 
iv) Install Gnome Desktop using: apt-get install gnome-desktop-environment 
After the installation of the packages, the system will ask some questions for configuration for which you 
can use the default options 

 
6. Installing other additional packages  
apt-get install xscreensaver 
apt-get install pcmcia-cs 

 
7. Adding up Locales, Fonts, Translations and Input Methods 
This section guides you how to install locales,  fonts , translated files and different types of input 
methods for our localized distribution. 

 
1) Locales 

i) Install the locale package using:  
apt-get install locales 

 
ii) Remove the previous (old) one if exist : 

rm -rf /usr/lib/locale/xx_XX , where xx=Language code & XX=Country code 
 

iii) Copy the UTF-8.gz file to /tmp 
cp /usr/share/i18n/charmaps/UTF-8.gz /tmp 

 
iv) gunzip the UTF-8.gz file 

/bin/gunzip -d /tmp/UTF-8.gz 
 

v) Copy the locale file to /tmp:  
cp xx_XX /tmp 
Note that if your language locale is already listed at glibc, you can find it under 
/usr/lib/locale/ 

 
vi) Run:  

/usr/bin/localedef -i /tmp/xx_XX -f /tmp/UTF-8 /usr/lib/locale/xx_XX 
 

vi) Check using:  
locale -a 

 
vii) Removing the files:  

1. rm -rf /tmp/UTF-8  
2. rm -rf /tmp/xx_XX 
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2) Fonts 

i) Copy your open type unicode fonts 
      cp fontname.ttf /usr/share/fonts/truetype 
 

  ii) Run:   
 fc-cache -f 

 
  iii) Verify using:  
fc-list  

  
Note that the font folder, where you copy the fonts should be reachable by the X server. This 
behavior can be modified using the files inside /etc/fonts and /etc/X11/XF86Config-4 or 
/etc/X11/Xorg.conf 

 
3) Translations 
Adding translated files is dependent on the type of packages that are localized. Here we will cover 
adding translations for the software packages that are localized using the gettext internationalization 
library. Note that the package version and the package from which the translated file is extracted 
should be the same. 

        
i) Copy the files 
       cp *.mo /usr/share/locale/xx/LC_MESSAGES 

 
4) Input Methods 

This section will cover how to use xkb or scim input methods. 
 

      i) XKB 
        Copy your developed xkb file 

       1. cp -f  xx /usr/X11R6/lib/X11/xkb/symbols/pc 
       2. cp -f files/xx /usr/X11R6/lib/X11/xkb/symbols 

 
Add the following lines to /usr/X11R6/lib/X11/xkb/rules/xorg.xml or  
/usr/X11R6/lib/X11/xkb/rules/xfree86.xml file. While adding the following lines, check for already 
present layout sections. You can insert your section somewhere following the alphabetical order of 
the countries. 

 
<layout> 
<configItem> 
<name>xx</name> 
<description>XX</description> 
</configItem> 
<variantList/> 
</layout> 

 
If your  xkb file is already submitted to the official xkb main stream there is no need perform the 
above steps. 

 
ii) SCIM 

Install scim pacakges 
• apt-get install scim 
• apt-get install scim-gtk2-immodule 
• apt-get install scim-tables-xx OR apt-get install scim-tables-additional  

 
( Use this command only if the scim keyboard layout mapping table is submitted to the 
official scim main stream. If not submitted, you can copy your mapping binary table file to the 
location /usr/share/scim/tables/ ) 

 
     iii) IIMF 
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    Install iiimf packages 
• apt-get install iiimf-htt-csconv  
• apt-get install iiimf-htt-xbe iiimgcf libiiimcf2 libiiimp0 iiimf-htt-server 

   
 If the iiimf keyboard mapping table is not submitted to the official iiimf main stream , use the 
following steps 

 
 Create a folder with your country name 

mkdir -p /usr/lib/im/locale/UNIT/LANUAGE/data 
 

 Copy the binary file 
cp yourlayout.data /usr/lib/im/locale/UNIT/COUNTRY/data 

 
 Add the following to /usr/lib/im/locale/UNIT/sysime.cfg 

 
[ xx_XX ] 
yourlayout common/ctim.so LANGUAGE 

 
 5) Adding the necessary scripts 

 
i) Create a locale.gen file under /etc and add your ane en_US locale entry. 

 
Example of locale.gen file. Here ne_NP is the locale for Language Nepali and Country Nepal 
----------------------- 
en_US ISO-8859-1 
en_US UTF-8 
ne_NP UTF-8 
----------------------- 

ii) mkdir /morphix cdrom cdrom MorphixCD floppy 
 iii) Create a file inside /morphix named init.sh. Copy paste the following lines to it. 
  
 ---------------------------- 
 #!/bin/sh 
 #  
 # Module-dependent initscript 
 #  
 # copyleft 2003, Alex de Landgraaf 
 # GPL, (www.gnu.org for details) 
 
 # This is a placeholder adapted for the HeavyGUI mainmodule 
 # Place actions to be started on initialisation 
 # of your MainModule in here 
 
 USER=$USERNAME 
 WINDOWMANAGER=gnome-session 
 INSTALLED=no 
 XSERVER=XFree86 
 PATH="/bin:/sbin:/usr/bin:/usr/sbin:/usr/X11R6/bin:/usr/local/bin:." 
 
 # load the config's generated by our basemodule 
 XMODULE="" 
 [ -f /etc/sysconfig/xserver ] && . /etc/sysconfig/xserver 
 [ -f /etc/sysconfig/morphix-all ] && . /etc/sysconfig/morphix-all 
 
 echo "MainModule loaded" 
 
 [ -f /etc/sysconfig/xserver ] && . /etc/sysconfig/xserver 
 [ -f /etc/sysconfig/morphix-all ] && . /etc/sysconfig/morphix-all 
 [ -f /etc/sysconfig/keyboard ] && . /etc/sysconfig/keyboard 
 [ -f /etc/sysconfig/i18n ] && . /etc/sysconfig/i18n 
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 export LANG COUNTRY CHARSET 
 
 [ -f /etc/sysconfig/keyboard ] && . /etc/sysconfig/keyboard 
 # Set default keyboard before interactive setup 
 [ -n "$KEYTABLE" ] && loadkeys -q $KEYTABLE 
 [ -n "$CONSOLEFONT" ] && consolechars -f $CONSOLEFONT 
 
 # Try to find and load a drm module for this graphics card 
 # ripped from Knopper's xsession 
 if [ -n "$XMODULE" ]; then 
 for i in /lib/modules/*/kernel/drivers/char/drm/*; do 
 case "$i" in *$XMODULE*) modprobe $XMODULE;; esac 
 done 
 fi 
 
 stringinfile(){ 
 case "$(cat $2)" in *$1*) return 0;; esac 
 return 1 
 } 
 
 # Check if there isn't a background in /tmp (for minimodule) 
 # Actually, this should be done for each initscript too, 
 # as it would make them adaptable for minimodules... 
 
 #if [ -e /tmp/background.png ]; then 
 #BGIMAGE=/tmp/background.png 
 #else 
 #BGIMAGE=/morphix/background.png 
 #fi 
 
 /etc/init.d/cupsys start & 
 #mount -avF -o ro -t nonfs,nosmbfs,noncpfs,noproc 
 
 if [ $INSTALLED = no ]; then 
 # Setting up our handy-dandy console-shells, thanks to popular demand... 
 # ripped from Knopper's knoppix-autoconfig 
     while true; do /bin/bash >/dev/tty2 2>&1 </dev/tty2; done & 
     while true; do /bin/bash >/dev/tty3 2>&1 </dev/tty3; done & 
     while true; do /bin/bash >/dev/tty4 2>&1 </dev/tty4; done & 
     while true; do /bin/bash >/dev/tty5 2>&1 </dev/tty5; done & 
     while true; do /bin/bash >/dev/tty6 2>&1 </dev/tty6; done & 
 
     echo "allowed_users=anybody" >> /etc/X11/Xwrapper.config 
     echo "nice_value=-10" >> /etc/X11/Xwrapper.config 
 
 #    echo "xsetbg -fullscreen $BGIMAGE &" >> /etc/X11/xinit/xinitrc 
 #    echo "xsetbg -fullscreen $BGIMAGE &" >> /home/$USER/.xinitrc 
 #    echo "xsetbg -fullscreen $BGIMAGE &" >> /home/$USER/.xsession 
 
     echo "exec $WINDOWMANAGER" >> /etc/X11/xinit/xinitrc 
     echo "exec $WINDOWMANAGER" >> /home/$USER/.xinitrc 
     echo "exec $WINDOWMANAGER" >> /home/$USER/.xsession 
 
     su -c"exec /usr/bin/X11/startx" - $USER 
 
 # wait until X is locked 
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for i in 1 2 3 4 5 6 7 8 9 10 
       do 
       if [ -f /tmp/.X0-lock ]; then 
    break 
    sleep 1 
       fi 
     done 
 
     for i in $XSERVER; do 
  killall -TERM $i 2> /dev/null && echo "X-Server shut down." && break 
     done 
 fi 
 
 echo "Rebooting... (disabled, just to be sure, for now)" 
 echo "Use reboot or halt to shutdown your computer" 
 halt 
 #exec reboot 
 ----------------------------------- 
 

5. Generate the main module 
 

              i) Run: apt-get clean 
 

Before creating the main module, if you want to save space on the CD , you can remove the deb 
files that are used to install the pacakges. This will remove the deb files of the folder 
/var/cache/apt/archives 
 

             ii) Exit the chroot environment 
                     Type: exit 

 
      iii) Execute: 

                   module-builder /mainmodule /mylivecd//mainmod/mymainmodule.mod    
 

Base Module and Customization 
 
Base module customization and modification is useful if you want to add your language on the Live 
CD boot menu, changing images , adding modified icons etc. 
 

1. Extract the base module 
i) mkdir /basemodule 
ii) extract_compressed_fs /mylivecd/base/morphix > /tmp/morphix.iso 
iii) mount -o loop /tmp/morphix.iso /basemodule 
iv) cd /iso 
v) cp -Rp * /basemodule 
vi) umount /iso 

 
      2. Adding Language for the Live CD 

 
       i) Change  lang=us to lang=xx in every grub entry of the file     
  /mylivecd/boot/grub/menu.lst. By default, this will boot Live CD to your language  
  locale 

 
     ii) Adding Language to the Supported Language menu list . Add the following lines to 
     /mylivecd/boot//grub/lang.lst 

 
    title Morphix | YourLanguage 
 

   kernel (cd)/boot/vmlinuz ramdisk_size=100000 noapic acpi=off apm=power-off       
  vga=791 splash=silent initrd=miniroot.gz quiet BOOT_IMAGE=morphix lang=xx 
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      initrd (cd)/boot/miniroot.gz 
 

     iii) Change  lang=us to lang=xx in every grub entry of the file     
/mylivecd/boot/grub/options.lst. This will boot the Live CD to your language even if  you use 
submenu options to boot the CD 

 
Note: You can also change the labels (eg: Morphix ) to your own  ( eg: NepaLinux ) by 
editing the files under /mylivecd/boot/grub/ 
 

    iv) Add the following lines to the file /basemodule/etc/init.d/knoppix-locales at proper
 locations 

 
--------------------------------------------------------- 
  

        COUNTRY="XX" ( where XX = Country code in small letters ) 
        LANG="xx_XX" 
         KEYTABLE="us" 
         XKEYBOARD="us" 

        KDEKEYBOARD="dev" 
        CHARSET="UTF-8" 
  
       # Additional KDE Keyboards 
        KDEKEYBOARDS="us,dev" 
        TZ="Continet/City" 
        ;; 

     --------------------------------------------------------- 
 

 3. Grub Boot Image modification 
Grub boot Image here refers to the first background image which is in blue and white image  
displayed when we boot from the CD. You can modify the existing image to  a new image. 
Gimp is highly recommended tool for this modification . Find the steps below to modify the 
image. 

 
i) Create a directory to work:  

mkdir /message 
 

           ii) cd /message 
 

           iii) The image resides in the file /mylivecd/boot/grub/message. Since it is cpio archive we 
 use the following command to extract it: 

            cpio -i  <  /mylivecd/boot/grub/message 
 

     iv) Modify the background.pcx  
 

     v) Create the message file from the /message folder 
                       a) cd /message 

   b) ls . | cpio -o > /mylivecd/boot/grub/message   
 
 While modification. the specification of background.pcx image should be exactly as below 

          a) A pcx format file 
          b)  640x503 Resolution 
          c) Size not exceeding 35KB 
          d) 14 Color Image 

   
     vi) Boot Splash Images Customization 

BootSplash Images of the Live CD refers to the images that are displayed while the 
Live CD boots. The current base module uses 6 images. So, create your own 6 
images and replace the existing ones. Find the steps for the modification. 
• gunzip /mylivecd/boot/miniroot.gz 
• mount -o loop /mylivecd/boot/miniroot /iso 
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• Bootsplash images resides under /iso/bootsplash/images. Replace them with 
the new ones. 

• umount /iso 
• gzip /mylivecd/boot/miniroot 

  
    

File name Size ( not 
exceeding ) Resolution 

bootsplash-
1024x768.jpg 21KB 1024x768 

silent-1024x768.jpg 22KB 1024x768 
silent2-1024x768.jpg 35KB 1024x768 
silent3-1024x768.jpg 88KB 1024x768 
silent4-1024x768.jpg 84KB 1024x768 
silent5-1024x768.jpg 91KB 1024x768 

 
Table 6. Specification of the images to be used 

 
      4. Generating the Base Module after Customization 

After modification and making the necessary changes you need to create the modified base 
module. Use the steps below to do the same. 

  
i) mkisofs -R -U -V "morphix" -P "Morphix" -cache-inodes -nobak -pad /basemodule > 
/tmp/morphix.iso 

 
ii) create_compressed_fs /tmp/morphix.iso 65536 > /mylivecd/base/morphix   Extra 
Modification and Customization 

 
a) Themes and Icons 
Gnome uses  themes to alter the appearance of buttons, scrollbars, list elements, to 
customize the appearance of windows. You can download themes for Gnome from 
Websites like http://www.gnome-look.org and extract them to the folder 
/mainmodule/usr/share/themes or  modify the existing ones in the folder 
/mainmodule/usr/share/themes. 
 
As with themes, gnome also uses gnome icons themes for the desktop icons. Download 
icons themes ( eg: from gnome-look.org ) to the folder /mainmodule./usr/share/icons or 
modify the existing ones.  Check for the /mainmodule/usr/share/pixmaps folder for the 
default icons that are used by the Gnome Desktop. 
 
b) Changing the Distribution name and other texts that are displayed while booting the Live 
CD and pressing F2     

 
• gunzip /mylivecd/boot/miniroot.gz 
• mount -o loop /mylivecd/boot/miniroot /iso 
• Check the file /iso/linuxrc and do the necessary changes. For example: To change 

the distribution name change DERIVATIVE =yourdistrbutionname 
• umount /iso 
• gzip /mylivecd/boot/miniroot 

 
c) Changing Default username  
The Live CD boots to GUI using the username morph. To change the username, follow the 
steps below: 

 
• Edit the file /basemodule/etc/init.d/morphix-start and /basemodule/etc/init.d/knoppix-

autoconfig of the base module. In this file change username=morph to 
username=newusername. 
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• Change morph to newusername in file /basemodule/etc/passwd 
• Change the user in the file passwd and group file of miniroot.gz 

 
i) gunzip /mylivecd/boot/miniroot.gz 
ii) mount -o loop /mylivecd/boot/miniroot /iso 
iii) Change user morph to newusername in the files /iso/etc/passwd and 
/iso/etc/group 
iv) umount /iso 
v) gzip /mylivecd/boot/miniroot 

 
Refer to the section base module customization and modification to extract and generate the 
base module. 

 
d) Setting password for the newusername 
After changing the default username to newusername, the password should be set to the 
newusername. Steps to set the password are; 

 
• Copy the binary mkpasswd to your base module 

 cp mkpasswd /basemodule/usr/bin/ 
• Replace  

chroot /mnt/main useradd -m $USERNAME -s /bin/bash 
                   chroot /mnt/main useradd -s /bin/bash $USERNAME 
 

with the following lines  
 
                   chroot /mnt/main useradd -m $USERNAME -s /bin/bash -p 
`/usr/bin/mkpasswd            $USERNAME` 
chroot /mnt/main useradd -s /bin/bash $USERNAME -p `/usr/bin/mkpasswd 
$USERNAME` 
 
in the file /basemodule/etc/init.d/morphix-start. This will set the password same as 
the username. Refer to the section base module customization and modification to 
extract and generate the base module.  

 
e) Set the root password 
After the Live CD starts and ready to use, in some cases you need the password of root. 

 
• chroot /mainmodule 
• passwd root  
• Type the password  
• umount /mainmodule 

 
This will set the new password for root. Refer to the section Main Module Construction to 
extarct and generate the Main Module 

 
f) Hostname modification 
Hostname is used to either set or display the current host or domain name of the system. 
This name is used by many of the networking programs to identify the machine. The default 
hostname is Morphix. See below to change to a new one. 
 

• Edit the basemodule file /basemodule/etc/init.d/knoppix-autoconfig. Change 
'hostname Morphix' to 'hostname newname'  

• Replace the existing hostname in the file Base module file 
/basemodule/etc/hostname with the newname 

• Change Morphix to newname in the Base module file /basemodule/etc/hosts 
  

See  the section base module customization and modification to extract and generate the 
base module. 
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g) Changing the Distribution name while your Live CD is going to be halt or reboot 
Check the file /basemodule/etc/init.d/knoppix-halt and replace MORPHIX with your 
YOURDISTRIBUTIONNAME 
 
Refer to the section base module customization and modification to extract and generate the 
base module. 

 
h) Using your own Gnome splash screen 
While the Gnome Desktop starts , a splash screen is displayed. This image resides in the 
folder /usr/share/images/desktop-base of the main module. If you want to use your own 
created splash screen, first create the image in png format , 450x200 in size and copy it in 
the folder /mainmodule/usr/share/images/desktop-base/ . Then follow the steps listed below.  
 
Let the filename of the newly created image be mysplash.png. 
 

• chroot /mainmodule 
• cd /etc/alternatives 
• rm  desktop-splash 
• ln -s /usr/share/images/desktop-base/mysplash.png desktop-splash 
• exit 

 
Create the main module by refering to  Main Module Construction section. 

 
i) Changing the default Background of the Gnome Desktop  
If you want to use your own background for the Gnome Desktop, create an image which is 
1600x1200 in size of png file format and copy it to the folder /usr/share/images/desktop-
base of the main module. Let's say the name of the background image you created is 
mybackground.png.Then the following steps listed below should be followed: 
 

• chroot /mainmodule 
• cd /etc/alternatives 
• rm  desktop-background 
• ln -s /usr/share/images/desktop-base/mybackground.png desktop-background 
• exit 

 
See  the Main Module Construction section to create the main module. 

 
Live CD Directory Structure 
Before generating a final ISO for your Live CD, the minimal mandatory directories are base, boot and 
mainmod. If you look inside the folder mylivcd which is generated from the Base ISO, you can see many 
folders. A general overview of the functionality of those folders is given below. 
 
base 
Folder that contains the base module which detects and configures your hardware and contains your 
standard kernel modules 
 
boot 
Contains the init ramdisk, grub menu and kernel 
 
copy 
If you place files in this directory, they will be copied over to the root of your filesystem of the Live CD 
 
mainmod 
Contains main modules 
 
minimod 
Contains mini modules. Mini module is a module that does only one task. For example , you can create a 
mini module of the package nmap and place in this directory. Doing this, you can use namp in your Live CD 
without installing it into the main module. Refer to the morphix wiki ( http://www.morphix.org/wiki/ ) to know 
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more about mini modules and see how to create them. 
 
/deb 
If .deb (debian packages) are placed in this directory, they will be installed at boot time of the Live CD 
 
/exec 
If you place files in this directory, they will be executed at the boot time.  
  
Note: You can delete all files from the /mylivecd folder. But it is highly recommended to put the Live CD 
license file and MD5 checksum of the Live CD in this folder.  Use the following command to generate the 
MD5 check sum of your Live CD after copying main module , base mod and other required files to the 
/mylivecd folder. 

 
find /mylivecd -type f -exec md5sum {} \; | awk '{print $1"\r"}' | sort | md5sum > /mylivecd/md5sums 
 
Creating the ISO image 
An ISO image (.iso) is an informal term for a disk image of an ISO 9660 file system. Hence we create an 
ISO image of our Live CD Linux distribution to burn it to the CD. Use the command below to generate the iso 
file. 
mkisofs -pad -l -r -J -v -V "Live CD" -b boot/grub/iso9660_stage1_5 -c base/boot.cat -no-emul-boot -boot-
load-size 4 -boot-info-table -hide -rr -moved -o /mylivecd.iso  /mylivecd 
 
Burning the ISO 
There are many tools to burn the ISO image to the Live CD. Command line tool 'cdrecord' and GUI based 
tools like gnomebaker, K3B are recommended tools. 
 
Using cdrecord to burn the ISO 

• Check your CD Writer's information 
cdrecord -scanbus -dev=ATAPI 
Here note the scsibus in which you CDRW is connected. 

  
• Supposing 0,0,0 is the scsibus in which your CDRW is connected. Use the following command if you 

want to erase your CDRW 
cdrecord -dev=ATAPI:0,0,0 blank=fast 

 
• Finally burn the ISO using the following command 

cdrecord -dev=ATAPI:0,0,0 /mylivecd.iso 
 

Testing ISO using QEMU 
QEMU is free software written by Fabrice Bellard that implements a fast processor emulator, allowing a user 
to run one operating system within another one. In our case, we can test our Live CD ISO without burning it 
to the CD. See below how to use QEMU to run Live CD iso in the buildmachine. 
 

• Open a linux terminal  from the Gnome Desktop 
• Run: 

  qemu -cdrom /mylivecd.iso                        

11.5 References for Further Reading 
a) http://www.morphix.org 
b) http://www.debian.org 
c) http://www.linuxdevcenter.com 
d) Linux Man Pages 
e) http://www.kernel.org 
f) http://www.gnu.org 
g) http://www.freshmeat.net 
h) http://www.sourceforge.net 
i) Research report on creating a bootable Live-CD. Paras Pradhan, Basanta Shrestha, Subir B. 

Pradhanang. Madan Puraskar Pustakalaya, Nepal. 
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12 Development of Internationalized Open Source Applications 

12.1 Introduction 
In this Chapter, we begin with a brief introduction on Internationalization following which we deal with 
developing QT based applications and localizing them. We have tried to give detailed information on 
developing and localizing QT based applications. References to links for further reading are  provided at the 
end of the chapter. 
 
What is Internationalization? 
Internationalization is defined as a process of developing a software product whose core design is not based 
on a particular locale. Hence it should potentially handle all targeted linguistic and cultural variations (such as 
text orientation, date/time format, currency, accented and double-byte characters, sorting, etc.) within a 
single code base. Another necessary step to prepare a product for localization is separating all message 
strings in text files [12.3.b]. The distinction between internationalization and localization is subtle but 
important. Internationalization is the adaptation of products for potential use virtually everywhere, while 
localization is the addition of special features for use in a specific locale. 

12.2 Developing and localizing QT-based applications 
Introduction to QT 
Qt Toolkit is a cross-platform graphical widget toolkit for the development of GUI programs. It is extensibly 
used in the K Desktop Environment. The producer of Qt is the Norwegian company Trolltech, formerly known 
as Quasar Technologies.  
 
Extended version of the C++ programming language is used by Qt. At the same time, bindings exist for 
Python, Ruby, C, Perl and Pascal. It runs on all major platforms, and has extensive internationalization 
support. In addition to this, there are also various non-GUI features like SQL database access, XML parsing, 
thread management, and a unified cross-platform API for file handling [12.3.c]. 
 
QT Open Source download can be found at http://www.trolltech.com/products/qt/downloads. 
 
Open Source Edition download is available for the following platforms : 

• Qt/Windows Open Source Edition 
• Qt/X11 Open Source Edition 
• Qt/Mac Open Source Edition   

 
Why use QT? 
Because QT  is Comprehensive, Cross-Platform, Easy to Use, Robust & Open Source [12.3.d]. 
 

● Qt is a comprehensive development framework that includes an extensive array of features, 
capabilities and tools that enable development of high-performance, cross-platform rich-client and 
server-side applications.  

● Using Qt delivers true platform independence - code once and deploy anywhere. Targeting a new 
platform demands little more than a simple recompile of a single source code base. 

● Qt developers only have to learn one API to write applications that run almost anywhere.  
● Qt has been tested by worldwide commercial and open source application developers over  different 

platforms and compilers - forming the foundation for high-performance, resource-intensive 
applications.  

● Open Source edition is available under the GPL license . Open source benefits include an active 
open source developer community contributes to the ongoing development of Qt while complete 
code transparency allows Qt developers to "see under the hood", customizing and extending Qt to 
meet their unique needs.  
 
 
Prerequisites for developing localized applications using QT 
 

 The following prerequisites must be at hand in order to develop the localized QT application[12.3.d] . 
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1. Qt Designer  is a powerful GUI layout and forms builder, enabling rapid development of high-

performance user interfaces with native look and feel across all supported platforms. 
2. Qt Linguist  is a set of tools designed to smoothen the internationalization workflow. Using Qt 

Linguist, development teams can outsource the translation of applications to non-technical 
translators, increasing accuracy and greatly speeding the localization process. 

3. Input Method for providing local language Input method to localize the application. 
 
 You need to follow the following steps to  develop the localized QT application.  
 

1. Start up Qt Designer to invoke the Qt Designer New/Open dialog . 
 This dialog contains three tabs once you start up Qt Designer.  

2. Select C++ project and provide a project name for example : qtproj1.pro in directory 'qtproj1'. C++ 
projects are saved as .pro files, which include the information Qt Designer needs to manage 
projects. 

3. Click File|New (or press Ctrl+N) to invoke the New File dialog. 
4. Create a “Push Button” in the form with name “pushButton1” and text “Quit”. 
5. Create a “Text Label” in the form with name “textLabel1” and text “Hello World”. 

The form will look as shown below in fig. 16 : 
 

 
Figure 16. Form in the Qt Designer 

 
6. Click Edit|Connections to invoke the View and Edit Connections dialog. Use this dialog to view and 

edit signal and slot connections.  To add a new connection, click the New button. Specify the 
Sender as 'pushButton1', Signal as 'Clicked', Receiver as 'Form1' and Slot as 'close()' . 

 
Figure 17. View and Edit Commections 

 
7. Right click the form and select the source. Click yes when it confirm to create 'ui.h' file. 
Code Sample for form1.ui.h 

 
 

void Form1::init(){ 
    pushButton1->setText(QPushButton::tr("Quit")); 
   textLabel1->setText(QLabel::tr("Hello  World !")); 
} 
 

8. Click File|New|C++ Main-File to invoke the Configure Main-File dialog. 
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Code sample for main.cpp 
 
#include <qapplication.h> 
#include form1.h 
 
int main( int argc, char *argv[] ) { 
  
QApplication app( argc, argv ); 
 //creates a object of Qtranslator class without parent 
  QTranslator trans( 0 );  
 //Load a file ne_NP.qm  
 trans.load( "ne_NP", "." );//loads the translation ne_NP.qm 
 //Adds a translation from ne_NP.qm to the pool of  //translation used by the program 
 app.installTranslator( &trans ); 
 QObject::connect( &button, SIGNAL( clicked() ), &app, SLOT( quit() ) ); 
 app.show(); //display the form 
 return app.exec(); 
}//end main 
 

9. Open the 'qtproj1.pro' project file and add the line “TRANSLATIONS = ne_NP.ts” at the end of file.  
 
TEMPLATE = app 
LANGUAGE = C++ 

 
CONFIG += qt warn_on release 
 
SOURCES += main.cpp 
 
FORMS = form1.ui 
 
unix { 
  UI_DIR = .ui 
  MOC_DIR = .moc 
  OBJECTS_DIR = .obj 
} 
 
TRANSLATIONS = ne_NP.ts 

 
10. Open the terminal and go to the QT Project directory 'qtproj1'. Provide the following command to 

generate the translation file 'ne_NP.ts'. 
 
$lupdate qtproj1.pro 
 
*lupdate reads a Qt .pro project file, finds the translatable strings in the specified source, header 
and Qt Designer interface files, and produces or updates the .ts translation files listed in the project 
file (.pro file). 
 
The generated ne_NP.ts will look like : 
 
<!DOCTYPE TS><TS> 

<context> 
   <name>Form1</name> 
    <message> 
        <source>Form1</source> 
        <translation type="unfinished"></translation> 
    </message> 
    <message> 
        <source>Hello World</source> 
        <translation type="unfinished"></translation> 
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   </message> 
    <message> 
        <source>Quit</source> 
        <translation type="unfinished"></translation> 
    </message> 
</context> 
<context> 
    <name>QLabel</name> 
   <message> 
        <source>Quit</source> 
        <translation type="unfinished"></translation> 
    </message> 
</context> 
<context> 
    <name>QPushButton</name> 
    <message> 
        <source>Hello World</source> 
        <translation type="unfinished"></translation> 
    </message> 
</context> 
</TS> 
 
*<translation type="unfinished"> states that the translation of the string is still incomplete. Between 
two opening “<translation>” and closing“</translation>” tag, we can put the translation of the given 
string manually. 

 
11. Open the ne_NP.ts file with QT Linugist by providing following command. 

 
$linguist ne_NP.ts 
 
* Here we are opening QT Linguist to load the ne_NP.ts translation file. After translation of each 
string in the .ts file, mark each string as finished. 

 
12.  After translation, the ne_NP.ts file will look like this: 

 
<!DOCTYPE TS><TS> 

<context> 
    <name>Form1</name> 
    <message> 
        <source>Form1</source> 
        <translation> मेरो नेपाली अनुूयोग </translation> 
    </message> 
    <message> 
        <source>Hello World</source> 
        <translation></translation> 
    </message> 
    <message> 
        <source>Quit</source> 
        <translation></translation> 
    </message> 
</context> 
<context> 
    <name>QLabel</name> 
    <message> 
        <source>Quit</source> 
        <translation>ब द गनहुोस<्/translation> 
    </message> 
</context> 
<context> 
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    <name>QPushButton</name> 
    <message> 
        <source>Hello World</source> 
        <translation>नमःकार संसार</translation> 
    </message> 
</context> 
</TS> 

 
13. After adding the equivalent localized string of the English string, ne_NP.qm can be generated by 

clicking File|Release. An  alternate way to generate ne_NP.qm is by giving the following command. 
 
 $lrelease qtproj1.pro 
 
*lrelease reads a Qt .pro project file and produces the .qm files used by the application, one for 
each .ts translation source file listed in the project file. Translation file (.ts file) is a human readable 
file but cannot be used to load a translation unless it is compiled to .qm file. The .qm file format is a 
compact binary format that provides extremely fast lookups for translations. 
 

14. To compile the QT project,enter the following command : 
 
$qmake 
$make 
 
*qmake  reads the .pro file and configures the current project. It generates the Makefile which will 
later be used by make process. 
*make reads .pro and compiles the project using c++ compiler and builds a binary 'qtproj1'. 
 

15. ne_NP.qm will now be used by our application. To execute the application,provide the following 
command : 
 
$./qtproj1 
 
Now the application will load the translated file (ne_NP.qm) and will look like fig.17: 

 

 
 

Figure 18.  Example of the interface in Nepali 

12.3  References for Further Reading  
a) http://www.digitalfanatics.org/projects/qt_tutorial/ 
b) http://doc.trolltech.com/3.3/ 
c) http://www.remedy.com/customers/dev_community/UserExperience/glossary.htm 
d) http://en.wikipedia.org/wiki/Software_localization 
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13 Building Free Open Source Software (FOSS) Communities 

13.1  Introduction 
In this Chapter, we talk about building Free Open Source Software (FOSS) communities. We start with a 
brief introduction on FOSS communities. Later we will discuss the role of an FOSS community, the necessity 
for building such communities and ways of building them. Finally, we briefly highlight some of the efforts in 
building FOSS communities in South Asia. 

13.2 What is a FOSS community? 
A set of people, in general sharing the same idea that Free and Open Source Software(FOSS) should be 
promoted can be termed as a FOSS Community. A Foss Community may comprise of developers, FOSS 
advocates, experts, end-users etc. This Community is assumed to be actively involved in interaction on 
FOSS issues both formally and informally – through emails and internet, formal meetings and discussions, 
gatherings etc.   

13.3  What does a FOSS Community do? 
A FOSS Community acts as an information center for answering to the queries and problems on Free Open 
Source Software. Besides, FOSS Communities can also facilitate the conducting of awareness campaigns 
and trainings on FOSS. In addition, it can also be a common forum for filing bugs and correspondingly 
discussing and providing the bug-fixes. Hence, a FOSS Community has a wide sphere of activities for 
involvement. 

13.4 Why build a FOSS Community?    
Despite the gradual increase in the popularity of FOSS in the recent years, one of the bottlenecks in the wide 
usage of the FOSS is lack of adequate technical support. FOSS Developers are basically enthusiasts and 
volunteer programmers, who spend no time preparing proper documentation on the software they develop. 
Besides, they also do not see reason to document things they know or regard simple enough to be 
understood by their partner programmers. This has had a negative impact on the potential users of FOSS. 
People tend to shy away from using FOSS because they find the proprietary ones richly furnished with the 
required documentation. Besides, in terms of installation and troubleshooting too, they find plenty of people 
to turn to, who can easily fix their problems as opposed to FOSS applications. Usage of FOSS applications 
still remain feasible and accessible to only a limited number of Linux/Unix masterminds. Such a scenario, if 
not counterchecked by the FOSS supporters,will increase the divide and inaccessibility of the general users 
to the enormous benefits of FOSS. Building a FOSS Community could be the first initiative to provide a 
solution to this problem. As the FOSS Community grows up, the technical support required for the 
deployment of FOSS becomes more feasible and more accessible to the general masses.  

13.5  How to build a FOSS Community? 
There are various ways of building a FOSS Community. The most common of them being the member of 
Linux User Groups (LUGs), GNU/Linux User Groups (GLUGs), Free Software User Groups (FSUGs), BSD 
User Groups (BUGs). In addition to this, these user groups also may be created locally under someone's 
initiative for some local purpose. Usually, people from the same city or country form a team and thus create 
a group. These people meet regularly and organize various  meets or events like installfests, thus providing 
the technical help and support to the local people. One way to give continuity to the groups is by maintaining 
the mailing lists, where people can ask questions, provide answers to them, and make comments or 
suggestions and so on. Online forums are equally popular for asking questions and getting answers. Internet 
Relay Chat (IRC) channels are also available for most FOSS Projects where people can consult with each 
other regarding their respective problems. Wikis are equally an important medium for sharing the knowledge. 
Other important mediums of active communication and contribution include Concurrent Versioning System 
(CVS) and SubVersion (SVN) for the management of the source code. The error submitting tool or BugZilla 
is important tool for filing bugs, patches, issues and so on. 
 
FOSS communities may be created both locally and globally. For instance, in terms of celebrating the 
Software Freedom Day (SFD) on 16 September, communities could be moderated both in the national and 
international level. In the local level, if there are organizations working under FOSS Projects, they could take 
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the initiative for creating a platform of common interaction. Talk programs could be conducted to which more 
and more organizations, educational institutions and other stakeholders could be involved. This creates a 
base for the development of a Free and Open Source Community. 

13.6  Efforts in building FOSS Communities in South Asia 
Although locally there may be several groups and communities formed in the different countries of South 
Asia, lately there has been some talks as to how individual country FOSS groups and communities could be 
assembled under one common umbrella. The email group forum bytesforall_floss@yahoo.com is one of 
such initiatives. It is a network to link Free/Libre and Open Source Software (FLOSS, or FOSS) advocates in 
South Asia, with an intention of building regional links and specially encouraging localisation efforts in this 
populous part of the planet which can really benefit from the power of free-as-in-freedom software. This is a 
sub-group of the wider BytesForAll Network. Currently some of the major FOSS Communities working in the 
group include BytesForAll[Fredrick Noronha], South Asia, FOSSFP Pakistan, Sarai India, NepaLinux, MPP, 
Nepal etc. 



PAN Localization Guide to Localization of Open Source Software 
 

 
138

14 Localization Project Management Techniques, Experiences 
of Madan Puraskar Pustakalaya under the PAN Localization 
Project 

14.1 Introduction 
Project management is one of the crucial aspects of the Localization or any other project, this guide would 
have remained incomplete without discussing the managerial approaches,software development cycle and 
general strategies adopted.In this Chapter, we share some of the experiences of the Madan Puraskar 
Pustakalaya, the Nepal Component of the PAN Localization Project in terms of Localization Project 
Management(2004-2006).  

14.2 Localization Project Management 
For the Madan Puraskar Pustakalaya team the task of producing a Nepali Linux Distribution within a time 
span of two years was a big challenge, primarily because it was being done for the first time and everything 
had to be done almost from scratch. Achieving something on such a big scale, requires careful planning from 
the management side. In the following section, we describe the management approaches adopted in due 
course of the accomplishment of the Project. 
 
Management Approaches 
Project management is all about controlling the five variables: cost, time, scope, quality and risk. An 
assortment of the traditional approaches with flexible project management techniques are what must be 
followed for planning, execution and delivering outputs for such a project. According to the project 
deliverables, we divided the localization team in three units namely Linux unit, Translation unit and Natural 
Language Processing unit. The rest of the document will be devoted to the measures employed for 
accomplishing  the deliverables in each unit. 
  
The management of the project  was divided into the following stages: 

a) Preparing for the necessary prerequisites of localization; 
b) Project Planning; 
c) Project Execution; 
d) Project Monitoring; 
e) Project Completion. 

 
Prerequisites for localization 
One of the prerequisites of localization is Standardization as mentioned in the earlier chapters of this guide. 
A national level policy on standardization needs to be initiated if localization for a particular language has 
never taken place. In case of the Nepali language, attempts were made to localize smaller applications like 
date conversion and so on. However fonts and keyboard layout had become the major hurdle in the process. 
Fonts were all developed in ASCII encoding scheme with devastating. results. Data processing was 
impossible with such fonts, and more over each font had its own keyboard layout. This resulted in the 
confusion for the users as they had to learn different styles of typing corresponding to different fonts. 
Localization and language computing seemed to be a far fetched dream due to these hurdles.  
 
A major change came through when Unicode consortium proposed an encoding scheme for all the 
languages. After Devanagari, the writing script of the Nepali language, found a place in the scripts supported 
by Unicode, the Nepali character set was standardized. Later, Nepali Unicode fonts were developed based 
on this scheme, 
 
Unicode fonts brought a sense of excitement to the users. Now,  searching, sorting, even calculation became 
possible. Keyboard drivers for Unicode font were developed in parallel with font development. Even though 
Unicode fonts have their own keyboard layouts, users became keen on using Unicode fonts because it 
incorporated both the traditional Nepali keyboard layout and the new Romanized keyboard layout. The 
Romanized keyboard driver became popular because as the name suggests, most the Nepali character 
were mapped to similar phonetic English characters. 
 
With the development of Unicode fonts and keyboard layouts, MPP, along with other software corporate 
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houses initiated the works  on localization working in close collaboration with the National level of committee 
for standardization, a sub body of the High Level Commission for Information Technology (HLCIT). The latter 
is headed by Hon. Minister of Nepal and is an apex government body formed with the objective of providing 
crucial strategies direction and helping to formulate appropriate policy responses for development of ICT 
sector in Nepal. A Steering committee “Nepali Language in Information Technology” was formed under the 
HLCIT to deal with the issues on standardization. This committee has already standardized the glossary of 
2600 words, Nepali character set, keyboard layout, locale and collation sequence.  
 
Project Planning 
The MPP localization team  was divided into three different working units respectively, the Linux Unit, 
Translation Unit and the Natural Language Processing Unit. A detailed overview of the work force division is 
presented in the figure below.       
 

 
 
  

Figure 19. Nepali Localization work force division 
 
Estimating the resources 
One of the most important factors that influence the cost and time is the correct estimation of human 
resources. We cannot, however ignore the fact that with the first attempt at localization, correct estimation 
can not be done beforehand in the initial phase of the project. Accurate estimation can only be done after 
execution of all three units for at least a month. Moreover, correct estimation also depends on factors, 
discussed below. 
 
For the Linux unit, defining the scope of the tasks will greatly help in providing a correct estimation of human 
resources required. Since the project intention was to produce Nepali Linux distribution for desktop users, we 
needed to provide the sources to the Desktop Environment (GNOME), office package (openoffice.org), 
internet (mozilla suite), graphics designing (GIMP) and other applications. Studying, building and testing of 
these various components requires at least three full time working persons. 
 
For the Translation unit, number of translation strings defines the estimation of the translation man hour. 
Metrics used for calculating the human resource requirement for translation for the Nepali language were as 
follows: 
 

Nepali localization process 

Linux Unit 

Research Report 

GNOME 

Openoffice.org 

Mozilla suite 

Multimedia applications 

Translation Unit

Research report

Glossary  
 

Translation

NLP Unit 

Research Report 

Nepali Lexicon 

Nepali Spell checker 

Nepali Thesaurus 

Graphics 

Live CD, Manual 
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Calculate the total strings to be translated = 105000strings 
 
One string on an average contains 10 to 15 words. 
Multiplying total strings  with 10 will give the approximate total number of words to be translated = 
105000*10=1050000 words. 
 
According to our experience, a translator on an average, translates maximum 1060 words per day working 
seven hours a day. 
 
Therefore one translator working 6 days a week can translate = 1060*26= 27,560 words per month.  
 
Other factors governing the human resource estimation are: 

• Level of experience of translators 
• Familiarity with the Linux Operation system 
• Deciding on the version of GNOME. As newer and stable version of GNOME gets released , on an 

average 2000 strings are added. So the translated files need to be revisited to accommodate the 
new strings in the files. Therefore, translation is an ongoing process unless the decision to stick to 
one particular version is finalized. We had started translation from GNOME 2.6 and we have come 
up all the way to  GNOME 2.14. 

• 20% time of translator effort goes on testing and quality checking, 
• 10% effort getting used to the terms in the glossary and training with the translation tool 

 
Translation team structure: 

• Translation Manger – 1 
• Translation Team leader -1 
• Translators – 4 

 
For the Natural Language Processing unit: 
A full time linguist and a developer would be able to complete the Nepali Spell checker of 24,500 root words 
and Nepali thesaurus of about 6,000 words in about 6 months. However other issues that could affect are: 

1. Lexicon Building 
2. Whether an automated tool is available for lexicon building? 
3. Whether the framework for the development of the Spell Checker and the Thesaurus for a particular 

language exist in openoffice? 
4. The difficulty level of integrating spell checker and thesaurus for a particular language in 

Openoffice.org. 
 

Project Execution 
Every software corporate house implements this stage with some variations, however, the typical 
combination would be defining the problems, evaluating the alternatives, choosing a path, and then 
implementing it. Performing these project activities, requires a decision to be made about the framework for 
software developmental process. Localization, being different from conventional software development, does 
not necessarily follow the conventional method of software development. A bit of tweaking with the model 
may be required. Localization process requires iterative building and testing from the early phase. For this 
reason, spiral model seems to best fit the practice. Hence, the spiral life cycle model for software 
development was adopted. The spiral life cycle models for the translation and the Linux and NLP units are 
shown in figures 19 and 20 below respectively.   
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Figure 20. Spiral Lifecycle model for translation 
 

 
 

Figure 21. Spiral Life Cycle Model for Linux and NLP development 
 
Creating an Environment 
Translation Initiation: 
Before initiation, the translation tools need to be installed and checked. All translation files need to be 
downloaded and all pot files need to be changed in the po files. For proper management of these files and 
the translation process, a CVS needs to be setup. The set up needs to be such that files are centrally 
located. General guidelines for translation need to be formed. And training document for the translators 
needs to be prepared. 
  
Translation tool: Kbabel 
  
Document Library: 
There is a need of a Master library for all the programs, documents, reports, manual, specifications, 
reference documents and correspondence for the project. Documents for tracking and monitoring and 
controlling during all the phases of the software development process need to be kept. Templates, forms, 
and minutes need a place to be stored. Software documents files need to be stored. A document identifying 
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Glossary Development 

Translation 
Committing to CVS 

Translation Testing 
Linguistic Testing 
Contextual checking  

Quality assessment 
Uploading the po files in 
official site 
Changing po to mo file 

Research/Study 
Analysis/Linguitics analysis 
Risk Assessment  

Choosing the correct version  and 
downloading .tar ball or from CVS 
Compiling and building 
Checking for dependencies 
Design and Analysis 
 

Unit Testing 
Localization Testing 
Implementation 
 

Integration Testing 
Installation Testing 
Other Testing 
Quality assessment 
Maintenance 
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conventions needs to be formalized. 
 
Document tools: openoffice.org. 
 
Developing environment: 
The developer  establishes a software development environment in accordance with the requirement 
specification.  If a system is developed in multiple builds, establishing the software development environment 
in each build should be interpreted as a means to establishing the environment needed to complete that 
build. Standardization of character set, keyboard layout, locale, fonts are mandatory hence these need to be 
prepared and must be readily available before the development starts. Similarly requirements of testing 
tools, compilers need to be identified before hand. 
 
Project Management Environment 
A yearly schedule of meetings and review dates can be decided on, at the initial stage. Milestones need to 
be set. Proper scheduling of task deliverables for completing certain amount of work to producing reports 
need to be decided upon. A baseline document on each of the unit needs to be laid down. In other words, it 
would be fitting to have individual project management activities for Linux Unit, Translation Unit and NLP Unit 
respectively. Moreover, it would be convenient to have different meetings and review schedules for each of 
these units. However, one monthly meeting of all the units would result in rendering effective communication 
and appropriate solutions. Proper documentation of assigning of works, work breakdown structure and 
organizational chart has to be produced. Even though man hour estimation may not be accurate, it is always 
good to have some metrics to measure it with.  
 
An important aspect of project management is to track changes in the requirements specifications and the 
resulting changes in strategies of management activities. A proper change control management needs to be 
constructed. Our experience has shown that it is wise to be flexible with the dates in the research phase. For 
example, with the Nepali spellchecker component, it was decided in the initial phase that a new application 
would be built and integrated in openoffice.org. However, during the research phase, we realized that 
integrating a separate Spell Checker in the openoffice.org would consume more time than anticipated. 
Therefore, we had to search for other alternatives and it was the Hunspell which saved us a great deal of 
time. Consequently, the strategy for Nepali spell checker development had to be changed.  
 
Project Monitoring   
Project activities need close monitoring on weekly or  adhoc basis. Once the baseline document is ready for 
each activity, progress can be measured by comparing, the work completed against the plan. Identifying and 
resolving risks at the earliest possible, prioritizing the tasks and, evaluating the work load of each team 
member and other related developmental and translation actions and schedules. An update form can be 
used to record the progress on these activities.  
 
Joint technical and management reviews can be conducted for research, development and testing phases. 
The purpose of these reviews is to provide management with the progress of the development and 
translation activities, moreover it checks the fulfillment of requirements. Timely, technical and management 
reviews can help the team to take corrective action in time. Development review has to be done by the 
technical team and translation review should be done by translation manager. The review will have to focus 
on in-process and final software products, even for the report that will be generated after completion of each 
phase of the development cycle. In the review process, technical solutions need to be proposed identifying 
the short and long term risks. Experience with the translation shows that time management is the main risk 
factor as the strings with each new release of Linux component increase by 20%. Hence, keeping the size of 
the translation team the same and expecting to complete the translation on time without considering the 
above is very risky. 
 
Project Completion 
This stage covers the preparation of the deliverables such as software application, reports, papers, manuals. 
Making the software application ready for the user needs qualification testing of the software. Preparing the 
environment for the testing needs to be established. For these, developers should participate in developing 
and recording test preparation, test cases and test procedures to be used for system quality check.  
 
The testing has to be conducted in the host organization. Testing should fulfill all the requirements provided 
in the requirement specification document. Following are the different types of testing employed while 
qualifying the end product, NepaLinux in our case:  
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1) Usability testing: 
Since this Nepali Linux distribution has targeted the desktop users, making this product user friendly 
was the first priority. Features like auto mount, easy installation were added and tested thoroughly. 
 
2) Hardware detection testing 
This distribution was tested on different configurations of hardware. 
 
3) Localization testing: 
This testing was performed in order to check whether the system fails after loading the  translated 
file. 

 
Preparing the build of the software  
Localization includes choosing the application, library routines etc.  Hence, it becomes necessary to keep 
track of the correct version of these applications, libraries and routines that will be packaged in the final 
product. Even the correct versions of manuals, reports, translations files need to be recorded. 
 
Preparing the user manual 
The developers and the translators prepare the user manual. A framework needs to be worked out for the 
manual development. The user manual may also include installation manual.  


