Tropical Root Crops RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops ~ Africa Branch

ARCHIV 44957 14957

IDRC-163e

TROPICAL ROOT CROPS: RESEARCH STRATEGIES FOR THE 1980S

PROCEEDINGS OF THE FIRST TRIENNIAL ROOT CROPS SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH, 8–12 SEPTEMBER 1980, IBADAN, NIGERIA

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.

The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

[®]1981 International Development Research Centre Postal Address: Box 8500, Ottawa, Canada K1G 3H9 Head Office: 60 Queen Street, Ottawa

Terry, E.R. Oduro, K.A. Caveness, F.

International Society for Tropical Root Crops. Africa Branch, Ibadan NG

IDRC-163e Tropical root crops: research strategies for the 1980s. Ottawa, Ont., IDRC, 1981. 279 p. : ill.

/IDRC publication/, /root crops/, /agricultural research/ — /plant breeding/, /plant diseases/, /cassava/, /sweet potatoes/, /pests of plants/, /plant production/, , /weed control/, /intercropping/, /harvesting/, /crop yield/, /conference report/, /list of participants/, /agricultural statistics/.

UDC: 633.4 (213)

ISBN: 0 88936 285 8

Microfiche edition available

Cooperating institutions

CONTENTS

Participants 9 Welcoming Addresses 9 Bede N. Okigbo, President, International Society for Tropical Root Crops — Africa Branch 15 Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17 S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agricul- ture, Nigeria 22 Cassava Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph 40 Nome Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria E.C.K. Igwegbe 58 Cassava Bacterial Blight Disease in Uganda <t< th=""><th>Foreword E.R. Terry</th><th>7</th></t<>	Foreword E.R. Terry	7
Bede N. Okigbo, President, International Society for Tropical Root Crops Africa Branch 15 Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17 S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22 <i>Cassava</i> 22 Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh Scasava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah Assessment of Cassava Cultivars for Extension Work C.Oyolu 35 Breeding Cassava for Disease and Pest Resistance in the Congo Joseph Mabanza 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 40 Scasava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba 61 Sasava Root Rot due to Armillariella tabescens in the People's Republic of Congo 58 Cassava Box Rot due to Armillariella tabescens in the People's Republic of Congo	Participants	9
Bede N. Okigbo, President, International Society for Tropical Root Crops Africa Branch 15 Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17 S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22 <i>Cassava</i> 22 Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh Scasava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah Assessment of Cassava Cultivars for Extension Work C.Oyolu 35 Breeding Cassava for Disease and Pest Resistance in the Congo Joseph Mabanza 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 40 Scasava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba 61 Sasava Root Rot due to Armillariella tabescens in the People's Republic of Congo 58 Cassava Box Rot due to Armillariella tabescens in the People's Republic of Congo	Welcoming Addresses	
Africa Branch 15 Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17 S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22 <i>Cassava</i> Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah 29 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 35 Breeding Cassava for Disease and Pest Resistance in the Congo Joseph 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 41 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in Nigeria 61 Grown Tobacco in Nigeria L.C.K. Igwegbe		
S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19 E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22 Cassava 23 Cassava 24 Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa 24 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 42 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph 40 Mabanza 40 20 20 20 20 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 45	Africa Branch	15
E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22 Cassava Cassava Cassava Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh		17
ture, Nigeria 22 Cassava Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 26 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 49 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in Nigeria 61 Grown Tobacco in Nigeria E.C.K. Igwegbe 58 Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo 45 Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka 66 Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo <td< td=""><td></td><td>19</td></td<>		19
Cassava Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah 29 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 45 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in Nigeria E.C.K. Igwegbe 58 Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka 60 Screening for Resistance Against the Green Spider Mite K. Leuschner 75 Biological Control of the Cassava Mealybug Hans R. Herren 79 Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo G. Fabres 81		
Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah 29 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph Mabanza 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 49 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria 58 Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba 61 Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo 61 Screening for Resistance Against the Green Spider Mite K. Leuschner 75 Biological Control of the Cassava Mealybug 69 69 69 61 Insect	ture, Nigeria	22
Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh 25 Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah 29 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph Mabanza 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 49 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria 58 Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba 61 Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo 61 Screening for Resistance Against the Green Spider Mite K. Leuschner 75 Biological Control of the Cassava Mealybug 69 69 69 61 Insect	Cassava	
Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah 29 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph 40 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42 Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry 45 Field Screening of Cassava Clones for Resistance to Cercospora henningsii 49 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria E.C.K. Igwegbe 58 Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba 61 Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka 66 Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo Casimir Makambila 69 Screening for Resistance Against the Green Spider Mite K. Leuschner 75 Biological Control of the Cassava Mealybug Hans R. Herren 79 Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo G. Fabres 81	Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa S.K. Hahn, E.R. Terry, K. Leuschner, and T.P.	
and Achievements up to 1978H.C. Ezumah29Assessment of Cassava Cultivars for Extension WorkC. Oyolu35Breeding Cassava Resistant to Pests and Diseases in ZaireT.P. Singh37Selection of Cassava for Disease and Pest Resistance in the CongoJoseph40Mabanza40Some Characteristics of Yellow-Pigmented CassavaK.A. Oduro42Cassava:Ecology, Diseases, and Productivity: Strategies for Future45ResearchE.R. Terry45Field Screening of Cassava Clones for Resistance to Cercospora henningsii49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo69Screening for Resistance Against the Green Spider MiteK. Leuschner75Biological Control of the Cassava MealybugHans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81		25
Assessment of Cassava Cultivars for Extension WorkC. Oyolu35Breeding Cassava Resistant to Pests and Diseases in ZaireT.P. Singh37Selection of Cassava for Disease and Pest Resistance in the CongoJoseph40Mabanza40Some Characteristics of Yellow-Pigmented CassavaK.A. Oduro42Cassava:Ecology, Diseases, and Productivity:Strategies for FutureResearchE.R. Terry45Field Screening of Cassava Clones for Resistance to Cercospora henningsii49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo69Screening for Resistance Against the Green Spider MiteK. LeuschnerSisological Control of the Cassava MealybugHans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo58		20
Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37Selection of Cassava for Disease and Pest Resistance in the CongoJoseph40Mabanza40Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42Cassava: Ecology, Diseases, and Productivity: Strategies for Future42Research E.R. Terry 45Field Screening of Cassava Clones for Resistance to Cercospora henningsii49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria58Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens in the People's Republic of Biological Control of the Cassava Mealybug69Screening for Resistance Against the Green Spider Mite K. Leuschner 79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo8181Gordon G. Fabres81	Assessment of Cassava Cultivars for Extension Work C Ovolu	
Selection of Cassava for Disease and Pest Resistance in the CongoJosephMabanza40Some Characteristics of Yellow-Pigmented CassavaK.A. OduroCassava: Ecology, Diseases, and Productivity: Strategies for FutureResearchE.R. TerryField Screening of Cassava Clones for Resistance to Cercospora henningsiiJ.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in NigeriaE.C.K. IgwegbeCassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People'sRepublic of CongoJ.F. Daniel, B. Boher, and N. NkoukaCassava Root Rot due to Armillariella tabescens in the People's Republic ofCongoCasimir MakambilaScreening for Resistance Against the Green Spider MiteK. LeuschnerK. Leuschner75Biological Control of the Cassava MealybugHans R. HerrenPenpublic of CongoG. Fabres81		
Mabanza40Some Characteristics of Yellow-Pigmented CassavaK.A. Oduro42Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry45Field Screening of Cassava Clones for Resistance to Cercospora henningsii J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria E.C.K. Igwegbe58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T. Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens Biological Control of the Cassava Mealybug69Screening for Resistance Against the Green Spider Mite Biological Control of the Cassava Mealybug69Screening for CongoG. Fabres81		01
Some Characteristics of Yellow-Pigmented CassavaK.A. Oduro42Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research E.R. Terry45Field Screening of Cassava Clones for Resistance to Cercospora henningsii49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria E.C.K. Igwegbe58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo66Cassava Root Rot due to Armillariella tabescens Biological Control of the Cassava Mealybug69Screening for Resistance Against the Green Spider MiteK. Leuschner79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo8181Sasava Mealybug81818181818181818181818181		40
ResearchE.R. Terry45Field Screening of Cassava Clones for Resistance to Cercospora henningsii49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens Biological Control of the Cassava Mealybug69Screening for Resistance Against the Green Spider MiteK. Leuschner79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81	Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro	42
Field Screening of Cassava Clones for Resistance to Cercospora henningsiiJ.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo66CongoCasimir Makambila69Screening for Resistance Against the Green Spider MiteK. LeuschnerSiological Control of the Cassava MealybugHans R. HerrenPropublic of CongoG. FabresState Series81		
J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry49Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo66Cassava Root Rot due to Armillariella tabescens69Screening for Resistance Against the Green Spider MiteK. LeuschnerTomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81	Research E.R. Terry	45
Properties of a Severe Strain of Cassava Latent Virus Isolated from Field- Grown Tobacco in Nigeria E.C.K. Igwegbe58Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo Casimir Makambila69Screening for Resistance Against the Green Spider Mite Biological Control of the Cassava Mealybug Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo G. Fabres79818181		40
Grown Tobacco in NigeriaE.C.K. Igwegbe58Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T.Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo69Screening for Resistance Against the Green Spider MiteK. LeuschnerSiological Control of the Cassava MealybugHans R. HerrenHans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81		49
Cassava Bacterial Blight Disease in UgandaG.W. Otim-Nape and T. Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo61Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Screening for Resistance Against the Green Spider Mite69Screening for Resistance Against the Green Spider Mite75Biological Control of the Cassava Mealybug67Hans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81		50
Sengooba61Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of Congo66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo66Cassimir Makambila69Screening for Resistance Against the Green Spider Mite67Biological Control of the Cassava Mealybug67Hans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81	Cassava Bacterial Blight Disease in Uganda C W Otim-Nane and T	20
Insect Dissemination of Xanthomonas manihotis to Cassava in the People's Republic of CongoJ.F. Daniel, B. Boher, and N. Nkouka66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo69Screening for Resistance Against the Green Spider MiteK. Leuschner75Biological Control of the Cassava MealybugHans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81	Sengooba	61
Republic of CongoJ.F. Daniel, B. Boher, and N. Nkouka66Cassava Root Rot due to Armillariella tabescens in the People's Republic of Congo69Screening for Resistance Against the Green Spider MiteK. LeuschnerScreening for Resistance Against the Green Spider Mite75Biological Control of the Cassava MealybugHans R. HerrenPentomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo81		•••
CongoCasimir Makambila69Screening for Resistance Against the Green Spider MiteK. Leuschner75Biological Control of the Cassava MealybugHans R. Herren79Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of CongoG. Fabres81		66
Screening for Resistance Against the Green Spider Mite K. Leuschner 75 Biological Control of the Cassava Mealybug Hans R. Herren 79 Entomophagous Insects Associated with the Cassava Mealybug in the People's 81 Republic of Congo G. Fabres 81	Cassava Root Rot due to Armillariella tabescens in the People's Republic of	
Biological Control of the Cassava Mealybug Hans R. Herren 79 Entomophagous Insects Associated with the Cassava Mealybug in the People's 81 Republic of Congo G. Fabres 81	Congo Casimir Makambila	69
Entomophagous Insects Associated with the Cassava Mealybug in the People's Republic of Congo8181		
Republic of Congo G. Fabres		79
		_
		81
Dynamics of Cassava Mealybug Populations in the People's Republic of		0.4
Congo G. Fabres		84
Consumption Patterns and Their Implications for Research and Production in Tropical Africa Felix I. Nweke	Tropical Africa Felix I Nucleo	00

Problems of Cassava Production in Malawi R.F. Nembozanga Sauti Evaluation of Some Major Soils from Southern Nigeria for Cassava Produc-	95
tion J.E. Okeke and B.T. Kang	99
Effects of Soil Moisture and Bulk Density on Growth and Development of	
Two Cassava Cultivars R. Lal	104
Performance of Cassava in Relation to Time of Planting and Harvesting	
F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba	111
The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize	
S.O. Odurukwe and U.I. Oji	116
Intercropping of Plantains, Cocoyams, and Cassava S.K. Karikari Weed Control in Maize – Cassava Intercrop I. Okezie Akobundu	120 124
Effect of Maize Plant Population and Nitrogen Application on Maize-Cassava	127
Intercrop B.T. Kang and G.F. Wilson	129
Cassava Leaf Harvesting in Zaire N.B. Lutaladio and H.C. Ezumah	134
Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of	
Cassava and Sweet Potato M.T. Dahniya	137
Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in	1.42
Cassava M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard	143
Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of	140
Cassava Emmanuel N. Maduagwu and Aderemi F. Adewale The Role of Palm Oil in Cassava-Based Rations Ruby T. Fomunyam,	149
A.A. Adegbola, and O.L. Oke	152
Comparison of Pressed and Unpressed Cassava Pulp for Gari Making	1,52
M.A.N. Ejiofor and N. Okafor	154
Gari Yield from Cassava: Is it a Function of Root Yield? D.G. Ibe and	
F.O.C. Ezedinma	159
•••	
Yams	
Parameters for Selecting Parents for Yam Hybridization Obinani O. Okoli Anthracnose of Water Yam in Nigeria Okechukwu Alphonso Nwankiti	163
and E.U. Okpala	166
Strategies for Progress in Yam Research in Africa I.C. Onwueme	173
Study of the Variability Created by the Characteristics of the Organ of	
Vegetative Multiplication in <i>Dioscorea alata</i> N. Ahoussou and B. Toure	
Growth Dottorn and Growth Analysis of the White Ovince Now Deised form	177
Growth Pattern and Growth Analysis of the White Guinea Yam Raised from Seed C.E. Okezie, S.N.C. Okonkwo, and F.I. Nweke	100
Artificial Pollination, Pollen Viability, and Storage in White Yam M.O.	180
Akoroda, J.E. Wilson, and H.R. Chheda	189
Improving the In-Situ Stem Support System for Yams G.F. Wilson and K.	107
Akapa	195
Yield and Shelf-Life of White Yam as Influenced by Fertilizer K.D.	
Kpeglo, G.O. Obigbesan, and J.E. Wilson	198
Weed Interference in White Yam R.P.A Unamma, I.O. Akobundu, and	
A.A.A. Fayemi	203
The Economics of Yam Cultivation in Cameroon S.N. Lyonga	208
Effect of Traditional Food Processing Methods on the Nutritional Value of	
Yams in Cameroon Alice Bell and Jean-Claude Favier	214
Cocoyams	
Strategies for Progress in Cocoyam Research E.V. Doku	227
Root and Storage-Rot Disease of Cocoyam in Nigeria G.C. Okeke	231

Fungal Rotting of Cocoyams in Storage in Nigeria J.N.C. Maduewesi and	
Rose C.I. Onyike	235
A Disease of Cocoyam in Nigeria Caused by Corticium rolfsii O.B. Arene	
and E.U. Okpala	239
Cocoyam Farming Systems in Nigeria H.C. Knipscheer and J.E. Wilson	247
Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application	
and Spacing M.C. Igbokwe and J.C. Ogbannaya	255
Abstracts	
Cassava Research Program in Liberia Mallik A-As-Saqui	259
Effects of Cassava Mosaic on Yield of Cassava Godfrey Chapola	259
Effects of Green Manure on Cassava Yield James S. Squire	260
Alleviating the Labour Problem in Yam Production: Cultivation without Stakes	200
or Manual Weeding I.C. Onwueme	260
	200
Discussion Summary	
Strategies for the 1980s	263
References	265
•	

WEED CONTROL IN MAIZE-CASSAVA INTERCROP

I.OKEZIE AKOBUNDU

INTERNATIONAL INSTITUTE OF TROPICAL AGRICULTURE, IBADAN, NIGERIA

Two improved cassava cultivars consisting of a profusely branching type (TMS 30395) and an upright, moderately branching type (TMS 30001) were grown at two population densities as components of mixtures involving two maize (TZB) populations. Maize yield was depressed by TMS 30395 at the higher cassava population density of 10 000 plants/ha but not at 5000 plants/ha. Cassava cultivar TMS 30001 did not affect maize yield at either of the two population densities. Two hand weedings or the use of a preemergence herbicide (Primextra) limited yield reductions caused by weeds in the maize – cassava intercrop. Root yield was generally higher for TMS 30001 than for TMS 30395. The highest root yield for each cultivar was obtained when 10 000 cassava plants/ha were intercroped with maize at 20 000 plants/ha. This combination gives the optimum plant population (30 000 plants/ha) for the mixture. The highest total food energy and the lowest weed weight were observed at this population. Cost of weeding was lowest where the herbicide, Primextra, was used. This treatment gave the highest return on investment at the optimum crop combination.

Deux cultivars améliorés de manioc, le TMS 30395 à feuillage abondant et le TMS 30001 à feuillage modéré érigé ont été cultivés à densité différente en association avec deux peuplements de maïs (cv. TZB). TMS 30395 a réduit les rendements de maïs lorsque la population comprenait 10 000 individus par hectare mais n'eut aucun effet sur celle de 5 000 plantes par hectare. Le cultivar TMS 30001 n'a pas affecté la production de maïs quelle qu'ait été la densité de la population associée. Deux sarclages ont été nécessaires ou l'emploi d'un herbicide en pré-levée (Primextra) afin de réduire au minimum l'action des mauvaises herbes. Le rendement en tubercules a été généralement plus élevé avec TMS 30001 qu'avec TMS 30395. Et la production de tubercules pour chaque cultivar a été plus élevée lorsque la culture associée comprenait un peuplement de manioc de 10 000 plants par hectare et celle du maïs de 20 000 plants par hectare. Cette combinaison de 30 000 plants par hectare est la meilleure proportion pour une production optimale. C'est également dans cette proportion qu'on a obtenu l'énergie alimentaire totale la plus élevée et le plus faible volume de mauvaises herbes. Le sarclage a été le moins coûteux avec l'emploi de l'herbicide Primextra. Ce traitement a été le plus rentable pour cette combinaison de cultures associées comprenant le maïs et le manioc.

Mixed cropping constitutes a major component of the traditional cropping system in tropical Africa (Okigbo and Greenland 1976). In most parts of the world, cassava is grown as an intercrop by smallholder farmers. Crops commonly intercropped with cassava include food legumes, cereals, and horticultural crops. Maize-cassava appears to be the most popular intercrop among farmers in tropical Africa, Latin America, and Asia (Okigbo 1978; Mureno and Hart 1979; and Kumar and Hrishi 1979).

Farmers intercrop for a variety of reasons including insurance against crop failure, better and more efficient use of labour, prevention of erosion, and protection against crop pests (Watters 1971; Andrew 1975; Norman 1975). Although a desire to control weeds may have influenced the evolution of cropping patterns, the farmer generally uses very wide spacings adjusted more to the fertility level of the soil than to early canopy cover and weed control. Lagemann (1978), in a study of the traditional farming systems of three villages in eastern Nigeria, noted that the average plant population density of a mixture of arable crops in the fields was only 12 000 plants/ha. This figure is low compared with the 30 000 plants/ha generally recommended for arable crop mixtures.

Low plant densities mean that large areas of soil surface are exposed and so favour weed establishment. Effective use of intercropping to suppress weeds requires adequate plant populations and spatial arrangements of crops in the mixture. The objective of this study was to assess the impact of plant type and population density on the effectiveness of selected weed control treatments.

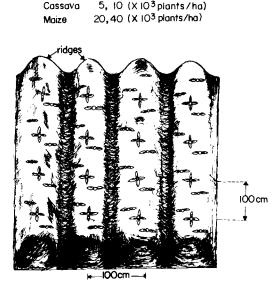


Fig. 1. Effect of maize plant population on maize grain yield.

MATERIALS AND METHODS

The experiment was set up in an alfisol (Apomu sandy loam soil) at the International Institute of Tropical Agriculture. Two improved cassava cultivars consisting of a profusely branching type (TMS 30395) and an upright, moderately branching type (TMS 30001) were used at two spacings (100

 \times 100 cm and 100 \times 200 cm) as components of mixtures involving maize (cultivar TZB). The maize was intercropped at a spacing of 100×25 cm (Fig. 1). The two crops were planted at the same time. Cassava stakes were 25 cm long and were planted on the top of ridges in a slanting position (approximately 45°). Maize was planted on both sides of the ridges at two seeds per hill and thinned to one stand/hill 2 weeks after emergence. In addition to the intercrop treatments, weed-free control plots of sole maize and sole cassava, each at the various plant populations used in the intercrop, were included. Fertilizer was applied (N, P205, and K₂0, 30 kg/ha) during land preparation, and 60 kg N/ha was applied to the 4-week-old maize as side dressing.

Weed-control treatments were one hoe weeding; two hoe weedings; preemergence application of a formulated mixture of atrazine and metolachlor (2.5 kg a.i./ha); a weed-free plot; and an unweeded control plot. Data on crop performance, weed control, and yield of economic components of the crops were collected and statistically analyzed.

RESULTS AND DISCUSSION

The results showed that maize yield (at 40000 plants/ha) was depressed in the profusely branching cassava cultivar (TMS 30395) at 100×100 cm spacing but not when the cassava spacing was 100×200 cm (Table 1). Reduction in maize yield

Table 1. Effect of cassava (TMS 30395 and TMS 30001) spacing (population) on yield of maize (TZB).^a

		Maize grain yield (t/ha)				
		TMS 303	95 spacing	TMS 30001 spacing		
		$1.0 \times$	2.0 ×	$1.0 \times$	2.0 ×	
	Weed control	1.0 m	1.0 m	1.0 m	1.0 m	
40 000	Weeded at 2 WAP	1.84	1.83	1.85	2.59	
maize plants/ha	Weeded at 2+5 WAP	2.28	3.10	2.54	2.30	
-	Primextra 2.5 PE	2.69	2.35	3.25	2.50	
	Weed free until harvest	2.81	3.25	3.13	3.11	
	Weedy	0.66	1.09	1.35	0.96	
Mean	-	2.06	2.03	2.43	2.29	
LSD 0.05 (within cassava) ^b		1.	46	0.	92	
20 000 maize	Weeded at 2 WAP	1.85	1.30	1.90	1.65	
plants/ha	Weeded at 2+5 WAP	1.12	1.26	2.09	2.07	
-	Primextra 2.5 PE	1.32	1.46	2.14	1.26	
	Weedy	0.37	0.42	1.47	1.08	
Mean	-	1.17	1.11	1.90	1.52	
LSD 0.05 (within cassava) ^b		0.	74	0.	86	

^aYield from sole maize plots, kept weed free, was 3.24 t/ha at 40 000 plants/ha and 2.33 at 20 000 plants/ha.

^bLSD 0.05 for comparison of means of different cassava spacings at 40 000 plants/ha maize is 1.61 t for TMS 30395 and 1.46 t for TMS 30001; at 20 000 plants/ha maize, it is 0.68 t for TMS 30395 and 1.10 t for TMS 30001.

		TMS 3039	5 (TMS 3000	1) fresh weight	yields (t/ha)	
		Maize spacing				
	Weed control	$1.0 \times 0.25 \text{ m}$		$1.0 \text{ m} \times 0.5 \text{ m}$		
10 000 cassava	Weeded at 2 WAP	10.80	(13.56)	15.29	(16.78)	
plants/ha	Weeded at 2+5 WAP	13.07	(18.29)	15.55	(25.08)	
- ·	Primextra 2.5 (preemergent)	13.63	(16.23)	23.28	(34.78)	
	Weed free until harvest	13.07	(21.18)	23.57	(30.94)	
	Weedy	6.27	(7.71)	6.83	(9.32)	
Mean	•	11.37	(15.39)	16.9	(23.38)	
LSD 0.05 (within maize) ^b			14.3	(9.31)		
5000 cassava	Weeded at 2 WAP	10.31	(7.59)	16.50	(14.12)	
plants/ha	Weeded at 2+5 WAP	11.05	(15.99)	15.94	(13.56)	
•	Primextra 2.5 (preemergent)	11.69	(13.61)	19.40	(20.56)	
	Weed free until harvest	10.68	(14.31)	19.24	(21.92)	
	Weedy	4.49	(4.42)	4.02	(3.09)	
Mean	-	9.65	(11.18)	15.02	(14.65)	
LSD 0.05 (within maize) ^b			8.71	(8.21)		

Table 2. Effect of maize spacing and population on yield of cassava (TMS 30395 and TMS 30001).^a

^aYield from sole cassava plots, kept weed free, was 41.79 t/ha at 10000 plants/ha and 29.73 t/ha at 5000 plants/ha.

^bLSD for comparison of means of different maize spacings at 10000 plants/ha cassava is 13.2 t for TMS 30395 and 11.4 t for TMS 30001; at 5000 plants/ha, it is 11.1 t for TMS 30395 and 20.12 t for TMS 30001.

caused by uncontrolled weed growth was greater at the narrower cassava spacing than at the wider spacing (77% and 67% respectively). This may have been caused by increased interspecific and intraspecific competition among weeds and crop mixtures. The yield reductions were greater than values generally observed in sole-cropped maize under identical growing conditions. The cassava cultivar TMS 30001 did not depress maize yield at any of the spacings used in this study (Table 1).

Cultural weed control involving two weedings by hand or the use of a preemergence herbicide was necessary to minimize yield reduction caused by weeds in the maize—cassava intercrop. The herbicide caused no visible phytotoxicity to either maize or cassava. Intercropped maize at a plant population of 20 000 plants/ha generally produced lower yields than did the same population on a pure stand.

Root yield of TMS 30395 at the two cassava spacings used in this study was depressed by maize at a population of 40 000 plants/ha but not at 20 000 plants/ha (Table 2). When good weed control was provided, root yield of TMS 30395 intercropped with maize at 20 000 plants/ha was identical to yield of the sole-cropped cassava irrespective of the cassava population. Root yield in the herbicidetreated plots was as high as that in the weed-free plots. Uncontrolled weed growth caused more yield reduction in cassava at high plant populations than at the low levels due to greater weed—crop interference at high plant densities. Root yield was depressed at all intercrop combinations involving TMS 30001 (Table 2) but more so at a maize population of 40 000 plants/ha than at 20 000 plants/ha. However, crop sensitivity to weed interference was greater at the lower population. Although, generally, cassava yield was lower in plots weeded only once than in plots with other

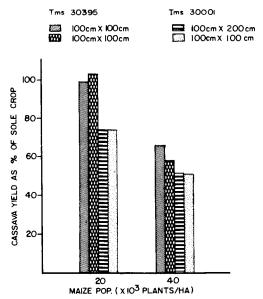


Fig. 2. Effect of maize plant population on cassava root yield.

Crop	spacing	Population	L	and equivalent ratio)
Cassava	Maize	(plants/ha)	TMS 30395	TMS 30001	Mean ^a
$2 \times 1 \text{ m}$	1×0.5 m	25 000	1.86	1.30	1.58
1 × 1 m	1×0.5 m	30 000	1.68	1.90	1.79
$2 \times 1 \text{ m}$	$1 \times 0.25 \text{ m}$	45 000	1.59	1.47	1.53

Table 3. Effect of plant population on land equivalent ratio in maize-cassava intercrop.

^aLSD (0.05) for comparison of means within one cultivar is 0.34: between the two cultivars is 0.71: the coefficient of variation is 12%.

weed-control treatments, this difference was very pronounced at the lower plant population.

How the various maize populations affect cassava root yield under weed-free conditions is shown in Fig. 2. The cassava cultivar TMS 30001 was more affected by the maize intercrop than was TMS 30395. Up to 50% yield reduction occurred in TMS 30001 when it was intercropped with maize at 40 000 plants/ha.

Lodging in the maize-cassava intercrop was affected by plant population as well as cassava cultivar (Fig. 3). When the two cassava cultivars were grown separately, lodging was kept at about 10% of the total stands. The greatest amount of lodging was observed in the maize – cassava intercrop where the maize population of 40 000 plants/ ha was maintained. The upright cassava cultivar (TMS 30001) was more susceptible to lodging than the low, profusely branching TMS 30395. At 100 \times 100 cm spacings, TMS 30395 practically suffered no lodging.

All the maize-cassava intercrop populations had land-equivalent ratios (LERs) greater than one, an indication that this intercrop has an overall yield advantage over growing each crop alone on the available land. The highest mean LER for the intercrop was obtained at a total maize-cassava population of 30 000 plants/ha, and the highest

Table 4. Effect of plant population and weed control on food energy values (calories) and weed growth in maize/cassava intercrop.

	Weed Control		es (× 10 ⁶ cal) cultivars	Dry weight of weeds (t/ha) in		
_		TMS 30395	(TMS 30001)	TMS 30395	(TMS 30001)	
25 000 plants/ha	Weeded at 2 WAP	29.23	(27.08)	3.61	(3.05)	
	Weeded at 2+5 WAP	28.24	(27,60)	1.20	(0.71)	
	Primextra 2.5 PE	32.58	(35.12)	1.61	(2.11)	
	Weed free	34.53	(37,33)		(=)	
	Weedy	7.47	(6.24)	4.97	(4.97)	
30 000 plants/ha	Weeded at 2 WAP	29.38	(31.79)	2.74	(2.53)	
	Weeded at 2+5 WAP	27.17	(44.84)	1.13	(1.14)	
	Prímextra 2.5 PE	39.39	(59.08)	1.17	(1.49)	
	Weed free	40.63	(51.72)		, ,	
	Weedy	11.49	(19.09)	4.63	(3.86)	
45 000 plants/ha	Weeded at 2 WAP	21.89	(20.58)	2.31	(2.64)	
	Weeded at 2+5 WAP	23.50	(32.03)	0.47	(1.27)	
	Primextra 2.5 PE	27.73	(29.21)	1.54	(0.87)	
	Weed free	27,52	(32.44)		(0.07)	
	Weedy	10.57	(10,00)	4.62	(4.65)	
50 000 plants/ha	Weeded at 2 WAP	23.38	(26.81)	2.51	(2.19)	
	Weeded at 2+5 WAP	27.64	(36.34)	1.83	(0.77)	
	Primextra 2.5 PE	29.88	(35.81)	1.49	(1.53)	
	Weed free	29.52	(42.71)		(1.55)	
	Weedy	11.69	(16.30)	4.96	(4.65)	
LSD (0.05) for com			(,	1.70	(4.05)	
within each population		16.84	(13.00)	1.56	(1.34)	
LSD (0.05) for com			(12.00)	1.50	(1.54)	
of different popul		16.52	(15.85)	1.46	(1.27)	

Population (plant/ha)		Cost of weeding (Naira) ^a	Gross return (Naira)		Net return (Naira) ^b	
	Weed control		TMS 30395	TMS 30001	TMS 30395	TMS 30001
30 000	Hoe weeding at 2+5 WAP	138.00	1271.83	2121.53	1133.83	1983.53
	Primextra 2.5 PE	42.50°	1813.88	2737.19	1771.38	2694.69
50 000	Hoe weeding at 2+5 WAP	138.00	1406.53	1802.43	1268.53	1664.43
	Primextra	42.50	1539.53	1848.71	1497.03	1806.21

Table 5. Effect of weed control methods on economic return in maize-cassava intercrop.

"Two weedings in maize/cassava require 278 h/ha; cost is based on 6 h/day @ 3.00 Naira/day; 1.00 = U.S. \$1.80.

^bNet return does not include other production costs and these are identical for both weeding methods.

°Cost of herbicide plus labour; a day for each sprayer operator and assistant @ 3.00 Naira/day.

Fig. 3. Effect of maize plant population on maize cob yield.

LER for TMS 30001 was also obtained at this total plant population (Table 3). The concept of LER has been used by several authors to assess the advantages of sole and intercropping systems (Francis et al. 1976; Trenbath 1976).

At each plant population, the highest food energy values (kilocalories) were obtained in plots that were kept weed-free throughout the growing season either by repeated weeding by hand or by application of herbicide (Table 4). The highest energy values were obtained when each cassava cultivar was intercropped at 10 000 plants/ha with maize at 20 000 plants/ha. Also, the mean weed weight was lowest at this population mix (Table 4).

The best weed-control treatments in this study were two timely weedings by hand or the use of the herbicide Primextra. The lowest unit cost for weed control was obtained when the herbicide was used (Table 5). This treatment accounted for the highest return on investment, especially at the optimum crop combination (30 000 plants/ha).

It is generally assumed that herbicides are too expensive for the average farmer to use. Results reported in this paper show that at least in Nigeria labour for weeding is in fact manyfold more expensive than is herbicide. Besides, labour for routine farm operations has become very scarce as a result of accelerated migration of rural dwellers to urban centres. Even in countries where the daily wage is low, labour has in recent times become unreliable and often unavailable at the critical time of weed interference. Herbicide use not only provides the needed weed control at the time it is most needed by the crop but also reduces the farmer's input costs in weed control. To make chemical weed control attractive, there is need to improve on herbicide availability to small farmers in consumer-usable small packages. This type of packaging will require the cooperation of chemical industries and governments in the developing countries.

I wish to acknowledge the help given by G. Heys in providing the improved cassava stakes used in this study and the technical assistance provided by R.A. Raji in the course of the field experiments.