CANADA

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4 – 17 JANUARY 1989 The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Établi à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.

49363

PERIODICALS PERIODIQUES

IDRC-MR252e February 1990

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II

2. The Other Oil Crops Subnetwork-I

3. The Oil Crops Network Steering Committee-I

Edited by

Technical	Abbas Adviser,	Omran Oil C	Crops	Netwo	IDRC LIBRARY TRUIOTHEQUE DU CRDI
					884172 0TTAWA

Organized by

Indian Council of Agricultural Research, New Delhi, India G.G. Pant University of Agriculture and Technology, Pantnagar, India Directorate of Oilseeds Research, Hyderabad, India International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.

CONTENTS

Foreword	V
List of Participants	vi
Introduction	xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH	2
Recent Development in Oilseed Brassicas. R.K.DOWNEY	4
The Interinstitutional Collaborative Research Program on White Rust	
(Albugo candida) Between India (ICAR) and Canada (IDRC) for	
Rapeseed-Mustard Improvement. P.R.VERMA	9
Stability Parameters for Seed Characters In Different Species of	
Oleiferous Brassica. H.SINGH, D.SINGH, and V.S. LATHER	14
Dilseed Brassica Research in India. P.R.KUMAR	17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.	
BASUDEO SINGH	24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.	
G.N.SACHAN	30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND	
KUMAR and R.F. SINGH	35
Disease Problems in Brassicas and Research Activities at Pantnagar.	+-
S.J.KOLTE, R.P.AWASTHI and VISHWANATH	43
Effect of Some Epidemiological Factors on Occurrence and Severity of	
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and	
S.J.KOLTE	49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.	/
G.C.SACHAN	56
Economic Performance, Potential and Constraints in Toria Production.	
L.R.SINGH	66
Rapeseed In Egypt. BADR A.EL-AHMAR	70
The Role of High-Yielding Varieties and Production Techniques	70
on Dilseed Brassica Performance in the Central, South-Eastern	
and North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET	
ALEMAW and NIGUSSIE ALEMAYEHU	
	72 79
The Achievements and Future of Brassica in Kenya. M.J.MAHASI Represent Adaptation Trials in Evenue - A MARINEMPLETOROUM ON	
Rapeseed Adaptation Trials in Cyprus. A.HADJICHRISTODOULOU	83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai	
Academy of Agricultural Sciences (SAAS) for Recent Years.	
SUN CHADCAI	92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding	
Project in 1988. WANG ZAO MU	94
A Preliminary Study on the Combining Ability and Heritability of Main	
Agronomic Characters in <i>B. juncea</i> . WANG ZAO MU and	
WANG YAN FEI	98
Report on the Execution of Sino-Canada Research Breeding Project.	
LIU CHENG QUING and HONG HAI PING	103

A Review of Orobanche Problem in Nepal. M.L.JAYASWAL	106
Oil Crops in Bhutan. TAYAN RAJ GURUNG	119
Brassica Production and Research in Pakistan. REHMAT ULLAH KHAN and	
MASOOD A.RANA	127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT	
Report on a Tour to Dilseed Brassica Growing Areas of India.	
GETINET ALEMAW	136
Discussions and Recommendations	138

Part 2. Other Dilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAD	144
India from January 9-13, 1989. V.RANGA RAO Coordinated Research Efforts and Linseed (Linum Usitatissimum L.)	147
Improvement in India. MANGALA RAI	149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT	154
Nigerseed in India: Present Status of Cultivation, Research	
Achievements and Strategies. S.M.SHARMA	159
Constraints and Opportunities for Increasing the Production and	
Productivity of Niger in India. S.M.SHARMA	166
New Potential Areas of Niger in India. S.M. SHARMA	169
Present Production, Research and Future Strategy for Niger in	
Maharashtra. A.V.JOSHI	171
Niger in Tribal Bihar. H.B.P.TRIVEDI	176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY .	180
Agronomic Management/Agro-Techniques for Improving Production of	
Niger and Linseed. G.L.MISHRA	186
The Present Status of Niger and Linseed Pathology Work in India.	
6.5.SAHARAN	192
Safflower, Niger and Linseed in Nepal. B.MISHRA	203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and	
DILRUBA BEGUM	208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,	
MOHAMMAD SHARI, and ALTAF H.CHAUDHRY	213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR	218
Progress in Linseed On-station and On-farm Research in Ethiopia.	
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW	220
Investigations on Some Biochemical Characteristics of Nigerseeds	
(Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH	229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA	233
The Status of Linseed, Safflower and Niger Research and Production in	~~~
Kenya. T.C.RIUNGU	238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.	741
HUGH DOGGETT	241 248
Discussions and Recommendations	248

.

Part 3. Dilcrops Network Steering Committee-1

The Oilcrops Network for East Africa and South Asia, Achievements and	
Future. ABBAS OMRAN	256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT	265
IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks. J.M.M.ENGELS	272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in	
India. MANGALA RAI	274
Oilseeds Research in India: Network, Its Set Up, Organization, Past	
Achievements and Current Research Thrusts. V.RANGA RAD	283
Groundnut and the Oilcrops Network. S.N.NIGAM	286
Oilcrops Production in Ethiopia Current Status and Future Prospects.	
SEME DEBELA	288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I.	
C.ZULBERTI and J.LUGOGO	293
Brassica Sub-Network Achievements and Activites, 1987-88.	
HIRUY BELAYNEH	320
The Present Situation and Main Achievements of Sesame Production in	
East Africa. MOHAMMED EL-HASSAN AHMED	324
Constituion of the Oil Crops Network (Second Draft). MASOOD A.RANA and	
ABBAS OMRAN	330

.

PROGRESS IN LINSEED ON-STATION AND ON-FARM RESEARCH IN ETHIOPIA

Hiruy Belayneh, Nigussie Alemayehu and Getinet Alemaw

Abstract

It is estimated that the total area under linseed exceeds 100,000 ha. However, the national average seed yield is low mainly due to the poor traditional technologies in use. As a result of extensive testing, four high yielding stable improved varieties, namely Victory, Concurrent, CI-1525 and CI-1652 have been released for general cultivation. The latter two are in production currently. The agronomy trials showed that timely planting and weeding are important. The on-farm trial results indicated that linseed yield can be increased substantially by using the improved varieties and management practices. Hence, there is a large room for improving the current average national linseed yield of the country. Weeding of this crop is a profitable proposition. Fusarium wilt and pasmo are recorded as important diseases on linseed. The major insect pests are African bollworm and golden plusia. Chemicals are available to combat these insect pests.

Ethiopia is considered to be the center of diversity for linseed (Linum usitatissimum L.) (13). Ξt is the second important oil crop after noug in the country and is grown widely on the highlands for its seed (19). The area under this crop is about 107,270 ha, with an average yield of 357 kg/ha (5). The poor yields under farmers' conditions are partly due to а heavy weed infestation. The main producing areas are in Arsi with adjoining areas in Bale and the Chercher mountains, in eastern Wellega, eastern Gojjam around lake Tana, the Semien mountain, Tigri, Eritrea, south-west Welo and Shoa (19). The is commonly crop cultivated on subsistence level at altitudes between 1800 and 3000m with an annual rainfall above 450 mm (13, 19). It grows on almost all types of soils except dry sands and poorly drained heavy clays. It. is often grown on marginal and submarginal rainfed soils as pure crop.

A number of options are now available for better returns per unit area. This paper will summarize the promising results available so far.

On-Station Activities

Variety development

The objective of the breeding program is to develop high yielding stable cultivars with resistance to fusarium wilt, pasmo and powdery mildew.

Nearly all linseed varieties grown at present are landraces. Work on the indigenous landraces consisted mainly of making collections. evaluation and maintaining the 470 germplasm. About local collections have been characterized (11). In general, the Ethiopian linseed are short in height and On the other hand. small seeded. as a result of the introduction of exotic materials of diverse origin and extensive testing, four high exotic yielding stable and varieties (Victory, Concurrent, CI-1525 and CI-1652) have been released to producers. The latter two-bold seeded varieties were released in 1984 after fulfilling the pre-release requirements (10). CI-1525 and CI-1652 were improved through mass selection at Holetta from materials originated in France and Ireland, respectively, and have done well nation wide under both unfertilized fertilized and conditions (Tables 1-5).

Table 1. Summary of seed yield in kg/ha of the improved and local varieties in the linseed national and extension trials grown at 16 sites in five Agricultural Development Zone (ADZ) with 23/23 kg/ha of N and P_2O_5 fertilizer (F₁) or without (F₀) 1984-1986 crop season (7,15,17)

Agricultural			. 1	ARIE	TIES	5	
Development	Site	Imp	roved			Local	
Zone		<u> </u>	F1	Mean	F_0	<u>F</u>	Mean
Central	Sheno	858	967	913	705	871	788
	Holetta	1719	1860	1790	1450	1633	1542
	Debre Zeit	1615	1487	1551	1296	1233	1265
	Goha Tsion	961	1163	1062	813	900	857
	Tefki	852	1192	1022	930	1158	1044
	Shashemene	690	821	756	786	938	862
	Inwarie	536	842	689	492	834	663
	Mean	1033	1190	1112	925	1081	1003
South-eastern	Bekoji	1457	1398	1428	1499	1379	1439
	Kulumsa	1374	1322	1348	1145	1068	1107
	Robe	1234	1131	1183	912	990	951
	Mean	1355	1284	1320	1185	<u>1</u> 145	1165
North-western	Dabat	1014	1424	1219	754	1050	902
	Debre Tabor	1652	1896	1774	1252	1592	1422
	Motta	1295	1354	1325	1076	911	994
	Burie	1356	1479	1418	773	1096	934
	Mean	1329	1538	1434	964	1162	1063
lestern	Shambu	1463	1884	1674	9 50	1092	1021
Eastern	Wacho	860	9 02	881	762	718	740

1 = Average of CI-1525 and CI-1652

Table 2. Seed oil content (%) of the improved and local varieties in the linseed national variety trials grown at five sites in two ADZ with 23/23 kg/ha of N and P_2O_5 fertilizer (F) or without (F_0), 1984-1986 crop season (7,15,17)

Agricultural		ES					
Development	Site		Improv	ed		Local	
Zone		F	<u> </u>	Mean	F	F <u></u>	<u>Me</u> an
Central	Sheno	37.5	37.6	37.6	34.1	34.5	34.3
	Holetta	36.6	36.9	36.8	32.5	32.5	32.5
	Debre Zeit	34.9	35.2	35,1	32.9	33.5	33.2
	Mean	36.3	36.5	36.5	33.2	33.5	33.3
South-eastern	Bekoji	35.3	35.4	35.4	33.2	32.9	33.1
	Kulumsa	35.4	34.9	35.2	33.2	32.8	33.0
	Mean	35.4	35.2	35.3	33.2	32.9	33.1

Table 3. Weight per 1000 seed (g) of the improved and local varieties in the linseed national variety trials grown at five sites in two ADZ with 23/23 kg/ha of N and P205 fertilizer (F_1), or with out (F_0 1984-1986 crop season (7,15,17)

Agricultural				ARIE	TIES	5	
Development	Site		Improve	1		Local	
Zone		F	<u> </u>	Mean	Es_	5	Mean
Central	Sheno	5.9	6.4	6.2	4.6	3.8	4.2
	Holetta	5.6	5.6	5.6	3.3	3.2	3.3
	Debre Zeit	5.1	4.9	5.0	4.0	3.9	4.0
	Mean	5.5	5.6	<u>5.6</u>	4.0	3.6	3.8
South-eastern	Bekoji	6.4	6.3	6.4	5.9	4.3	5.1
	Kulumsa	5.9	5.6	5.8	4.8	4.5	4.7
	Mean	6.2	6.0	6.1	5.4	4.4	4.9

Table 4. Number of days to maturity of the improved and local varieties in the linseed national and extension variety trials grown at 16 sites in five ADZ with 23/23 kg/ha of N and P_2D_5 (F_1) or without (F_0 1984-1986 crop season. (7, 15, 17)

Agricultural	VARIETIES					
Development	Improved Local				Local	
Zone*	E ₀	F,	Mean	Fo	5	Mean
Central (7)	139	137	138	135	i 32	134
South-eastern (3)	155	156	156	141	139	140
North-western (4)	137	136	137	138	137	138
Western (1)	145	142	144	134	131	133
Eastern (1)	127	131	129	110	111	111
Mean (16)	141	140	141	132	130	1 <u>31</u>

* Number of sites in parenthesis.

Table 5. Plant height (cm) of the improved and local varieties in the linseed national and extension variety trials grown at 16 sites in five ADZ with 23/23 kg/ha of N and P_2O_5 (F₁) or without (F₀, 1984-1986 crop season (7, 15, 17)

Agricultural	VARIETIES							
Development	Improved				Local			
Zone*	Fo	F,	Mean	F	- Fi	Mean		
Central (7)	70	75	73	52	60	56		
South-eastern (3)	80	83	82	74	73	74		
North-western (4)	75	79	77	58	67	63		
Western (1)	75	77	76	47	56	52		
Eastern (1)	85	9 0	88	55	67	61		
Mean (16)	77	81	7 9	57	65	61		

* Number of sites in parenthesis.

Single plant selections were made in the national and international nurseries to capture within plot variation and uniform lines were produced (8). A number of lines is being advanced through a stage of hierarchy of yield trials.

The major effort in the crossing towards program has been earliness, wilt incorporating resistance and low lodging characters in high yielding linseed Work on linseed cultivars. at Holetta hybridization was initiated in 1981. Since then, numerous crosses have been made between high yielding parents and lines with the desired characters (8). So far, no superior varieties have been released from the hybridization program. However, promising ones have been advanced to the national variety trial.

Agronomy

A number of agronomic experiments has been undertaken in various research centers on linseed to identify responses of linseed varieties to various levels of management practices. The main results can be highlighted as follows:

It has been realized that seed improvement implies better cleaning of the seed in addition to the cultivation of uniform, high yielding varieties. Cleaning the seed for sowing, combined with one weeding resulted in a 13% higher yield than the uncleaned seed with one weeding (Table 6).

Table 6. Seed yield (kg/ha) of local linseed variety under different purity levels and weeding intensities, Kulumsa 1968 (3).

	Weeding	Weeding	
Purity	Once	twice	Mean
Market seed	870	1110	99 0
Clean seed	78 0	1150	1065
Mean	925	1130	1028

Seed dressing is often recommended since linseed is fragile and cracked seeds are very susceptible to fungal diseases during germination (19). At Kulumsa, the plant population of linseed was increased by 12% by treating the seed against seed borne diseases. However, it had no effect on seed yield (4).

In Ethiopia, linseed is often planted in poorly prepared seed beds which result in low seed yields. The seed bed should be firm with small lumps, and must be free of weeds.

Since linseed is often grown in agriculturally marginal areas, relationships between rainfall, time of sowing and weeding frequency are very important in achieving an optimum yield (12). Based on date of sowing trials, mid to early July has June been recommended as an optimum time depending on the soil type (Table 7).

Small holders' linseed landraces are invariably broadcast at a rate varying from 4 to 75 kg/ha (19,21). On-station seed-rate experiments showed that relatively small yield difference to wide range of seeding rates. Seeding rate of 25-35 kg/ha for drilling and 30-50 kg/ha for broadcast are recommended as the optimal (9). In general, 10-20% higher rates ought to be considered in areas where moisture supplies higher (water-logged are conditions) or where weeds may be a problem. Satisfactory yields of be obtained linseed can bу broadcasting (Table 8), but sowing in rows is better for ease of weeding and harvesting. At Kulumsa, close row spacing of 19 cm produced higher mean seed yields than the wider row spacing of 38 cm when a seed rate of 25 and 50 kg/ha was used (Table 9).

Linseed is adapted to nutrient deficient conditions and it usually responds poorly to the application of fertilizer under low standard of However, there husbandry. are indications of location bγ fertilizer interactions. The application of fertilizers particularly nitrogen was important in water logged soils or where moisture supplies are high (9). The slight response in the national variety trials can justify the application of the lowest level of

	Mean seed yield, (kg/ha) of soil									
Sowing	Red				Alluvial		Black			
date	Kul	unsa	Ho	letta	<u>Illala</u>	Ho	letta	<u>Ghi</u>	<u>Ghinch</u>	
	1968	1969	1967	1 <u>970-7</u> 1	1981	1967	1970-71	1974	1975	
Early June	-*	-	575	-	-	94 0	-	-	-	
Mid June	-	-	-	1251	655	-	1125	•	-	
Late June	-	1393	948	1135	708	1006	1174	360	-	
Early July	1090	1057	-	1164	727	-	1324	310	995	
Mid July	841	-	9 20	966	341	1075	1269	150	830	
Late July	808	673	734	-	-	717	-	-	-	
Mid August	-	-	352	-	-	740	-	-	-	
Late August	-	-	130	-	-	255	-	-	-	
Nean	913	1041	610	1129	608	788	1223	273	<u>913</u>	

Table 7. Results of linseed sowing date trials conducted at Kulumsa, Holetta and Ghinchi in different years (3,4,9,14)

* Information not available.

Table 8. Effect of hand weeding in broadcast and drilled linseed, Kulumsa 1968 and 1969 (3,4)

Sowing					ld, kg/l hand wee			
method	0		Once		Twice		Mean	
	1968	1969	1968	1969	1968	1969	1968	1969
Broadcast	-*	160	810	630	1010	720	910	503
Drill	-	130	9 90	640	1070	610	1030	460
Mean	-	145	900	635	1040	665	97 0	482

* Information not available.

Table 9. Effect of row spacing and seed rate on seed yield of linseed at Kulumsa, 1967 season (2).

Seed		Seed yield kg/ha			
rate	Spacing between rows (cm)				
(Kg/ha)	19	38	Mean		
25	1240	1040	1140		
50	1260	98 0	1120		
100	1030	1100	1065		
Mean	1177	1040	1108		

fertilizer (perhaps 23/23 kg/ha of N and P₂Q) (Table 1).

Linseed is ripe when 90% of the bolls turn brown. Delaying harvest can allow seeds to weather and germination is reduced.

Crop protection

The main aim of cultural practices should be the destruction of weeds.

The seed used by farmers for sowing is an important source of weed infestation. Linseed is a poor competitor with weeds at all growth stages. However, in its late stage, the leafiness and height of the cultivar are important characters agronomic in it⊆ competitiveness (19). The average yield loss due to weed competition in linseed under Holetta and Mekele conditions was found to be 62.2 and 53.1%, respectively (22). An early weeding, 21 days after emergence followed by mid-season weeding is the minimum number of weeding necessary. However, if the weed population is low, a single early weeding is the most cost effective. Among the herbicides tested at Holetta, Linuron 50 WP at 1.0-1.5 kg a.i/ha and Metobromuron 50 WP at 2.0 kg a.i/ha as pre-emergence treatments and MCPA 40% at 1.2 kg a.i/ha as post-emergence were found to be effective in linseed. However, large-scale testing of these herbicides is advisable before final recommendation is made (23).

Linseed is used in rotation to prevent disease build up as linseed is immune to diseases that attack cereals. At Holetta, high yields of wheat, barley, teff and rapeseed following linseed, have been obtained (9). Disease in Ethiopia may be serious problem where linseed is grown in high rainfall areas, or where the soil is poorly

drained. There are many organisms known to be pathogenic on linseed, nine have been recorded in Ethiopia (Table 10). The main diseases are pasmo, wilt, seedling blight and powdery mildew (6, 20). Warm humid weather favours the spread of pasmo. Crop rotation and burning of infected straw can help control of pasmo (13). With regard to Fussarium wilt, high soil temperature (above 25°C) and low soil moisture generally favour the development of the disease (13). The wilt screening activities have been successful in identifying resistance to wilt. The technique for resistance screening against wilt has been worked out and there are varieties, lines and crosses which appear to have high level of resistance.

Four species of insect pests have been recorded, but only two are economically important (Table 11). These are african bollworm and golden plusia. African bollworm is the most serious insect pest (6,18). The use of Endosulfan 39% E.C. at a rate of 2 1/ha or 3.4 1/ha of DDT 25% E.C. is effective to control the bollworm (13). The following four insecticides are effective in controlling found plusia worms (13). 1)Femitrothion 50% E.C. @1.5-2.0 1/ha 2)Carbaryl 85% WP @1.5 kg/ha 3) Malathion 50% E.C. @2 1/ha 4)DDT 25% E.C. @3-4 1/ha.

Table 10. Diseases of linseed recorded in Ethiopia (20).

<u>Disease</u>	Pathogen	Status
_ 	Cladosporium spp	Unknown
Anthracnose	Colletotrichum linicolum	
	Pethyb and Loff	Minor
Wilt	Fusarium spp	Major
	Helminthosporium sativum Pam.,	
	King and Bakke	Unknown
Rust	Melampsora lini (DC.) Tul.	Minor
Garcia-roda	Nycosphaerella linorua (Wollenw)	Unknown
Powdery mildew	Odiua spp	Major
Seedling blight	Rhizoctonia solani Kuchn.	Major
Pasmo	Septoria linicola (Speg.) Garassini	Major

Common name	Scientific name	Status	
Flea beetle	Haltica pyritosa (Erickson)	Minor	
Blue bug	Calidea duodecimpunctata (Fabricius)	Minor	
African bollworm	Heliothis armigera (Hubner)	Connon	
Golden plusia	Diachrusia orichalcea (Fabricius)	Sporadic	

Table 11. Insect species recorded on linseed in Ethiopia (18).

<u>Verifications</u>

<u>On-station verification</u>

The station verification trials over two years showed convincingly that the released varieties and the production package give good yields (Table 12). This means that by improving the practice the productive capacity of the varieties can be utilized and considerable yield can be obtained.

Table 12. Summary of seed yield in kg/ha of the released varieties in the linseed station verification trials grown at two research sites in two ADZ 1985-1987 (Unpublished)

	Holetta Research Center	Adet Research Center
Variety	(Central) <u>3 years</u>	(North-western 1 year)
CI-1525	1378	1900
CI-1652	1345	2140
Mean	1362	1970

<u>On-farm trials</u>

The on-farm trials are designed to verify and check performance and acceptability of research recommendations. This activity was carried outside of research centers on representative farmers' field. From the surveys, it was found out that most farmers do not weed at all and those who do, make one or seldom two hand weeding when convenient. Certainly, in Ethiopia the crop is broadcast at varying seed rate without fertilizer. Hence, the linseed on-farm trials

the conducted comparing were recommended varieties, fertilizer, weeding and seed rate combination with the farmers methods mentioned In general, the optimum above. yield package gave substantial increase over farmers' practice. Management is very critical (1,12). Across locations, both the local and improved varieties gave higher yield⊆ where the improved technologies were properly implemented as compared to the traditionally managed fields (Table 13).

Table 13.	Mean seed yield in kg/ha of two released and one local variety
	in the linseed on-farm trials grown at three ADZ using farmers'
	method and researcher's package, 1985-1987 (1,16)

Agricultural ·								
Development	Number	Farm	ers' metho	d	Resear	cher's par	:kage	
Zone	of sites	CI-1525	CI-1652	Local	CI-1525	CI-1652	Local	
Central	20	738	748	658	982	974	894	
North wester	m 18	457	483	357	680	740	523	
Mean	38	598	616	508	831	857	709	

Production demonstration

Linseed had been shown to give high yield under pilot-cum-

demonstrations	. On	such	1/2	ha	
demonstration,	700	kg/ha	was	a	
common figure	(Table	14).			

Table 14. Seed yield in kg/ha of linseed varieties grown in production at three locations in two ADZ 1987-1988 (Unpublished)

		Management		Advantage	Increase	
Zone	Site	Local	Improved	(kg/ha)	(%)	
Central	Arbi Gebeya	430	730	300	69.8	
South eastern	Digelu	4 70	720	250	53.2	
	Gonde	-	790	_		

<u>Conclusion</u>

Great strides have been made in linseed research since the birth of oilseed improvement program. the Marked increases in yield of linseed were achieved by applying a of recommendations package superior varieties, including of fertilizer and optimal doses timely sowing and weeding. One weeding can raise the yield from a complete uneconomical level to a considerable better return. On the other hand. several trials that is demonstrated linseed definitely the choice for poor soils. In future, more emphasis will be placed on popularizing the improved production technology to farmers through a large number of pilot-cum-production demonstrations and through in farmers' field training programs.

References

- Adugna Haile, Elias Zerfu and Hiruy Belayneh. 1988. Performance of local and improved mustard (Brassica carinata A.Br.) and linseed (Linum usitatissimum L.) cultivars under improved and traditional farming practices. Crop Res. J. 1(1):43-49.
- CADU (Chilalo Agricultural Development Unit). 1968. Results of trials and observations on field and forage crops at Kulumsa farm and in Assela, 1967/68.

 1969. Results of trials and observations 1968/69. Crop Production Department, Addis Ababa. 4.

1969. Report on surveys and experiments, Crop Production Department, CADU Publication No46.

- CSA (Central Statistical Authority). 1987. Time series data on area, production and yield of major crops, 1979/80-1985/86. Statistical Bulletin 56, Addis Ababa, Ethiopia.
- Hiruy Belayneh. 1984. Highland Oil Crops production and research in Ethiopia. Pages 62-69 in Oil Crops: Proceedings of a Workshop held in Cairo, Egypt, 3-8 September 1983, (K. Riley ed.) IDRC-MR93e, Ottawa, Canada.
- 7. _____. 1985. Linseed breeding and selection. Pages 10-21 in Ethiopian Highland Oil Crops Improvement Team Progress Report No. 4(1984/85). Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 1985. Review of linseed breeding research in Ethiopia. Paper presented at the Workshop on Review of Field Crops Research in Ethiopia, 25 February - 1 March 1985. Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 1985. Review of linseed agronomy research in Ethiopia. Paper presented at the workshop on Review of Field Crops Research in Ethiopia, 25 February - 1 March 1985, Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 10. ______. 1986. Technical information on high performing varieties released from 1984 to 1986. Agricul. Res. 1(1):5-10.
- 11. ______. 1987. Oil Crops Germplasm: A vital resource for the plant breeder. Pages 212-221 in the Proceedings of the First International Symposium on the Conservation and Utilization of Ethiopian Germplasm, 13-16 October 1986, Addis Ababa, Ethiopia.
- 12. _____ and Nigussie Alemayehu. 1988. Verification of improved linseed production

practices on farmers' fields. Presented at the Fourth Oil Crops Network Workshop held at Egerton University, Kenya, (A. Omran ed.) IDRC MR 205e.

- and K.W. Riley. 1982.
 Production note for highland oil crops (noug, rapeseed and linseed). Institute of Agricultural Research. 30pp.
- Holetta Research Station. 1968. Progress report for the period February 1966 to March 1968. Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 15. ______. 1989. Progress report for the period April 1986 to March 1987. Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 16. ______. 1989. Progress report for the period April 1987 to March 1988. Institute of Agricultural Research, Addis Ababa Ethiopia. In press.
- IAR (Institute of Agricultural Research).
 1988. Highland Oil Crops Improvement Team Progress Report 1985-1986 Addis Ababa, Ethiopia.
- Kemal Ali, Alemayehu Refera and Adhanom Negasi. 1985. A review of oil crops entomology in Ethiopia. Pages 282-289 <u>in</u> A Review of Crop Protection Research in Ethiopia. Proceeding of the First Ethiopian Crop Protection Symposium (Tsedeke Abate ed.) 4-7 February 1985, Addis Ababa, Ethiopia.

- Seegler, C.J.P. 1983. Oil plants in Ethiopia, their taxonomy and agricultural significance. Center for Agricultural Publishing and Documentation, PUDOC, Wageningen. 368pp.
- Teclemariam W/Kidan, Asfaw Tulu and Mesfin Tessera. 1985. A review of research on Oil Crops diseases in Ethiopia. <u>In</u>: A Review of Crop Protection Research in Ethiopia. Proceeding of the First Ethiopian Crop Protection Symposium (Tsedeke Abate ed.) 4-7 February 1985, 291-311, Addis Ababa, Ethiopia.
- Wolde Yohannis Woldeyes, Yemane G/Yesus and Getachew Jembere. 1977. Preliminary survey of research, production, marketing and processing of oilseeds in Ethiopia. EPID Publication No. 43.
- 22. Rezene Fissehaie. 1984. Weed control trials on linseed. <u>in</u> Highland Oil Crops Improvement Team Progress Report No. 2 (1982/83): 69-73, Institute of Agricultural Research, Addis Ababa, Ethiopia
- Rezene Fissehaie. 1985. Weed control trials on linseed. <u>in</u> Ethiopian Highland Oil Crops Improvement Team Progress Report No. 3 (1983/84): 50-55, Institute of Agricultural Research, Addis Ababa, Ethiopia.