

OIL CROPS: SESAME AND SUNFLOWER SUBNETWORKS

PROCEEDINGS OF THE JOINT SECOND WORKSHOP HELD IN CAIRO, EGYPT,

9-12 SEPTEMBER 1989

CANADA

The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Établi à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.

53264 FERIL

IDRC-MR271e November 1990

OIL CROPS: SESAME AND SUNFLOWER SUBNETWORKS

Proceedings of the Joint Second Workshop held in Cairo, Egypt, 9–12 September 1989

Edited by Abbas Omran Technical Adviser, Oil Crops Network

Organized by Agricultural Research Centre, MOA, Giza, Egypt and International Development Research Centre, Canada

Sponsors

Food and Agriculture Organization, Industrial Crops and European Office, Rome International Bureau of Plant Genetic Resources, Rome International Development Research Centre, Canada

Scientific and Organizing Committee

Dr Abbas Omran Dr Badr A. El-Ahmar Dr Eglal Rashed

ARCHIU OMRAN WO, 2

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.

/

FOREWORD

In September 1989, the Sunflower and Sesame subnetworks held their bi-annual meetings in Cairo, Egypt. The meetings were well attended and papers, presented in these proceedings, provide a very informative overview of some of the cropping systems, management practices, production constraints and research highlights for both crops in several countries.

Chronic edible oil deficit is a major problem facing many developing countries in Africa and Asia where most countries are forced to import large quantities to satisfy the requirements of their growing populations. With the present rates of population increase and the improvement of nutrition standards it is likely that the consumption of edible oil will rise over the years, increasingly drawing on scarce foreign exchange for the importation of this vital food staple. For this reason, several countries have opted to increase self-sufficiency in edible oil.

Production deficits are due to a number of factors, among which neglect in oilcrops research, in both developed and developing countries has been a major one. This is particularly true for minor crops such as sesame. In the context of the IDRC oilcrops network, initiated in 1981, the interchange of information and the sharing of results between scientists have proved to be very useful and beneficial for the generation of scientific knowledge and the stimulation of research in this important area. It is noped that conclusions and recommendations of this meeting will stimulate further research and development in the future.

A second important reason for limited national production has been the exceptionally low levels of world prices for oils and fats in the 1980's and the comparative advantage of importation over production for developing countries. The description of a case study using a system's approach to analysis the Vegetable Oil/Protein System of Kenya has stirred much interest during the Cairo meetings and it is hoped that similar work can be carried out in other countries in the future.

The Cairo meetings will also unfortunately be remembered as the one which has witnessed the diagnosis of the fatal disease of late Dr. Hiruy Belayneh, Chairman of the Brassica Subnetwork. We will all regret his absence.

On behalf of IDRC and of all participants, I would like to thank the Government of Egypt for its hospitality, the organizers for the excellent arrangements and all those who contributed to the success of these meetings by their presentations and discussions.

> Eglal Rached, Senior Program Officer, 1DRC, Cairo

CONTENTS

	PAGE
Forward	
List of Participants	
Introduction	.ix

Part 1. SESAME SUBNETWORK - II

Sesame Genetic Resources: Collection, Evaluation and conservation.	
AMRAM ASHRI Sesame Research in the Sudan.	2
MOHAMED EL-HASSAN AHMED	10
Progress in Sesame Research in Ethiopia. HIRUY BELAYNEH, BULCHA WEYESSA AND ELIAS URAGE A Brief Outline of Sesame (<i>Sesamum Indicum</i> L.) Research in Tanzania.	13
J.Y CHAMBI AND E.M. KAFIRITI Scope of Sesame (<i>Sesamum Indicum</i> L.) in Pakistan.	17
MUHAMMAD ASLAM, MASOOD A. RANA AND M. SIDDIQUE MIRZA Status of Sesame as Oilseed in Bangladesh.	21
M.A. KHALEQUE AND HASINA BEGUM Problems and Progress of Sesame Production In india.	24
S. THANGAVELU, G. KANDASAMY, M. SIVANADAM AND R.K. MURALI BASKARAN Pests of Sesame and their Control.	27
S. THANGAVELU	31
Review and Prospects on Sesame Production in China. TU LICHUAN	41
Sesame Irrigation in Egypt. AHMED MOHAMED EL-WAKIL	
Agronomic Studies on Growth, Yield and Yield Components of Sesame.	
SAMIR TAHA AND MOHAMED EL-SROGY	48
Sesame Research and Progress in Egypt. NESSIM R. GUIRGUIS Root-Rot and Wilt Diseases of Sesame in Egypt.	52
A.A EL-DEEB	5 5
Highlights on Improving Production of Sesame in Egypt. A.F. IBRAHIM	59
Evaluation of Some Cultivars and Promising Strains of Sesame (<i>Sesamum indicum</i> L.). A.A. EL-SHIMY AND M.Z. EL-HIFNY	61
Part 2. SUNFLOWER SUBNETWORK – II	
Use of Wild Species in Sunflower Breeding. DRAGON SKORIC	
Sunflower Breeding: General Objectives and Recent Advances.	

JOSE FERNANDEZ MARTINEZ	95
Progress in Sunflower Research in Ethiopia.	
HIRUY BELAYNEH	102
Sunflower Adaptation in Morocco.	
S. QUATTAR, T.E. AMEZIANE AND A. BAIDADA	106

.

Effect of Maturity Stages and Desiccant Application on Yield,Oil Content and Oil Quality of Sunflower.
MASOOD A. RANA, CHAUDHRY A.OZAIR, M. AYUB KHAN AND
SHAFIULLAH
MASOOD A. RANA
Sunflower Production in India - Problems and Prospects. M. RAI AND P.S. BHATRANGAR
Twelfth International Sunflower Conference - A Report.
MANGALA RAI
M.A. KHALEQUE, AND S.H. MIRZA
Some Aspects Towards Overcoming Vegetable Oils
insufficiency in Egypt: Production of Sunflower and its Improvement in Suez Canal Region.
ABDEL-FATTAH MOHMED ABDEL-WAHAB
Response of Sunflower to Nitrogen Application and Plant
Population Density Under Irrigation at Giza, Egypt. SALWA I. EL-MOHANDES155
Sunflower Research and Production in Egypt.
BADR A. EL-AHMAR
Performance of a New Synthetic Sunflower Stock Developed From Local and Introduced Germplasm and Further
Improvement Via Population Improvement Method.
R. SHABANA
and Tank Mixed Herbicides.
A.F. IBRAHIM, Z.R. YAHIA, H.R. EL-WEKIL AND
E.D.ABUSTEIT
S.E. EL-KALLA
Studies of Diallel Cross in Sunflower (Helianthus. annuus L).
KHALED HAMMAD
on Yield, Yield Components and Land Usage in Egypt.
M.A. MADKOUR
Sunflower Diseases in Egypt. ARAFA A. HILAL

V

Part 3. GENERAL

The Vegetable Oil/Protein System Program:The Kenyan
Experience.
CARLOS ZULBERTI
Microbial Control of Lepidopterous Pests of Oilseed Crops.
H.S. SALAMA
Sunflower and Sesame Research in the Philippines.
NENITA M. TEPORA

Part 4. DISCUSSIONS AND RECOMMENDATIONS

Discussions and Recommendations
I. Sesame
II. Sunflower
III.General

SUNFLOWER AND SESAME RESEARCH IN THE PHILIPPINES

Nenita M. Tepora

Sunflower and sesame are minor oil crops in the Philippines. Sunflower is an introduced crop while sesame is grown in marginal areas by few farmers. Most, if not all, of the cultivation of these crops is in Central Luzon where the Central Luzon State University (CLSU) is located and where there is very distinct dry and wet seasons.

There is increased interest in upland crops to increase the productivity and income of irrigated and rainfed lowlands as well as uplands. This is where sunflower and sesame could fit in.

Sunflower

Continuous sunflower research has been undertaken by CLSU since 1972. Various studies have been made (Appendix A) and a complete package of production technology had been developed (Appendix B) which is now being pilot tested in three towns of Nueva Ecija. The cost and return analysis for one hectare of sunflower seed production shows a return of investment of 137% (Appendix C).

The technology has shown high potential for increasing the income of farm families, especially when the seeds are processed as cracked seeds. Sunflower crack seeds have become popular around CLSU. It is better than the common watermelon crack seeds in terms of nutritive content and palatability.

Sunflower production can be one of the potential alternative cash crops for farmers. The limitations to production are lack of quality seeds and low seed setting in the farmers' field. For high seed set, pollinators like bees are needed but normally the farmers do not engage in beekeeping.

<u>Sesame</u>

Sesame research in the Philippines is conducted only by CLSU and has been continuous since 1982 though in a limited scale.

At present, there are 128 accessions of sesame germplasm in the CLSU, Table 1. Duplicate seed lots of these accessions were brought to the National Plant Genetic Resources Laboratory (NPGRL), Institute of Plant Breeding of the University of the Philippines at Los Banos (IPB-UPLB) for storage.

Table 1. CLSU sesame germplasm collections.

lumber of		
<u>lccessior</u>	<u>s Origin</u>	<u>Source</u>
5	Thailand	Bureau of Plant Industry
1	Guatemala	Philippines
2	Sri Lanka	
5	Philippines	
8	Thailand	IRRI thru Dr. Carangal
1	Colombia	
10	Philippines	NPGRL, IPB-UPLB
7	Thailand	CLSU graduate students
		FAO thru Dr. Campos
14	Greece	
7	Mexico	
3	India	Bhabha Atomic Research
		Center thru Dr. Murthy
6	India	Tamil Nadu Agric. Univ.
5	Introductions	Through Dr. Thangavelu
	to India	
2	China	Institute of Crop
		Germplasm Resources,
		CAAS thru Dr. Yu-Shen
		Dong
20	Israel	FAO through Dr. Pineda
12	Somalia	IDRC Oilcrops Network
3	Sri Lanka	Through Dr. Omran
10	Egypt	
7	Ethiopia	
<u>128</u>		

Last year, 78 accessions were characterized & evaluated, Table 2.

Acces- sion No.	Yield /plant (g)	Matu- rity (DAE*)	Plant Height (cm)	ing	Number of pods /plant	Seed coat color	1000- seed weight (g)	Seed size	Phyllody Disease (No. of plants with disease	Cercos- pora leaf spot Inci- dence**	Powdery Mildew Inci- dence**
1	2	3	4	5	6	7	8	9	10	11	12
68		64	116	Basal	88	White	3.0	Small	2	LR**	•
69	10	64	94	Monopodia		White	3.0	Big	2	LR	-
43	8	65	90	Basal	60	Cream	2.75	Small	0	LR	-
46	13	65	110	Monopodial	36	Dirty white		Small	0	LR	-
50	13	65	84	Monopodial	41	Light brown		Big	0	LR	-
54	30	65	97	Monopodial		Cream	3.5	Small	0	LR	-
19	8	65	92	Basal	37	White	3.0	Small	0	LR	-
41	14	67	104	Basal	53	Light brown	3.5	Big	0	LR	-
45	9	67	94	Basal	52	White	3.0	Big	0	LR	LR
51	19	67	78	Basa¦	34	Light brown		Small	2	LR	-
21	9	67	78	Monopodial		Dirty white		Big	0	LR	-
20	17	68	110	Basal	68	White	2.75	Small	0	LR	-
17	21	68	159	Тор	106	Reddish bro		Small	1	MR all	LR
38	14	68	130	Basal	75	Dirty white	3.25	Big	0	LR	М
12	8	68	105	Basal	61	Brown	3.5	Big	0	LR	-
44	15	72	110	Basal	112	Dirty white	3.25	Big	0	LR	-
18	11	73	96	Monopodial	60	Light brown		Small	0	LR	-
55	10	73	120	Monopodia1		Dirty white	3.75	Big	0	LR	-
59	12	73	129	Basal	109	Dirty white	3.0	Big	0	LR	LR
5A	17	73	171	Basa1	107	White	4.0	big	1	MR all	MR
56D	15	78	140	Basal	97	White	3.5	Big	2	LR	MR
33	15	78	147	Basal	75	Dirty white	2.5	Small	Ō	LR	ER
35	17	78	171	Monopodial	95	Dirty white	2.75	Small	3	MR all	M
36	13	78	172	Basal	78	Dirty white	2.5	Small	Ō	MR all	M
37	15	78	165	Basal	96	Cream	3.0	Medium		MR all	M
39	22	78	180	Monopodial	38	Dirty white	2.5	Small	0	MR all	LR
)5	12	80	141	Тор	42	Black	3.0	Big	Û	MR all	-
12	29	80	157	Basal	165	Light brwn	3.0	Small	0	LR	-
53	78	80	162	Basal	224	Light brown	3.0	Small	0	MR all	-
6	12	82	101	Monopodial	72	Brown	3.0	Small	0	LR	-
17	14	82	134	Monopodia1	51	Dirty white	3.75	Big	Ö	LR	LR
56	10	82	141	Basal	42	Dirty white	3.25	Big	2	LR	VP
52	15	85	122	Basal	124	Light brown	3.0	Big	0	LR	м
558	29	85	179	Basal	127	White	4.25	Big	2	MR all	-
5	30	85	105	Basal	138	Dirty white	4.0	Big	0	LR	-
6	4	85	85	Monopodial	40	Dirty white	2.5	Big	0	LR	-
1	13	87	154	Тор	66	Cream	2.0	Small	0.	LR	-
8	12	88	196	Monopodial	72	Cream	4.0	Big	0	LR	-
5A	16	88	163	Тор	50	White	3.0	Big	0	ER all	-
10	21	92	198	Тор	120	White	3.0	Big	0	LR	-
0	24	92	151	Basal	104	Purplish- black	3.25	Big	0	LR	-
1	19	92	140	Тор	110		3.0	Big	1	LR	-
2	25	92	149	Basal	158	•	3.0	Big	Ö	MR all	-
3	20	92	147	Тор	122	*	3.75	Big	Ō	LR	-Tabl
4	27	92	140	Basal	85		4.0	Big	0	MR all	-
48	7	94	170	Тор	52	White	3.0	Big	2	MR all	М

Table 2. Performance of sesame accessions evaluated during 1988 wet season.

	2	3	4	5	6	7	8	9	10	11	12
2	10	95	101	Basal	57	White	3.0	Small	C	LR	M
8	13	95	96	Basal	52	Cream	2.5	Small	0	LR	M
9	9	103	91	Basal	48	Cream	2.75	Small	0	ER all	M
17	82	103	187	Тор	576	Black	3.5	Big	0	LR	-
01	19	103	125	Basal	99	Dirty white	2.75	Big	0	LR	-
02	25	103	147	Basal	99	Black	3.0	Big	0	LR	-
1	8	103	173	Тор	76	White	3.0	Big	0	LR	-
3	12	103	187	Тор	77	Dirty white	3.0	Medium	0	LR	-
7	39	103	70	Тор	294	Light brown	2.5	Small	0	LR	-
8	21	103	166	Monopodial	132	White	3.0	Small	0	LR	-
6	16	103	194	Тор	126	Black	1.5	Small	0	LR	-
4	8	104	149	Тор	44	Black	3.0	Big	0	LR	-
7	:2	188	198	Тор	90	Light brown	2.5	Small	0	LR	-
0	9	105	:75	Тор	108	Light brown	1.5	Small	1	LR	-
29	13	105	193	Тор	146	Brown	1.5	Small	3	LR	-
78	23	105	198	Тор	223	Dirty white	2.0	Small	0	LR	-
38	10	106	178	Тор	154	Purplish-	1.75	Small	8	LR	-
						Black			•		
36	18	107	158	Тор	120	Cream	3.0	Medium	0	LR	-
5	11	107	174	Тор	52	Brown	4.0	Big	0	LR	-
4	19	107	193	Тор	196	Light grey	1.75	Small	C	LR	-
0	20	107	189	Тор	193	Dirty white	1.5	Small	0	LR	-
40	12	108	179	Тор	33	Greyish black		Big	0	MR all	-
2	5	108	167	Тор	61	Black	3.0	Small	0	LR	-
240	16	108	177	Тор	106	Greenish-	3.0	Big	0	LR	-
			,			brown	••••		•		
1	10	110	172	Тор	66	Grey	3.0	Big	0	LR	-
12	20	110	189	Тор	159	Black	2.5	Big	Ō	LR	-
7A	16	112	196	Тор	180	Dirty white	2.0	Small	C C	LR	-
8	7	113	184	Тор	110	Brown	1.25	Very smal		LR	-
2	17	123	224	Тор	103	Black	3.0	Big	0	LR	-
4	9	124	182	Тор	72	Brown	3.0	Big	Č	LR	-
3	13	124	177	Тор	82	Greenish-	3.0	Big	0	LR	-
-				- F		brown		- ' J	-		
4A	17	124	223	Тор	140	Light brown	3.25	Зig	0	LR	-

*DAE = days after emergence, **LR = late reproductive stage, ***MR = mid reproductive stage, ****M = Maturity.

The collections had wide ranges of variabilities including yield (5-82 grams per plant), maturity (64-124 days after emergence (DAE), plant height (70-224 cm), number of pods per plant (40-576), 1000 seed weight (1.25-4.00 g),and seedcoat color (white, dirty white, cream, light brown, brown, reddish brown, greenish brown, light grey, grey, grayish black, greenish black, purplish black and black).

Fifteen accessions from different

origins were observed with some plants showing symptoms of phyllody, Tables 3 and 4. Diseased plants were uprooted and burned as soon as the symptoms were observed. Phyllody was more prevalent during the rainy season than during the dry season. Eighteen accessions were susceptible to powdery mildew and three to *Cercospora* leaf spot. Ninety-seven crosses of outstanding introduced varieties with varieties previously found adapted to the Philippines were made.

206

2 contd.

Five	varie	ties	with	the	highest
yields	s in	a	yield	tria	1 were

multiplied and were programed for multilocation yield test in Northern Luzon- Region I and II.

Acces-	Yield	Matu-	Plant	Branch-	Number	Seed	1000-	Seed	Phyllody	Cercos-	Powdery
sion	/plant	rity	Height	ing bobit	of pods	coat	seed	size	Disease	Pora	Mildew
No.	(g)	(DAE*)	(C M)	habit	/plant	color	weight		(No. of	leaf	Inci-
							(g)		plants with	spot Inci-	dence
									disease	dence**	
27	82	103	187	Top	576	Black	3.5	Big	0	LR	
53	78	80	162	Basal	224	Light brown		Small	Ō	MR all	-
17	39	103	70	Тор	294	Light brown		Small	0	LR	-
75	30	85	105	Basal	138	Dirty white		Big	0	LR	-
54	30	65	97	Monopodia		Cream	3.5	Small	0	LR	-
2	29	80	157	Basal	165	Light brown	3.0	Small	0	LR	-
65B	29	85	179	Basal	127	White	4.25	Big	2	MR all	-
'4	27	92	140	Basa	85	Black	4.0	Big	0	MR all	-
02	25	103	147	Basal	39	Black	3.0	Big	0	LR	-
2	25	92	149	Basal	158	Black	3.0	big	0	MR all	-
70	24	92	151	Basa]	104	Purplish	3.25	Big	0	LR	-
						black		•			
57B	23	105	198	Тор	223	Dirty white	2.0	Small	0	LR	-
9	22	78	180	Monopdial	98	White	2.5	Small	0	MR all	LR
8	21	103	166	Monopodial	132	White	3.0	Small	0	LR	-
7	21	68	159	Тор	106	Reddish bro	wn2.0	Small	1	MR all	-
10	21	92	198	Тор	120	White	3.0	Big	0	18	-
3	20	92	147	Тор	122	Black	3.75	Big	0	LR	-
10	20	107	189	Top	193	Dirty white	1.5	Small	0	LR	-
2	20	110	189	Тор	159	Black	2.5	Big	0	LR	-
it	19	67	78	Basal	34	Light brown	3.75	Small	2	LR	-
1	19	92	140	Тор	110	Black	3.0	Big	1	LR	-
101	19	103	125	Тор	99	Dirty white	2.75	Big	C	LR	-
34	19	107	193	Тор	195	Light grey	1.75	Small	0	LR	-

Table 3. Performance of 23 highest yielding sesame accessions evaluated during 1988 wet season.

*DAE = days after emergence **LR = late reproductive stage ***MR = mid reproductive stage.

Table 4. Incidence of phyllody disease in 15 sesame accessions evaluated during 1988 wet season.

Accession number	Origin/ source	Number of plants with symptoms	Accession number	Origin Num source		plants symptoms
23	Philippines	8	68	China	2	
29	Philippines	3	69	China	2	
35	Thailand	3	65	India	2	
37	Thailand	3	58	FAO (Mexico)	1	
13	Thailand	2	10	Philippines	1	
51	FAO (Greece)	2	17	Thailand	1	
56	FAO (Mexico)	2	71	India	•	
66	India	2				

Sunflower Studies Conducted in CLSU from 1972-88.

Field	<u>Number of</u> <u>studies</u>
Varietal Improvement Cultural Management - Planting dates, seeding rates, irrigation, harvesting and land	4
<pre>preparation - Fertilization - Intercropping Crop Protection - Insect pests</pre>	16 27 10 13
- Weeds - Diseases Seed Technology Economics <u>Processing</u> Total	11 3 4 3 <u>12</u> 123

Appendix B.

Package of Technology for Sunflower Production

- 1. <u>Recommended variety</u>: Improved CLSUN-190-95 maturity days.
- 2. <u>Site Selection</u>: The area should have irrigation facilities. The basic soil requirements are moderate to well-drained soil. Soils used for corn, rice and vegetable are suited for sunflower production.
- 3. <u>Growing season</u>: The best time for planting sunflower for the first cropping is from October-January and the second cropping from February-May.
- 4. <u>Land preparation</u>: Burn the residues of previous crops and grasses to kill disease organisms prior to ploughing. Plough the field once and leave it for 2-3 days. Harrow twice to obtain good tilt.
- 5. <u>System of planting</u>: Planting should be done using single row method with rows spaced 75 cm and plants 25 cm within the row. Plant at the rate of 2-3 seeds/hill at a depth of 3-4 cm. Seeding rate is 18-20 kg/ha.
- 6. Thinning, off-barring and hilling-up: Thin the plants to one plant/hill 14 days after emergence (DAE).
- Fertilizer application: Fertilizer application should be made on the basis of soil-test results. For soils
 with high P and K values: 90-0-0 (4 bags urea) and for soils with low P and K values: 90-30-30 (3 bags 1414-14).
- 8. <u>Irrigation schedule</u>: First (just after planting), second (15 DAE), third (30 DAE), fourth (50 DAE), and fifth (70-80 DAE).
- 9. <u>Control of pests and diseases</u>: Insect pests and diseases of sunflower can be controlled using the following:

<u>Insect pests</u>/ diseases C

<u>Control measures</u>

- Cutworm 1) CRop rotation with a non-Leafworm
- leafworm susceptible host plant.
- Leafhopper 2) In small areas, collect eggs

Headworm and larva and crush them.

- 3) Spray using any of the following: Sevin (2-3 tbs/16 1 of water), Lannate (3 tbs/16 1 of water), Azodrin 202R (2-3 tbs/16 1 of water), Thiodan (3-5 tbs/16 1 of water). Spray as soon as insect pests appear. If needed, repeat at 7-days interval. Shorten spray interval in cases of heavy infestations.
- Sclerotium 1) Pull out infected plants and burn
- wilt them immediately.
- Leaf spot 2) Use the following fungicides: Leaf
- Leaf blight blight Arasan, Brassicol (5-10 g/kg of seed); Manzate, Daconil (3-4 tbs/16 1 of water). Thoroughly mix with the seeds before planting for Sclerotium wilt control. Spray when symptoms of infection appear.
- 10. <u>Bees as pollinators (optional)</u>: In sunflower production, introduction of bee colonies during the onset of blooming is important to increase seed setting. Bees as pollinators increase seed setting to as much as 20%. Wind and some other beneficial insects can also help in pollinating the crop.
- 11. <u>Harvesting of heads</u>: Harvest the head when the green back side of the flower disks turned to yellowish brown. Cut the stalk with a scythe or lingkaw just below the head. Spread harvested heads in a single layer on dry ground with their faces up. Dry for 2 or more days or until the seeds start to separate from the head.
- 12. <u>Threshing</u>: Sunflower heads are ready to be threshed when the seeds separate easily from the head. Threshing can be done using a screen board with nails laid out in squares 1 cm apart or by a self-feeding power sunflower thresher.
- 13. <u>Cleaning</u>: Clean the threshed seeds before storage to prevent heat accumulation. Clan with a winnower or a seed blower.
- 14. Drying: Dry the seeds to a moisture content of 8-10%.
- 15. <u>Storage</u>: Seeds should be packed in plastic bags/sacks. Store in a ventilated room or area to prevent the attack of storage pests. Seeds intended for planting should be treated with pesticides before storage.

Appendix C.

Cost-Return Analysis for One Hectare Sunflower Seed Production

Item	<u>Rate</u> <u>& quantity</u>	<u>Value P</u>
I. Gross Income Yield	1,000 kg at P15/kg	15,000.00
II. Expenses A. Cash Costs 1. Labor*		
a. Land preparation b. Planting/replanting/Th	P850/ha inning 18 MD	850.00 540.00

	<u>Rate</u>	
<u>Item</u>	<u>& quantity</u>	<u>Value P</u>
c. Fertilization	6 MD	180.00
d. Hilling-up		
(tractor)	P175/ha	175.00
e. Spraying	5 MD	150.00
f. Irrigating	12 MD	360.00
g. Harvesting/Thresh-		
ing/Hauling	25 MD	750.00
h. Cleaning/Drying/		
Bagging	6 MD _	180.00
Sub-total		3,185.00
2. Inputs		
a. Seeds	20 kg @p15	300.00
b. Fertilizer (Urea)	4 bags @p165	660.00
c. Pesticides (Insecticides)		555.00
d. Irrigation fee	_	425.00
Sub-total	_	1,940.00
B. Overhead cost		
Interest on Capital (12%		
per annum)		153.00
Land rent	_1	,035.00
Sub-total	1	,188.00
Total Expenses	6	,313.00
III. Net Income	8	,687.00
IV. Return on Investment (ROI)	4	37%
V. Production Cost per kg		6.31
· · ·		

*P30.00 per MD.