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We investigate bifurcations and dynamical behaviors of discrete SEIS models with exogenous
reinfections and a variety of treatment strategies. Bifurcations identified from the models include
period doubling, backward, forward-backward, and multiple backward bifurcations. Multiple
attractors, such as bistability and tristability, are observed. We also estimate the ultimate boundary
of the infected regardless of initial status. Our rigorously mathematical analysis together with
numerical simulations show that epidemiological factors alone can generate complex dynamics,
though demographic factors only support simple equilibrium dynamics. Our model analysis
supports and urges to treat a fixed percentage of exposed individuals.

1. Introduction

Pure demographic (or ecological) discrete models can have very complicated dynamics. It is
well known that the logistic model xn+1 = rxn(1 − xn/K), Ricker’s model xn+1 = xne

r−xn/K

[1–3], and Hassell model xn+1 = λxn(1 + axn)
−b [4] all have complex dynamics through

the mechanics of period-doubling bifurcation. When adding epidemiological effects to these
demographic models to describe the dynamics of an infectious disease, it is not surprising at
all that the complex dynamics still retain [5, 6]. Yet an interesting question is that if adding
epidemiological effects to a simple demographic model that has only trivial dynamics, for
example, xn+1 = Λ + μxn, is it possible to observe complex dynamics? Our work in this paper
finds a quite positive answer by bifurcation analysis. It is shown that the chaotic dynamics is
possible.

The bifurcation approach has been extensively utilized in theoretical epidemiology.
The use of equilibrium bifurcation to investigate the dynamical behavior of continuous
epidemic models has been successful, for instance, the work in [7–15]. Meanwhile, discrete
epidemic models have gained more popularity [5, 6, 16–25], since epidemiological data are
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usually collected at discrete times and it becomes easier to compare data with models. We
will use the bifurcation approach to analyze discrete SEIS epidemic models in this paper.

The appearance of multiple attractors enhances uncertainty of outcomes because of
the lack of information to the initial epidemiological status, even though the domain of
attractions of each attractor is fully depicted. In this case, it would be necessary to estimate
the prevalence regardless of the initial data.

The management measures to completely wipe out an infectious disease may be too
costly, far beyond the capability of any society. A practical and feasible way is to have an
infectious disease under control, that is, to keep the number of the infectious individuals
under a certain level. Thus, estimating an upper bound of the prevalence appears necessary.
A large pool of excellent researches have focused on the lower bound of prevalence in the
application of permanence theory [26–29], while there are relatively few studies on the upper
boundary of infections when a disease persists, especially when multiple attractors exist.
In this paper, we also estimate ultimate boundaries, which are given in terms of the basic
reproductive number if the disease persists. We believe, in some sense, that an ultimate
boundary estimation for an infectious disease is more significant than a basic reproductive
number, especially when multiple attractors appear.

Our mathematical models are presented in Section 2. In Section 3, we compute the
reproductive number and simplify our models. In Section 4, we analyze the different
bifurcations of the models under different treatment strategies and with or without
considering exogenous reinfections. Numerical simulations are carried out to test and
confirm each type of bifurcations. The ultimate boundaries of the latent and the infectious
are obtained under some sufficient conditions. Section 5 includes some concluding remarks
and discussions.

2. The Model

Our models could be built within the context of the dynamical and epidemiological study of
tuberculosis, where both the exogenous reinfections and the different treatment strategies
play an important role. Existing studies have shown that the exogenous re-infection of
the latent individuals increases the risk of developing into the active disease [20, 30, 31].
The effect of the treatment for the latent individuals on the dynamics of disease has been
investigated using continuous models [32, 33]. Here, we will investigate the treatment effect
of the latent individuals on the dynamics of the disease using discrete epidemic models. The
models will incorporate two distinct features: exogenous re-infection and flexible treatment
strategies.

In modeling the treatment for the latent and the infectious individuals, we should
consider both the prevalence of the disease and availability of a budget. The treatment rate
for infectious ones is rather easy; we simply take a linear function, as has been typically used.
However, a practice of treating the latent individuals, like inactive cases of tuberculosis, is
highly theoretic, mainly because it is hard to find asymptomatic individuals without mass-
screening. When the pool of the latent individuals is small, it is reasonable to assume that the
treatment rate is proportional to the number of the latent individuals (a linear function of the
number of the latent individuals). However, if the pool is big, such as the case of tuberculosis
in India, China, Eastern Europe, or South Sahara, taking a linear function as a treatment
rate would be inappropriate due to the limited budgets. We cannot provide treatment to
all individuals with latent tuberculosis, since the people living with latent tuberculosis are
approximately one-third of the total population. The other obvious reason is our inability
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of identifying asymptomatic individuals. We have to design the treatment strategy within
our reach of case finding and budgets. It then becomes more plausible to assume a constant
treatment rate when the pool of latent individuals is large, as has been used in [13, 15], for
instance. Overall, treatment strategies should be designed by considering both the prevalence
of the disease and available budget. Part of our goal in this paper is to compare these
strategies.

The total population is epidemiologically divided into classes of susceptible, latent,
and infectious. Let S(t) the number of susceptible individuals at time t, E(t) be the number
of latent individuals, and I(t) the number of infectious individuals. N(t) = S(t) + E(t) + I(t)
is the total population size. We assume that recovered individuals by successful treatment
do not acquire immunity and will become member of susceptible compartment. Hence our
model is of SEIS type.

Susceptible individuals may get infected and enter the latent compartment. The
survived latent individuals will experience one of the threemutually exclusive events to leave
the latent compartment, getting exogenous re-infection through contacting with infectious
individuals, or naturally progressing into infectious class, or receiving the treatment. These
three events happen randomly. The respective probabilities for exogenous re-infection,
natural progression, and receiving the treatment are k1, k2, and k3 with k1 + k2 + k3 = 1.
Incorporating the exogenous reinfections and treatments into the models in [20, 21], our
model framework takes the following form:

S(t + 1) = Λ + pS(t)G1

(
I(t)
N(t)

)
+ pH(E(t)) + pγI(t),

E(t + 1) = pS(t)
(
1 −G1

(
I(t)
N(t)

))
+ pk1E(t)G2

(
I(t)
N(t)

)

+ pk2(1 − α)E(t) + p(k3E(t) −H(E(t))),

I(t + 1) = pk1E(t)
(
1 −G2

(
I(t)
N(t)

))
+ pαk2E(t) + p

(
1 − γ

)
I(t),

(2.1)

where Λ is the recruitment rate into the population, p is the survival probability, and γ
is the probability that an infectious individual recovers successfully. α is the conditional
probability that a latent individual becomes infectious successfully given that the natural
progression happens. 1 − G1 is the probability that susceptible individuals become infected.
1−G2 is the conditional probability that a latent individual gets re-infected successfully given
that the exogenous re-infection happens. The probabilities of not becoming infected are G1

and G2 that are considered as functions of the prevalence I(t)/N(t). exp(−βjI(t)/N(t)) and
1 − (βjI(t)/N(t)) have been used for the probabilities of not becoming infected [20, 21].
We choose Gj(I(t)/N(t)) = 1 − (βjI(t)/N(t)), j = 1, 2, where βj characterizes the disease
transmission probability.

In model (2.1), H(E(t)) is the successful treatment rate of the latent individuals and
k3E(t) − H(E(t)) is the failure rate of the treatment. We consider two different types of
treatment strategies for the latent individuals:

H(E(t)) = mk3E(t) or H(E(t)) = mk3

⎧⎨
⎩
E(t), E(t) ≤ E0,

E0, E(t) > E0,
(2.2)
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where m is the conditional probability that a latent individual is treated successfully given
that the individual receives the treatment and E0 is the cutting point of treatment determined
by policy makers. Both m and E0 should rely on the capability of finding latent individuals
and budgetary issues.

We summarize some important terms in model (2.1) here. From time t to time t + 1,
the number of the susceptibles who get infected and become latent individuals is pS(t)(1 −
G1(I(t)/N(t))); the number of the latent who get re-infected and become infectious is
pk1E(t)(1−G2(I(t)/N(t))); the number of the latent who naturally progress into the infectious
compartment is pk2αE(t); the number of the latent who get recovered by successful treatment
and become susceptible is pH(E(t)); the number of the infectious who get recovered and
become susceptible is pγI(t). The number of the latent individuals at time t that remain as
latent ones at time t+1 is pk1E(t)G2(I(t)/N(t))+pk2(1−α)E(t)+p(k3E(t)−H(E(t))). Similarly,
the number of infectious individuals who do not change their epidemiological status from t
to t + 1 is counted by p(1 − γ)I(t).

3. Basic Reproductive Number and Reduced Model

Firstly we explicitly write our models for two specific treatment regimens. In the case
of proportional treatment rate of the latent individuals, the treatment function is linear,
H(E(t)) = mk3E(t), and model (2.1) can be rewritten as follows:

S(t + 1) = Λ + pS(t)
(
1 − β1I(t)

N(t)

)
+ pmk3E(t) + pγI(t),

E(t + 1) = pS(t)
β1I(t)
N(t)

+ pk1E(t)
(
1 − β2I(t)

N(t)

)
+ p(1 − α)k2E(t) + p(1 −m)k3E(t),

I(t + 1) = pk1E(t)
β2I(t)
N(t)

+ pαk2E(t) + p
(
1 − γ

)
I(t).

(3.1)

On the other hand, in the case of limited resources, the treatment function of latent in-
dividuals is a piecewise function,

H(E(t)) =

⎧⎨
⎩
mk3E(t), E(t) ≤ E0,

m0, E(t) > E0,
(3.2)

where m0 = mk3E
0. Model (2.1) takes the following form:

S(t + 1) = Λ + pS(t)
(
1 − β1I(t)

N(t)

)
+ pk3E(t) − T(E(t)) + pγI(t),

E(t + 1) = pS(t)
β1I(t)
N(t)

+ pk1E(t)
(
1 − β2I(t)

N(t)

)
+ p(1 − α)k2E(t) + T(E(t)),

I(t + 1) = pk1E(t)
β2I(t)
N(t)

+ pαk2E(t) + p
(
1 − γ

)
I(t),

(3.3)
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where

T(E(t)) =

⎧⎨
⎩
p(1 −m)k3E(t), if E(t) ≤ E0,

p(k3E(t) −m0), if E(t) > E0.
(3.4)

The disease-free equilibrium, P0(Λ/(1−p), 0, 0), and the basic reproductive number of
models (3.1) and (3.3) are identical. Applying the approach in [34] to our model, we have

F =

⎛
⎜⎜⎜⎜⎜⎝

pS(t)
β1I(t)
N(t)

pk1E(t)
β2I(t)
N(t)

0

⎞
⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎝

p

(
1 − k1

β2I(t)
N(t)

− αk2 −mk3

)
E(t)

pαk2E(t) + p
(
1 − γ

)
I(t)

Λ + pS(t)
(
1 − β1I(t)

N(t)

)
+ pmk3E(t) + pγI(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.5)

At the disease-free equilibrium, the straight forward calculation yields F =
(

0 pβ1
0 0

)
and V =(

p−pαk2−pmk3 0
pαk2 p(1−γ)

)
. Therefore, the basic reproductive number of model (2.1) is

R0 =
p2β1αk2(

1 − p
(
1 − γ

))(
1 − p + pαk2 + pmk3

) . (3.6)

Rearrange terms in the expression of R0 as

R0 =

(
pβ1

1 − p
(
1 − γ

)
)(

pαk2
1 − p + pαk2 + pmk3

)
. (3.7)

Each term in R0 has clear epidemiological interpretation. 1/(1 − p(1 − γ)) is the average
infection period. pβ1/(1 − p(1 − γ)) is average new cases generated by a typical infectious
member in the entire infection period. pαk2/(1−p+pαk2 +pmk3) is the proportion that latent
individuals become infectious by “natural” progression.

It is known that the disease-free equilibrium P0 of (2.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1 (see [34, Theorem 2.1]). We summarize stability results in
terms of R0 < 1 as in the following theorem.

Theorem 3.1. The disease-free equilibrium P0 of model (2.1) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Since we do not consider the disease-induced death rate, the total population size is
governed by an extremely simple equation. In fact, by adding all equations in model (2.1),
we obtain the following equation for the total population N(t) = S(t) + E(t) + I(t):

N(t + 1) = Λ + pN(t). (3.8)
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One can see that N∗ = Λ/(1 − p) is a global attractor for (3.8). Using limiting equations and
the limt→∞ N(t) = N∗ [35], we, respectively, reduce the three-dimensional systems (3.1) and
(3.3) into two-dimensional ones

E(t + 1) = p(N∗ − E(t) − I(t))
β1I(t)
N∗ + pk1E(t)

(
1 − β2I(t)

N∗

)

+ p(1 − α)k2E(t) + p(1 −m)k3E(t),

I(t + 1) = pk1E(t)
β2I(t)
N∗ + pαk2E(t) + p

(
1 − γ

)
I(t),

(3.9)

E(t + 1) = p(N∗ − E(t) − I(t))
β1I(t)
N∗ + pk1E(t)

(
1 − β2I(t)

N∗

)

+ p(1 − α)k2E(t) + T(E(t)),

I(t + 1) = pk1E(t)
β2I(t)
N∗ + pαk2E(t) + p

(
1 − γ

)
I(t).

(3.10)

In the rest of the paper, we analyze the dynamic behavior of the limiting system (3.9) and
(3.10) under different treatment strategies.

4. Analysis

In this section, we study the bifurcation and stability of equilibrium of model (3.9) and (3.10).
Numerical simulations are also presented to demonstrate the theoretical results.

4.1. Without Exogenous Reinfections

The SEIS model is the simplest one if there is no exogenous re-infection and the treatment
rate takes a linear form. For this case, k1 = 0, H(E) = mk3E, and model (3.9) is reduced to

E(t + 1) = p(N∗ − E(t) − I(t))
β1I(t)
N∗ + p(1 − α)k2E(t) + p(1 −m)k3E(t),

I(t + 1) = pαk2E(t) + p
(
1 − γ

)
I(t).

(4.1)

The disease-free equilibrium of (4.1) is P 0
1 (E

0
1, I

0
1) = (0, 0) and the endemic equilibrium

P ∗
1 (E

∗
1, I

∗
1) exists if R0 > 1, where E∗

1 = ((1− p(1 − γ))N∗/(1 − p(1− γ) + pk2α))(1 − (1/R0)) and
I∗1 = pk2αE

∗
1/(1 − p(1 − γ)).

4.1.1. Global Stability of P 0
1

The global stability of the disease-free equilibrium P 0
1 (E

0
1, I

0
1) = (0, 0) of (4.1) is given in

Theorem 4.1.

Theorem 4.1. IfR0 < 1, then the disease-free equilibrium P 0
1 of (4.1) is globally asymptotically stable.
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Proof. Define F : [0,N∗] × [0,N∗] → [0,N∗] × [0,N∗] by

F(E, I) = p

(
(N∗ − E − I)

β1I

N∗ + (1 − α)k2E + (1 −m)k3E, αk2E +
(
1 − γ

)
I

)
. (4.2)

Obviously, F is the mapping derived by system (4.1), and (0, 0) is a fixed point of F. Linear
function V (E, I) = E + (pβ1/(1 − p(1 − γ)))I on [0,N∗] × [0,N∗] is continuous and positive
definite with respect to (0, 0). Therefore, V is a Lyapunov function on the domain of F. For
any (E, I) ∈ [0,N∗] × [0,N∗],

ΔV (E, I) = p(N∗ − E − I)
β1I

N∗ + p(1 − α)k2E + p(1 −m)k3E

+
pβ1

1 − p
(
1 − γ

)(pαk2E + p
(
1 − γ

)
I
) − E − pβ1

1 − p
(
1 − γ

)I

≤ pβ1I −
(
1 − p(1 − α)k2 − p(1 −m)k3

)
E +

p2β1αk2E

1 − p
(
1 − γ

) + pβ1I

=
(
1 − p(1 − α)k2 − p(1 −m)k3

)
(R0 − 1)E ≤ 0.

(4.3)

Hence, if R0 < 1, then ΔV (E, I) < 0 holds for (E, I) ∈ (0,N∗] × (0,N∗]. It follows from
Theorem4.22 in [36] that P 0

1 is globally asymptotically stable.

Theorem 4.1 ensures that the disease-free equilibrium P0(Λ/(1−p), 0, 0) of model (3.1)
is globally stable as R0 < 1 and k1 = 0.

4.1.2. Stability of P ∗
1

The stability of the endemic equilibrium is given in Theorem 4.2.

Theorem 4.2. If 1 < R0 < 1 + σ, then the endemic equilibrium P ∗
1 of (4.1) is asymptotically stable,

where

σ =
2p
(
1 − αk2 −mk3 +

(
1 − γ

))(
1 − p

(
1 − γ

)
+ pαk2

)
(
1 + p

(
1 − γ

) − pαk2
)(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

) > 0. (4.4)

Proof. The linearization matrix of (4.1) at the endemic equilibrium P ∗
1 is

J1 =

⎛
⎝−pβ1

N∗ I
∗
1 + p(1 − α)k2 + p(1 −m)k3

pβ1
N∗
(
N∗ − E∗

1 − 2I∗1
)

pαk2 p
(
1 − γ

)
⎞
⎠. (4.5)

The corresponding characteristic equation is

f1(λ) = λ2 − b1λ + b2 = 0, (4.6)
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where

b1 = p − pαk2 − pmk3 + p
(
1 − γ

) −
(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

)
(R0 − 1)

1 − p
(
1 − γ

)
+ pαk2

,

b2 = p
(
1 − γ

)(
p − pαk2 − pmk3

) − (1 − p
(
1 − γ

))(
1 − p + pαk2 + pmk3

)

+

(
pαk2 − p

(
1 − γ

))(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

)
(R0 − 1)

1 − p
(
1 − γ

)
+ pαk2

.

(4.7)

We claim |b2| < 1. When pαk2 = p(1 − γ), we have b2 = p(1 − γ)(p − pαk2 − pmk3) − (1 − p(1 −
γ))(1 − p + pαk2 + pmk3), and |b2| < 1 holds. When pαk2 /= p(1 − γ), because of

2p
(
1 − αk2 −mk3 +

(
1 − γ

))
(
1 + p

(
1 − γ

) − pαk2
)

< min

{
2 − p + pαk2 + pmk3 − p

(
1 − γ

)
pαk2 − p

(
1 − γ

) ,
p
(
1 − αk2 −mk3 +

(
1 − γ

))
p
(
1 − γ

) − pαk2

}
,

(4.8)

we obtain that |b2| < 1 holds if 1 < R0 < 1 + σ. Furthermore, we have

f1(1) = 1 − b1 + b2 =
(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

)
(R0 − 1),

(−1)2f1(−1) = 1 + b1 + b2 = 2
(
p − pαk2 − pmk3 + p

(
1 − γ

))

−
(
1 + p

(
1 − γ

) − pαk2
)(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

)
(R0 − 1)

1 − p
(
1 − γ

)
+ pαk2

.

(4.9)

It is clear that f1(1) > 0 holds if R0 > 1 and

(−1)2f1(−1) = σ(1 + σ − R0)(
1 + p

(
1 − γ

) − pαk2
)(
1 − p

(
1 − γ

))(
1 − p + pαk2 + pmk3

) > 0 (4.10)

holds if R0 < 1 + σ. Therefore, if 1 < R0 < 1 + σ, we have f1(1) > 0, (−1)2f1(−1) > 0, and
|b2| < 1. It follows from the Jury criteria that the endemic equilibrium P ∗

1 (E
∗
1, I

∗
1) of (4.1) is

asymptotically stable.

It follows from Theorem 4.2 that when exogenous re-infection is not included (k1β2 =
0) the endemic equilibrium P ∗

1 (Λ/(1 − p)) − E∗
1 − I∗1 , E

∗
1, I

∗
1) of model (3.1) is asymptotically

stable if 1 < R0 < 1 + σ. Since the Jury criteria is the necessary and sufficient condition for
the local stability of the equilibrium, the endemic equilibrium P ∗

1 of (3.1) becomes unstable if
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Figure 1: The stability and the attraction of the endemic equilibrium of (3.1): (a) the endemic equilibrium
and its stability and (b) the attraction area.

R0 ≥ 1+σ. We summarize Theorems 4.1 and 4.2 for model (3.1)without exogenous reinfection
as follows.

(1) The disease-free equilibrium P0(Λ/(1 − p), 0, 0) is globally stable as R0 < 1.

(2) When R0 > 1, P0(Λ/(1 − p), 0, 0) becomes unstable and endemic equilibrium P ∗
1 is

born. The endemic P ∗
1 is locally asymptotically stable if 1 < R0 < 1 + σ.

(3) When R0 ≥ 1 + σ, P ∗
1 becomes unstable.

Theorems 4.1 and 4.2 state that a forward bifurcation takes place at R0 = 1. This is
consistent with continuous dynamical models for tuberculosis when exogenous re-infection
is not considered [30, 31].

Although the expression of σ is complicated, the condition in Theorem 4.2 is easy to
check since σ is independent of β1 whileR0 depends on β1 linearly. For example, given a set of
the parameter values, p = 0.994,Λ = 10, α = 0.03, γ = 0.1,m = 0.1, k1 = 0, k2 = 0.8, and k3 = 0.2,
one can determine if the endemic equilibrium is stable or not. Numerical simulations suggest
that the endemic equilibrium of model (3.1) may be globally asymptotically stable when 1 <
R0 < 1+σ, as shown in Figure 1(a) for β1 = 0.245.When β1 = 10.972015, we haveR0 = 49.63168
and 1 + σ = 49.63168. The endemic equilibrium of model (4.1) loses the stability when β1 is
greater than 10.972015, and there is a 2-period solution when β1 ∈ [10.972015, 11.109). For
example, if we take β1 = 11, then R0 = 49.75827, and 1+σ = 49.63168. The 2-period solution is
((838.46721, 189.77679), (1591.60886, 360.24119)). Althoughmodel (4.1) has a period solution
of period 2 if the endemic equilibrium of model (4.1) is unstable, the periodic solution may
not be realistic since model (4.1) is the limiting system of model (3.1) as k1β2 = 0, and the
numerical computation shows that the corresponding periodic solution of model (3.1) is
((838.46721, 189.77679, 638.42267), (1591.60886, 360.24119,−285.18339)). Obviously, one of S∗

is negative, which hints that the period solution of model (3.1) can be ruled out if we confine
all solutions as positive. In fact, 1 − G1(I(t)/N(t)) = β1I(t)/N(t) means that β1 should not
be bigger, and we should chose β1 such that 0 ≤ 1 − G1(I(t)/N(t)) ≤ 1. Otherwise, not only
does 1 − G1(I(t)/N(t)) lose its meaning but also the number of the susceptible individuals
has negative values.
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4.1.3. Ultimate Boundary

We now estimate an ultimate boundary to the model (4.1) when R0 > 1.

Theorem 4.3. If 0 < β1 ≤ 1 and 1 < R0 < 1 + (1/(1 − p(1 − γ))), then the solutions of model (4.1)
are bounded by

lim sup
t→∞

(
αk2E(t) +

(
1 − p + pαk2 + pmk3

)
I(t)
) ≤ (1 − p + pαk2 + pmk3

)
N∗
(
1 − 1

R0

)
,

lim sup
t→∞

E(t) ≤
(
1 +

1 − p + pmk3
pαk2

)
N∗
(
1 − 1

R0

)
, lim sup

t→∞
I(t) ≤ N∗

(
1 − 1

R0

)
.

(4.11)

Proof. Let us consider the value of V (E(t), I(t)) for any (E(t), I(t)) ∈ Ω, where

Ω = {(E(t), I(t)) | E(t) ≥ 0, I(t) ≥ 0, E(t) + I(t) ≤ N∗}. (4.12)

Define

V (E, I) = pαk2E +
(
1 − p + pαk2 + pmk3

)
I,

V0 =
(
1 − p + pαk2 + pmk3

)
N∗
(
1 − 1

R0

)
.

(4.13)

Then,

ΔV = V (E(t + 1), I(t + 1)) − V (E(t), I(t))

= q

(
R0 − 1 − R0

N∗
1 − p + pαk2 + pmk3
1 − p + pαk2 + pmk3

(E(t) + I(t))
)
I(t)

≤ q

(
R0 − 1 − R0

N∗
V (E(t), I(t))

1 − p + pαk2 + pmk3

)
I(t),

=

(
1 − p

(
1 − γ

))
R0

N∗ (V0 − V (E(t), I(t)))I(t),

(4.14)

where q = (1 − p(1 − γ)(1 − p + pαk2 + pmk3)). Therefore, ΔV ≤ 0 holds if V ≥ V0.
If V (E(t0), I(t0)) = pαk2E(t0) + (1 − p + pαk2 + pmk3)I(t0) ≤ V0 for a t0 ≥ 0, then we

claim that V (E(t), I(t)) ≤ V0 for all t ≥ t0. In fact, let V (E(t0), I(t0)) = V0 − ε with some ε ≥ 0.
Then, the inequality V (E(t0), I(t0)) = V0 − ε ≤ V0 yields

I(t0) ≤ V0

1 − p + pαk2 + pmk3
= N∗

(
1 − 1

R0

)
. (4.15)
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The inequality in (4.14) and the condition in Theorem 4.3 as well as the inequality for I(t0)
imply

ΔV = V (E(t0 + 1), I(t0 + 1)) − V (E(t0), I(t0))

≤
(
1 − p

(
1 − γ

))
R0

N∗ (V0 − V (E(t0), I(t0)))I(t0),

≤ (1 − p
(
1 − γ

))
R0(V0 − V (E(t0), I(t0)))

(
1 − 1

R0

)

≤ (1 − p
(
1 − γ

))
(R0 − 1)ε ≤ ε.

(4.16)

The inequality in (4.16) leads to

V (E(t0 + 1), I(t0 + 1)) ≤ V (E(t0), I(t0)) + ε = V0 − ε + ε = V0. (4.17)

Then, our claim is followed from the mathematical induction.
If V (E(t0), I(t0)) = pαk2E(t0) + (1 − p + pαk2 + pmk3)I(t0) > V0 for a t0 ≥ 0, then there

are two cases that we have to deal with.

Case 1. There exists an integer t1 > t0 such that V (E(t1), I(t1) ≤ V0.

Case 2. The inequality V (E(t), I(t)) > V0 holds for all t ≥ t0.

For Case 1 we can prove that V (E(t), I(t)) ≤ V0 for all t ≥ t1 by the similar argument
adopted for the case V (E(t0), I(t0)) ≤ V0. The boundary of V (E(t), I(t)) ≤ V0 for t > t1
gives rise to lim supt→∞V (E(t), I(t)) ≤ V0. For Case 2, the fact that ΔV (E(t), I(t)) ≤ 0
for V (E(t), I(t)) > V0 leads to that the V (E(t), I(t)) is a monotonic decreasing sequence.
Hence, the limit limt→∞ V (E(t), I(t)) exits. We claim that limt→∞V (E(t), I(t)) ≤ V0.
Otherwise, there exists V ∗ > V0, such that limt→∞ V (E(t), I(t)) = V ∗ > V0. It follows
that there exists a subsequence tk, such that limk→∞ E(tk) = E∗, limk→∞ I(tk) = I∗, and
limk→∞V (E(tk), I(tk)) = V (E∗, I∗) = V ∗ > V0. The fact that ΔV (E∗, I∗) < 0 and the continuity
of ΔV (E, I) imply that there exists an η > 0, such that ΔV (E, I) < ΔV (E∗, I∗)/2 < 0 for any
(E, I) satisfying ‖(E, I) − (E∗, I∗)‖ < η. Consequently, there exists a large integer K such that
‖(E(tk), I(tk)) − (E∗, I∗)‖ < η for k > K, |V (E(tk), I(tk)) − V (E∗, I∗)| < |ΔV (E∗, I∗)|/3, and
ΔV (E(tk), I(tk)) < ΔV (E∗, I∗)/2. Then we have

V (E(tk+1), I(tk+1)) = V (E(tk), I(tk)) +
tk+1−1∑
j=tk

ΔV
(
E
(
j
)
, I
(
j
))

< V (E(tk), I(tk)) + ΔV (E(tk), I(tk))

≤ V ∗ +
|ΔV (E∗, I∗)|

3
+
ΔV (E∗, I∗)

2
.

= V ∗ +
ΔV (E∗, I∗)

6
.

(4.18)
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Inequality V (E(tk+1), I(tk+1)) ≤ V ∗ + ΔV (E∗, I∗)/6 implies that limk→∞V (E(tk), I(tk)) ≤ V ∗ +
ΔV (E∗, I∗)/6, which is a contradiction. Therefore, limk→∞V (E(tk), I(tk)) ≤ V0, which in turn
leads to

lim sup
t→∞

V (E(t), I(t)) ≤ (1 − p + pαk2 + pmk3
)
N∗
(
1 − 1

R0

)
(4.19)

by the definition of V0. The proof of the theorem is completed.

The requirement for β1 in Theorem 4.3 is technically strict. The interval for β1 should
be much longer than the unit interval given in Theorem 4.3. Theorem 4.3 holds as long as
1 − β1I(t)/N∗ ≥ 0; that is, the range of β1 must guarantee that the solutions of model (4.1) are
all positive.

If 0 < β1 ≤ 1 and k1 = 0, limk→∞ N(t) = N∗ and Theorem 4.3 implies that the solutions
of model (3.1) are ultimately boundaries as 1 < R0 < 1 + (1/(1 − p(1 − γ))).

Theorem 4.3 provides an estimation on the ultimate boundary based on the combina-
tion of the latent and the infectious when R0 > 1. We notice that most epidemic researches
have focused on the persistence of the diseases by studying the existence and stability of the
endemic equilibrium when R0 > 1. Although we cannot obtain the exact quantity for the
latent and the infectious, the ultimate boundary in Theorem 4.3 provides a novel estimation.

Figure 1(b) demonstrates the role of Theorem 4.3. The parameter values are the same
as the ones we used for Figure 1(a) but with β1 = 0.3. For that set of parameter values,
R0 = 1.35704 > 1, the endemic equilibrium P ∗

1 (S
∗
1, E

∗
1, I

∗
1) = (1228.16000, 357.57414, 80.93252),

and N∗ = 1666.66667. The ultimate boundary domain in EI-plane is given in Figure 1(b).
The largest triangle in Figure 1(b) is the feasible domain E + I ≤ N∗ = 1666.66667. The
domain under the line V (E, I) = pαk2E + (1 − p + pαk2 + pmk3)I = V0 is the domain of the
ultimate boundary. Three solutions of model (3.1) with initial values: E(0) = 35, I(0) = 200,
E(0) = 200, I(0) = 1000, and E(0) = 700, I(0) = 50, are also displayed in Figure 1(b).
Two solutions under the ultimate boundary V (E, I) = V0 are kept below the boundary and
approach the endemic equilibrium. One solution with the initial value starting outside the
ultimate boundary enters the ultimate boundary domain eventually.

4.2. With Exogenous Reinfections and Linear Treatment Rate

4.2.1. Backward Bifurcation

When k1 > 0, the last equation of (3.9) leads to E∗
2 = (1 − p(1 − γ))I∗2/((pk1β2I

∗
2/N

∗) + pk2α).
Substituting the expression E∗

2 into the first equation of (3.9) yields (use I instead of I∗2 for
convenience)

a2I
2 + a1I + a0 = 0, (4.20)

where

a2 =
p2β1β2k1

(N∗)2
> 0,

a1 =
p2β1k2α

N∗ +
p
(
β1 + β2k1

)(
1 − p

(
1 − γ

))
N∗ − p2β1β2k1

N∗ ,

� −(R1 − 1) − (1 − R0)

(
1 +

1 − p
(
1 − γ

) − pk1β2

pαk2

)
,

a0 =
(
1 − p

(
1 − γ

))(
1 − p + pk2α + pk3m

) − p2β1k2α � −c0(R0 − 1),

(4.21)
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Figure 2: The backward bifurcation of model (3.9): (a) The domain with different number of endemic
equilibria in β1β2-plane, (b) The bifurcation curve of model (3.9).

where

R1 =
pk1β2

pαk2 + 1 − p
(
1 − γ

) × 1 − p + pmk3
1 − p + αk2 + pmk3

,

c0 =
(
1 − p

(
1 − γ

))(
1 − p + pk2α + pk3m

)
> 0.

(4.22)

The type of bifurcation at R0 = 1 is totally determined by R1. Near R0 = 1, a1 < 0 holds
if and only if R1 > 1. Hence, at R0 = 1, if R1 > 1, bifurcation is forward, while if R1 < 1,
bifurcation is backward. R1 gives a measure for exogenous reinfections. The first term in R1,
1/(pαk2 + 1 − p(1 − γ)), is the average re-infection period, which is a little bit shorter than the
regular average infection period 1/(1 − p(1 − γ)). The second term in R1 gives the proportion
of the latent population. These analysis result in the following theorem that characterizes the
feature of bifurcation at R0 = 1.

Theorem 4.4. Consider model (3.9). If R1 < 1, then the bifurcation at R0 = 1 is of forward type. If
R1 > 1, the bifurcation at R0 = 1 is of backward type.

Looking at the expression of R1, one can see that R1 > 1 necessarily requires k1β2 /= 0.
Therefore, the exogenous reinfections are the driver behind the occurrence of the backward
bifurcation. This is consistent with the continuous epidemic models for tuberculosis [30, 31].

The backward bifurcation of model (3.9) is shown in Figure 2 with following
parameter values p = 0.994, Λ = 10, α = 0.03, γ = 0.1, k1 = 0.5, k2 = 0.3, k3 = 0.2,
and m = 0.1. Figure 2(a) gives three domains in β1β2-plane with the unique disease-free
equilibrium (DFE), two positive endemicequilibria (E∗

2±, I
∗
2±), and one endemic equilibrium

(E∗
2+, I

∗
2+). Taking the above parameter values and fixing β2 = 0.5, we get the backward

bifurcation curve of model (3.9) (see Figure 2(b)).
We use the numerical simulation to discuss the stability of the endemic equilibria of

model (3.9). The linearized matrix of (3.9) at the positive equilibrium points P ∗
2±(E

∗
2±, I

∗
2±) is

J2± =

⎛
⎜⎜⎝

p − pk2α − pk3m − p
(
β1 + β2k1

)
I∗2±

N∗ pβ1 −
p
(
β1 + β2k1

)
E∗
2±

N∗ − 2pβ1I∗2±
N∗

pβ2k1I
∗
2±

N∗ + pαk2
pβ2k1E

∗
2±

N∗ + p
(
1 − γ

)

⎞
⎟⎟⎠. (4.23)
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Figure 3: The attraction separatrix for those two equilibria of model (3.1).

We fix parameter values p = 0.994, Λ = 10, α = 0.03, γ = 0.1, k1 = 0.5, k2 = 0.3, k3 = 0.2,
m = 0.1, and β2 = 0.5 and change the value of β1. When β1 ∈ [0.31831317735, 0.41278978), we
have R0 ∈ [0.7711266, 1), and there are two positive equilibrium points, which are (E∗

2+, I
∗
2+)

and (E∗
2−, I

∗
2−), respectively. Fixing β1 = 0.35, we have (E∗

2+, I
∗
2+) = (601.51345, 342.43485) and

(E∗
2−, I

∗
2−) = (329.51923, 52.38933). Accordingly, we have ρ(J2+) = 0.979777 < 1 and ρ(J2−) =

1.00415 > 1. Therefore, (E∗
2+, I

∗
2+) is local stable as R0 < 1, while (E∗

2−, I
∗
2−) is unstable as R0 < 1.

When β1 > 0.41278978, we have R0 > 1, and there is only one positive equilibrium point
(E∗

2+, I
∗
2+). Fixing β1 = 1, we have (E∗

2+, I
∗
2+) = (657.40092, 796.73372), and ρ(J2+) = 0.88069 < 1.

ρ(J2+) will change when β1 becomes bigger. The numerical simulation shows that ρ(J2+) = 1
and R0 = 9.91134 as β1 = 4.0913. Therefore, we obtain that (E∗

2+, I
∗
2+) is locally stable as 1 <

R0 < 9.91134, and, when R0 ≥ 9.91134, (E∗
2+, I

∗
2+) is unstable.

After spelling out the stability of the endemic equilibria, we use the numerical method
to investigate the attraction domain of the positive equilibrium points in EI-plane when R0 <
1. Here, we use the same parameter values as for the analysis of the endemic equilibrium
bifurcation when R0 < 1. There are three equilibrium points, the disease-free equilibrium
(0, 0), the endemic equilibria (E∗

2+, I
∗
2+), and (E∗

2−, I
∗
2−), respectively. In Figure 3, the solid red

line is the separatrix, which divides the whole domain into two parts, the attraction domain
of the larger endemic equilibrium (E∗

2+, I
∗
2+), and the attraction domain of the disease-free

equilibrium (0, 0). Figure 3 shows that (E∗
2−, I

∗
2−) is saddle, and the ultimate limit of solutions

of model (3.1) depend on the initial values. If the initial values below the separatrix, the
solutions will tend to the disease-free equilibrium (0, 0), while the solutions with initial values
above the separatrix will ultimately tend to (E∗

2+, I
∗
2+). It appears that the attraction domain

of (E∗
2+, I

∗
2+) is much bigger than that of (0, 0). This fact implies that we should be careful in

assessing a disease control program, since the attraction domain of (0, 0) is small, the disease
may not be eliminated even though R0 < 1.

4.2.2. Model Behavior for Large R0

This subsection is mainly concerned with the behavior of the model when R0 is very large.
Numerical approach is used to further explore the model. We fix parameter values p = 0.994,
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Figure 4: Period doubling bifurcation of model (3.9). Parameter values are p = 0.994, Λ = 10, α = 0.03,
γ = 0.1, k1 = 0.5, k2 = 0.3, k3 = 0.2, m = 0.1, and β2 = 0.5.

Λ = 10, α = 0.03, γ = 0.1, k1 = 0.5, k2 = 0.3, k3 = 0.2, m = 0.1, β2 = 0.5, and let β1 change.
Figure 4(a) shows the existence of the stable endemic equilibrium of when R0 < 1. In fact,
model (3.9) has two endemic equilibrium points when 0.77113 < R0 < 1, the small endemic
equilibrium is unstable, and the large one is locally stable. If 1 < R0 < 8.6485, model (3.9)
has only one endemic equilibrium, which is locally stable. When 8.6485 ≤ R0 < 9.6417 the
endemic equilibrium of model (3.9) is unstable, and there exists a stable periodic solution of
model (3.9)with period 2. Furthermore, the periodic solution with period 2 become unstable
when 9.6417 ≤ R0 < 9.9566, and a stable periodic solution with period 4 appears. When R0

becomes larger, the period-4 solution loses its stability and a stable period-8 solution appears
(Figure 4(b)). The period-doubling may undergo to chaos as R0 increases.

Figure 4 only displays the stable endemic equilibrium or stable periodic solution
of model (3.9). The values of the equilibrium or the periodic solution of the infectious
individuals are positive for all R0 ∈ [0, 10]. However, the number of the latent class may
be negative when R0 ≥ 8.6485. R0 = 8.6485 corresponds to the critical value at which the
endemic equilibrium loses its stability, and periodic solution with period 2 appears. A reason
for model (3.9) undergoing period-doubling solutions may be the appearance of the negative
latent solutions when R0 becomes larger. The numerical simulation seems to hint that the
endemic equilibrium may be stable if β1 ≤ 1 and β2 ≤ 1, which gives the positive solution if
the initial values are positive. Castillo-Chavez and Yakubu discussed similar problem for a
discrete SIS model [19].

4.2.3. Ultimate Boundary

The following theorem gives an ultimate boundary to the model (3.9).

Theorem 4.5. If 1 < R0 ≤ 1+((pβ1αk2− (1−p(1−γ))(1−p+pmk3)k1β2)/(1−p(1−γ))(pβ1αk2+
(1 − p + pmk3)k1β2)), pβ1αk2 > (1 − p(1 − γ))(1 − p + pmk3)k1β2, and 0 < β1, β2 ≤ 1 hold, then
the solutions of model (3.9) are ultimately bounded by

lim sup
t→∞

V (E(t), I(t)) = lim sup
t→∞

pαk2E(t) +
(
1 − p + pαk2 + pmk3

)
I(t) ≤ V0,

where V 0 �
(
1 − p + pαk2 + pmk3

)
N∗
(
1 +

(
1 − p + pmk3

)
k1β2

pβ1αk2
− 1
R0

)
.

(4.24)
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The inequality lim supt→∞V (E(t), I(t)) ≤ V0 implies that

lim sup
t→∞

E(t) ≤
(
1 +

1 − p + pmk3
pαk2

)
N∗
(
1 +

(
1 − p + pmk3

)
k1β2

pβ1αk2
− 1
R0

)
,

lim sup
t→∞

I(t) ≤ N∗
(
1 +

(
1 − p + pmk3

)
k1β2

pβ1αk2
− 1
R0

)
.

(4.25)

Introducing V (E(t), I(t)) = pαk2E(t) + (1 − p + pαk2 + pmk3)I(t) and then examining the
difference of V yields that

ΔV = V (E(t + 1), I(t + 1)) − V (E(t), I(t))

=
(
1 − p

(
1 − γ

)(
1 − p + pαk2 + pmk3

))

×
(
R0 − 1 − R0

N∗
1 − p + pαk2 + pmk3
1 − p + pαk2 + pmk3

(E(t) + I(t)) +

(
1 − p + pmk3

)
k1β2R0E(t)

pβ1αk2N∗

)
I(t)

≤ (1 − p
(
1 − γ

)(
1 − p + pαk2 + pmk3

))

×
(
R0 − 1 − R0

N∗
V (E(t), I(t))

1 − p + pαk2 + pmk3
+

(
1 − p + pmk3

)
k1β2R0

pβ1αk2

)
I(t),

=

(
1 − p

(
1 − γ

))
R0

N∗
(
V 0 − V (E(t), I(t))

)
I(t).

(4.26)

The rest of the proof is similar to that of Theorem 4.4.

4.3. With Exogenous Reinfections and Saturated Treatment

In this subsection, we analyze model (3.10), that is, the SEIS model with a saturated treatment
rate.

4.3.1. Endemic Equilibria

Let P ∗
3 (E

∗
3, I

∗
3) be the positive equilibrium of model (3.10). Then the second equation of model

(3.10) leads to I∗3 = pαk2E
∗
3/(1 − p(1 − γ) − (pβ2k1E∗

3/N
∗)), where E∗

3 < N∗(1 − p(1 − r))/
pβ2k1.

We already have a clear picture about the equilibrium in the region E(t) ≤ E0. Nowwe
only seek for equilibria in the region E(t) > E0 with T(E(t)) = p(k3E(t) − m0). Similarly, E∗

3
satisfies

σ3E
3 + σ2E

2 + σ1E + σ0 = 0, (4.27)
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Figure 5: Double backward bifurcations of model (3.10). Dotted lines represent unstable equilibria, and
solid lines represent stable ones.

where

σ3 =
p2β2k1

(
pβ1αk2 − β2k1

(
1 − p

))
(N∗)2

,

σ2 =
2pβ2k1

(
1 − p + pαk2

)
N∗

(
1 − p

(
1 − γ

))
+
p2αk2

(
β2k1 + β1

)
N∗

(
1 − p

(
1 − γ

))

− p3β1αk2
(
β2k1 + αk2

)
N∗ − p3m0β

2
2k

2
1

(N∗)2
,

σ1 =
(
1 − p

(
1 − γ

))(2p2m0β2k1
N∗ + p2β1αk2 −

(
1 − p

(
1 − γ

))(
1 − p + pαk2

))
,

σ0 = −pm0
(
1 − p

(
1 − γ

))2
.

(4.28)

From the continuity argument, we can impose E0 to be a root to (4.27). Obviously, R0

and R1 are not enough to determine all possible configurations of the roots of (4.27). We can
directly use these sigmas that have less epidemiological meaning. Notice that σ0 < 0 relieves
our work a little bit. If σ3 < 0, then (4.27) has exact two positive roots. If σ3 > 0 and σ1 < 0,
then (4.27) has exact one positive root. If σ3 > 0 and σ1 > 0, then (4.27) has exact one or three
positive roots. For all situations, E0 is always the smallest positive root.

Next we will explore the dynamics of model (3.10) numerically by carefully selecting
parameter values.

4.3.2. Double Backward Bifurcations

A double backward bifurcation is observed for parameter values p = 0.994, Λ = 10, k1 = 0.2,
k2 = 0.4, k3 = 0.4, α = 0.03, γ = 0.0001, m = 0.005, and β2 = 0.375.

As can be seen in Figure 5, a backward bifurcation occurs at R0 = 1 because R1 =
1.6527 > 1. This backward bifurcation is bifurcated from the disease-free equilibrium.
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Figure 6: Phase portrait of model (3.10): a case of multiple equilibria.

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
0
10
20
30
40
50
60
70
80
90
100

R0

T
he

nu
m
be

r
of

th
e
ex
po

se
d

(a) Multiply backward bifurcation

0.95 1 1.05
0

50

100

150

200

250

300

350

400

R0

T
he

nu
m
be

r
of

th
e
in
fe
ct
io
us

(b) Forward-backward bifurcation

Figure 7: (a) Double backward bifurcations for model (3.10). The upper one occurs when R0 > 1. (b)
Forward-backward bifurcation for model (3.10). The upper one occurs when R0 < 1. Dotted lines represent
unstable equilibria, and solid lines represent stable ones.

Meanwhile, at an endemic equilibrium, the second backward bifurcation happens, so that
we can see that there is a window of five equilibria. Three of them are stable, and two of them
are unstable. Indeed, we have found a tristability when R0 < 1 and when saturated treatment
rate is used. Figure 6 shows the tristable situation on the phase plane.

If we choose β2 = 0.26, then R1 = 1.1458 > 1. The bifurcation at R0 = 1 remains
backward. However, the second backward bifurcation shifts to the right, happening at a place
of R0 > 1. One can observe bistability not only for R0 < 1 but also for R0 > 1. Figure 7(a)
illustrates this bistable dynamics. Further decreasing of β2 can produce a new bifurcation,
which will be studied in the next subsection.

4.3.3. Forward-Backward Bifurcation

If we set p = 0.994, Λ = 8, k1 = 0.3, k2 = 0.3, k3 = 0.4, α = 0.03, γ = 0.001, m = 0.01,
m0 = 0.2, and β2 = 0.1, then the bifurcation at R0 = 1 is forward because R1 = 0.9835 < 1,
as we can see from Figure 7(b) that a backward bifurcation occurs on the top. The backward
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Figure 8: Forward-backward bifurcation for model (3.10). The upper one occurs when R0 > 1. Dotted lines
represent unstable equilibria, and solid lines represent stable ones.

bifurcation curve returns all the way back to the region of R0 < 1, generating an endemic in
the region. This would be the worst consequence of the saturated treatment strategy because
it help to establish the disease when R0 < 1. If a fixed proportion of the latent individuals
are treated (linear treatment rate is used), then the backward bifurcation on the top cannot
happen, consequently the disease dies out when R0 < 1.

A less important forward-backward bifurcation is the case where the whole backward
bifurcation curve exists only in the region of R0 > 1, thus only making endemic equilibrium
bigger. Figure 8 shows this kind of bifurcation, where β2 = 0.18 in order to makeR1 = 0.7933 <
1 and the rest of parameters are the same as in the previous subsection.

5. Conclusion and Discussion

In this paper, we analyzed a class of discrete SEIS models and their epidemiological
implications. First, the models without exogenous reinfections were considered. We obtained
the global stability of the disease-free equilibrium, existence and uniqueness of endemic
equilibrium and its stability.We also found the sufficient conditions for the ultimate boundary
of the solutions. Then we considered the models with exogenous reinfections. These models
undergo a backward bifurcation. Furthermore, we showed that the models with exogenous
re-infection and treatment exhibit period-double phenomenon when R0 grows larger. The
period-double bifurcation was obtained for the reduced model (3.9). One component in
the full model may become negative when the reduced model has periodic orbits. Finally
we considered the models with exogenous re-infection and saturated treatment. No matter
whether there is the exogenous re-infection, the saturated treatment can lead to a backward
bifurcation at an endemic, but exogenous re-infection determines the backward bifurcation
at the disease-free equilibrium.

From our qualitative and quantitative analysis, we had already found that a combi-
nation of exogenous reinfections and treatment regimens is capable of generating complex
dynamics. These include tristability (disease-free equilibrium and two endemic equilibria)
when R0 < 1, bistability for both R0 < 1 and R0 > 1, and period doubling for a reduced model.

We now know that k1β2 controls the appearance of the backward bifurcation at R0 = 1,
creating an endemic equilibriumwhen R0 < 1, an example of bistable scenario. The treatment
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regime does not participate in the backward bifurcation R0 = 1. However, the treatment
regime is able to create equilibria at a higher level, far away from the disease-free equilibrium,
regardless of the values of R0. The treatment strategy change actually means stopping the
trend of treatment effort and treating fewer individuals. This reduction in treatment efforts
leads to the emerging of the larger endemic equilibrium. The worst scenario is that if the
bifurcation at R0 = 1 is forward, meaning that R0 < 1 makes the disease die out, and if the
treatment practice is changed through reducing the treatment effort, then an endemic is born
when R0 < 1. This reduction of treatment effort helps to reestablish the disease at local level,
making it impossible to eliminate the disease. A plausible conclusion is the strategy should
be to treat as many latent individuals as possible. Our model supports that the strategy
that a fixed percentage (proportion) of the latent individuals should be treated consistently
to eliminate the disease. For diseases like tuberculosis, failure to take care of the existence
of long-lived latent individuals may be a critical reason to the longevity of the disease.
Exogenous reinfections intrinsically result in bistability through the occurrence of a backward
bifurcation, which is out of our control. However, persistence of the disease resulting from a
change of policy should and can be avoided by all means. Obviously, it would be a sad story
if reduction of treatment is due to an insufficient health infrastructure or budget.
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