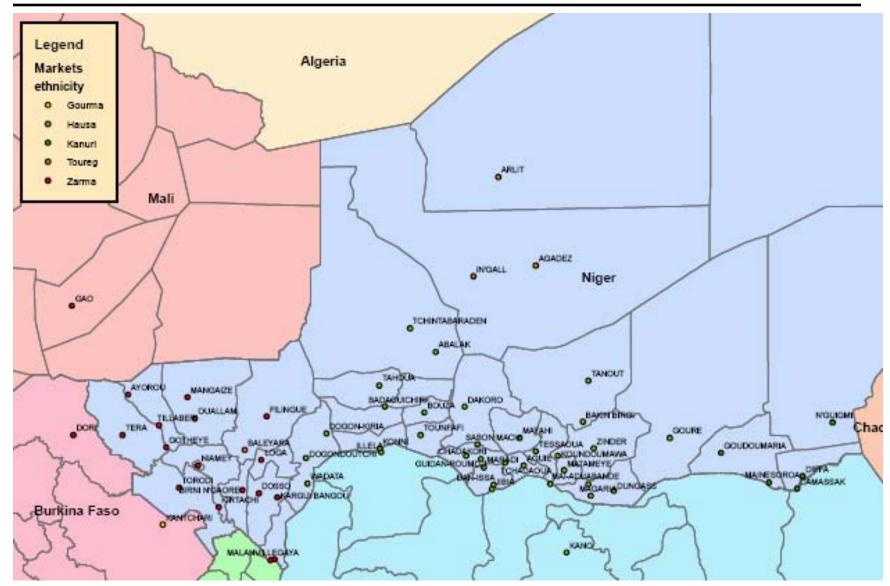
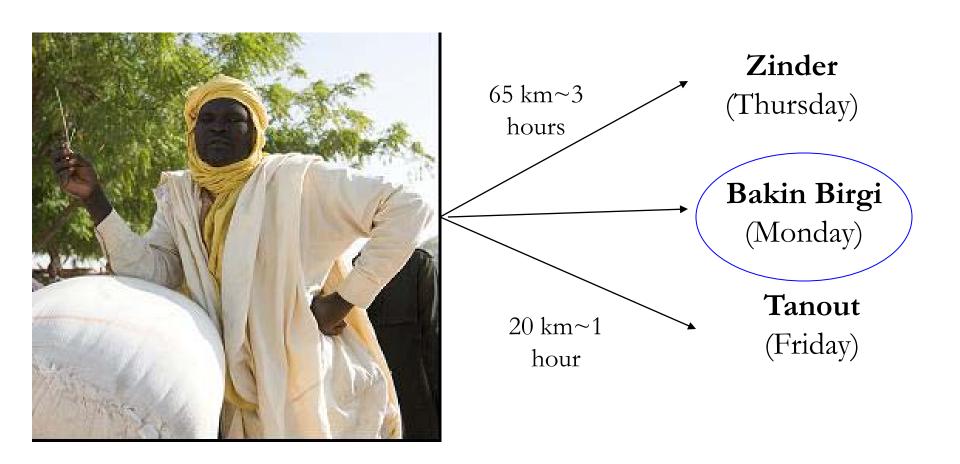
"Information from Markets Near and Far": Mobile Phones and Grain Markets in Niger

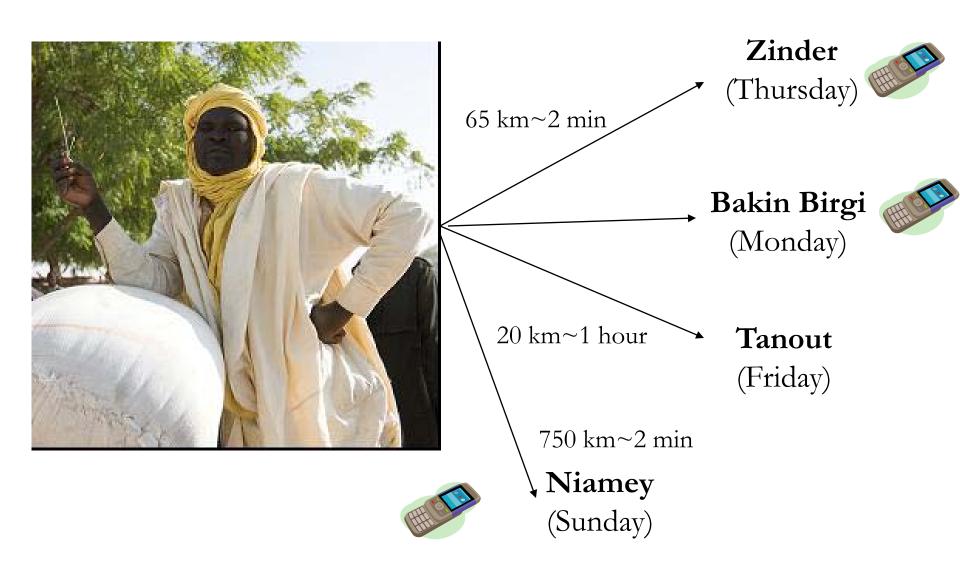
Jenny C. Aker
Tufts University
Presented by Megumi Muto at the IAAE Conference
August 16-22, 2009
Beijing, China

 Costly information can make it difficult for market agents to engage in optimal arbitrage

• Excess price dispersion for homogeneous goods is a common occurrence in developed and developing countries (Stigler, *JPE* 1961, Brown and Goolsbee, *JPE* 2002, Jensen, *QJE* 2007)







"[With a cell phone], in record time, I have all sorts of information from markets near and far..."

Grain trader in Magaria, Niger

"[Now] I know the price for US\$2, rather than traveling (to the market), which costs US\$20."

Grain trader in Zinder, Niger

- Goal: Assess the impact of a new search technology on grain market performance in Niger
 - ☐ Develop a simple model of trader search
 - □ Exploit the quasi-experimental rollout of cell phone towers to measure their impact on grain price dispersion
 - ☐ Investigate alternative hypotheses and mechanisms

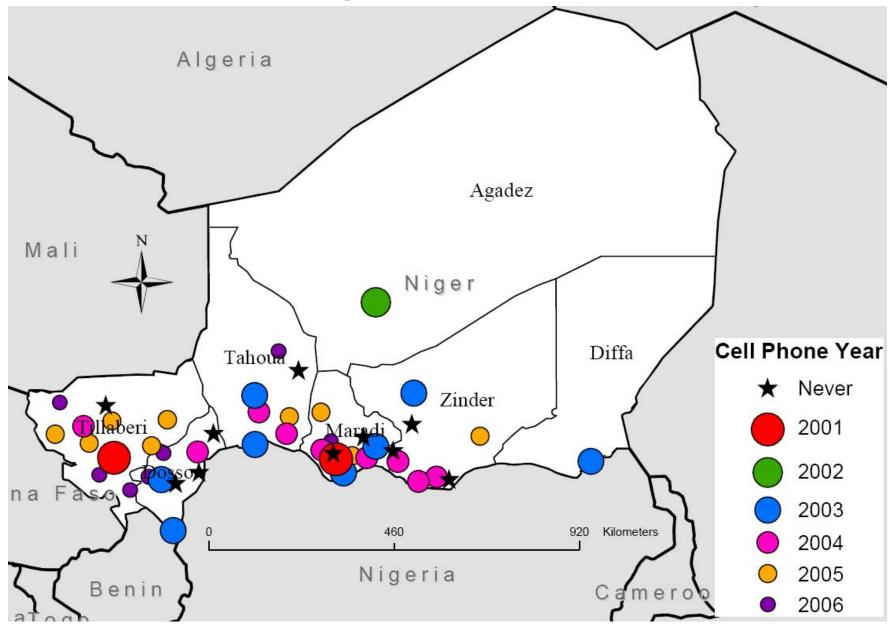
Two Datasets

- ☐ Market-level time series (monthly) panel 1999-2006
- ☐ Unique trader panel collected between 2005-2007

Preview of Findings

- The introduction of cell phones is associated with a decrease in price dispersion across grain markets
 - ☐ The effect is stronger for isolated markets and those with poor quality roads, and as a higher percentage of markets receive cell phone coverage

- Traders in cell phone markets search more and sell in a larger number of markets
- Cell phones are associated with welfare gains for traders and consumers



Cell Phone Rollout

- Between 2001-2006, cell phone towers were phased-in throughout the country
- Cell phone companies (Celtel, Sahelcom, Telecel) intended to provide universal coverage by 2009

- There were two criteria to prioritize the rollout:
 - ☐ Whether the town was an urban center
 - □ Whether the town was located near a border (Benin, Burkina Faso, Mali and Nigeria)

Cell Phone Coverage by Market and Year, 2006

Linking the Model to the Data

- Cell phones require an initial fixed cost but reduce the per-search cost as compared to personal travel
 - □ 50 percent reduction in traders' (marginal) search costs

- Therefore, the introduction of cell phones will:
 - ☐ #1. Increase traders' reservation prices (unobserved)
 - ☐ #2. Increase the number of markets over which traders search
 - ☐ #3. Reduce dispersion of millet prices across markets

First Dataset: Market-Level Panel

- Monthly cereal prices in 42 domestic and cross-border markets between 1999-2006
- Department-level rainfall and cereal production
- Trade flows (directions) between key markets
- Monthly gasoline prices
- Estimated transport costs between markets
- Village and town population and urban status
- Road distances, road quality and estimated travel times (time-invariant)
- Criteria used by cell phone companies for cell phone rollout
- Date of cell phone entry in each market

Second Dataset: Trader Panel

- Panel survey of traders, farmers, market resource persons and transporters collected between 2005-2007
- 415 traders across 35 markets in 6 regions of Niger
- Census of grain markets and grain traders on each market
- Detailed data on traders' operations, with retrospective questions for 2004/2005

Summary Statistics

Panel A: Trader-Level Characteristics	Sample Mean (s.d.)	# of obs
Ethnicity (Hausa ethnic group)	0.65	395
Age	45.71(12.2)	395
Gender(male=0, female=1)	0.11(.32)	395
Education (0=elementary or above, 1=no education)	0.62(.48)	395
Trader type (retailers)	0.53	395
Years' of Experience	16.0(10.2)	395
Trade in agricultural output products only	0.98(.02)	395
Changed "principal market" since he/she became a trader	.10(.31)	395
Number of days of storage	7.14(9.8)	395
Own cell phone	.29(.45)	395
Own means of transport (donkey cart, light transport)	.11(.32)	395
Panel B. Market-Level Characteristics		
Number of traders	137(99.6)	35
Road quality (1=paved road, 0=otherwise)	.71(.45)	35
New paved road in past 5 years	.15(.37)	35
Located in an urban center (>35,000 people)	.39(.48)	35

Empirical Strategy

 Part I: Assess the impact of the introduction of cell phones on grain market performance

 Part II: Estimate the mechanisms behind the market-level (treatment) effect

Empirical Strategy: Part I

- Assess the impact of the introduction of cell phones on grain price dispersion across markets
 - "Treatment" defined as a cell phone tower, not adoption
 - ☐ Use market-level time-series panel dataset
- Exploit the quasi-experimental nature of the rollout of cell phone towers
 - ☐ Pooled and yearly difference-in-differences estimation
 - ☐ Treatment effect heterogeneity over time and space
- Robustness checks
 - ☐ Control for potential bias of the estimates
 - ☐ Check consistency of standard errors using non-parametric permutation tests and dyadic-corrected standard errors
 - ☐ Test for alternative explanations

Estimating the Impact of Cell Phones at the Market Level

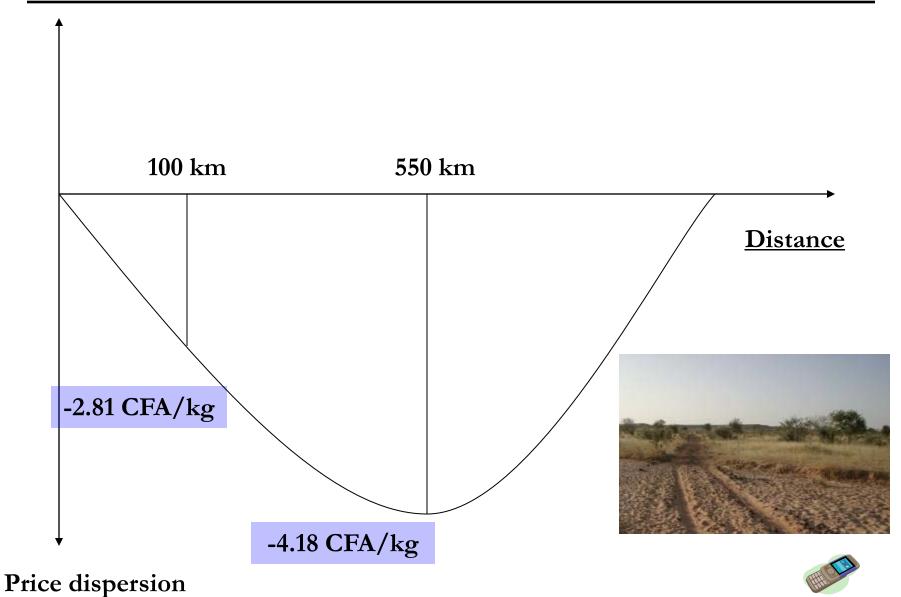
$$Y_{ij,t} = \alpha + \beta_2 cell_{ij,t} + \gamma Z_{ij,t} + a_{ij} + \theta_t + u_{ij,t}$$

^{*}Lagged dependent variable correcting for endogeneity using Arellano-Bond

^{*}Alternative measures of price dispersion and the treatment variable are used

Balance of Pre-Treatment Variables

Table 2. Comparison of Observables by Treated and Untreated Groups in Pre-Treatment Period						
	Uncondit	Difference				
Pre-Treatment Observables	Cell Phone	No Cell Phone	Unconditional			
	Mean (s.d.)	Mean (s.d.)	s.e.			
Panel A. Market Pair Level Data						
Price dispersion between markets (CFA/kg)	20.72 (16.9)	22.14 (16.49)	-1.73 (1.92)			
Distance between markets (km)	377.3 (217.5)	378.64 (227.65)	447 (24.8)			
Road Quality between markets	0.418 (.493)	.318 (.465)	.100*(.052)			
Drought in 1999 or 2000	.013(.114)	.019 (.137)	006(.004)			
Urban center(>=35,000)	0.169 (.374)	0.000 (.001)	0.169***(.020)			
Transport Costs between Markets (CFA/kg)	12.73 (6.89)	12.74 (7.12)	0.013 (.771)			
Panel B. Market Level Data						
Road Quality to Market	0.629(.483)	.5(.5)	.129(.271)			
Market Size	103.11(79.65)	101.75(45.5)	1.361(27.8)			
Drought in 1999 or 2000	0.148(.355)	0.25(.435)	101(.134)			
<u>Urban center(>=35,000)</u>	0.407(.491)	0(.00)	.407***(.096)			


Average Effects of Cell Phones

■Cell phones are associated with a -1.42 to -4.7 CFA/kg reduction in price dispersion (6.5-22 reduction in price dispersion)

Dependent variable	$(1) P_{it}-P_{jt}$	$(3) P_{it}-P_{jt}$	(4) CV	$(5) P_{it}-P_{jt}$
	-4.65***	-4.77***	039*	-1.42*
Cell Phone Dummy (both treated)	(1.06)	(1.06)	(.020)	(.863)
Common Time Trend	Yes	Yes	Yes	Yes
Group-specific time trend	No	Yes	Yes	Yes
Market-Pair Fixed effects	Yes	Yes	Yes	Yes
Yearly time dummy	Yes	Yes	Yes	Yes
Monthly time dummy	No	No	No	Yes
# of observations	27342	27342	2393	27342
R^2	0.0075	0.0075	0.0879	0.1003
Pre-treatment value for control				
groups	22.14	22.14	0.312	22.14

Heterogeneous Effects

Alternative Explanations and Mechanisms

- Hidden bias (conditional independence assumption)
- General equilibrium effects (SUTVA violation)
- Collusive behavior and entry and exit

Empirical Strategy: Part II

- Assess the impact of cell phones on traders' behavior
 - "Treatment" defined as a cell phone tower, not adoption
 - ☐ Use trader-level panel dataset
- Exploit the quasi-experimental nature of the rollout of cell phone towers
 - ☐ Pooled difference-in-differences estimation
- Robustness checks
 - □ Control for selection bias via matching and bounding the treatment effect

Estimating the Impact of Cell Phones on Traders' Behavior

$$Y_{ij,t} = \alpha + \beta_1 cell_{j,t} + \delta X_{ij,t} + \gamma Z_{j,t} + \theta_t + u_{ij,t}$$
outcome of trader *i* in market *j* at time *t* (number of markets

 $Y_{ij,t}$ searched, number of market contacts, number of sales markets)

 $Cell_{ijt}$ variable = 1 if the market received cell phones in period t, 0 otherwise

 $X_{ijt} \ Z_{ijt}$ vector of exogenous regressors of trader i in market j at time t

vector of exogenous regressors of market j at time t

 θ_{t} time effects (year)

error with 0 conditional mean, $E[u_{ijt}|Z_{ijv}, X_{ijv}, a_i, a_j, \theta_t]=0$ u_{ijt}

time in years, t=2004/2005, 2005/2006

Nnumber of traders, N=395

Self-Selection into Cell Phone Markets

- Concern about potential selection into cell phone markets
 - ☐ Differences in traders' behavior might be the result of pretreatment characteristics that caused traders to "self-select" into a cell phone market
- Traders' self-selection into cell phone markets seems unlikely:
 - □ Number of traders per market did not vary (significantly) between 2004-2007 (period of cell phone expansion)
 - ☐ Only 10 percent of traders surveyed have changed their "principal market" since they began trading

Trader-Level Outcomes

	OLS Es	timate	Poisson	Estimate	Probit Estimate	Nearest	Neighbor
	Coeff		Coeff	Coeff	Coeff (df/dx)	Coeff	
Dependent variable:	(s.e.)	% ∆	(s.e.)	(adj s.e.)	(s.e.)	(s.e.)	%∆
	.91**		.22**	.22**		.91**	
# of Markets Searched	(.46)	26.26%	(.11)	(.05)		(.47)	26.49%
# of people consulted for	1.5***		.33***	.33**		1.7***	
market information	(.50)	39.95%	(.11)	(.08)		(.71)	45.14%
Use personal contacts to obtain	.07***				.61***	.07*	
market information	(.02)	7.99%			(.09)	(.04)	7.57%
Change sales markets	.08				.08*	.09*	
(Yes=1, 0=No)	(.06)	57.14%			(.05)	(.05)	64.29%
	1.02**		.22**	.22***		1.13*	
# of Sales Markets	(.71)	25.37%	(.09)	(.02)		(.70)	28.04%

Search in .91 more markets

Sell in one more market

Bounding the Treatment Effect

		(1)	(2)	(3)
Dependent variable:		Untrimmed ATE	"Best case" Bound	"Worst Case" Bound
Dependent variable.		AIE	Doulla	Dound
# of Markets Searched		.83**(.42)	.99**(.41)	.83**(.42)
# of people consulted	for market information	1.4**(.7)	1.6**(.62)	1.4**(.7)
Use personal contacts	to obtain market information	.06***(.03)	.06**(.02)	.06**(.03)
Change sales markets		.06**(.03)	.08**(.04)	.05*(.03)
# of Purchase and Sale	es Markets	.80*(.46)	.95**(.31)	.67*(.31)
	Means	Trim distrib		
	comparison	traders in ce		

markets with lower

outcome values

comparison

Summary

- Cell phones are associated with a 6.5-22 percent decrease in price dispersion across markets
- The effect is larger for markets located farther apart and linked by poor quality roads
- The effect is also stronger over time, suggesting that cell phones are more useful as there are more network users
- The mechanism appears to be a change in traders' search behavior

Summary

- The findings *suggest* welfare improvements from the introduction of cell phones (lower consumer prices, higher traders' profits)
 - ☐ Traders' profits could decrease (zero profits) in the long-term
- However, how the gain is shared among farmers, traders and consumers is ambiguous
- Therefore, welfare estimates of farmers are needed...but not trivial!

Policy Implications

- It's the "I", not the "T" in information technology
 - ☐ Information alone is important for market performance and can reduce transaction costs, especially for remote areas

- But...cell phones provide information in a way that is "desirable" (timely, accurate)
 - ☐ Information technology should be central to the debate on existing (market) information systems in sub-Saharan Africa

Policy Implications

- Information provision is necessary but not sufficient for functioning markets
 - ☐ Investments in other factors that affect transaction costs (road quality, access to credit) are necessary

- Public-private partnerships can be useful for IT solutions in development
 - □ Cell phone expansion is happening without policy interventions or subsidies…but what about the market structure and pricing?
 - □ Opportunities for cell phone and development projects