


DECISION SUPPORT SYSTEMS 
FOR 

SUSTAINABLE DEVELOPMENT 

A Resource Book of Methods and 
Applications 



DECISION SUPPORT SYSTEMS 
FOR 

SUSTAINABLE DEVELOPMENT 

A Resource Book of Methods and 
Applications 

Gregory (Grzegorz) E. Kersten 
Zbigniew Mikolajuk 

Anthony Gar-On Yeh 

Editors 

'I, 
Kiuwer Academic Publishers 

Boston/DordrechtlLondon 4i L // V 

// I, / 



Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available from the Library of 
Congress. 

Canadian Cataloguing in Publication Data 

Main entry under title: 
Decision support for sustainable development: a resource book of methods and 

applications 

Includes bibliographical references. 
ISBN 0-88936-906-2 

1. Sustainable development Developing countries. 
2. Decision making Developing countries. 
3. Information, storage and retrieval systems Sustainable development. 
I. Kersten, Gregory E. 
II. Mikolajuk, Zbigniew. 
III. Yeh, Anthony G.O., 1952- 
IV. International Development Research Centre (Canada). 

HC79.E5D43 1999 338.90091724 C99-980239-9 

© International Development Research Centre 2000 
P0 Box 8500, Ottawa, Ontario, Canada K1G 3H9 

http://www.idrc.calbooks/ 

All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system or transmitted in any form or by any means, mechanical, 
photocopying, recording, or otherwise, without prior permission from Kiuwer 
Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, 
USA. 

Published in hardcover by 
Kluwer Academic Publishers 
101 Philip Drive, Assimippi Park, Norwell, MA 02061, USA 
http://www.wkap.nl 

Printed on acid-free paper in the United States ofAmerica. 



For 
Margaret Kersten, 
Anna Mikolajuk and 
Brenda Yeh 
with thanks for 
their inspiration 
and encouragement. 
Thank you! 



Contents 

Preface xi 

Decision Support Systems for Sustainable 
Development: An Overview 1 

Tung X. Bui 

I. SUSTAINABLE DEVELOPMENT AND DECISION MAKING 

1. Sustainable Development and Decision Support Systems 13 

Zbigniew Mikolajuk and Anthony Gar-On Yeh 

2. Decision Making and Decision Support 29 
Gregory E. Kersten 

3. Decision Support with Geographic Information Systems 53 
Anthony Gar-On Yeh 

II. APPLICATIONS AND CASE STUDIES 

4. Decision Support for Sustainable Land Development: 
A Case Study of Dongguan 73 
Anthony Gar-On Yeh and Xia Li 

5. Water Resource Management: A Case Study for EcoKnowMlCS 99 
Eduardo D. Gamboa 

6. Decision Support for Incentive Strategies: 
A Rural Development Application in Central Africa 131 

Benoit Gailly and Michel Installé 

7. Efficient Strategies: An Application in Water Quality Planning 145 
Alexander V. Lotov, Lioubov V. Bourmistrova, and 
Vladimir A. Bushenkov 

8. Integrated Rural Energy Decision Support Systems 167 
Shaligram Pokharel and Muthu Chandrashekar 



viii Contents 

9. DSS for Sustainable Land Management: 183 
A South-East Asia Case 
Mohammad Rais, Samuel Gameda, Eric T. Craswell. 
Adisak Sajjapongse, and Hans-Dieter Bechstedt 

10. Mapping Critical Factors for the Survival of Firms: 
A Case Study in the Brazilian Textile Industry 197 
Carlos A. Bana e Costa, Emerson C. Corrêa, Leonardo Ensslin 
and Jean-Claude Vansnick 

11. Learning Negotiations with Web-based Systems: 215 
The Base of lIMB 
T. R. Madanmohan, Gregory E. Kersten, Sunil J. Noronha, 
Margaret Kersten and David Cray 

12. Natural Resource Conservation and Crop Management 
Expert Systems 239 
Ahmed Rafea 

Ill. RESEARCH ISSUES 

13. Rule Induction in Constructing Knowledge-Based 
Decision Support 263 
Tu Bao Ho 

14. Organizational Memory Information Systems 277 
A Case-based Approach to Decision Support 
Helen G. Smith, Frada V. Burstein, Ramita Sharma 
and Dayo Sowunmi 

15. Software Internationalization Architectures for DSS 291 
Patrick A.V. Hail 

16. Software Integration for Environmental Management 305 
Victor S. Chabanyuk and Olexandr V. Obvintsev 

17. Design of Decision Support Systems as 
Federated Information Systems 329 
David J. Abel, Kerry Taylor, Gavin Walker and Graham Williams 

18. Knowledge Discovery in Databases and Decision Support 343 
Anantha Mahadevan, Kumudini Ponnudurai, Gregory E. Kersten 
and Roland Thomas 



Contents ix 

IV. DECISION SUPPORT SYSTEMS FOR SUSTAINABLE 
DEVELOPMENT 

19. Experience and Potential 369 
Patrick A.V. Hall et al. 

20. DSS Application Areas 391 
Gregory E. Kersten and Gordon Lo 

Glossary 409 

Contributors 415 



5 SOFTWARE 
INTERNATIONALIZATION 

ARCHITECTURES FOR DECISION 
SUPPORT SYSTEMS 

Patrick A.V. Hall 

1. Introduction 

As can be seen in the many other papers in this book, decision making using DSS 
occurs in all countries and is undertaken by people who are not necessarily fluent in 

any language other than their mother tongue. Thus the decision support software 
must be made available in this mother tongue. But the situation is more complex than 
that, for some decisions may need to be taken using information gathered from across 
a complete region from data sources in different languages and cultures, and the deci- 
sion making process may also involve many people from similarly diverse languages 
and cultures. The processes of collaborative decision making are covered in Chapter 
12 on business negotiations, while in this chapter we will focus on how to make soft- 
ware available for a range of languages and cultures. 

Globalization of commodity software products like word processors, spreadsheets, 
and their underlying operating systems, is becoming widespread. The suppliers of 
these systems, like Microsoft, Lotus, Claris, Apple, the main platform suppliers, and 
many others, have recognized since the start of the 1990s that more than half their 
revenues must come from outside the US and the English speaking markets. The US 
market is saturating. 

This has meant that the manufacturers of software have developed methods for 
translating their products from their original target market, typically the US, to new 
markets. There are a wide range of issues to be addressed — these are described in 
Section 2. 

The methods of attack have been based on relatively simple methods, on charac- 

terizing the essential features of a market within a "locale", using a suitable character 
coding standard, and using resource files to factor out the locale dependent data like 



292 Software Internationalization Architectures 

The methods of attack have been based on relatively simple methods, on charac- 
terizing the essential features of a market within a "locale", using a suitable character 

coding standard, and using resource files to factor out the locale dependent data like 
messages so that they can be easily replaced. These current approaches are described 
in Section 3. 

Nevertheless, translation of software remains expensive, and not all markets are 
large enough to warrant translation. Thus, for example, the Same language of Lap- 
land in Northern Finland, Sweden, and Norway, will not have the interfaces of office 
products translated, though the ability to store and manipulate data in the Same lan- 

guage will be enabled. Same is closely related to Finnish. 
New approaches are needed, and I have been involved with some of these within 

the EU-funded Glossasoft project. These new approaches aim to exploit software ar- 
chitectures to factor out the locale dependent aspects behind Application Programmer 
Interfaces, and linguistics to enable this and avoid internationalization imposing un- 
natural interfaces upon the software. These approaches are described in Section 4. 

Finally, in Section 5, we look forward to the kind of work that will be necessary to 
enable Decision Support Systems to succeed across countries and regions of the de- 
veloping and developed world. All current approaches are aimed at single languages, 
though the same principles would work for a single system accessed through multiple 
languages, such as a decision support system spanning several countries or locales. 
There are two levels of linguistic issue: diverse interfaces in multiple languages ac- 
cessing a single common repository of data which is in some manner language neu- 
tral; and systems where the shared data is in multiple languages intermingled. But 
behind all this there are deeper cultural issues about how decisions are made: social 
relations, and the perceptions of space and time, are critical. This area is only partially 
understood, and the issues and some indication of how to handle these technically will 
be discussed. 

2. The ocahzation problem 

In moving any piece of software from one part of the world to another, it is important 
that the different needs of the users at these different locations are taken into account. 
These differences are: 
1. the language of the user interface, 

2. the language and number representations and measurement units of the data 
stored within the system, 

3. the language used for product support 

4. "cultural" factors like representation of currency, dates and colours 

5. local practices such as legal requirements 

6. deeper cultural issues like those characterised by Hofstede (1991). 

These factors are also equally important when a single system is used through 
multiple languages, as when sharing information between different countries. Even 



Software Internationalization Architectures 293 

when the language is the same, some of these factors will be important because the 
user community is different. 

2.1 Language 

The user interface of software should feel "natural" to the user of that software. All 

aspects of the computer and its communication with the user should be in the lan- 

guage of that person, or some second language in which the person is very comfort- 
able. 

For example, in European countries, nationalities differ markedly in their ability to 
understand one or more foreign languages. In some countries as few as 20% of the 

population are able to understand a language other than their own, while in others like 

Luxembourg the proportion can be as high as 90%. In South Asia computer systems 
are delivered almost exclusively in English as a consequence of their colonial heri- 

tage, but English is only spoken by the 5% of the population who are the elite. How- 

ever, the real ability to understand subtleties and shades of meaning of the second 

language, and the meaning of specific terminology used in software applications, may 
be substantially lower. English or some other dominant "world" language such as 

Arabic, Russian, Spanish, Chinese, or French just cannot be used. 
The aspects of languages that are important are: 

Writing systems: different languages use different scripts, which may be written 
in different directions. While most scripts will be alphabetic, using a small set of 
symbols (say less that 100) with which to write their language, by no means all are, 
The important languages of the Eastern Asian countries are ideographic and use a 

repertoire of many thousands of symbols. Many languages are written from left to 

right in lines which progress from top to bottom of the page, but the Arabic script is 
written right to left top to bottom, and some ideographic languages are written top to 
bottom right to left. Some scripts are composed of characters that can take a number 
of forms, like the capital letters of the Roman script and the letter variants in Arabic, 
or have compound characters as in Devanagari. Diacritics may be important, effec- 

tively extending the alphabet. There are different conventions regarding line breaks 
and hyphenation. 

Word structure: the individual units of language used to express the meaning and 

typically separated in some manner in the orthography (eg by blank space or a break 
in the cursive flow) may be richly structured. For example, in the Finno-Ugric lan- 
guages of Finalnd, Hungary and central Asia, and in some South-Asian language like 
Bengali, a single word may take many thousands of forms as it plays different roles 
within a sentence — we say that it is richly inflected. Other languages allow the free 
construction of compound words, like German. The general rules regarding the for- 
mation of words is known as morphology. 

Collation and sorting: different languages using the same (or largely the same) 
alphabet and script system may arrange words in different orders in dictionaries. Of 
particular significance here are the accents, and "compound" letters like the Spanish 
"11" which sorts between "1" and "m". Some Devanagari letters seen as compounds in 
Hindi and treated as distinct letter in Nepali. 



294 Software Internationalization Architectures 

Spelling: different regions using the "same" language may expect different spell- 
ings for a wide range of words — a well-known example of this is the difference be- 
tween America and UK English. In South Asia the spelling (orthography) of the 
northern Indo-Aryan languages may be varied with font size. From this arises the 
equivalence between words that have the same meaning but differ only in their spell- 
ing. 

These aspects of language may be of importance wherever language appears in an 
application. The most obvious and visible part of a system is its user interface, where 
all these issues are important. 

When text data is stored and manipulated by the computer, these linguistic issues 
may also become important, particularly where searches and matches are made. For 
example, a word processor searching for a whole word must understand what is meant 
by a word in the language and may need to take into account the morphology of the 
language. 

Some of the documentation supporting a product may be specialized in its usage, 
and not require translation outside a set of international technical languages. Other 
material of a training nature may need more than just translation since examples may 
be cultural specific and may need to be changed — an example here is the use of base- 
ball in examples for the US market being changed to football for other markets. 

2.2 Culture 

Social anthropologists define culture as "those socially transmitted patterns for be- 
havior characteristic of a particular social group" and "the organized system of 
knowledge and belief whereby a people structure their experience and perception." 
(Keesing 1973: page 68). So it includes the non-linguistic human conventions that 
distinguish one group of people from some other group, their patterns of thinking, 
feeling, interacting, and ways of recording this in their art and artefacts. 

These cultural aspects include the way time and dates and currency are denoted. 
Here there can be subtle variation, such as the use of "," and "." in the representation 
of numbers, through to the particular symbols used to denote currency. Typically 
there may be a variety of ways of writing equivalent information, such as we see in 
the writing of dates. One particular example is the way western number systems have 
used thousands and millions as major groupings, while in South Asia lakhs and crores 
(100 thousand and ten million) are used. 

Calendar systems can vary: the western calendar works with a solar year with a 
Christian orientation for its origin for counting years: it uses various devices to syn- 
chronize days with years, through leap years, all worked out by calculation based on 
scientific theories of the earth's orbit around the sun (see Duncan 1998 for a history of 
the Gregorian system). By contrast many parts of the Islamic world use the Hijira 
calendar with is lunar months and yearly cycle of 12 lunar months with no attempt to 

synchronize with the solar year, while synchronization between days and months is 
not done by calculation as in the west, but by direct observation of the moon. A per- 
son could be 30 years old in the western calendar and 33 years old in the Islamic cal- 
endar. The Bikram calendar system of Nepal (historically widely used in South Asia 



Software Internationalization Architectures 295 

before the colonial imposition of the Gregorian calendar) uses a solar year but lunar 

months, and synchronizes these by having an extra month every three years and other 
devices (Pillai 1911). These calendar systems embody within them the deeper cultural 

values, so that for the West knowing the calendar for years in advance through the 
calculations of the Gregorian system is important — for Nepal it has always been suffi- 
cient to have the calendar for the next year determined a few months before the start 
of the next year. 

Cultural areas are full of pitfalls for the unwary. For example, an icon depicting a 

hand held up with palm towards the viewer, commonly used to indicate 'Stop!' or 
'Danger!' in the Apple Macintosh and Windows interface, has a completely different 

meaning in Greece, where it is extremely rude. The product name "Nova" could de- 
note "new" to readers in one locations, but "does not go" in some other location. 
Colors may also have radically different connotations in different cultures, so for ex- 

ample red is a warning color in Western countries, but in China it illustrates joy, while 
white is the color of mourning and black is lucky: this could be important in the col- 

oring of maps in GIS systems, since in the west red might well be used to denote dan- 

ger zones, but lose that connotation elsewhere. Any of the many books on cross- 
cultural communication will have numerous examples (e.g. Jandtl99S). 

2.3 Local conventions and practices 

Local practices are often specified by legal and professional bodies. These consist of 
factors such as market-specific computing practices: communication system inter- 
faces, law and regulations, and financial accounting rules. For example, most West- 
ern European and America countries express salary in monetary units per year, but in 
Greece salary is expressed in monetary units per month and the annual salary consists 
of fourteen monthly payments. 

Also included here are differences in tax regimes, and more generally legal con- 
straints, that can influence the way software must work. 

3. Current approaches to software globalization 

Current approaches to the localization of software focuses on three topics: 
1. the choice of character codes 

2. use of locales 

3. use of resource files. 

Facilities for these are available in all the popular operating systems. 

3.1 Character codes 

The traditional 7 or 8 bit code ASCII (more properly ISO 646) for the Roman script 
permitted limited national variation across European languages, but has proved made- 



296 Software Internationalization Architectures 

quate for more general use. Various extensions to ISO 646 have been proposed, from 
registration of national variants through to complete new coding systems that would 
handle all alphabetic languages. These were based on single byte encodings which 
necessarily limited the total number of codes to 256 and the alphabet size to around 
100. In multilingual applications there has to be a shift between coding tables, and the 
meaning of a single code is context dependent. 

Ideographic scripts just cannot be handled in this way, and multiple bytes are nec- 
essary. The coding standard that has emerged as the best available is Unicode, which 
requires two bytes per character, and its ISO extension 10646 which uses four bytes 
per character. It is claimed that this gives the ability to store all known scripts within 
the single system, with room for expansion — however inspection of the tables 
(Unicode Consortium 1992 and 1997) shows that many scripts and languages are as 
yet not included. In multilingual applications there is now no need to shift between 

coding tables, and the meaning of a single code is unambiguous. 
On the surface of it, the use of two bytes per character by Unicode may seem 

wasteful, but in most applications text is stored with considerable volumes of man- 
agement information and the extra byte does not double the storage requirement, per- 
haps only increasing it by half as much again. 

No single character encoding scheme has found favor, though there does appear to 
be a drift towards Unicode and ISO 10646. Microsoft's Windows NT has adopted 
Unicode, Windows 95 has not done so, though Windows 98 does and the projected 
Windows 2000 arising from the convergence of NT and 95/98 technologies will do so 

fully. Other software suppliers are looking to Unicode for support in multilingual ap- 
plications, and so for example the database supplier Sybase has adopted Unicode as 

part of its distributed multilingual strategy. It does seem that Unicode is the way of 
the future. 

3.2 Locales 

A "locale" is a collection of all the conventions that characterize a single user com- 

munity: 
1. the Script, a reference to the code tables to be used, and any special rendering 

software 

2. the Language, leading to hyphenation rules, morphological rules, and similat 

3. Number, time and date system and conventions, the format for input and output 
and associated software to transforming these to and form the internal represen- 
tations. 

4. Monetary system symbols and rules 

5. Messages to be used, for error messages, help, and similar in the language and 

terminology of the locale 

and so on — the exact capabilities depends upon the operating system offering the lo- 
cale facility. Kano (1995) lists 94 locales for Windows platforms, but many of these 
are for variants of dominant European languages with there being only 38 different 



Software Internationalization Architectures 297 

languages, plus some 16 others defined but not offered. A lot of the world is unsup- 
ported through locales though they are supported through Unicode tables. 

When a user buys a system the operating system's locale may already have been 
set, so that the system interacts with them appropriately. Where several different 
communities are served, the locale may be set at time of sale. For example, the Re- 

gional Settings in the Control Panel in Windows 95 gives some user control over the 
local details. Application programmes may also be able to set their own locale, and 
can enable locales to change dynamically. 

3.3 Resource files and Dynamic linking 

To be able to select a locale, and change it dynamically, you need the two basic fa- 
cilities from the operating system: a level of indirection where the locale sensitive 
elements can be named but not bound into the application code, and the ability to link 
in these locale sensitive elements either statically or dynamically. 

Most operating systems have suitable facilities. There will be "resource files" or 
"message catalogues" in which the locale sensitive elements can be placed, such as: 
• user interface text for window titles, menus and prompts, error and information 

messages 

• interface and report layout information like position, size, font, colour, intensity, 
text orientation 

• help text 

• symbols, graphics and icons 

• sound and video 

• software to print or display numerical values. 

The application is designed to access these resource files using locale parameters 
to select the appropriate resource for a given locale. Screen layout is designed to re- 
serve the space needed for possible text expansion during localization (Finnish re- 
quires double the space of English, while Arabic requires a lot less space than Eng- 
lish), where dialogues and other elements may need to be resized. 

4. New approaches — software architecture plus language 
generation 

Existing practice can be taken forward by drawing upon current and recent research in 
software architectures and linguistics. The work reported here arises from the Glossa- 
soft project reported by Hall and Hudson (1997), particularly involving the work of a 
team in Finland at VTT and a team in Greece at Demokritos. 



298 Software Internationalization Architectures 

4.1 An internationalization architecture 

The idea of locales backed up by resource files and dynamic linking is readily gener- 
alized to an application programmer interface (API) and this is clearly the next step. 
OS standards like Posix have made steps in this direction, but what is appropriate 
must be determined by global user need. All the culturally and linguistically sensitive 
software components need to be separated from the core of the application. This leads 
to the kind of architecture shown in Figure 1. The locale sensitive elements are shown 
at the top and right of the figure, separated by the heavy line from the international- 
ized locale independent core of the application. Many of the local sensitive elements 
are associated with the human computer interface, but some may be associated with 
the application. Whenever the application manages data that relates to the external 
environment, this is potentially locale sensitive. 

The locale dependent components at the top and right should be designed to be 
plug-compatible so that they can be easily replaced with others performing the same 
function but for different locales. The heavy line denotes an Application Programmer 
Interface (API). 

Contrast this approach with that currently supplied by operating systems using lo- 
cales and resource files. Some level of standardization is necessary to identify the 
locale data structure and its components, but no standardization is used for the formats 
and protocols for resource files. The interface in current practice is very low level, 
whereas the interfaces of Figure 1 work at the level of linguistic rules and the meaning 
of messages. 

Figure 1. Internationalized interaction architecture. 



Software Internationalization Architectures 299 

Current methods would simply give messages numbers, and at the most leave a 

few slots in these messages for variable data like file names. What applications need 
to work with are the meanings intended to be conveyed to the user, with this being 
presented in the language determined by the locale. 

Transforming meaning into the words of some language is known as language 
generation. The architecture of Fig. 1 makes language generation, or a limited form of 
it, integral to the architecture. This also fits in well with some current approaches to 
HCI, which suggests that the interactions with the user should be mediated by a 

knowledge model of the system, a model which is intended to capture the user's view 
of the software. This user conceptual model is itself locale sensitive and should be 
changed during localisation. 

4.2 Language generation 

The handling of error messages gives particular problems when they need to be com- 

posed from several parts. When the parts come together they may need to be modi- 
fied in their grammatical form so that a grammatically acceptable text results. More 

generally word order may need to be changed and small atomic sentences combined, 
in order to produce a natural looking solution. In the Glossasoft (Hall and Hudson 

1997) project two approaches were taken. 
The first approach was the use of message templates, messages with slots into 

which you can substitute actual values depending on the context in which each mes- 

sage is generated. After substitution there will need to be some grammatical tidying 
up. 

For example, instead of using four messages to announce that one of the four disk 
drives of the system is damaged, you could use the message template: 

Disk <number of disk> is damaged 
If the user is unfortunate enough to have two damaged disks, the application could 

also use this message template to announce that: 

Disks 1, 2 are damaged 
but would need to access a morphological generation routine to make the appropriate 
adaptations. Using such extended message templates is especially important for lan- 
guages with many inflectional word forms, for example synthetic languages such as 
Finnish, as it avoids the need to maintain all the different word forms inside the mes- 
sage catalogues. Using extended message templates also improves the organization of 
message catalogues. 

At VTT a trial was undertaken on the software product OsiCon, a risk analysis 
support tool, and the approach was demonstrated successfully for English and Fin- 
nish. 

However, you still have to maintain different extended message templates for the 
different languages supported. So far we have been looking at "canned text" systems. 
Canned text systems, in which the repertoire of messages is fixed and immutable, are 
typical of the situation we are usually faced with in localisation and internationaliza- 
tion. All possible messages have been anticipated and stored. This is even the case 
with the message template approach discussed above. 



300 Software Internationalization Architectures 

tion. All possible messages have been anticipated and stored. This is even the case 
with the message template approach discussed above. 

The alternative approach is to use a general language generation approach (eg. Al- 
len 1987). Language generation is capable of creating a range of messages that could 
not have been anticipated, messages which are contingent upon user actions and an 
evolving knowledge base within the system. 

Central to this whole process is a knowledge model of the application and its sup- 
porting software systems, about which messages are to be generated in the context of 
specific user actions and difficulties. 

Some event occurs in the system which triggers the whole process. This could be a 
request for help, or some erroneous user action which requires a message to be given 
to the user. The system must in general know something about the user, because what 
it wants to say to the user will depend upon what the user knows. As a function of 
what the system assumes that the user knows, the system will select information to 

present to the user. The outcome of the selection would be a number of abstract lin- 

guistic elements, or "speech acts". 
This message is still very abstract, and particular word choices (or phrase choices) 

must next be made. This choice will affect the focus of the message to be generated, 
which can influence the "tone" of the message. For example, there is a choice be- 
tween active and passive voices "You typed the wrong character." and the "The wrong 
character was typed." dropping the agent in the second choice to remove the accusa- 

tory tone that would be unacceptable in many locales. 
This leads to some knowledge structure, which indicates what text is to be output, 

and now it remains to generate the actual text. We can generate the text directly from 
the data structures, using a collection of mutually recursive routines which embody 
within them the syntax of the target language, or we can use a table-driven or rule 
driven approach. 

It is only in this final stage that the specific features of the natural language being 
generated become important. Preceding these, the knowledge model itself may be 
largely culture independent, though it may make some cultural assumptions such as a 
specific conceptual model of the computer. 

At Demokritos a small example for Hewlett Packard's VUE interface system was 
tried out, with several different levels of user expertise being selectable. This showed 
that the approach was very promising, but also very computer intensive. Clearly the 
template approach is to be preferred if possible. 

5. Application to Decision Support Systems 

Decision Support Systems for Sustainable Development may be very diverse, as can 
be seen in the various papers of this book. These will involve information from 

population distribution, agriculture and health, through to finance. They will be un- 
derpinned by technologies covering graphical information systems requiring the dis- 

play of maps, database management systems with large repositories of information, 
and knowledge-based systems with methods of inferring facts from those actually 
stored, as well as the distribution of both processing and data. These systems will 



Software Internationalization Architectures 301 

need to be used by people covering a wide range of technical experience and exper- 
tise, drawn from a wide cultural and linguistic group. 

Decision support systems have the general architectural form shown in Figure 2. 

At this point we are focusing on the supply of information for decision making avail- 
able in a number of servers across national boundaries and thus across locales, to a 
number of terminals or clients where decisions are made. To this architecture will 
need to be added the internationalization architectures discussed above. This intersec- 
tion architecture will influence the general DSS architecture in the following ways: 
• The application software in the terminals in countries 1 to N will be localized for 

the user communities involved — there may be several. Where the user interface 
involves the display of maps in geographical information systems, map presenta- 
tion conventions will need localization. 

• Place names will be important in such systems, and constitute a special case — 

typically these would be recorded in the native language, but approved translit- 
erations into other scripts and phonetic systems would need to be used, as in the 
use of Pin Yin for Chinese. 

If at all possible information resources will need to be kept in locale-neutral form, 
or in some standardized form that enables generation and presentation in local form. 
Numerical data is the simplest, and in many cases may involve no more than display 
routines, though units for systems of measurement need to be taken into account. 
Time and dates could be more difficult, but are tractable. Text may give real prob- 
lems, unless it can be stereotyped in some way, perhaps using some narrow domain 

knowledge model with some simple form of language generation, or by using a con- 
trolled language and a simple translation system like translation memory. 

Figure 2. Outline architecture for Decision Support Systems. 

Thus implicit in the approach must be the storage of data in some abstract form, 
with this mapped to the local terminal/client computers into a form that is acceptable 



302 Software Internationalization Architectures 

to and understandable by the local users. This approach should also be applied to the 
local viewing software which should be internationalized to a core product which is 
locale-neutral, with local mappings to the locale of the user. 

In developing a multi-lingual DSSs we will need to carefully characterize all the 
information that is being stored and shared in terms of its locale assumptions, and 
then develop locale-neutral forms. Where text is concerned we will need to work to 
understand it, removing as much of the locale sensitive components as possible. This 
should be done across all the range of DSSs for sustainable development, so that the 
localization processes can be used across the range of systems, saving costs and in- 

creasing the range of languages and locales that can be covered. 
The process of decision making, and what constitutes appropriate information to 

use in decision making, can vary greatly between cultures. The articles in this book 
give illustrations of this variety, though there is an undercurrent of acceptance of or 
aspiration to western modernist rational decision making. Social values may take 

precedence over efficiency, and family may take precedence over nation. Different 
ways of making decisions will affect the way the local client systems are configured, 
and may deny any ability to make decisions between individuals who are not co- 
located. 

To illustrate this let us contrast the USA with Japan. Hofstede (1991) characterizes 
cultures in four dimensions: 
• power distance — should decisions be imposed or should people be consulted? 

(p27) 

• individualism versus collectivism — should the interests of the individual prevail 
over the interests of the group? (p50) 

• masculinity versus femininity — is toughness and assertiveness valued over ten- 
derness, nurturing and modesty? (p83, 92) 

• uncertainty avoidance — are uncertain or unknown situations felt threatening? 
(p113) 

Hofstede made a large survey of IBM employees around the world, and scored 
countries in the range of (roughly) 0 to 100. The USA scores were respectively (40, 
91, 62, 46), concluding that the culture is mildly consultative, highly individualistic, 
and mildly caring and accepts uncertainty. By contrast the Japan scores were respec- 
tively (54, 46, 91, 92), concluding that the culture is consultative, collectivist, highly 
assertive and tough, and dislikes uncertainty. This kind of characterization is very 
crude, but indicative. More detailed commentary suggests that while in the US deci- 
sions may be made by individuals for the advancement of the individual or some ex- 
ternalized corporation and accepting uncertainty, in Japan the decision would be made 

collectively and for the collective good to reduce uncertainty. Heaton 1998 reports 
how decision taking in computer aided design requires a move from single person 
workstations to a collective shared design surface in which all participants can see 
each other and sense the arrival of consensus. Shatzberg, Keeney and Gupta (1997) 
report on the failure of email in Japan due to this collectivism and the need for people 
to see each other in order to be able to reach consensus, deferring to the most senior 

person if appropriate. 



Software Internationalization Architectures 303 

The decision making tools described elsewhere in this volume may be easy to lo- 
calize in the sense of Sections 2 to 5. However localizing them in this deeper sense of 
the cultural process of decision making is much harder. 

6. Conclusions 

We have seen that software for decision making can and should be localized so that it 
works in the language of the decision makers and respects local cultural conventions. 
Localization of language and simple cultural information like dates can easily be ac- 

complished using today's technologies, but the sharing of information between di- 
verse groups may well require more advanced methods of language generation. 

However, the actual process of decision making may not be capable of computer 
support to the same degree. Decision making is deeply rooted in culture, and may not 
be capable of distribution mediated by technology. But that does not mean that lo- 
calisation is not worth doing, so that information can be shared and made accessible. 
Accurate information is after all a prerequisite for sound decisions. 

7. References 

Allen, J. (1987). Natural Language Understanding, Benjamin Cummings Publishing Company, 
mc: California 

Apple Computer Inc. (1992). Guide to Macintosh Software Localisation, Addison-Wesley, 
1992, ISBN 0-201-60856-1 

Apple Computer Inc. (1992). Human Interface Guidelines: The Apple Desktop Interface. 
Addison Wesley, ISBN 0-201-17753-6 

Danlos, L. (1987). The linguistic basis of text generation. Translated from the French (1985) 
by Dominique Debize and Cohn Henderson. Cambridge: Cambridge University Press. 

Duncan, D. E. (1998). The Calendar. London: Fourth Estate 
Hall, P. and R. Hudson (1997). Software without Frontiers, Wiley 1997 
Heaton, L. (1998). 'Preserving Communication Context', in Ess and Sudweeks (Eds.) Cultural 

Attitudes Towards Technology and Communication, Proceedings of the CATaC 98, London, 
163-186. 

Hofstede, G. (1991) Culture and Organ isations. Intercultural Cooperation and its Importance 
for Survival. Software of the Mind. McGraw-Hill. 

INSTA (Inter-Nordic group on Information Technology Standardisation) (1992). Nordic Cul- 
tural Requirements on Information Technology, INSTA Technical Report STRI TS3 1992. 

Jandt, F. E. (1995). Intercultural Communication. An Introduction. Sage. 
Jones, S., C. Kennelly, et al. (1992) The Digital Guide to Developing International User Infor- 

mation, Digital Press, 1992. 
Kano, N. (1995). Developing International Software for Windows 95 and Windows NT. Micro- 

soft Press. 
Keesing, R. M. (1975). CulturalAnthropology. A Contemporary Perspective. Holt Rinehart. 
Kennelly, C. H. (1991), The Digital Guide to Developing International Software, Digital Press, 

1991. 

Luong, T. V, J. S. Lok, D. J. Taylor, K. Driscoll (1995). INTERNATIONALISATION Develop- 
ing Software for Global Markets, Wiley 1995 

Madell, T., C. Parsons and J. Abegg (1994). Developing and Localizing International Software, 
Hewlett-Packard Professional Books, 1994. 



304 Software Internationalization Architectures 

Microsoft (1993), The GUI Guide, Microsoft Press, 1993. 

PilIai, D., and B. L. Swamikannu (1911). Indian Chronology, A Practical Guide, Madras. 

Shatzberg, L, R. Keeney and V. K. Gupta (1998). 'Cultural and Managerial Comparisons: an 
Analysis of the Use of Email and WWW in Japan and the United States'. Proceedings of the 
1997 Information Resources Management Association International Conference, Vancou- 
ver, Idea Group Publishing, 296-300 

Taylor, D. (1992), Global Software: Developing Applications for the International Market, 
Springer-Verlag, 1992. 

Unicode Consortium (199 1/2). The Unicode Standard. Worldwide Character Encoding. Ver- 
sion 1.0, Volumes I and 2. Addison-Wesley 1990 and 1991. 

Unicode Consortium (1997). http://www.unicode.org/. 
Uren, Emmanuel; Robert Howard, Tiziana Peritonni (1993), Software Internationalisalion and 

Localisation: An Introduction, VNR Computer Library, 1993, ISBN 0-442-01498-8 




