CANADA

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4 – 17 JANUARY 1989 The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Établi à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.

49363

PERIODICALS PERIODIQUES

IDRC-MR252e February 1990

OIL CROPS: PROCEEDINGS OF THE THREE MEETINGS HELD AT PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II

2. The Other Oil Crops Subnetwork-I

3. The Oil Crops Network Steering Committee-I

Edited by

Technical	Abbas	Omran	IDRC LIBRARY
	Adviser,	Oil Crops	NetworkBLIOTHEQUE DU CRDI
			884172 0TTAWA

Organized by

Indian Council of Agricultural Research, New Delhi, India G.G. Pant University of Agriculture and Technology, Pantnagar, India Directorate of Oilseeds Research, Hyderabad, India International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.

CONTENTS

Foreword	V
List of Participants	vi
Introduction	xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH	2
Recent Development in Oilseed Brassicas. R.K.DOWNEY	4
The Interinstitutional Collaborative Research Program on White Rust	
(Albugo candida) Between India (ICAR) and Canada (IDRC) for	
Rapeseed-Mustard Improvement. P.R.VERMA	9
Stability Parameters for Seed Characters In Different Species of	
Oleiferous Brassica. H.SINGH, D.SINGH, and V.S. LATHER	14
Oilseed Brassica Research in India. P.R.KUMAR	17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.	
BASUDEO SINGH	24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.	
G.N.SACHAN	30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND	
KUMAR and R.P. SINGH	35
Disease Problems in Brassicas and Research Activities at Pantnagar.	
S.J.KOLTE, R.P.AWASTHI and VISHWANATH	43
Effect of Some Epidemiological Factors on Occurrence and Severity of	
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and	
S.J.KOLTE	49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.	
G.C.SACHAN	56
Economic Performance, Potential and Constraints in Toria Production.	
L.R.SINGH	66
Rapeseed In Egypt. BADR A.EL-AHMAR	70
The Role of High-Yielding Varieties and Production Techniques	
on Oilseed Brassica Performance in the Central, South-Eastern	
and North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET	
ALEMAW and NIGUSSIE ALEMAYEHU	72
The Achievements and Future of Brassica in Kenya. M.J.MAHASI	79
Rapeseed Adaptation Trials in Cyprus. A.HADJICHRISTODOULOU	83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai	
Academy of Agricultural Sciences (SAAS) for Recent Years.	
SUN CHADCAI	92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding	
Project in 1988. WANG ZAO MU	94
A Preliminary Study on the Combining Ability and Heritability of Main	
Agronomic Characters in B. juncea. WANG ZAO MU and	
WANG YAN FEI	98
Report on the Execution of Sino-Canada Research Breeding Project.	
LIU CHENG QUING and HONG HAI PING	103

A Review of Orobanche Problem in Nepal. M.L.JAYASWAL	106
Oil Crops in Bhutan. TAYAN RAJ GURUNG	119
Brassica Production and Research in Pakistan. REHMAT ULLAH KHAN and	
MASOOD A.RANA	127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT	
Report on a Tour to Dilseed Brassica Growing Areas of India.	
GETINET ALEMAW	136
Discussions and Recommendations	138

Part 2. Other Dilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAD	144
Highlights of the Second International Safflower Conference Hyderabad,	
India from January 9-13, 1989. V.RANGA RAO	147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.)	
Improvement in India. MANGALA RAI	149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT	154
Nigerseed in India: Present Status of Cultivation, Research	150
Achievements and Strategies. S.M.SHARMA	159
Constraints and Opportunities for Increasing the Production and	
Productivity of Niger in India. S.M.SHARMA	166
New Potential Areas of Niger in India. S.M.SHARMA	169
Present Production, Research and Future Strategy for Niger in	
Maharashtra. A.V.JOSHI	171
Niger in Tribal Bihar. H.B.P.TRIVEDI	176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY .	180
Agronomic Management/Agro-Techniques for Improving Production of	
Niger and Linseed. G.L.MISHRA	186
The Present Status of Niger and Linseed Pathology Work in India.	
G.S.SAHARAN	192
Safflower, Niger and Linseed in Nepal. B.MISHRA	203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and	
DILRUBA BEGUM	208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,	
MOHAMMAD SHARI, and ALTAF H.CHAUDHRY	213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR	218
Progress in Linseed On-station and On-farm Research in Ethiopia.	
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW	220
Investigations on Some Biochemical Characteristics of Nigerseeds	
(Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH	229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA	233
The Status of Linseed, Safflower and Niger Research and Production in	
Kenya. T.C.RIUNGU	238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.	
HUGH DOGGETT	241
Discussions and Recommendations	248
DISCUSSIONS AND VECOMMENDATIONS ************************************	

Part 3. Dilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and	
Future. ABBAS OMRAN	256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT	265
IBPGR's New Concept for the Conservation and Utilization of Germplasm;	
Global Crop Networks. J.M.M.ENGELS	272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in	
India. MANGALA RAI	274
Dilseeds Research in India: Network, Its Set Up, Organization, Past	
Achievements and Current Research Thrusts. V.RANGA RAD	283
Groundnut and the Oilcrops Network, S.N.NIGAM	286
Oilcrops Production in Ethiopia Current Status and Future Prospects.	
SEME DEBELA	288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I.	
C.ZULBERTI and J.LUGOGO	293
Brassica Sub-Network Achievements and Activites, 1987-88.	
HIRUY BELAYNEH	320
The Present Situation and Main Achievements of Sesame Production in	
East Africa. MOHAMMED EL-HASSAN AHMED	324
Constituion of the Oil Crops Network (Second Draft). MASOOD A.RANA and	
ABBAS OMRAN	330

.

REPORT ON THE EXECUTION OF SIND-CANADA RESEARCH BREEDING PROJECT

Liu Cheng Quing and Hong Hai Ping

The Institute of Oil Crops Research of China Academy of Agriculture and Academy of Agriculture Quinghai Sciences are two of the four cooperated Institutes in Sino-Canada Rapeseed Breeding Project. Meanwhile, we have been carrying on the key projects in China on the sixth and seventh five-year plans, good-quality rapeseed since breeding became our country's key We have also been project. supported by IDRC for two periods finance, equipment and with technology: Owing to the bilateral effort by China and Canada, the good-quality rapeseed breeding project has made great progress. Both China and Canada are satisfied with the result.

A. <u>Screening and evaluating good</u> <u>parental lines</u>

The collection and evaluation of parent materials is an important aspect of the study in Sino-Canada rapeseed breeding project. Since 1983, we have screened and evaluated more than 280 materials of *B. napus* and 210 materials of *B. campestris*, and from these we have selected some good parent materials for the breeding study.

- After several years of selfing, we have selected a lot of parental lines with different maturity times, good quality characters, single-low, doublelow, oil content - above 45% and linoleic acid contentabout 35%.
- 2. After several years of natural field evaluation and partly of greenhouse artificial inoculation, we selected several varieties (lines) that are tolerant to *Sclerotinia*, such as 81007, 81006, 84004 and

Start, which are double-low or single-low varieties. Some of these can also resist virus. Nowadays, we have got preliminary results to use them in crossing programs. Among these, 84004 and 821 the strongest disease have tolerance and heritability. We used them as parents and crossing progenies have higher tolerance. disease The reciprocal cross was different as tolerance to Sclerotina is influenced by the female.

B. <u>Double-and single-low varieties</u>

We have begun breeding rapeseed for quality since the end of 1970. Under the financial aid from IDRC, we have bred six single-and doublelow rapeseed varieties and used them in rapeseed production. They filled the gap of our country's good quality rapeseed demand.

Within a few years, Quinghai 1. Agricultural Academy of Sciences introduced, selected and developed good-quality varieties such as Oro, Tower, Westar from Canada, and Topas These varieties from Sweden. have been planted on largescale in northwest and northeast parts of China. these, Among Oro covered 800,000 ha, Tower 133,333 ha, Westar 66,667 ha, Regent 33,333 ha and Topas 13,333 ha. Next year, these areas will be increased. In addition, the QAAS has bred double-and campestris single-low В. varieties (lines) such as 82 C 11-4, 82 C1, 83-81 which are used in cold and high altitude areas. Varieties 83-109 and 86027 appeared to be very good in the northern rapeseed

testing region. Next year, they will ecome registered varieties.

- The Institute of Oil Crops Research in China Academy of Agricultural Sciences has bred six single- and double-low rapeseed varieties (lines) of *B. napus* which have been put into rapeseed production in the region of the Yangze river:
 - i) In 1986, three single-low and winter-form rapesed varieties of *B.napus* have finished their test and became normal varieties. Zhong vou 1 and 2 were widely developed in the middle region of Yangze (Hubei, Hunan, Jiangxi, Anhui). The total rapeseed area was 46,667 ha. The average was rapeseed yield was 1350 -2023 kg/ha. It increased by 5-12% than those of the local varieties Zhong You 2 singlelow appeared more tolerant to Sclerotinia than those of the local double-high improved vareties up to now.

Zhong You 3 single-low which became a good quality variety with yield higher than that of the double-high varieties. It is an early maturing winter variety. Its seed yield is 1800-2700 kg/ha and is 14-23% higher than that of the local double-high varieties. It suits a type of rice rice-rapeseed rotation in a year. It appears very well in He Zi Zou Lang of Gansu province. Nowadays, it occupies 4000 ha. Yunnan, Sichuan and Gueizhou planted larger area.

ii) Three double - low winter rapeseed varieties (lines) were bred in 1988. The erucic acid content of the double-low line 84001 is 0.32% and its glucosinolate content is 14.36 - 21.02 The seed yield umol/g. equaled that of the local double-high varieties. The average seed yield of 36 places in Yunnan province was 2407 - 2979 kg/ha from 1986 to 1987. The seed yield was 18.3 - 22% higher than that of Zhong You 3 single-low, 23-25.1% higher than that of double-high variety "Yun You 31". In 1987-88, it was planted on 733 ha and the average seed yield was 2414.55 kg/ha in spring of 1989, it will be developed to suit trirotation in a year.

Erucic acid content of the double - low 84039 is 0.5%. glucosinolate content is 16.52 - 22.3 umol/g, and oil content is 42.4 - 43%. Through a three-year regional testing in the middle region of the Yangze river, the seed yield equaled that of the local double-high varieties (average 1447.5 kg/ha). It is the best good-quality rapeseed variety in the middle region of the Yangze river. We planted 333 ha in Jian county of Jiangxi province in 1987. The average seed yield was 3.2 - 14.1% higher than that of the local double-high varieties "Xinan 302". It can be widely grown in spring of 1989, and it suits tri-rotation with rice. but it is not tolerant to Sclerotinia.

The erucic acid content of the double - low 84004 is 0.31%, its glucosinolate content is 13.27 - 21.45 umol/g and its oil content is 43.2%. The seed yield in the regional test in Hubai and Anhuei provinces was the same as that of local double-low varieties. But the seed yield of the large-scale rapeseed

104

and production increased reached significant level. Average seed yield of 252.3 ha test planted in Guchang country of Hubei province from 1986 to 1987 was 2298 kg/ha. The area under this variety increased to 600 ha in 1987-88 and although during flowering it met an abnormal climate, it yielded 15.7% higher than that of double - high varieties. The average seed yield was 1350 kg/ha. In this area, the average seed yield of 62.3 ha was the highest in this year than before. It also appeared hardly resistant/tolerant to Sclerotinia and virus. Varieties 84004 and 821 were artificially inoculated with greenhouse and were evaluated. level. It was also hardly

in Hubei.

Besides these, our two institutes selected a number of double - low lines for disease tolerance and also put them in the third regional test.

C. <u>Establishing</u> <u>systematic</u> <u>analysis</u> techniques to <u>fit</u> <u>rapeseed breeding</u>

kg/ha. In this area, the With the financial aid from IDRC, average seed yield of 62.3 ha the rapid and precise analyses of the rapid and precise analyses of erucic acid, glucosinolate and oil content have been established and was planted on 2333 ha in this we gained a lot of equipments in recent year. According to Chinese status, few rapid analyses of erucic acid and glucosinolate were improved and some simple instruments were made.

D. <u>Training</u>

artificially inoculated with Sclerotinia for six times in greenhouse and were evaluated. The result showed that 821 was more tolerant to Sclerotinia than the double-high variety (Gan You 5), at 5% significance level. It was also hardly resistant/tolerant to virus. We are sure that 821 is one of the best double low-varieties of t