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PSEUDO-STATIC STABil.,ITY ANALYSIS OF THE 
1976 DASHIHE T An..INGS DAM 

The Dashihe tailings dam in North China was shaken by the Tangshan F.arthquake, 

M=7.8 on July 28, 1976 and suffered minor cracking on the downstream shell. 

Liquefaction was widespread on the beach area with many large cracks, sand blows and 

some evidence of sliding of tailings materials into the pond. 

Finn and Xin (1992) investigated the seismic response and triggering of liquefaction 

of Dashihe tailings dam using the two-dimensional nonlinear dynamic effective stress 

analysis program TARA-3 (Fiim et al., 1986). The analyses predicted the zones of 

liquefaction under the pond and beach shown in Figs. 1, 2, and 3. These zones represent 

the liquefaction potential corresponding to different corrections for the fines content of the 

fine and silty sands. Field data (Seed et al., 1985) show that the resistance to liquefaction 

increases with fines content. This increase is taken into account by increasing the 

measured (N 1)60 values. The field data suggest that for the fine and silty sands the (N 1)60 

values should be increased by 7 blows/ft. To explore more fully the risk to the structure, 

two other cases were considered: an intermediate increase of 4 blows/ft, and the most 

conservative option of no increase at all. 

Finn and Xin (1992) also analyzed the post-liquefaction behaviour of the dam using 

the program TARA-3FL (Finn and Yogendrakumar, 1989). The largest horizontal post-

liquefaction displacements, ranging between 4 to 6 metres, were computed on the beach 

near the pond and gradually decreased from there as the crest was approached. However, 

there were no significant displacements in the downstream slope of the darn or around the 

crest. 

Pseudo-static analyses of the stability of both the upstream slope (or beach area) and 

the downstream slope of the dam before and after the earthquake were performed using the 

program XSTABL (Sharma, 1991). The analyses were originally conducted by Xin but all 
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the data were lost from the computer system. The analyses were subsequently repeated by 

Amante (1993). 

In the liquefied zones, the residual strengths of the soils were used. These strengths 

were obtained using the lower bound of the correlation between the residual strength and 
' the normalized standard penetration resistance (N1)60 (Seed and Harder, 1990). In other 

zones, the seismic porewater pressures derived from the results by Finn and Xin (1992) 

were taken into account in the evaluation of shearing resistance. 

Pseudo-static forces were incorporated in the analysis to represent the effects of 

earthquake loading. The seismic coefficients ranged from 0 to 0.12. The latter 

corresponds to the maximum acceleration of 0.12 g. The resulting factors of safety are 

summarized in Fig. 4 and the calculated critical slip surfaces are presented in Figs. 5 to 12. 

The results for the extreme loading condition when the seismic coefficient is 0.12 are 

discussed in detail. This condition gives a very conservative picture of stability. 

Before the earthquake, the factor of safety of the upstream slope was high (F s = 
21.143). However, the earthquake-induced liquefaction and high porewater pressures 

under the beach and the pond greatly reduced the stability of the upstream slope. For the 

cases where the liquefaction resistances are evaluated with (N 1)60 values of fine and silty 

sands increased by 7 and 4 blows/ft due to fines content, the factor of safety of the 

upstream slope dropped to 1.168 and 0.504, respectively. These results indicate that 

significant sliding or displacements of topmost materials in the upstream slope toward the 

pond could occur which is consistent with the predicted response by Finn and Xin (1992) 

and the observed damage features of the dam on the beach area during the 1976 Tangshan 

Earthquake. When no correction for fines content is taken into account in the analysis, 

very low values of factor of safety area calculated indicating that massive flow failure of 

the upstream slope could occur. Such a scenario, however, was not observed during the 
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earthquake. Therefore, analyses taking into account correction of (N 1)60 values due to 

fines content yield more realistic results. 

The downstream slope had a factor of safety Fs = 3.183 before the earthquake. 

After the earthquake, the downstream slope remained stable with a factor of safety of 

1.440 and 1.310 corresponding to fines oorrections of 7 and 4 blows/fJ, respectively. 

When no correction for the effect of fines is applied, the downstream slope had factor of 

safety of about 1. 0 indicating potential instability. Therefore, for realistic estimation of the 

seismic response and post-liquefaction stability of the darn the effects of fines on 

liquefaction resistance should be taken into account. Although minor cracking occurred on 

the downstre.am shell, no evidence of sliding was, observed there. 
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Fig. 1. Computed liquefied zone shown in shaded area. (N 1)6o values increased by 7 
blows/ft to account for the effect of fines on liquefaction resistance (after Finn 
and Xin, 1992). 

Fig. 2. Computed liquefied zone shown in shaded area. (N 1)60 values increased by 4 
blows/ft to account for the effect of fines on liquefaction resistance (after Finn 
and Xin, 1992). 

Fig. 3. Computed liquefied zone shown in shaded area. No correction is made for fines 
content (after Finn and Xin, 1992). 

Fig. 4. Results of slope stability analyses of Dashihe Dam (1976). 

Fig. 5. Upstream slope fs = 21.143 before earthquake. 

Fig. 6. Downstream slope fs = 3.183 before earthquake. 

Fig. 7. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered (N 1)60 values of both fine and silty sands are increased by 
7 blows/ft. 

Fig. 7. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered (N 1)60 values of both fine and silty sands are increased by 
4 blows/ft. 

Fig. 8. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is not considered. 

Fig. 9. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered (N 1)60 values of both fine and silty sands are increased by 
7 blows/ft. 

Fig. 10. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered (N 1)60 values of both fine and silty sands are increased by 
4 blows/ft. 

Fig. 12. Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is not considered. 
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Fig. 1 - Computed liquefied zone shown in shaded area. 
(N1) 60 values increased by 7 blows/ft to account 
for the effect of fines on liquefaction resistance. 
(After Finn and Xin, 1992) 

Fiq. 2 - Computed liquefied zone shown in shaded area. 
(N1) 60 values increased by 4 blows/ft to account 
for the effect of fines on liquefaction resistance. 
(After Finn and Xin, 1992) 

Fiq J - Computed liquefaction zone shown in shaded area. 
No correction is made for fines content. 
(After Finn and Xin, 1992) 
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Fig. 4 - Results of slope stability analyses.of Dashihe Dam (1976). 
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Fig. 7 - Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered. (N1 )~ values of both fine and silty sands are increased 
by 7 blows/ft. 
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Fig. 8 - Critical slip surfaces for upstream slope where effect of fines on liquefaction 
resistance is considered. (N 1 )~ values of both fine and silty sands are increased 
by 4 blows/ft. 
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Fig. 11 - Critical slip surfaces for downstream slope where effect of fines on 
liquefaction resistance is considered. (N1 ) 60 values of both fine and 
silty sands are increased by 4 blows/ft. 
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