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*Abstract:  
This project addresses knowledge, resource, capacity and networking gaps on the theme: 'Strengthening 
urban governments in planning adaptation.'  
The main objective of this project is to develop an adaptation framework for managing the increased risk 
to African local government and their communities due to climate change impact. The ultimate 
beneficiaries of this project will be African local governments and their communities. The guiding and 
well-tested ICLEI principle of locally designed and owned projects for the global common good, 
specifically in a developing world context, will be applied throughout project design, inception and 
delivery.  
 
Additionally, the research will test the theory that the most vulnerable living and working in different 
geographical, climatic and ecosystem zones will be impacted differently and as such, will require a 
different set of actions to be taken. Potential commonalities will be sought towards regional participatory 
learning and wider applicability. The five urban centres chosen for this study, based on selection criteria, 
include: Cape Town, South Africa, Dar es Salaam, Tanzania; Maputo, Mozambique; Windhoek, Namibia; 
and Port St. Louis, Mauritius.  
 
Through a participatory process, this project will carry out a desk-top study, long-term, multi-discipline, 
multi-sectoral stakeholder platforms in five Southern African cities comprising of academics, communities 
and the local government in order to facilitate knowledge-sharing, promote proactive climate adaptation 
and resource opportunities available for African cities, develop five tailor-made Adaptation Frameworks 
and explore regional applicability. A network of stakeholders within each urban centre will be established, 
feeding into a larger regional network of local authorities and partners in Sub-Saharan Africa, and globally 
through existing ICLEI global (e.g. the ICLEI Cities for Climate Protection programme), ICLEI Africa and 
UCLG-A members and networks, ensuring global best practice, roll-out, and long-term sustainability. 
 
Key words: Adaptation, Africa, Climate Change, Local Governments, Participatory Action Research, 
Policy. 
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Introduction 
 

Local Governments for Sustainability recently launched a project entitled Sub-Saharan 

African Cities: A Five-City Network to Pioneer Climate Adaptation through Participatory 

Research and Local Action. One of the aims of this project was to establish a standardised 

approach for the collection and analyses of climatic base-line data, which will assist in the 

generation of future localised projections, which, in turn, will assist in planning and decision 

making. 

 
As Global Climate Model (GCM) climate projections, and their associated downscaled data, 

are routinely used to infer impacts at a regional and sometimes local level, the question 

arises as to whether downscaling is useful, in terms of additional insights it may provide 

regarding the likely direction and magnitude of change, as well as the confidence in those 

changes.  

 

This paper looks at the results from applying a downscaling methodology, developed at the 

University of Cape Town, to nine suitable GCMs1 (forced with the A2 emissions scenario) 

and the observed rainfall and temperature data from the Cape Town station (only one 

sample station in one city will be referenced here). The downscaling relates daily weather 

systems to the observed rainfall and temperature at a particular location on each day. Taking 

the simulated changes in daily weather systems from each GCM, the expected changes in 

daily rainfall and temperature were then simulated for each location. The Priestly-Taylor 

method was used to calculate reference evapotranspiration (ET0) based on simulated 

temperatures, solar radiation and altitude. 

Attributes of GCMs 
 
The resolving scale of GCMs has improved significantly in the last 10 years with many state-

of-the-art GCMs able to resolve at a scale of around 100km. However, most of the GCMs 

used for seasonal forecasting are at a scale of the order of 200km, with the skill of the model 

at this resolution typically low, due to the GCM’s simplified topography and representation of 
                                                 
1
 The suitability of GCMs depends on the frequency of data and the type of variable 
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regional processes. GCM skill is often higher when aggregated to large scales such 500km 

to 1000km. 

 

An example of the coarse resolution of GCMs is provided in Figure 1 below. This figure 

shows how rainfall is expected to change under both B1 and A2 IPCC SRES emissions 

scenarios; for each season both the median change (15/13 GCMs for the A2/B1 scenario) 

and the percentage of models agreeing on the sign of the change is shown. The median 

suggests the most likely change whereas the percentage of models giving a positive change 

can be taken as an indication of the confidence in whether a positive or negative change is 

consistently simulated across the GCM models (values less than 50% suggest most models 

are simulating a negative change, whereas greater than 50% suggest most models simulate 

a positive change). 

 

If we look for consistency across GCM models (more than 60% of models agreeing on either 

a positive or negative change) as well as consistency across both the A2 and B1 scenario, 

then decreases in rainfall are suggested all year round with the greatest changes during the 

main rainfall season in JJA. During the December-February median changes are small, with 

consistent model simulations tending towards the western regions over the ocean. 

 

 December-February (DJF)   June – August (JJA) 
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Figure 1: Median GCM simulations of change by 2050 under A2 and B1 emissions 
scenarios for the summer (DJF) and winter (JJA) seasons. The confidence of the 
model ensemble simulations is indicated by the percentage of models simulating a 
positive change. 
 

 

Downscaling 
 

The problem is that the scales used above are far too coarse for most users dealing with 

regional issues such as water management and agriculture. Society and ecosystems 

typically operate at much finer scales. Downscaling of these GCM simulations is therefore 

often applied to produce data that is useful at the local level. This is based on the 

assumption that local scale climate is largely a function of the large scale climate modified by 

local influences such as topography, surface water bodies and proximity to the coast etc. 

There are two main types of downscaling; dynamical and statistical.  

 

Dynamical downscaling utilises a higher resolution, limited domain, dynamical model that 

follows the same principles as a GCM but, because of the limited domain, is able to be run at 

much higher spatial resolutions with moderate computation costs. Dynamical downscaling 

offers a physically based regional response to the large scale forcing. However, dynamical 

modelling is complicated by similar problems to those of GCMs, namely bias and errors due 

to parameterisations and scale, as well as being computationally expensive and difficult to 

downscale more than one or two GCMs. This latter reason makes it difficult to account for 

much of the uncertainty in the future projections, which is represented by the many different 

projections coming from many GCMs. 

 

Box 1. The resolvable scale of a projection indicates the size of the discrete grid boxes that 
are produced by the models. Within each grid cell there is only value, thus the smaller the 
grid box (and larger the scale) the greater the variation can be displayed over the same area. 
Thus GCMs have small (or coarse) scales and downscaling’s intention is to increase this 
scale, or making it finer.   
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Statistical downscaling utilises statistical methods to approximate the regional scale 

response to the large scale forcing (Wilby et al., 2004). Various methods have been 

developed, including the SOMD (Self Organising Map based Downscaling) developed at the 

University of Cape Town which is used in this report. Details of the method can be found in 

Hewitson and Crane (2006). The method recognises that the regional response is both 

stochastic as well as a function of the large scale synoptic features. As such it generates a 

statistical distribution of observed responses to past large scale observed daily synoptic 

states. These distributions are then sampled based on the GCM generated daily synoptic 

states in order to produce a time series of GCM downscaled daily values for the observed 

variables on which it is trained (typically temperature and rainfall). An advantage of this 

method is that the relatively poorly resolved grid scale GCM precipitation and surface 

temperature are not used by the downscaling, but the relatively better simulated large scale 

circulation (pressure, wind and humidity) fields are used. Because the method is easily 

applied to multiple GCMs it can allow a sampling of the uncertainty within an ensemble of 

multiple GCMs (Mearns et al., 2003). 

 
In the following example  for a station situated in the city of Cape Town, 9 GCMs forced 

using an SRES A2 emissions scenario was obtained (from the CMIP3 archive) for the 

periods 1961-2000 and 2046-2065. These coarse scale climate projections were used to 

downscale available observations of rainfall and minimum/maximum temperature from 

climate stations, using the statistical downscaling technique described below. 

 

 For each day of the observations, the daily synoptic state was classified using a SOM 

of 10m u and v winds, 700 hPa u and v winds, 500-850hPa lapse rate, 2m surface 

temperature, relative humidity and specific humidity taken from the NCEP reanalysis; 

 A cumulative distribution function (CDF) of the observed variable for each synoptic 

type was created; 

 Map the GCM daily synoptic states to the SOM using the same variables as above; 

 A Random sample taken from CDF of each synoptic state. 

 

This, then, allows a stochastic sampling of the local observed variable, conditioned by the 

large-scale synoptic state.  
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Downscaled results 
 
Taking the median of all the statistically downscaled GCMs, the maps for winter and summer 

rainfall change over South Africa are shown in figures 2 and 3 

Figure 2 Winter (JJA) rainfall anomaly projections (2046-2065) for SA (Hewitson, in 
South African Risk and Vulnerability Atlas (SARVA), 2010) 
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Figure 3 Summer (DJF) rainfall anomaly projections (2046-2065) for SA Hewitson, in 
South African Risk and Vulnerability Atlas (SARVA), 2010) 
 

Comparing the downscaled figures (2 and 3) with figure 1 demonstrates how the 

downscaling is able to improve on the large-scale information provided by the GCMs. This is 

particularly apparent during the winter JJA season where figure 1 indicates a median 

decrease in rainfall across the whole of the western Cape region, whereas figure 2 suggests 

that the negative changes will be confined to the far western regions of the western Cape. 

There is an implied level of detail in the downscaled results that suggests the local response 

to the large scale forcing in the GCMs is different between the western and eastern regions 

of the western Cape. However, it is still unclear how confident the downscaled model 

ensemble is – do most of the models suggest a decrease or is there still a wide range of 

model results, some of which suggest negative and some positive change? In order to 

investigate this the following section examines the downscaled GCMs for a single station 

near Cape Town (SA Astronomical observatory), the location for which is given in figure 4. 

Several stations were available in the vicinity of Cape Town and of these the SA 

Astronomical Observatory has the longest record, including data for the last 10 years which 

gives a longer time-series for which to train the downscaling model. 
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Figure 4: Location of SA Astronomical Observatory (Googlemaps) 

Rainfall 
 

Figure 5 below compares the downscaled GCM control climates (1961-2000) with the 

observed climate for Cape Town. The GCM control climates are close to the observed 

climate (black line), replicating the observed seasonal cycle and peak rainfall during June. 

This gives us confidence that the downscaling methodology applied to these GCMs is 

simulating the local climates correctly, though it is worth noting that the downscaled climates 

tend to underestimate the observed rainfall and shift the peak rainfall month later. 

 

Figure 6 presents the simulated changes in rainfall for the SA observatory site. The shaded 

regions indicate the spread between the different downscaled GCMs; between the 10th and 

90th percentiles, which indicates the range between the lowest 10% and highest 10% of the 

GCM downscaled values. This range is provided so that the range of different changes 

simulated by the different downscaled GCMs, ignoring the outlying extreme model changes 

(i.e. the 0 and 100 percentiles), can easily be see. Where the range straddles the 0 change 
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line then some models simulate positive changes and others simulate negative changes. 

However, the tendency of the distribution of models (the majority of models) to simulate 

positive or negative change is indicated by the solid lines, which represent the median 

downscaled response i.e. the equivalent of the 50th percentile of the distribution simulated by 

the downscaled GCMs. The green line and shading is for the change (median and range 

between the 10th and 90th percentiles) simulated for the 2046-2065 period and blue shading 

and line similarly for the 2081-2100 period (relative to 1961-2000). The median models 

suggest an increase in rainfall during late June / early July for the 2046-2065 period but a 

decrease for other months and all months during the 2081-2100 period. There is significant 

spread between the 10th and 90th percentile models, particularly during the rainfall months. 

On the whole these changes are not dissimilar to those simulated by the GCMs, though the 

slightly wetter simulations on average may be due to the downscaling process, or the 

influence of Table Mountain on rainfall which is better resolved in the downscaled climate. 

 
Figure 5: GCM downscaled control rainfall climates (mm per day), for the period 1961-
2000 at Cape Town. Black line is observed climate and coloured lines are downscaled 
GCM climates. 
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Figure 6: Downscaled rainfall anomalies (mm day-1) for the 2046-2065 period (green) 
and 2081-2100 period (blue). Shading indicates model spread (10th to 90th percentile 
change) and solid lines the median model response. 
 

Temperature 
 

The downscaled changes in temperature are similar to those from the GCMs presented 

earlier and are similar for both minimum and maximum temperatures. Maximum temperature 

changes are shown in figure 7. Increases are similar during all months, with median changes 

for the 2081-2100 period as high as 3.4°C and changes for the 2046-2065 period peaking at 

1.9°C during May. 
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Figure 7: Downscaled maximum temperature anomalies (°C) for the 2046-2065 period 
(green) and 2081-2100 period (blue). Shading indicates model spread (10th and 90th 
percentile) and solid lines the median model response. 
 

Evaporation and effective rainfall 
 

One major consequence of the changes in temperature is to increase reference 

evapotranspiration (ET0) – assuming only small changes in winds, humidity and solar 

radiation - the changes for which are shown in figure 8. Increases are highest during 

December and the peak summer months, with highest median increases of 0.4 mm day-1 

during the 2081-2100 period and 0.2 mm day-1 during the 2046-2065 period. 
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Figure 8: Downscaled reference evapotranspiration (ET0) anomalies (mm day-1) for the 
2046-2065 period (green) and 2081-2100 period (blue). Shading indicates model 
spread and solid lines the median model response. 
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Figure 9: Downscaled effective rainfall (ppt - ET0) anomalies (mm day-1) for the 2046-
2065 period (green) and 2081-2100 period (blue). Shading indicates model spread 
(10th and 90th percentiles) and solid lines the median model response. 
One consequence of these increases in ET0 is that effective rainfall (rainfall – evaporation) 

decreases, even without a decrease in rainfall. Assuming that evaporation occurs at the 

reference level (typical of a surface covered in short grass), figure 9 shows the change in 

effective rainfall. Comparing it with figure 10, it can be seen that the change in evaporation 

results in reductions in effective rainfall in nearly all simulations and all months, with the 

exception of the earlier 2046-2065 period during the peak of the winter rainfall season. This 

implies less surface water available for dams, plants and agriculture at most times of the 

year, except, potentially, during the peak of the rainfall season in the mid-century period. 

 

Climate extremes are harder to simulate than changes in the mean climate, largely because 

GCMs are low resolution parameterised versions of the real climate and may fail to capture 

important mechanisms e.g. intense and localised convective rainfall. Whilst the downscaling 

here relates the large scale atmospheric GCM fields to observed rainfall and temperature, 

and is therefore good at projecting realistic climate on average, it still relies on the GCM 

simulations to model the change in atmospheric dynamics. This, and the infrequent nature of 
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extreme events (poor sampling in the historical record), means that it is difficult to project 

future changes. 

 

Until there are fundamental improvements in the GCMs, better estimates of extreme climate 

events will be difficult; new simulations from the CORDEX programme will offer some high 

resolution dynamic simulations from multiple regional climate models (RCMs) for the first 

time, and these simulations may be able to better simulate the complex dynamics of extreme 

events leading to improved estimates of change. 

Changes in extreme temperatures 
 

Changes in extreme temperatures are likely to rise in all simulations from GCMs and the 

statistical downscaling used here. Figure 10 indicates the cumulative probability of 

exceeding different maximum daily temperatures for different periods at Cape Town under 

an assumed A2 emissions scenario. The risk of exceeding high values (e.g. 35°C) is higher 

during future periods, though this might be an underestimate given that the GCM control 

climates slightly underestimate the observed exceedance. Table 1 below shows the 

probability of exceeding several temperatures for Cape Town, as well as for each period. 

 Box 2. Probability in this context is a measure of the expectation that an event will occur. 
Probabilities are given a value between 0 (will not occur) and 1 (will occur). The higher 
the probability of an event, the more certain it is that the event will occur. The cumulative 
probability is the probability of observing less than or equal to the observed value. The 
graph shows how this probability of exceeding a maximum temperature increases over the 
3 time periods 
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Figure 10: Cumulative probability of exceeding maximum temperatures under current 
(black), downscaled control (orange), downscaled 2046-2065 (green) and downscaled 
2081-2100 (blue) periods at Cape Town. 
 
 

Temperature 
threshold 

Probability of exceedance 
under present climate 

(1960-2000) 

Probability of exceedance 
under future climate (2046-

2065) 

Probability of exceedance 
under future climate (2081-

2100) 
30°C 5% 11% 19% 
32°C 2% 5% 9% 
35°C 0% 1% 3% 

 
Table 1. The probability of exceeding several temperatures for Cape Town for the 3 
periods  
 
As a rough rule we can therefore expect the frequency of days exceeding these different 

thresholds to more than double by 2055 and approximately quadruple by 2090 under the A2 

emissions scenario. 
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One improvement on these estimates of change for the future would be to downscale using 

a higher resolution RCM which would be better able to resolve graded temperature changes 

in regions of steep topography (Tadross et al., 2005), something that the GCMs and 

statistical downscaling used here is not able to do. The multiple RCM simulations generated 

as part of the CORDEX programme (Jones et al., 2011) could be used in this regard. 

Changes in extreme rainfall 
 

Changes in extreme rainfall will be at least partly difficult to estimate due to the problems in 

simulating extreme atmospheric conditions mentioned earlier. Additionally the statistical 

downscaling technique used here can only simulate daily rainfall values seen in the historical 

record. This means that it may underestimate increases in rainfall due to increases in 

intensity, especially at the extreme tail of the distribution. Given that increases in intensity 

are possible in a hotter climate with more moisture for rainfall, this is a shortcoming of the 

downscaling methodology employed here. Using RCMs (which are not restricted by such 

limits) is currently not an option as there are not enough RCM simulations for multiple GCMs 

available for the region (in order to construct envelopes of change and assess the 

probability/risk of particular changes). Again this may change when the CORDEX data 

becomes available. 

Analysis 
 

Whilst using an ensemble of GCMs to project change at the large scale is clearly a viable 

option, it seems to be clear from the work presented here, that this is not the case when 

smaller regions are considered. In the case of the western Cape and the simulation of 

rainfall this may be a consequence of several factors: 

1. the dominant rainfall mechanism during winter are mid-latitude cyclones which are 

crudely resolved by the GCMs; 

2. rainfall is too simply parameterised in the GCMs; 

3. the varied topography and coast is only crudely represented in the GCMs 

 

A downscaled model is shown to be able to provide an enhanced ability to resolve some of 

these differences, though it is still based on the information and simulations provided by the 

GCM. In particular, it is able to suggest different regions of positive and negative rainfall 

change. This is largely a consequence of being able to improve on aspects 2 and 3 above, 
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though it is still fundamentally dependent on the GCMs ability to simulate the first aspect 

above. 

Conclusion  
 

The question posed at the outset was whether a downscaling technique such as the one 

used here could be used to assist decision-making on the localised scale compared to lower 

scale GCM output.  Whilst there is an indication that the downscaling improves on the ability 

of the model ensemble to distinguish between regions where different changes might be 

expected, it still produces an ensemble which is characterised by a wide range of simulated 

change (both positive and negative rainfall changes). So it remains a possibility that the 

downscaling does not necessarily reduce uncertainty, but rather simulates a more realistic 

range of changes given the large scale changes simulated by the GCMs. If this is the case 

then this is an important improvement, especially when it comes to simulating realistic 

impacts, either in hydrology or agriculture. In this respect it is especially important to note 

that the downscaled changes in rainfall need to be realistic, especially if we are to 

understand whether more or less water will be available in the future – even increases in 

rainfall may be insufficient to overcome potential increases in evaporation. 

 
Changes in rainfall extremes were shown to be difficult to simulate using the statistical 

downscaling technique used in this study, though this does not necessarily apply to all 

downscaling techniques. However, changes in extreme temperatures were easier to 

estimate and provided useful estimates which can be important for estimating impacts on 

human and animal health, damages to crops and vegetation etc.  

 

The utility of downscaled data therefore depends on the application of the data and it is not a 

product free from the problems associated with GCMs. It is rather a translation of the GCM 

data that is able to provide potentially more realistic changes (in the mean climate) that can 

better serve as input to an impact analysis, whilst still being limited by methodological 

constraints. Any use of this data for assessing impacts at the local scale should therefore 

bear in mind both its advantages and constraints. 
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