DIRECTORY OF
AGRICULTURAL RESEARCH
INSTITUTIONS AND PROJECTS
IN WEST AFRICA

PILOT PROJECT

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
CARIS
CURRENT AGRICULTURAL RESEARCH INFORMATION SYSTEM
PILOT PROJECT 1972-73

DIRECTORY OF
AGRICULTURAL RESEARCH
INSTITUTIONS AND PROJECTS
IN WEST AFRICA

CARIS PROJECT - FAO - ROME - ITALY - 1973
Throughout the world there is an increasing interest in research.

In the industrial field, technical improvement developed in some countries can be exported to others where they may be applied almost without adaptation.

The situation is quite different as regards improvements in the agricultural field. These are linked with crops, climates, soils and often with the social context. Thus, technical improvements can only be obtained through research done within the countries which will profit from this research or in countries where climate and soil conditions are similar.

Since in many areas the climates, soils and crops are the same, a large amount of money and time can be saved, even if sometimes the results of these researches need to be adapted to the special conditions existing in the country where they are to be applied.

To avoid this waste of money and time, the Sixteenth Session of the FAO Conference (Rome, 6-25 November 1971), by Resolution 9/71, requested the Director-General to submit a proposal relating to the exchange of information between Member Nations and institutions both in research and the related fields of development, in order to promote scientific and technological advancement of agriculture in developing countries.

Following this recommendation, the Consultative Group on International Agricultural Research has shown great interest in information on current agricultural research in the world and chiefly in these countries. This is the purpose of the CARIS project (Current Agricultural Research Information System).

Before recommending a world-wide system, the Consultative Group proposed to members that a small-scale pilot project be financed in order to set up a methodology.

The pilot project was implemented, with the same objectives of a broader world-wide project, i.e. to collect and disseminate information on research institutions and stations on the on-going research projects in the fields of agriculture, animal production, forestry and inland fisheries.

In order to simulate one sector of the CARIS project as closely as possible to the full scheme, the coverage of the pilot project has been limited to nations of West Africa associated in WARDA (West African Rice Development Association).

The reasons for this choice were that this area contains typical problems of developing countries. In this area there are 200 research institutions and stations of different types and sizes. Research is undertaken under various climatic and soil conditions and in numerous subject areas. The data are very varied and presented in two languages. The CARIS pilot project is not only a test, but also a further example of the cooperation of the countries associated in WARDA, working together on the improvement of rice cultivation. This example could be readily followed in other sectors of agricultural research.

The pilot project was begun in March 1972. The first six months were mainly devoted to the study of possible methodologies and to the preparation of the data collecting. To this end, questionnaires were drawn up and contacts made with the organizations prepared to cooperate in the project.

The subsequent six months were devoted to data collection. Questionnaires were sent to Research Institutions and immediately on return sent to England or France for translation. The collected data related to 237 Research Institutions or Stations and 1555 Research Projects.

The last period was occupied by the data processing. Two complete versions have been prepared: one in English by the Smithsonian Science Information Exchange (SSIE)
using its existing operational system, another in French by CARIS staff according to a methodology especially set up for CARIS during the preceding period. In addition, 300 research project descriptions have been sent to the Current Research Information System (CRIS) of the U.S. Ministry of Agriculture, 300 to the Information and Documentation Centre (CID) of the Commission of the European Communities and 30 to the Centre d'Informatique appliquée au développement de l'agriculture tropicale (CIDAT) for sample studies. Contacts have been made with the CID to attempt to bring about compatibility between the two agricultural research information systems under study (AGREP and CARIS).

The pilot project does not end with the publication of the two directories. The International Development Research Centre (IDRC) is to carry out an evaluation of the methodologies, of the results of the pilot project and conduct a user survey. The results of this work will provide a definitive methodology which could be used for a future worldwide CARIS project.

The CARIS pilot project has been carried out as the result of a remarkable effort of international cooperation.

The Food and Agriculture Organization of the United Nations would like to acknowledge:
— the countries and institutions that have supported the financing of the project, in the form of cash, secondment of personnel and services: the Belgian and French Governments, the Rockefeller Foundation, the Agency for International Development of the U.S. Department of State (USAID), the Commission of the European Communities, the Agence de cooperation culturelle et technique, the Conseil international de la langue française, the Overseas Development Administration, the Commonwealth Agricultural Bureaux and the International Development Research Centre;
— the Governments of the following West African countries, which have agreed to cooperate in providing information through their research stations and have accepted consultants who have assisted in data collection: Dahomey, Gambia, Ghana, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Togo, Upper Volta;
— the research institutions and all the scientists, quoted in this directory, who have given their help and have provided the basic data.

FAO hopes that the present directory will be useful, not only for the member countries of WARDa but also for all other countries where research is going on in the same fields. This is the real objective of the CARIS system, one that will be fully attained when this system is set up on a world-wide basis.
Table of Contents

PART 1

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO PART 1</td>
<td>xi</td>
</tr>
<tr>
<td>RESEARCH PROJECTS</td>
<td>1</td>
</tr>
<tr>
<td>Dahomey</td>
<td>1</td>
</tr>
<tr>
<td>Centre IRAT de Cotonou</td>
<td>1</td>
</tr>
</tbody>
</table>
| Institut Français de Recherches Frui
tières d'Outre-Mer | 2 |
| Secteur IRCT Centre Dahomey | 2 |
| Secteur IRCT Nord-Dahomey | 3 |
| Secteur IRCT Sud-Dahomey | 4 |
| Section de Recherches d'Ina IRAT | 4 |
| Section Entomologie IRCT au Dahomey | 5 |
| Section Fibres IRCT au Dahomey | 7 |
| Station de Recherches Agronomiques IRAT de Niaouil | 7 |
| Station IFAC d'Allahe | 9 |
| Station IFAC de Toue | 9 |
| Station IRHO de Seme-Podji | 9 |
| Station Principale IRHO de Pobé | 9 |
| Gambia | 11 |
| Yundum Experimental Station | 11 |
| Ghana | 13 |
| Accra Veterinary Laboratory | 13 |
| Agricultural Research Station Kpong | 13 |
| Agricultural Research Station Nungua | 14 |
| Animal Research Institute | 15 |
| Anyinasi Agricultural Experimental Station | 18 |
| Asuansi Substation | 19 |
| Department of Animal Science | 20 |
| Department of Botany | 20 |
| Department of Zoology | 21 |
| Ejura Field Station | 21 |
| Food Research Institute | 22 |
| Forest Products Research Institute | 23 |
| Keta Substation | 27 |
| Kpong Agricultural Irrigation Station | 27 |
| Kusi Oil Palm Research Centre | 28 |
| Kwadaso Agricultural Experimental Station | 30 |
| Manga Substation | 38 |
| Nyankpala Agricultural Experimental Station | 38 |
| Ohawu Agricultural Experimental Station | 40 |
| Plant Introduction and Exploration Section | 41 |
| Pokuase Food Storage Section | 41 |
| Radioisotope Laboratory of the Cocoa Research Institute of Ghana | 42 |
| Radioisotope Laboratory of the Soil Research Institute | 43 |
Ghana (continued)

<table>
<thead>
<tr>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Research Institute</td>
<td>43</td>
</tr>
<tr>
<td>Tamale Veterinary Laboratory</td>
<td>45</td>
</tr>
<tr>
<td>Termite Division</td>
<td>45</td>
</tr>
<tr>
<td>Volta Basin Research Project</td>
<td>46</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>47</td>
</tr>
<tr>
<td>Base de Multiplication et de Vulgarisation IFCC de San Pedro</td>
<td>47</td>
</tr>
<tr>
<td>Base de Multiplication et de Vulgarisation IFCC de Zagne</td>
<td>47</td>
</tr>
<tr>
<td>Centre de Recherches Zootechniques de Minankro-Bouaké</td>
<td>48</td>
</tr>
<tr>
<td>Centre IFCC d'Abidjan</td>
<td>51</td>
</tr>
<tr>
<td>Centre ORSTOM d'Adiopodoume</td>
<td>57</td>
</tr>
<tr>
<td>Centre ORSTOM de Petit Bassam</td>
<td>58</td>
</tr>
<tr>
<td>Divisions CTFT d'Abidjan</td>
<td>59</td>
</tr>
<tr>
<td>Essais IFCC de Tombokro</td>
<td>60</td>
</tr>
<tr>
<td>Ferme des Cultures Irriguées de Tombokro IRAT</td>
<td>60</td>
</tr>
<tr>
<td>Plantation Experimentale IRHO</td>
<td>60</td>
</tr>
<tr>
<td>Station Centrale IFCC de Divo</td>
<td>61</td>
</tr>
<tr>
<td>Station Experimentale IFCC de Bingerville</td>
<td>62</td>
</tr>
<tr>
<td>Station IFAC d'Abidjan</td>
<td>66</td>
</tr>
<tr>
<td>Station IFAC d'Azaguélé</td>
<td>67</td>
</tr>
<tr>
<td>Station IRAT de Bouake</td>
<td>68</td>
</tr>
<tr>
<td>Station IRAT de Ferkessedougou</td>
<td>74</td>
</tr>
<tr>
<td>Station IRAT de Gagnoa</td>
<td>74</td>
</tr>
<tr>
<td>Station IRAT de Man</td>
<td>75</td>
</tr>
<tr>
<td>Station IRCA de Bimbresso</td>
<td>75</td>
</tr>
<tr>
<td>Station ICT de Bouaké</td>
<td>80</td>
</tr>
<tr>
<td>Station IRHO de la Mé</td>
<td>83</td>
</tr>
<tr>
<td>Station IRHO de Port Bouet</td>
<td>87</td>
</tr>
<tr>
<td>Station Piscicole CTFT de Boua é</td>
<td>89</td>
</tr>
<tr>
<td>Station Regionale IFCC d'Abengourou</td>
<td>90</td>
</tr>
<tr>
<td>Station Sylvicole CTFT de Bouaké</td>
<td>90</td>
</tr>
</tbody>
</table>

Liberia

<table>
<thead>
<tr>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botanical Research Department of Firestone Plantations Company</td>
<td>92</td>
</tr>
<tr>
<td>Central Agricultural Experiment Station Suakoko</td>
<td>93</td>
</tr>
</tbody>
</table>

Mali

<table>
<thead>
<tr>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellule Expérimentale IRCT de Kogoni</td>
<td>96</td>
</tr>
<tr>
<td>Centre National de Recherches Fruitières de Bamako IFAC</td>
<td>96</td>
</tr>
<tr>
<td>Centre Technique OICMA de Kara Macina</td>
<td>96</td>
</tr>
<tr>
<td>Direction Régionale IRCT pour le Mali</td>
<td>97</td>
</tr>
<tr>
<td>Section des Essais Multilocaux</td>
<td>97</td>
</tr>
<tr>
<td>Sous-Station IRAT de Kita</td>
<td>98</td>
</tr>
<tr>
<td>Sous-Station IRAT de Séno</td>
<td>99</td>
</tr>
<tr>
<td>Sous-Station IRAT de Sikasso</td>
<td>99</td>
</tr>
<tr>
<td>Station Agronomique de Samé</td>
<td>100</td>
</tr>
<tr>
<td>Station IRAT de Katibougou</td>
<td>101</td>
</tr>
<tr>
<td>Station IRAT de Kogoni</td>
<td>101</td>
</tr>
<tr>
<td>Station IRAT de Mopti</td>
<td>102</td>
</tr>
<tr>
<td>Station IRAT de Sotuba</td>
<td>104</td>
</tr>
<tr>
<td>Station IRCT de N'Pesoba</td>
<td>105</td>
</tr>
</tbody>
</table>

Mauritania

<table>
<thead>
<tr>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre de Recherches Fruitières et de Lutte Biologique IFAC</td>
<td>108</td>
</tr>
<tr>
<td>Centre National d'Expérimentation Agronomique et de Développement</td>
<td>108</td>
</tr>
<tr>
<td>Périmètre Fruitier de Rindiao IFAC</td>
<td>108</td>
</tr>
<tr>
<td>Station Phœnicicole de Kankossa IFAC</td>
<td>109</td>
</tr>
<tr>
<td>Country</td>
<td>Institution</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Philippines</td>
<td>The International Rice Research Institute</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Bacita Agricultural Research Station</td>
</tr>
<tr>
<td></td>
<td>Badeggi Rice Research Station</td>
</tr>
<tr>
<td></td>
<td>Buguma Research Station</td>
</tr>
<tr>
<td></td>
<td>Department of Veterinary Science</td>
</tr>
<tr>
<td></td>
<td>Faculty of Agriculture of the University of Ife</td>
</tr>
<tr>
<td></td>
<td>Federal Institute of Industrial Research</td>
</tr>
<tr>
<td></td>
<td>Forest Research Institute of Nigeria</td>
</tr>
<tr>
<td></td>
<td>Gambari Experimental Station</td>
</tr>
<tr>
<td></td>
<td>Institute for Agricultural Research</td>
</tr>
<tr>
<td></td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td></td>
<td>Isotope Laboratory of the Department of Agronomy, Univ. of Ibadan</td>
</tr>
<tr>
<td></td>
<td>Lake Chad Research Station</td>
</tr>
<tr>
<td></td>
<td>Mambilla Substation</td>
</tr>
<tr>
<td></td>
<td>Mokwa Agricultural Research Station</td>
</tr>
<tr>
<td></td>
<td>Moor Plantation</td>
</tr>
<tr>
<td></td>
<td>Nigerian Institute for Oil Palm Research</td>
</tr>
<tr>
<td></td>
<td>Nigerian Stored Products Research Institute</td>
</tr>
<tr>
<td></td>
<td>Nigerian Stored Products Research Institute</td>
</tr>
<tr>
<td></td>
<td>Nigerian Stored Products Research Institute</td>
</tr>
<tr>
<td></td>
<td>Nigerian Institute for Oil Palm Research</td>
</tr>
<tr>
<td></td>
<td>Soil Fertility Unit at Nifor</td>
</tr>
<tr>
<td></td>
<td>Umudike Agricultural Research Station</td>
</tr>
<tr>
<td></td>
<td>Uyo Agricultural Research Station</td>
</tr>
<tr>
<td>Philippines</td>
<td>The International Rice Research Institute</td>
</tr>
<tr>
<td>Senegal</td>
<td>Centre de Recherches Zootechniques de Dara-Djoloff</td>
</tr>
<tr>
<td></td>
<td>Centre Expérimental de Guéhéde</td>
</tr>
<tr>
<td></td>
<td>Centre National de Recherches Agronomiques de Bamby IRAT</td>
</tr>
<tr>
<td></td>
<td>Division CTFT des Recherches Piscicoles</td>
</tr>
<tr>
<td></td>
<td>Laboratoire de Radioisotopie du Centre de Rech. Agron. de Bamby</td>
</tr>
<tr>
<td></td>
<td>Laboratoire National de l'Élevage et de Recherches Vétérinaires</td>
</tr>
<tr>
<td></td>
<td>Sous-Station Forestière CTFT de Bamby</td>
</tr>
<tr>
<td></td>
<td>Station de Recherches Rizicoles de Djiboloe</td>
</tr>
<tr>
<td></td>
<td>Station IFAC de Keur Mama Lamine</td>
</tr>
<tr>
<td></td>
<td>Station IFAC de Singher</td>
</tr>
<tr>
<td></td>
<td>Station IRAT de Nioro-Du-Rip</td>
</tr>
<tr>
<td></td>
<td>Station IRAT de Richard Toll</td>
</tr>
</tbody>
</table>

vii
<table>
<thead>
<tr>
<th>Senegal (continued)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station IRAT de Séfa</td>
<td>188</td>
</tr>
<tr>
<td>Station IRCT de Kaolack</td>
<td>188</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>192</td>
</tr>
<tr>
<td>Fourah Bay College</td>
<td>192</td>
</tr>
<tr>
<td>Rice Research Station</td>
<td>192</td>
</tr>
<tr>
<td>Togo</td>
<td>194</td>
</tr>
<tr>
<td>Centre Expérimonal IRAT de Davie</td>
<td>194</td>
</tr>
<tr>
<td>Centre ORSTOM de Lomé</td>
<td>195</td>
</tr>
<tr>
<td>Division des Etudes Pédiologiques et de l'Ecologie Générale</td>
<td>196</td>
</tr>
<tr>
<td>Project FAO/UNDP de Developpement de Resources Forestières</td>
<td>196</td>
</tr>
<tr>
<td>Station IFCC de Tové</td>
<td>197</td>
</tr>
<tr>
<td>Station IRAT de Toaga</td>
<td>197</td>
</tr>
<tr>
<td>Station IRCT d'Anié Mono</td>
<td>198</td>
</tr>
<tr>
<td>Upper Volta</td>
<td>202</td>
</tr>
<tr>
<td>Institut de Recherches Agron. Trop. et des Cultures Vivrières</td>
<td>202</td>
</tr>
<tr>
<td>Section CTFT de Haute Volta</td>
<td>202</td>
</tr>
<tr>
<td>Station Agricole IRAT de Kamboinsé</td>
<td>203</td>
</tr>
<tr>
<td>Station Agricole IRHO de Niangoloko</td>
<td>203</td>
</tr>
<tr>
<td>Station Agricole IRHO de Saria</td>
<td>204</td>
</tr>
<tr>
<td>Station d'Hyrulaic Agricole de Mogtedo IRAT</td>
<td>205</td>
</tr>
<tr>
<td>Station de Recherches Agronomiques de Saria IRAT</td>
<td>205</td>
</tr>
<tr>
<td>Station Forestière de Dinderesso CTFT</td>
<td>207</td>
</tr>
<tr>
<td>Station Forestière de Linoghin CTFT</td>
<td>207</td>
</tr>
<tr>
<td>Station IEMVT de Bobo-Dioulasso</td>
<td>207</td>
</tr>
<tr>
<td>Station IRAT de Farako Ba</td>
<td>207</td>
</tr>
<tr>
<td>Station IRCT de Bobo-Dioulasso</td>
<td>210</td>
</tr>
<tr>
<td>Station IRCT de Ougadougou</td>
<td>211</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
</tr>
<tr>
<td>505</td>
</tr>
<tr>
<td>501</td>
</tr>
<tr>
<td>501</td>
</tr>
<tr>
<td>505</td>
</tr>
<tr>
<td>505</td>
</tr>
<tr>
<td>509</td>
</tr>
<tr>
<td>516</td>
</tr>
<tr>
<td>517</td>
</tr>
<tr>
<td>521</td>
</tr>
<tr>
<td>522</td>
</tr>
<tr>
<td>525</td>
</tr>
<tr>
<td>531</td>
</tr>
<tr>
<td>536</td>
</tr>
<tr>
<td>537</td>
</tr>
<tr>
<td>538</td>
</tr>
<tr>
<td>541</td>
</tr>
<tr>
<td>545</td>
</tr>
</tbody>
</table>

Part 2

<table>
<thead>
<tr>
<th>INTRODUCTION TO PART 2</th>
<th>497</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESEARCH INSTITUTIONS AND STATIONS</td>
<td>501</td>
</tr>
<tr>
<td>Dahomey</td>
<td>501</td>
</tr>
<tr>
<td>Gambia</td>
<td>505</td>
</tr>
<tr>
<td>Ghana</td>
<td>505</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>509</td>
</tr>
<tr>
<td>Liberia</td>
<td>516</td>
</tr>
<tr>
<td>Mali</td>
<td>517</td>
</tr>
<tr>
<td>Mauritania</td>
<td>521</td>
</tr>
<tr>
<td>Niger</td>
<td>522</td>
</tr>
<tr>
<td>Nigeria</td>
<td>525</td>
</tr>
<tr>
<td>Senegal</td>
<td>531</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>536</td>
</tr>
<tr>
<td>Togo</td>
<td>537</td>
</tr>
<tr>
<td>Upper Volta</td>
<td>538</td>
</tr>
<tr>
<td>Institutions and Stations outside West Africa</td>
<td>541</td>
</tr>
<tr>
<td>MAP</td>
<td>545</td>
</tr>
</tbody>
</table>

viii
INTRODUCTION TO PART 1

This part of the Directory was prepared by the Smithsonian Science Information Exchange (ssire), Washington, D.C., U.S.A., for the Food and Agriculture Organization of the United Nations. Selection of countries included in the Directory and collection of the research summaries was carried out by FAO. The summaries were indexed by the Exchange’s staff of professional scientists and were entered into a special data base from which this Directory was generated on magnetic tape prior to printing. This publication is intended to illustrate the type of Directory which could be generated from similar, ongoing research records on a world-wide basis, although a publication developed in such a case would probably be prepared in several selected subject areas rather than as a single volume covering the entire field of agricultural research.

The RESEARCH PROJECT SECTION of the Directory is organized alphabetically by country and by research station within country. Detailed address information is included for each station and an FAO/CARIS identification number follows the name of the principal investigator for each project. The information which appears in the summaries was taken directly from the project records as received by ssire. Each project is assigned a sequential accession number (i.e., 1.0001, 1.0002, 1.0003, etc.) which is used in the four subsequent indexes for easy reference to specific projects.

In the SUBJECT INDEX each project title is indexed to an average of 6 terms alphabetically arranged in hierarchies reflecting relationships between broader and narrower concepts. These are as specific as the language of the project permits. Extensive cross-referencing of terms appearing in the various hierarchies is also provided for the user. When terms appear as other than a main hierarchical term, the main reference term is preceded by the word “See”:

- e.g. Grafting
 See Plant Physiology

When terms appear both as a main hierarchical term and elsewhere as other than a main term, the reference terms are preceded by the words “See Also”:

- e.g. Phosphorous
 See Also Isotopes
 Radioactive Isotopes

The titles of all projects indexed to each subject term follow that term. A number of other descriptive terms relevant to the project and the accession number assigned to the project in the RESEARCH PROJECT SECTION appears after each title, thus by reviewing the terms following each title the reader can more easily identify projects of probably high interest.

In order to keep the Directory size within reasonable limits, indexing terms were limited to an average of six major terms and for this reason certain printed subject terms which might otherwise be useful entry points to the subject index have been combined. For example studies on:

- cattle, sheep, goats and swine will be found under Animal Husbandry.
- economic plants will be found under the corresponding type of crop — rubber, under industrial crops; groundnuts, under oil seed crops; cowpeas, under pulse crops; cotton under fiber crops; coffee and cocoa, under beverage crops; rice, millet, grain sorghum and maize, under cereal crops; oil palm, under oil seed crops; yams, under root crops; kenaf, under fiber crops; and okra, under leafy and fruit-type vegetables.
- soil fertility studies involving nitrogen, phosphate or potassium as well as general fertility studies, and chemical deficiencies in soils, will be found under the appropriate “management” topic in the Agronomy, Forestry or Horticulture sections of the index.
The EXECUTIVE AGENCY INDEX consists of a single alphabetical listing. Executive agency captions were limited in length to 42 characters by the computer file used to store the source documents. Thus, in some instances abbreviations had to be used. City and country names are included for most agencies, although a city or country name was not repeated if it appeared as part of the agency name. In those few instances in which the agency name was unusually long and the data field had room for only a city or country name, the one thought to be most useful was chosen.

While the RESEARCH PROJECT SECTION identifies only the principal investigator, all investigators cited on the source document are included in the INVESTIGATOR INDEX. In the INVESTIGATOR SPECIALTY INDEX, an investigator appears once under each specialty with which he was associated in the source document. Investigators not associated with a scientific specialty on the source document were excluded from the INVESTIGATOR SPECIALTY INDEX. In both indexes, an asterisk is used after the project accession number to designate the principal investigator. Both indexes are arranged alphabetically, the former by name, the latter by name within specialty.
DESCRIPTION OF RESEARCH TASKS

DAHOMEY

CENTRE IRAT DE COTONOU
B.P. 422, Cotonou

1.0001, SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY
R. DUMONT, (DM.021.0001)

OBJECTIVE: Adaptation of varieties to the local ecology.

APPROACH: Research work carried out at the outstations of Bagou, Logozoro. Collection of varieties. Parallel statistical experiments (3 varieties, 2 levels of fertility) on two different dates. Fertilization: role of organic matter; working of the soil; potential fertility: N, P and K curves; maintenance of P and K fertility.

RESULTS: Different types of rice cultivation have been specified, with their techniques and their appropriate varieties. Very great advantage of varieties with a high production potential in the conditions of low-lying ground without much flooding.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0002, SPECIFIC ROLE OF ORGANIC MATTER
R. WERTS, (DM.021.0002)

OBJECTIVE: Demonstration of the specific role of organic matter as a fertility factor. Influence on the efficacy of the nitrogenous fertilizer.

APPROACH: Research carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. Setting up a curve of response to nitrogen with or without ploughing in of moistened organic matter (test made on Gramineae, using the best varieties available).

RESULTS: 1) Great efficacy of the moistened organic material. 2) Clear-cut action of the nitrogen, irrespective of the level of organic material (in the presence of P2O5 and K2O).

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0003, ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY
R. WERTS, (DM.021.0003)

OBJECTIVE: Better knowledge of the techniques for preparation and for working of the land as a theme for intensification of agriculture.

APPROACH: Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. 2 or 3 modalities for tillage (of which one reference control, traditional methods of cultivation) in the presence of several levels of fertility (experiment on Gramineae, using the best varieties available).

RESULTS: Possible interaction between tillage and levels of fertility.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0004, POTENTIALITIES OF TROPICAL SOILS
R. WERTS, (DM.021.0004)

OBJECTIVE: To measure the production potential of the soil when the mineral deficiencies have been corrected.

APPROACH: Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. Curve of response to nitrogen in the presence of a uniform P2O5 plus K2O fertilizer (on Gramineae, using the best varieties available).

RESULTS: The No. 1 limiting factor for yields is the climatic factor and particularly water (quantities and distribution of rainfall) whence a rather weak potential.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0005, CORRECTION OF DEFICIENCIES IN P2O5
R. WERTS, (DM.021.0005)

OBJECTIVE: To determine the rates of application capable of correcting deficiencies of soils in P2O5.

APPROACH: Response curve to P2O5 in the presence of a uniform N plus K2O fertilization (on Gramineae, using the best varieties available). (Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou).

RESULTS: P2O5 is the No. 1 limiting factor for fertility in Dahomey. In certain instances (debased Bore lands) P2O5 constitutes the basis of a reparation fertilizer, in others a relatively weak maintenance fertilization is sufficient.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0006, CORRECTION OF DEFICIENCIES IN K2O
R. WERTS, (DM.021.0006)

OBJECTIVE: To determine the rates of application capable of correcting the deficiencies of soils in K2O.

APPROACH: Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. Curve of response to K2O in the presence of a uniform N plus P2O5 fertilization (on Gramineae, using the best varieties available).

RESULTS: The deficiency in K2O exists essentially in over-cropped lands, or whenever cotton is a feature of the rotation. Relatively low rates of application, but repeated, (K2O is poorly stored) enable the correction of this deficiency.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0007, MAINTENANCE OF P2O5 AND K2O FERTILITY
R. WERTS, (DM.021.0007)

OBJECTIVE: To determine, after correction of the mineral deficiencies, what are the fertilizations to apply to the crops to maintain fertility.

APPROACH: Test of a maintenance fertilization after several levels of correction (in the case of P2O5). Test of several levels of maintenance fertilization after 2 levels of correction (in the case
DAHOMEY

of K2O). (Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou).

RESULTS: Recourse to a restitution fertilizer is strictly necessary only for certain soils and for P2O5 only. For the other soils and for K2O the maintenance fertilizations are of more value.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0008, NITROGEN BALANCE IN TROPICAL SOILS R. WERTS, (DM.021.0008)

OBJECTIVE: Study of means of modifying the level of nitrogen reserves of the soils (ploughing in straw). Maximum profitability of the nitrogenous fertilization.

APPROACH: Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. Application of 3 levels of N in the presence of 2 levels of non-moistened organic matter. On Graminées, (maize, sorghum, forage crops) using the best varieties available.

RESULTS: 1) Little benefit from the non-moistened organic material. 2) Very clear-cut activity of the nitrogen, in the presence of P2O5 plus K2O.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0009, MODALITIES OF USE OF NATURAL TOGO PHOSPHATE R. WERTS, (DM.021.0009)

OBJECTIVE: As P2O5 is the No. 1 limiting factor in tropical soils and the Togo phosphate a cheap source of P2O5, the object is to establish a technique for the utilization of this phosphate.

APPROACH: Research work carried out on the outstations of Hinvi, Abomey, Save, Angaradebou. 1) Demonstration of the possible efficacy of this phosphate in relation to the more soluble forms. 2) Combinations between different rates of application of natural phosphate and of imported phosphates to improve the efficacy.

RESULTS: 1) Very clear interest of the natural phosphate especially in soils very deficient in P2O5. 2) Deferred effect, 12 to 24 months. 3) Possibility of clear and rapid improvement of the efficacy of the natural phosphate by light applications of more soluble phosphates.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0010, MAINTENANCE AND REGENERATION OF FERTILITY OF THE DEGRADED "TERRE DE BARRE" SOILS R. WERTS, (DM.021.0010)

OBJECTIVES: After restitution of the fertility, to establish conditions for use of these lands.

APPROACH: Research work carried out on the outstation of Meridjonou: Determination, then correction of the deficiencies; advantage of organic material; maintenance of fertility.

RESULTS: Limiting factors are P2O5, then K2O. Advantage of composted organic material. Possibility of redressing the deficiencies and maintaining fertility. Advantage of the Togo phosphates.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

INSTITUT FRANCAIS DE RECHERCHES FRUITIERES OUTRE-MER
Mission au Dahomey, B.P. 89, Abomey

1.0011, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE G. MONTAGUT; (DM.140.0001)

Objective: Definition of species of fruit trees adapted to the climatic zone, of their performance, of the utilization of the products.

Approach: Specific experimental arrangements, situated in chosen mesoclimatic sites, for the study of the adaptability of species of fruit trees cultivated as homogeneous populations or as associations: citrus trees (lemons and limes), avocado, mango, guava, cashew, grenadill and, a plant whose fruits contain a sweetening principle, Synsepalum dulcisicum. Results obtained: Renewal of the citrus orchard, thanks to the introduction, multiplication and distribution of plant material free from the principal known virus diseases and representing the best commercial varieties. Definition of the techniques for multiplication and for cultivation of citrus trees (principally the lemon tree for essential oil) in the Centre (province of Zou). Multiplication and creation of plantations of Synsepalum dulcisicum with a view to a technological study. In the North, definition of the mode of plantation and creation of "populations" of Anacardium (cashew-nut tree). Awaite: Definition of the suitability for fruit-growing of the different climatic zones of Dahomey and of the techniques for cultivation with a view to the creation of agro-industrial unit-types for production.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Dahomey

SECTEUR IRC T CENTRE DAHOMEY
B.P. 144, Abomey

1.0012, HERBICIDE EXPERIMENTATION ON COTTON C. THEVIN, (DM.043.0001)

National Network project: See DM. 042.0001. (1.0026)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0013, STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT C. THEVIN, (DM.043.0002)

National Network project: See DM. 042.0002. (1.0027)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0014, EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON C. THEVIN, (DM.043.0003)

National network project: See DM. 042.0003. (1.0028)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0015, EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO) C. THEVIN, (DM.043.0004)

National Network project: See DM. 044.0004. (1.0022)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey
1.0016, COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON

C. THEVIN, (DM.043.0005)

National network project: See DM. 044.0005. (1.0023)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0017, STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT

C. THEVIN, (DM.043.0006)

Network project: See DM. 044.0001. (1.0019)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0018, EXPERIMENTATION WITH VARIETIES OF COTTON

C. THEVIN, (DM.043.0007)

Network project: See DM. 042.0005. (1.0030)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

DAHOMEY

SECTEUR IRCT NORD-DAHOMEY

B.P. 172, Parakou

1.0019, STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT

A. JOLY, (DM.044.0001)

Objective: To get to know the requirements in nitrogen of the cotton plant in the course of its development. Investigation of the critical periods, by excess or by deficiency, and of a better control of vegetative growth.

Approach: 4 experiments with 7 materials - 6 to 8 repetitions - Fisher blocks; every 10 days with graduated pauses, according to the materials, 3, 5, 7, 9 or 11 applications after sowing. Increased insecticidal protection. Investigation of nutrition by foliar analysis every 10 days. In Northern Dahomey, trials at Alafiarou, Guamparou, Angaradebou.

Results: Determination of doses (rates) and periods of application of the nitrogenous fertilizer. Demonstration of the uselessness of applications beyond the 60th day.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0020, STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT

A. JOLY, (DM.044.0002)

Network project: See DM. 042.0002. (1.0027)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0021, EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON

A. JOLY, (DM.044.0003)

National network project: See DM. 042.0003. (1.0028)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0022, EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO)

A. JOLY, (DM.044.0004)

Objective: To compare the Togo phosphate with bicalcium phosphate on a complete quadrennial rotation (Borgou) or at increasing rates of application (Zou). To compare the application as a basic fertilizer, at the start of rotation, and the fraction as an annual application of phosphate fertilizer.

Approach: 4 experiments - Fisher blocks - 6 materials - 6 to 8 repetitions (Borgou). 1 experiment - Fisher blocks - 7 materials - 6 repetitions (Zou). 4 rows per plot - 2 central ones tested. Borgou: To a basic fertilizer NSKBo, is added 200 kg/ha of bicalcium phosphate or 330 kg of natural Togo phosphate, either in a single application at the start of rotation, or fractionated as 2 applications over 2 years. Zou: To a basic fertilizer, are added 100 and 200 kg/ha of bicalcium phosphate, and 100, 200 and 400 kg/ha of natural Togo phosphate. Study of the activity and the residual activity.

Results: An equal quantity of P2O5 bicalcium phosphate is more efficient than the natural phosphate. A single application at the start of rotation is preferable to the annual fractionation (Borgou).

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0023, COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON

A. JOLY, (DM.044.0005)

Objective: 1) Regional study of the interactions between use of fertilizers and treatments. 2) Quest for the optimum technical and economic level of intensification of fertilization and of treatments.

Approach: Different experimental techniques have been compared: factorial, split-plots, 3 levels of fertilization, 3 levels of insecticidal protection.

Results: 1) Definition of the mean optimum level of intensification per region. 2) Demonstration of a great variability in the responses. 3) Demonstration of a null, or sometimes depressant effect of copious applications of manure, irrespective of the level of insecticidal protection.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0024, INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS

A. JOLY, (DM.044.0006)

Objective: To study the introduction of cotton into the traditional crop rotations; its place in the rotation and its role in the intensification of agriculture. Economic balance of various rotations representing different levels of intensification. Mineral balance: study of losses (from the soil) and of restitutions. Approach: 3 experiments in the NW sector of Dahomey comprising 4 sowings staggered in time, and for each of them, 2 repetitions in the field - 2 or 3 rotations in comparison. Analysis of soil - investigation of mineral nutrition by foliar analysis. Study of the losses (from the soil) (orig. exportations) in mineral elements.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0025, EXPERIMENTATION WITH VARIETIES OF COTTON

A. JOLY, (DM.044.0007)

National Network Project: See DM. 042.0005. (1.0030)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

3
DAHOMEY

SECTEUR IRCT SUD-DAHOMEY
Sekou, Département de l' Atlantique, B.P. 715, Cotonou

1.0026, HERBICIDE EXPERIMENTATION ON COTTON
M. DAESCHNER, (DM.042.0001)

Objective: To test the herbicidal effect of 7 preparations in the ecological conditions of the locality in which they are used, and approach to the optimal rate of application.

Approach: 2 experiments - plots of 3 rows of 30 metres - one repetition. Each treated plot is continuous to a control untreated plot. There is thus 1 control plot after 2 treated plots. Each preparation is tested at 3 rates of application, the optimal rate D, being bordered, in this order, by rates 3/4D and 3/2D.

Results: Of interest are CGA 10832 (pre-emergence) - GS 16068 (pre-emergence), Ru 12709 (post emergence) - and Ansaar 529 (post emergence).

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0027, STUDY OF THE MINERAL DEFICIENCIES OF COTTON PLANTS
M. DAESCHNER, (DM.042.0002)

Objective: 1) Diagnosis of mineral deficiencies on the regional scale and study of the response of the cotton plants to mineral fertilization; 2) Evolution of these deficiencies in the course of several rotations.

Approach: 22 Fisher block experiments with 7 materials - 6 to 8 repetitions - 4 rows per plot - 2 central ones tested - Materials for comparison: 1 - Control, 2 - NSPKBo strong dose, 3 - NSPKBo popular dose, 4 - NSPB (-K), 5 - NSKBo (-P), 6 - NPKBo (-S), 7 - SPKBo (-N). Increased insecticidal protection.

Results: Demonstration of mineral deficiencies variable with regions: P205 in the North (Atacora and Borgou), K2O in the centre and south (Zou south), N and S everywhere, but less severe. Residual effect of the deficient elements on the crops following in rotation.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0028, EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON
M. DAESCHNER, (DM.042.0003)

Objective: To determine the regions where potassium is deficient and to study the modalities for correction of this deficiency (rates of application, fractionated applications).

Approach: A) 4 different experiments: Rates of application and fractionated applications of K (Alaphoue) correction of deficiency in K (Cove) curve of activity of K; (Bohicon). B) Fisher blocks - 3 to 8 materials - 8 repetitions; C) 4 rows per plot - 2 central ones tested; D) Insecticidal protection.

Results: Demonstration of a considerable potassium deficiency in the bore (tidal wave) lands of southern Dahomey. Direct activity and residual effect of an application of K2O in correction of this deficiency.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0029, TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER
M. DAESCHNER, (DM.042.0004)

Objective: Study of the role of a better protection of the soil and of restitution of the residues of harvesting in an intensive alternation of maize and cotton as a factor in maintenance of the fertility of the soil and a means of augmenting the efficacy of the fertilizer.

Approach: 2 Fisher block experiments - 6 different materials for each of the 2 experiments - 8 repetitions - 4 rows per plot - 2 central ones tested. Materials: at Bozinkpe: 2 levels of fertilization, 3 materials, application of organic matter: At Sokouhove: 2 materials: soil bare and strawed, 3 levels of nitrogenous fertilization: N - 0; N - 60; N - 120. Insecticidal protection.

Results: Evident interest of a protection of the soil, by strawing or organic restitution, in the maintenance of the fertility of soils.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0030, EXPERIMENTATION WITH VARIETIES OF COTTON
M. DAESCHNER, (DM.042.0005)

Objective: Test of behaviour of varieties selected by the IRCT; Investigation of productivity, rusticity and technological qualities.

Approach: 14 varietal experiments on 6 or 7 varieties; Fisher blocks - 3 rows per plot - central row tested - 8 repetitions; Mineral fertilization - Insecticidal protection.

Results: Proposal for the popularization of the varieties that are the best adapted regionally. According to the regions, the varieties are: BJA, HG 9, Allen 333, 444-2.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

SECTION DE RECHERCHES D’INA IRAT

Ina par N’ Dali, B.P. 155, Parakou

1.0031, STUDIES ON YAMS WITH A VIEW TO THE INTEGRATION OF THIS CROP INTO AN INTENSIVE ROTATION
R. DUMONT, (DM.022.0001)

OBJECTIVE: Introduction of yams into a permanent system of cultivation.

APPROACH: Inventory of and observations on the local varieties. Cultivation techniques: factors influencing the earliness of appearance above ground, establishment of techniques likely to increase the yields. Fertilization: determination of a mineral fertilization, advantage of an organic fertilization, residual effects of fertilizations of the preceding crops.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0032, SELECTION OF A WHITE MAIZE ADAPTED TO NORTH DAHOMEY
J. LECOUTE, (DM.022.0002)

OBJECTIVE: The obtaining of a white maize well adapted to the north of Dahomey, in two forms; the one early and the other late.

APPROACH: Varietal hybridization starting with a selected yellow maize from the north of the country and a selected white maize from the south, beginning again with the progeny in the exclusively white form with maintenance established from the heterosis of the initial crossing. Divergent selection of the cumulative type with a view to the obtaining of an early form and of a late form.
RESULTS: The divergent selection for the duration of the cycle is in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0033, SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY
R. DUMONT, (DM.022.0003)
National network project - see DM.021.0001.(1.0000)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0034, SPECIFIC ROLE OF ORGANIC MATTER
R. WERTS, (DM.022.0004)
International network project - see DM.021.0002. (1.0002)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0035, ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY
R. WERTS, (DM.022.0005)
International network project - see DM.021.0003. (1.0003)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0036, POTENTIALITIES OF TROPICAL SOILS
R. WERTS, (DM.022.0006)
International network project - see DM.021.0004. (1.0004)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0037, CORRECTION OF DEFICIENCIES IN P2O5
R. WERTS, (DM.022.0007)
International network project - see DM.021.0005. (1.0005)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0038, CORRECTION OF DEFICIENCIES IN K2O
R. WERTS, (DM.022.0008)
International network project - see DM.021.0006. (1.0006)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0039, MAINTENANCE OF P2O5 AND K2O FERTILITY
R. WERTS, (DM.022.0009)
International network project - see DM.021.0007. (1.0007)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0040, NITROGEN BALANCE IN TROPICAL SOILS
R. WERTS, (DM.022.0010)
International network project - see DM.021.0008. (1.0008)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0041, OBTAINMENT OF SORGHUM HYBRIDS OF AMERICANO-DAHOMEY TYPE WITH SHORT STRAW
J. LECOUTE, (DM.022.0011)
OBJECTIVE: Improvement of sorghums by reduction of the height of the stems, with translucent seeds and without a brown layer. Resistance to being beaten down and better response to fertilizers.

RESULTS: Creation of 2 series of lines with short straw starting from each of the foreign parents, the cycle of which is analogous to that of the local sorghums. Fixation in progress. Comparative experiments still to be done.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0042, CONSTITUTION OF A COMPOSITE OF WHITE MAIZE WITH IMPROVED VARIETIES ORIGINATING IN DAHOMEY
J. LECOUTE, (DM.022.0012)

OBJECTIVE: To create a pool of maize genes to produce local pure lines that are well adapted and vigorous.

APPROACH: 2 cycles of S1 testing.

RESULTS: The obtaining of a population, to be the starting-point of future pure lines.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0043, CREATION OF A VARIETAL HYBRID OF YELLOW MAIZE ADAPTED TO THE NORTH OF DAHOMEY
J. LECOUTE, (DM.022.0013)

OBJECTIVE: Improvement of the resistance to streak, a virus disease which has recently become more severe in Dahomey.

APPROACH: Crossings with a series of introductions presenting factors of resistance to the disease.

RESULTS: Tests for intervariety hybrids made in 1971 and which will be pursued.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0044, MODALITIES OF USE OF NATURAL TOGO PHOSPHATE
R. WERTS, (DM.022.0014)
National network project - see DM.021.0009. (1.0009)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

SECTION ENTOMOLOGIE IRCT AU DAHOMEY

Sekou, Departement de l' Atlantique, B.P. 715, Cotonou

1.0045, STUDY OF THE PARASITISM OF THE COTTON PLANT
P. ATGER, (DM.046.0001)

Objective: To study locally the pressure of parasites under different conditions of phyto-sanitary protection.

Approach: Three separate rectangular plots were laid out (about 1 hectare each) with a minimum of 40 rows each 30 metres in length, forming 3 treatment replicates as follows: A-2 plots (untreated) located at opposed corners of the diagonal; B-2 plots (treated at popular rates) located at extreme opposites of the A plots; PP-2 plots treated twice weekly (super-protection) located midway and separating the juxtaposed A-B extreme plots.

Results: The multiple observations carried out on these plots should give a better knowledge of the local parasitism, enabling correction and adaptation of the proposed schemes of treatment to popular usage.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0046, EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLAN-
DAHOMEY

TATIONS
P. ATGER, (DM.046.0002)
Objective: To obtain an additional assurance as to the efficacy of a preparation before proposing the formulation for popular use.
Approach: Four comparative experiments were conducted doing the Fisher block method, 8 component plots with 6 rows each 30 meters long, treated with the following materials in 6 replicate sprayings, starting at the 40th day: Peprothion TM (Endosulfan-DDT-Methylparathion) 300-216-108 g./l. at 2.0 l./ha.; Azodrin plus DDT (125-250 g./l.) at 2.5 l./ha.; S 137B (DDT plus PCC-Methylparathion) 400-224-110 g./l. at 2.5 l./ha.; S 138A (Phosvel) 360 g./l. at 3 l./ha.; Cela CA 6900 plus DDT (500-250 g./l.) at 1.5 plus 4 l./ha.; Endrin-DDT (120-450 g./l.) at 2 l./ha.
Result: Analysis of the health of the yield and of its weight will be the criteria of quality. The results are not yet known.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0047, TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS
P. ATGER, (DM.046.0003)
Objective: To discover substances highly insecticidal against one or more of the insect predators, for eventual replacement of the popularized preparations.
Approach: Five comparative experiments were conducted using the Fisher block method. Eight component plots of 6 rows, each row 30 meters long, were used with 6 sprayings per plot using the following treatments starting at the 40th day: Peprothion TM (Endosulfan-DDT-Methylparathion) 300-216-108 g./l. at 2.0 l./ha.; Peprothion D (400-180-100 g./l.) at 2.5 l./ha.; S 175A (Phosvel plus Zectran) 360-240 g./l. at 2.5 l./ha.; S 176A (Phosvel plus DDT) 240-360 g./l. at 2.5 l./ha.; HOE 2960-DDT (225-450 g./l.) at 2.5 l./ha.; Endrin-DDT-Methylparathion (100-340-100 g./l.) at 2.5 l./ha.; Toxaphene-DDT-Methylparathion (200-360-112 g./l.) at 3.0 l./ha.; Azodrin-DDT-Toxaphene (150-200-200 g./l.) at 3.0 l./ha.; CRD 71-81 (DDT-PCC-Methylparathion) (450-224-110 g./l.) at 2.0 l./ha.; S2957-Toxaphene-DDT (200-250-250 g./l.) at 2.0 l./ha.
Result: Not yet analysed.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0048, RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY
P. ATGER, (DM.046.0004)
Objective: 1) Research on insect pathogens and entomopathogenic organisms in relation to the development of integrated control. 2) Determination of methods of rearing the pests Heliothis armigera and Cryptocephalus (Argyropleco) leucotreta on natural and artificial media, with the aim of multiplying viral and bacterial insect pathogens. 3) Preparation, formulation and study of the behaviour of biological products obtained after such rearing. 4) Study of the LD50s of common insecticides on populations of insects reared in the laboratory or in the field.
Approach: General observations in this area.
Progress: Rearing of Argyropleco on natural and artificial media.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0049, INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS
P. ATGER, (DM.046.0005)
Objective: To study possible synergies between insecticidal preparations as to action on a group of insects or on parasitic fauna in general.
Approach: Comparative experiments were conducted doing the Fisher block method consisting of eight component plots, each with 7 rows, each 30 meters in length. The following materials were applied in 9 sprayings, starting from the 50th day to the 129th day: Endrin-DDT (120-450 g./l.) at 2.0 l./ha.; HOE 2960 plus Endosulfan (350 plus 350 g./l.) at 1.2 plus 1 l./ha.; HOE 2960 plus DDT (350 plus 250 g./l.) at 1.5 plus 4 l./ha.; Gardona plus DDT (240 plus 250 g./l.) at 2.0 plus 4 l./ha.; Cela 6900 plus DDT (500 plus 250 g./l.) at 1.0 plus 4 l./ha.
Result: The two mixtures comprising HOE 2960, the one with endosulfan and the other with DDT added, are more efficacious (P equals 0.01) than the other preparations, judged by the following criteria: % of pods parasitized, % of blemished cotton. This is reinforced by a statistically superior production from the plots protected with these two mixtures, without there being any difference between the two.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0050, EXPERIMENT ON STARTING INSECTICIDAL TREATMENT OF THE COTTON PLANTS AT A WARNING SIGN
P. ATGER, (DM.046.0006)
Objective: To make insecticidal protection of cotton plantations more effective and less onerous.
Approach: The intensity of parasitism is estimated by the number of fallen fruit-bearing organs for an interval between rows 30 m in length. The warning is given on the basis of various levels of parasitism. Comparison of the results in 7 experiments: Fisher block method, 8 repetitions, component plots of 8 rows of 30 m; 5 materials: 1) Classical protection; 2) Protection on the basis of 1 fruit-bearing organ fallen, per 30 cm; 3) Protection on the basis of 3 fruit-bearing organs fallen, per 30 cm; 4) Protection on the basis of 6 fruit-bearing organs fallen per 30 cm; 5) Protection on the basis of 9 fruit-bearing organs fallen, per 30 cm.
Results: Not yet known.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0051, INTEGRATED CONTROL OF CRYPTOPELHIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES
P. ATGER, (DM.046.0007)
As the moth Cryptocephalus Peucetia constitutes the most formidable hazard to cotton cultivation in the South of Dahomey and is, besides, rather inaccessible to chemical insecticides, the object of this experiment is to try to complete the general action of Peprothion TM by the addition of specific entomopathogenic viruses (agents of granulosis and cytoplasmic polyhedrosis).
Approach: Larvae of C. leucotreta killed by this virus complex constitutes the most formidable hazard to cotton cultivation in the South of Dahomey and is, besides, rather inaccessible to chemical insecticides, the object of this experiment is to try to complete the general action of Peprothion TM by the addition of specific entomopathogenic viruses (agents of granulosis and cytoplasmic polyhedrosis).
Approach: Larvae of C. leucotreta killed by this virus complex are added to the classical insecticide solution and the effects on production are compared. Comparative experiment: Fisher block method, 8 repetitions; plots with 10 rows of 30 m; 3 test materials: 1) Peprothion TM, alone; 2) Peprothion TM plus virus (2000 Larval Units/ha); 3) Peprothion TM plus virus (1000 Larval Units/ha).
Results: Not yet analyzed.
SECTION FIBRES JUTIERES IRCT AU DAHOMEY

B.P. 715, Cotonou

1.0052, STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW
R.S. COURTIAL, (DM.045.0001)

To compare a cultivation of kenaf grown uninterrupted for 6 years, with a cultivation of kenaf interrupted for 1 or 2 years by a cultivation of maize and by 1 or 2 years of fallow.

Complex experiment: 12 repetitions.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0053, EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORCHORUS AND URENA
R.S. COURTIAL, (DM.045.0002)

Determination of the available varieties of plant material that are most productive and best adapted to local climatic conditions. 5 varieties of Hibiscus cannabinus; 6 varieties of Hibiscus sabdariffa; 100 varieties in collection (Hibiscus, Corchorus, Urena). Fisher blocks - 8 repetitions. Mean yield - Varieties cannabinus 900 kg/ha, sabdariffa 1200 kg/ha.

Trials are made at the outstations of Sekou (1.135-ND), Massi (1.412-VP), and Lokpara (1.482-LF).

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0054, EXPERIMENTS ON MINERAL FERTILIZATION OF HIBISCUS SABDARIFFA
R.S. COURTIAL, (DM.045.0003)

Objective: To study the action of the elements N, S, P, K and Bo on the production of fibres; yield by the hectare, characteristics of the fibres, profitability of manuring. To determine the relative importance of each element in the fertilizing.

Approach: Experiments using the Fisher block method, 8 repetitions, 7 treatments. (without manure, complete fertilizer NSPKBo: 43, 24, 40, 72 and 2.5 Boracine kg/ha; then: -N, -S, -P, -K, -Bo), component plots with 12 rows of 14 m; 0.3 m between the rows. The 4 central rows harvested, reduced by 2 m at each end. Comparison by successive withdrawal of each element of the complete formulation. Application at sowing except for 22 units of N spread at 40 days.

Result: The elements N, S, P, K, and Bo are necessary. Deficiencies in N, K, Bo very severe, those in P and S clear-cut. Level of production relatively low: kg/ha of fibre in the plots without manure: 1600 kg/ha with the complete fertilizer. The technological information is not yet calculated. Trials are made at Sekou, Massi and Lokpara outstations.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0055, TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS
R.S. COURTIAL, (DM.045.0004)

To test commercial herbicide preparations for their efficacy in local conditions. Preparations tested: Treflan, Daclath, Jeloman, Aresin, Gesaten, Karmex, Tok-E. Fisher blocks - 8 repetitions. For the moment Treflan is the best preparation. The economic rate of application has still to be determined. Trials at Sekou, Massi and Lokia.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

R.S. COURTIAL, (DM.045.0005)

Objectives: 1) To trace the curve of action of NSPK and Bo on the yield in fibre per hectare. 2) To calculate on the basis of these results the optimal rate of application of each of these elements for the yield per hectare in fibre.

Approach: An experiment using the Fisher block method and 8 repetitions, 5 treatments per element under test in 3 dosages. Test with: N, 3 rates of application: 20 - 40 - 60 kg/ha; S, 3 rates of application: 13 - 25 - 39 kg/ha; P, 3 rates of application: 30 - 45 - 60 kg/ha. K, 3 rates of application: 30 - 60 - 90 kg/ha; Bo, 3 rates of application: 1 - 15 - 10 kg/ha of Boracine. Component plot, 12 rows of 14 m at an interval of 0.3 m between rows. Harvesting of the 4 central rows, reduced by 2 m at each end.

Results: Pluriannual experiment: the first results are still unknown.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

1.0057, EXPERIMENT ON TECHNIQUES OF RETTING FOR HIBISCUS SABDARIFFA
R.S. COURTIAL, (DM.045.0006)

Objective: To compare 4 retting techniques for 4 forms of the plant material offered for retting, with regard to: the rapidity of the operation, the yield in dry fibres, the physical characteristics of the fibres, profitability.

Approach: 4 types of retting receptacles are prepared: natural retting places, as river inlets with running water, without management; natural retting places as ponds, with stagnant water, without management; natural, managed retting places; artificial, cemented retting places. The material for retting will be presented in the following forms: as fresh stalks, as dry stalks, as fresh thongs, and as dry thongs. Repetitions in time.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Dahomey

STATION DE RECHERCHES AGRONOMIQUES IRAT DE NIAOULI
Niaouli par Attogon

1.0058, DETERMINATION OF MINERAL DEFICIENCIES OF SOILS
A.A. GLELE, (DM.023.0001)

OBJECTIVES: To make good the mineral deficiencies of the soils before putting them under cultivation. To follow the evolution of the mineral requirements of these soils in the course of cultivation.

APPROACH: Analyses by the "flower pots" method.

RESULTS: The method is of value in respect of P2O5 and K2O. It enables forecasting of the moment when a downright deficiency in these elements will be produced in soils under cultivation.
DAHOMEY

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0059, IMPROVEMENT OF THE PROCEDURES FOR STORAGE AND CONSERVATION OF MAIZE IN A RURAL ENVIRONMENT
J. LECOUTE, (DM.023.0002)
OBJECTIVE: Increasing the value of the product and reducing losses in the course of storage.
APPROACH: 1) Study of different materials for storage space (husbandry cribs or bins, traditional granaries, jars, sacks, silos of metal, concrete, etc.) from the point of view of efficacy, and cost price. 2) Study of the authorized insecticide preparations which ensure good conservation.
RESULTS: 1) Superiority of conservation of dry grain in hermetically sealed receptacles with or without insecticide treatment (dusting or gas). 2) Necessity for protecting the walls of masonry silos against humidity.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0060, PRODUCTION OF DOUBLE CRYPTO-HYBRIDS BETWEEN LOCAL IMPROVED WHITE MAIZE AND AN INTRODUCED MEXICAN VARIETY FROM TUXPENO STOCK
J. LECOUTE, (DM.023.0003)
OBJECTIVE: To obtain hybrids having the structure of double hybrids, with a view to rapid use.
APPROACH: Self-fertilization in Tuxpeno (Mexico). The S1 lines are each crossed with 1 plant of the local variety which is itself self-fertilized and which serves as male parent.
RESULT: The self-fertilizations are done in Tuxpeno. The S1 lines have been sown.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0061, CONSTITUTION OF A VARIETAL COMPOSITE OF MAIZE FROM INTRODUCED FOREIGN VARIETIES
J. LECOUTE, (DM.023.0004)
OBJECTIVE: To offer a late white and yellow maize.
APPROACH: 22 well-adapted entries from the collection. Constitution of the composite by repeated polycrossing and choice of plants from the castrated lines. Three S1 tests in succession.
RESULT: Composite obtained. Start made on internal improvement of the composite by tests on the S1 generation.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0062, THE OBTAINING OF PURE LINES FROM FOUR LOCAL POPULATIONS OF WHITE MAIZE
J. LECOUTE, (DM.023.0005)
OBJECTIVE: The obtaining of hybrids of white maize.
APPROACH: Research work and the obtaining of varieties resistant to disease and to being beaten down.
RESULT: The obtaining of 400 fixed lines resistant to being beaten down and to diseases.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0063, FABRICATION OF STERILE-MALE STRAINS OF MAIZE ADAPTED TO DAHOMEY
J. LECOUTE, (DM.023.0006)
OBJECTIVE: To facilitate the production of hybrid seeds.
APPROACH: Introduction of foreign sterile-male strains. Crossing with local or foreign varieties.

RESULTS: Two sterile-male strains have shown good adaptation to Dahomey.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0064, INTRODUCTIONS AND TESTED COLLECTIONS OF FOREIGN VARIETIES OF MAIZE
J. LECOUTE, (DM.023.0007)
OBJECTIVE: Creation of quality hybrids having a high yield.
APPROACH: To have good testers for the local varieties. Research for the following characters: Resistance to being beaten down, short stems, resistance to diseases.
RESULT: Demonstration of four good testers with the local varieties and lines.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0065, PRODUCTION OF A COMPOSITE OF YELLOW MAIZE FROM INTRODUCTIONS FROM ABROAD
J. LECOUTE, (DM.023.0008)
OBJECTIVE: Creation of a yellow composite complementary to the local yellow variety already improved and extracted from the Agbo coastal maize population.
APPROACH: Introduction of 30 foreign varieties. Selection of 15 varieties after the preliminary tests against 'Agbo'. Yellow composite created, starting from these 15 varieties. Reciprocal recurrent selection between the introduced composite and the local yellow variety.
RESULT: At present 15 entries have been chosen out of the 30 which have been tested.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0066, CORRECTION OF DEFICIENCIES IN P2O5 R. WERTS, (DM.023.0009)
International network project - see DM.021.0005. (1.0005)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0067, CORRECTION OF DEFICIENCIES IN K2O R. WERTS, (DM.023.0010)
International network project - see DM.021.0006. (1.0006)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0068, MAINTENANCE OF P2O5 AND K2O FERTILITY R. WERTS, (DM.023.0011)
International network project - see DM.021.0007. (1.0007)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey

1.0069, INTRODUCTION OF FOREIGN VARIETIES OF MANIOC R. WERTS, (DM.023.0012)
OBJECTIVE: Adaptation of varieties having a high percentage of starch, resistant to mosaic disease in the conditions of South Dahomey.
APPROACH: Introduction, collection, comparative experiments.
RESULT: Production obviously inferior to that of the country of origin. Non-resistance to mosaic of the varieties said to be resistant. Decline in the level of starch.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Dahomey
1.0070, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE
G. MONTAGUT, (DM.141.0001)
Network project - see DM.140.0001. (1.0011)
SUPPORTED BY Inst. Fr. de Rech. Fruit. - Dahomey

1.0071, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE
G. MONTAGUT, (DM.142.0001)
Network project - see DM.140.0001. (1.0011)
SUPPORTED BY Inst. Fr. de Rech. Fruit. - Dahomey

1.0072, MINERAL NUTRITION OF HYBRID COCONUT PALMS
M.H. TCHIBOZO, (DM.062.0001)
Objective: To establish a mineral fertilization adapted to the hybrid material, generally much more productive than the Large Local (Grand Local) variety.
Approach: Factorial experiment of 4 times 4 times 2 design, studying N, K, Mg. The phosphate fertilization is studied by subdivision.
Results: The necessity for applying N and K has already been demonstrated on the large local coconut palm. The experiment on hybrids has been set up in 1972, no results to date.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0073, INFLUENCE OF IRRIGATION ON THE PRODUCTION OF THE HYBRID DWARF CROSSED WITH LARGE COCONUT PALMS
M.H. TCHIBOZO, (DM.062.0002)
Objective: To study the economic balance of the irrigation of hybrid coconut palms in Dahomey.
Approach: Practice of irrigation from a well-point which takes up water directly from the ground water-table. This technique has been established for the irrigation of the seedling fields.
Observations on growth, then observations of the production of hybrids with and without irrigation.
Results: Irrigation has a spectacular effect on growth. The results obtained to date on Dwarfs are remarkable, but cannot be generalized for the hybrids of Dwarfs.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0074, EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM)
M.H. TCHIBOZO, (DM.062.0003)
Objective: Evaluation of the losses (in copra/hectare) caused by this acrid. Reduction of these losses by chemical treatment.
Approach: Study of the activity of a large number of special preparations. Activity of the different concentrations - frequencies of the treatments.
Results: The losses are of the order of 8 to 10 percent. Two proprietary commercial preparations, Nuvacon and Merestan have a very good efficacy against Aceria. The studies are being continued to define the optimal dosage and the best adapted frequencies. An estimate of the profitability will be drawn up.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0075, STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM
M. OLLAGNIER, (DM.061.0001)
Objective: To determine the techniques of cultivation that will enable a better nutrition in water during the dry period. To study irrigation in a palm plantation.
Results: The requirements in water of the palm are close on 5 mm/day. In the conditions of severe moisture deficit in Dahomey: the bare soil with castration enables more rapid growth of the young plant and allows the young tree to be brought into production a year earlier. The potassium nutrition is better on bare soil, this being correlated with a better uptake of moisture. The studies on the effect of the plant cover and of the bare soil are being pursued. The slow irrigation is in the course of being applied.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0076, REGENERATION OF THE SOILS AND FERTILIZATION IN REPLANTATION
R.O. OCHS, (DM.061.0002)
Objective: To improve the organic level, the structure of the soil, the mineral nutrition, and to observe the factors positively influencing nutrition and yields of crops.
Approach: Regeneration experiments: by different cultivated plants: Pueraria javanica, Pennisetum purpureum, Stylosanthes gracilis - Brachiaria ruziensis (ploughed in or left growing); or forage plants: Brachiaria - Stylosanthes (grazed as pastures or not grazed). Experiments on types of fertilization: inspection of state of nutrition by foliar diagnosis, measurements and inspection of the yields.
First Results: No conclusions on the interest of regeneration (experiment too recent). Pennisetum purpureum and Stylosanthes without any results of immediate interest. The nitrogenous fertil-
DAHOMEY

Izer treatments have a favourable effect on the development of young plants, without repercussion on production. Positive effect of applications of K on the (K) content (of the plants) and very favourable effect on production.

High rates of application are of no advantage. K limits the adsorption of Mg.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0077, STUDY OF THE INFLUENCE OF THE ANIONS SO₄ AND Cl
M. OLLAGNIER, (DM.061.0003)

Objective: Study of the assimilation of potassium according to the potassic fertilizer employed and the contents of SO₄ and of Cl in the soils.

Approach: 2 experiments planted up on two plantation cooperatives, comparing applications of potassium chloride or of potassium sulphate on bare soil and on soil under a covering. Inspection of nutrition by foliar diagnosis. Measurement of growth, then inspection of production.

Results: The potassium sulphate fertilizer involves a decrease in the chloride content of the foliar tissue. Up to now, the growth measurements have not given any significant differences between the two treatments.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0078, FERTILIZATION OF THE OIL PALM IN FERRALYTIC SOILS ON "CONTINENTAL TERMINAL" SOILS ("TERRES DE BARRE")
M. OLLAGNIER, (DM.061.0004)

Objective: To study the reactions of the oil palm tree to the applications of fertilizer as single and combined applications. To determine the interactions between elements and forms of application, the equilibriums of fertilization and the economical rates of application. Effects of the fractionation of applications.

Approach: 12 experiments and field trials. Observations made: measurements of growth of young plants, foliar diagnosis, productions (number of racemes and their mean weight).

Results: Provisional: Nitrogen is of value to growth of the young plant. Interaction on assimilation of phosphorus - Null or depressive effect on yield. Potassium: raising of the contents. Favourable effects of medium rates of application upon development. Distinct antagonism of K on the absorption of Mg. The absorption of N and of P and particularly that of K is related to the (recorded) rainfall (and to the useful sunlight). In the conditions of Dahomey, high rates of application of K have not been evaluated. The study is being continued, in particular on the form of potassic fertilization.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - France

1.0079, STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM
M. OLLAGNIER, (DM.061.0005)

Objective: To gain better knowledge of the characters of resistance or adaptation to drought of the oil palm tree and to select lines adapted to the zones with a severe moisture deficit.

Approach: The studies carried out are of three orders: 1) Field observations - Morphological, anatomical and physiological characters in relation to behaviour. They allow, in accordance with criteria of damage, a choice of planting material having distinct behaviour. 2) Establishment of tests for resistance to drought: Osmotic tests for germination - tests of root suction - of liberation of catalase or of proline - of heat resistance - of stability of chloro-phyll. Tests on adult trees. 3) Application of the tests for the selection of resistant crossings.

Results: Elimination of the osmotic test for germination; continuance of the test of root suction on crossings of known behaviour. The test of heat resistance on crossings descended from planted lines gives results in agreement with the classification of these lines by origin. The test of liberation of catalase has been demonstrated on foliar tissue placed in conditions of drought.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - France
GAMBIA

YUNDUM EXPERIMENTAL STATION
P.O. Box, Bathurst

2.0001, IMPROVEMENT OF SORGHUM, MILLET AND MAIZE PRODUCTION
I.R. HANCOCK, (GA.024.0001)

Objective: To increase yields whilst maintaining adaptability and grain quality: selection for early maturity.

Approach: Chiefly through selection of local and introduced varieties; fertilizers and relevant cultural methods (e.g. spacing).

Progress: Some introduced cultivars ripening in the rains are unadapted but a few are very promising. An NP fertilizer compound (low rate of application) and farmyard manure tentatively recommended pending further fertilizer tests.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0002, COTTON IMPROVEMENT
I.R. HANCOCK, (GA.024.0002)

Objective: To raise the productivity and quality of cotton.

Approach: Introduction and evaluation of varieties, insecticidal fertilizer and cultural trials with statistically designed experiments at Yundum and simple verification trials in main cotton areas 250 miles eastward.

Progress: Variety Allen 333 - 57 successfully grown commercially, and seem to be replaced by BJA 592; spraying of D.D.T. and Carbaryl has given a good degree of pest control; lint quality acceptable for export.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0003, POTATO (SOLANUM TUBEROsum) BREEDING PROJECT
T.H. BANNISTER, (GA.024.0003)

Objective: To isolate from true seedlings, types of Irish potatoes best suited to local conditions.

Approach: The seedlings will be field-planted and screened for general adaptability and yield potential to select eventually the best clone(s).

Progress: The project is in its first year.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0004, ONION IMPROVEMENT
T.H. BANNISTER, (GA.024.0004)

Objective: To select high yielding short day onion varieties with good storage quality.

Approach: Selection within introduced varieties under optimum cultural conditions; storage tests. Fertilizer trials planned.

Progress: From 17 varieties, the following have been provisionally selected: Texas Grano (poor storage quality), Bombay Red, Tropicana (medium keepers) Golden Creole and Red Creole (low yielders but good keepers).

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0005, GROUNDNUT IMPROVEMENT PROGRAMME
I.R. HANCOCK, (GA.024.0005)

Objective: To improve the yield and quality of groundnuts.

Approach: Variety trials (local and exotic CV), fertilizer and cultural trials with simple experiments on farmers' fields.

Progress: An introduced variety selected, cultural methods recommended, seed multiplied for distribution. Single superphosphate and seed dressing recommended. Emphasis is now on collecting and testing oil-type and confectionary cultivars, variety/fertilizer trials (including micronutrients), selecting for rosette resistance.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0006, VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING
T.H. BANNISTER, (GA.024.0006)

Objective: Selection of high yielding tomato, French beans, and carrot varieties suitable for canning or freezing, to reduce imports and meet local demand from July - December when fresh temperate vegetables are not readily grown due to climatic factors.

Approach: Initially, evaluation of varieties and freezing or canning tests, followed by spacing and fertilizer trials.

Progress: In 1971/72 small samples of French beans and carrots were successfully blast frozen. Tomato canning tests in 1973 are planned. Nematode infestation would be a serious problem with tomato growing-resistant varieties and rotations would suppress serious build-ups.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0007, A STUDY OF THE ECOLOGY, BIOLOGY, & CONTROL OF THE GROUNDNUT SEED BEETLE
J.A. CONWAY, (GA.024.0007)

Objective: Control of the groundnut seed beetle (Caryedon serratus (OL)).

Approach: Evaluation of existing chemical control techniques as recommended by Department for seed and trade storage. Comparison of alternative control techniques and materials. Study of the origin, extent and development of infestation in seed and trade
GAMBIA

storage. Identification of primary host species in Gambian flora and determination of infestation sequence relative to the groundnut harvest.

Progress: Existing recommendations found wanting, new techniques and materials suggested. New biological information changes emphasis of control methods. Primary host work indicates possibility of biological rather than chemical approach.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia

2.0008, CITRUS ROOTSTOCK TRIAL
T.H. BANNISTER, (GA.024.0008)
Objective: To select the most suitable rootstock(s) for citrus with resistance to tristeza and gummosis.
Approach: Seed of virus free rootstocks imported and onto them will be budded orange scions from selected trees.
Progress: Rootstock seeds only recently sown.

SUPPORTED BY Ministry of Agr. & Nat. Resources - Gambia
ACARIA VETERINARY LABORATORY
P.O. Box M161, Accra

3.0001, POULTRY DISEASE INVESTIGATION
J.D. CORKISH, (GH.211.0001)

Objective: Diagnosis of poultry diseases.
Approach: Examination of post mortem material using bacteriological, serological, histological and parasitological aids where necessary. Field visits and examination of clinical cases where necessary.
Progress: Majority of poultry diseases stem from inadequate attention to husbandry and feed deficiencies.

SUPPORTED BY Ministry of Agr. - Accra, Ghana

AGRICULTURAL RESEARCH STATION
Kpong
P.O. Box 9, Kpong

3.0002, INTRODUCTION AND SELECTION OF NEW RICE VARIETIES
A.N. ARYEETEY, (GH.324.0001)

Objective: To identify improved rice varieties suitable for mechanised production under irrigated and upland conditions and to supply pure seed of the best (recommended) varieties to the Seed Multiplication Unit of the Ministry of Agriculture and farmers.

Approach: Improved rice varieties are obtained from other countries (mainly tropical) and their performance evaluated in observation plots and replicated variety trials at Kpong Station. With the cooperation of the Ministry of Agriculture, promising varieties from the trials are tested further in the various rice growing districts. Based on the performance of the varieties in the district trials, the best are then recommended for production by farmers.

Progress: Among varieties which have been recommended under this project and are being grown by farmers are: (1) SML Alupi, SML Tapuripa, IR 5 and IR 20 - for production under irrigation and in valleys which get flooded during the rainy season. (2) Palawan, IR 5 and IR 20 - for upland conditions in northern Ghana.

SUPPORTED BY University of Ghana - Accra

3.0003, FERTILISER REQUIREMENTS OF IRRIGATED RICE ON THE BLACK SOILS, ACCRA PLAINS
E.J. KHAN, (GH.324.0002)

Objective: Recommendations for efficient use of fertilisers in irrigated rice on the black soils of the Accra Plains.
Approach: Statistically designed field experiments, direct seeded rice, supporting laboratory studies as desirable.
Progress: After 7 years of continuous studies, 2 crops each year, the following results have been obtained: 1. In combination with P at a rate of 23 kg P/ha. there has been a linear response to N in the form of ammonium sulphate under annual double-cropping continuously. 2. There is no response to K fertilisers. 3. There is no significant difference among sources of N in the form of sulphate of ammonia, urea, and di-ammonium phosphate. 4. Split application of N, half at planting and half at booting has given significantly increased yields. 5. Sulphur-coated urea is now under trial, and studies with zinc and iron will be started in 1973.

SUPPORTED BY University of Ghana - Accra

3.0004, CONTROL OF WEEDS IN RICE
A.N. ARYEETEY, (GH.324.0003)

Objective: To find effective herbicides for use in controlling weeds in irrigated and upland rice.
Approach: Samples of herbicides are obtained from manufacturers, their agents and from rice research organizations (e.g. IRRI). Trials are conducted with different rates of the herbicides to determine: (1) Effectiveness in weed control. (2) Harmful effects on rice plants.
Progress: Mixtures of propanil and Machete (CP 53619), applied as a post-emergence treatment, have consistently given good weed control under both upland and irrigated conditions. Propanil, applied alone has been effective under irrigated conditions but unsatisfactory in upland rice. Fluorodifen (Preforan) has given good results in upland rice.

SUPPORTED BY University of Ghana - Accra

3.0005, COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS
E.J. KHAN, (GH.324.0004)

Objective: Recommendations on best variety, best planting date, fertiliser practice, water requirements, weed control, insect control, spacing.
Approach: Statistically designed field experiments, supporting foliage and soil analyses.
Progress: 1. Ten varieties are being finally tested from an original number of 28. 2. The highest yields are obtained when cotton is planted between the last week of July and the first week of August at Kpong, but irrigation is necessary. 3. Highest yields have been obtained with NPK fertilisers at 40, 50 and 30 kg/ha.,
but as N seems to be the most important, further investigations are in progress. There is no difference between sulphate of ammonia, urea and di-ammonium phosphate as sources of N. 4. Highest yields have been obtained by maintaining the soil moisture regime at 35% available moisture. 5. No single herbicide has given significantly better yields than handweeding, but a mixture of cotoran and preforan, and CP 53619 alone have given as good results as handweeding. 6. Endrin/DDT, Sevin/DDT, Toxaphene/DDT mixtures gave best results in insect control. 7. Spacing results will be available by year-end.

SUPPORTED BY University of Ghana - Accra

3.0006, SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS

Y. TWENEBOAH, (GH.324.0005)

OBJECTIVES: Recommendations on best short duration, mid-season, and late duration varieties, fertiliser requirements, weed control, spacing and planting material, seed treatment.

APPROACH: Statistically designed field experiments, soil and plant analyses, juice analyses.

PROGRESS: 1. Best yielding varieties - CP 48-103, NCo 10 (short duration); PR 980 and CO 453 (mid-season); CO 419, Co 349 and B 41227 (late varieties). 2. No significant difference between sulphate of ammonia and urea as N source; split application of N (half at planting, and half at earthing-up) recommended. N,P,K application at 100 kg N, 50 kg P and 80 kg K/ha recommended. 3. Bladex, Simazine alone and Simazine plus Lasso have given best weed control. 4. Planting ridges 0.9 m apart are better 1.2 m or 1.5 m apart. Sett planting has not proven superior to whole stalk planting. Sett treatment has not proven superior to untreated sets at this stage.

SUPPORTED BY University of Ghana - Accra

3.0007, VARIETAL IMPROVEMENT OF COWPEA

A.N. ARYEETEY, (GH.324.0006)

OBJECTIVE: To obtain high yielding, even-maturing and disease-resistant varieties of cowpea.

APPROACH: The following methods are being used: 1) Trial of promising varieties from the variety collection. This collection has been obtained from both local and foreign sources. 2. Breeding (by hybridisation and selection) to evolve new varieties. Genetic studies of agronomic characters are made, if such studies are necessary for the attainment of particular breeding objectives.

PROGRESS: Some varieties (from the variety collection) have given high yields of over 1,700 kg/ha in the variety trials. One of the high yielding varieties, Caroni, has been given yields of 800 to over 1000 kg/ha of dry grain in large scale plantings, and seed of this variety has been distributed to farmers.

The inheritance of grain yield components and their correlation with yield has been studied.

SUPPORTED BY University of Ghana - Accra

3.0008, WEED CONTROL IN COWPEA

A.N. ARYEETEY, (GH.324.0007)

OBJECTIVE: To find effective herbicides for use in controlling weeds in cowpea.

APPROACH: Samples of herbicides are obtained from manufacturers and their agents and tested to determine: 1) Effectiveness in weed control. 2) Harmful effects on cowpea plants.

PROGRESS: Only a limited range of herbicides have been tested, and of these trifluralin (1 kg/ha), fluorodifen (3-4 kg/ha) and 17623 RP (0.75 kg/ha) were the most promising.

SUPPORTED BY University of Ghana - Accra

AGRICULTURAL RESEARCH STATION

NUNGUA

P.O. Box 38, Legon

3.0011, DAIRY CROSSBREEDING IN CATTLE

D.M. BAFIYEBOA, (GH.326.0001)

No summary has been provided to the Smithsonian Science Information Exchange.

SUPPORTED BY University of Ghana - Accra

3.0012, CAUSES OF MASTITIS IN DAIRY CATTLE AT AGRICULTURAL RESEARCH STATION

D.M. BAFIYEBOA, (GH.326.0002)

No summary has been provided to the Smithsonian Science Information Exchange.

SUPPORTED BY University of Ghana - Accra

3.0013, STUDY OF SYSTEMS OF MANAGEMENT OF POULTRY INCLUDING DUCKS AND TURKEYS

D.M. BAFIYEBOA, (GH.326.0003)

No summary has been provided to the Smithsonian Science Information Exchange.

SUPPORTED BY University of Ghana - Accra
3.0014, RATE OF GAIN OF CROSSBREED CATTLE ON NATIVE PASTURE AND SUPPLEMENTED FEED
D.M. BAFIYEBOA, (GH.326.0004)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0015, NUTRITIONAL STUDIES WITH PIGS USING DIETS CONTAINING MAINLY LOCALLY PRODUCED FEED STUFFS
D.M. BAFIYEBOA, (GH.326.0005)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0016, THE PRODUCTIVITY OF IRRIGATED PASTURES
D.M. BAFIYEBOA, (GH.326.0006)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0017, CONTROL OF SKIN DISEASES OF FARM ANIMALS
D.M. BAFIYEBOA, (GH.326.0007)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0018, PRODUCTION OF SORGHUM AS A GRAIN AND FODDER CROP FOR LIVESTOCK
D.M. BAFIYEBOA, (GH.326.0008)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0019, STUDIES WITH THE SMALL RUMINANTS
D.M. BAFIYEBOA, (GH.326.0009)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0020, FIELD TRIALS OF SOYA BEAN PRODUCTION
UNKNOWN, (GH.326.0010)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0021, TILLAGE SYSTEMS FOR TROPICAL AGRICULTURE
UNKNOWN, (GH.326.0011)

SUPPORTED BY University of Ghana - Accra

No summary has been provided to the Smithsonian Science Information Exchange.

3.0022, GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION
A. TETTEH, (GH.020.0001)

Objective: To select high seed-producing lines of species for bulking into synthetic varieties and multiplying seeds of higher producing varieties to make improved seeds available to farmers.

Approach: (a) Selection of ecotypes, (b) Selfing (where necessary), (c) Polycross, (d) Assessment of lines, (e) Bulking of superior lines, (f) Synthetics.

Progress: (a) The synthetic seed production of Andropogon gayanus has reached the Polycross stage this year (1973); (b) Exotic varieties of Centrosema pubescens have been multiplied under supervision for seed production (Foundation Seeds); (c) Open-pollinated varieties of the following local grass species have been isolated: (1) Andropogon gayanus, Kunth, (2) Panicum maximum, Jacq., (3) Setaria sphacelata; (d) Digitaria decumbens, Stent. has been multiplied from introduced variety for distribution to farmers.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0023, NUTRITIVE VALUE OF DIGITARIA DECUMBENS AND CYNODON PLECTOSTACHYUS IN ADMIXTURE WITH CENTROSEMA PUBESCENS
M.K. ANTWI, (GH.020.0002)

Objective: The fundamental objective is to gather information on the feeding value of the pasture species concerned and the possible application of the results to animal production programmes.

Approach: The project layout is a randomised block design of four treatments per block and each treatment (on one acre plot) is replicated four times. Measurements will include: (1) Herbage dry matter and production and botanical composition; (2) Proximate analysis; (3) Herbage dry matter/organic matter intake; (4) Herbage dry matter/organic matter digestibility; (5) Efficiency of utilization liveweight responses and other productive characteristics.

Progress: Preliminary field work is completed. Pastures are now established and fenced in. Grazing and pasture sampling for the parameters above will commence in April/May, 1973.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0024, IMMUNE RESPONSE TO NEWCASTLE DISEASE VACCINES
B.L. NUTOR, (GH.020.0003)

Objective: Evaluation of Newcastle disease vaccines.

Approach: Chickens were vaccinated as recommended by the Division of Veterinary Services (i.e. at the ages of 1, 4, and 16 weeks). Haemagglutination inhibition test was used to determine the antibody response to the vaccinations.

Results: High material antibody in the 7 day-old chicks inhibited immune response. Revaccination at the age of 4 weeks resulted in secondary antibody response but this was short-lived. Revaccination at the age of 16 weeks resulted in high antibody response which persisted for a long time.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0025, PRODUCTIVITY OF GRASS/LEGUME PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES

ANIMAL RESEARCH INSTITUTE
P.O. Box 20, Achimota

GHANA

15
GHANA

A. TETTEH, (GH.020.0004)

Objective: To isolate suitable and productive grass/legume pasture to support a viable livestock production.

Approach: Field plot technique of randomization and statistical analysis of the results.

Progress: Some grass/legume mixtures were higher yielding in dry matter than the pure stands of either the grass or the legume. Specifically these were Andropogon/Centrosema, Digitaria/Centrosema. Work on this is still in progress.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0026, DRY MATTER YIELD ASSESSMENT OF LOCAL AND EXOTIC GRASS SPECIES

A. TETTEH, (GH.020.0005)

Objective: To investigate the relative dry matter productivity of native and local grasses under collection with a view to studying the carrying capacity of the grasses in relation to livestock production.

Approach: Field plot techniques of randomization and statistical analysis of the results.

Progress: The local species proved much more productive than the exotic species compared to them. Work is still progressing on this project.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0027, HUMIDITY STUDIES ON HARD TICKS

V. AMMAHATTOH, (GH.020.0006)

The investigation into the effect of different relative humidities on the hatchability of the eggs of gravid females of cattle ticks, especially females of Amblyomma variegatum (Fab, 1794) at a constant temperature of 30 degrees C was carried out in order to find out the conditions which favour hatching of the ixodid eggs.

Several batches (each consisting of 50 eggs) were subjected to the following relative humidities, namely, 35 percent, 40 percent, 45 percent and 50 percent respectively, at a constant temperature of 30 degrees C, for 3 months. After this period of treatment the eggs did not hatch. They were then transferred to 100 percent RH and kept again at 30 degrees C for another period of 3 months. The eggs still failed to hatch. It appeared therefore that the power of hatchability of the eggs of the ixodid female tick, as exemplified by Amblyomma variegatum, was permanently destroyed in 84 days after continuous treatment with 35 percent, 40 percent, 45 percent and 50 percent relative humidities at a constant temperature of 30 degrees C.

Collections of adult ticks were made once weekly from local breeds of cattle consisting of West Africa Shorthorn, White Fulani, Sanga- Sokoto and N'dama. The cattle belonged to private cattle farmers, and they were herded in native kraals on the Accra Plains (Burma Camp, Frafraha and Lashibi).

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0028, TICK SURVEY ON SELECTED AREAS ON THE ACCRA PLAINS

V. AMMAHATTOH, (GH.020.0007)

Collections of adult ticks were made once weekly from local breeds of cattle consisting of West Africa Shorthorn, White Fulani, Sanga- Sokoto and N'dama. The cattle belonged to private cattle farmers, and they were herded in native kraals on the Accra Plains (Burma Camp, Frafraha and Lashibi).

The aim of the survey was to determine the presence and incidence of the tick species occurring on the cattle herded in the areas selected.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0029, HELMINTH PARASITES OF PIGS IN GHANA

D. SAPONG, (GH.020.0008)

Objective: to map out the helminth parasites of pigs in Ghana (so that anybody rearing pigs in any part of the country can know which parasites are likely to infect the animals and take the appropriate precautionary measures).

Method: the various organs of pigs slaughtered at the Accra slaughter house have been thoroughly examined for worms. The areas where the pigs came from and the worms found in them have been recorded. This work will be extended by visiting the regions and examining pigs for worms. It is hoped that by the end of the work, the distribution pattern of the worms will have been made.

Progress: From the survey carried out at the Accra slaughter house the following worms have been found: A) Cestoda: Cysticercus cellulosae: in the muscles of body - cheek, tongue, rib, heart, diaphragm and thigh. B) Nematoda: Ascaris Lumbricoides - in the small intestine; Oesophagostomum dentatum - in the large intestine and caecum; Globocephalus spp. - in the small intestine; Metastomylus spp. - in the lungs; Stephanurus dentatus - in the kidneys; Aascorps strongylina - in the stomach; Gnaithostoma spp. - in the stomach; Thysocephalus sexalatus - in the stomach and small intestine; Trichurus suis - in the caecum.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0030, THE EFFECT OF LEVEL OF WHEAT BRAN ON NUTRIENT METABOLISM BY PIGS

D.O. ANDAH, (GH.020.0009)

Objective: Assessment of the extent to which the level of local wheat bran (wheaten and wheat bran) in the diet affects the digestibility of other nutrients in the diet.

Approach: Randomized block design with 6 treatments (0, 10, 20, 30, 40 and 50 percent wheat bran in diets). Chemical analysis on samples of total faecal collections.

Progress: Analyses of collection from two completed replicates are very inconsistent. The project has been suspended temporarily due to local shortage of fish meal.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana
3.0031, THE COMPARATIVE PERFORMANCE OF PIGS FED DIETS CONTAINING DIFFERENT LEVELS OF WHEAT BRAN

D.O. ANDAH, (GH.020.0010)

Objective: Effect of feeds containing different levels of local wheat bran (wheat and wheat bran) on live weight performance and carcass quality of porkers.

Approach: 6 times 2 factorial design (6 levels of wheat bran and two sexes). Individual feeding of pigs.

Progress: Only the first two replicates were completed before fish meal shortage occurred. Data from these two replicates indicate absence of treatment effect on parameters. The project will be continued when fish meal becomes available.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0032, STUDIES ON IRON SUPPLEMENT FOR PIGLETS

D.O. ANDAH, (GH.020.0011)

Objective: Development of fortified laterite as a suitable iron supply for piglets.

Approach: 2 times 3 factorial (2 levels of vitamin; no iron administration, Fedextran injection and Laterite) parameters: Hb and growth rate.

Progress: There is indication that at 6 weeks, treatment has no effect on Hb levels, also growth rate was lowest for the control and greatest for the vitamin fortified laterite.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0033, LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR

E.W. AGUDU, (GH.020.0012)

Egg yolk colour is becoming a quality factor in Ghana. The main source of the yolk colour in Ghana are yellow corn, alfalfa meal and synthetic xanthophylls. Yellow corn is generally scarce; importation of alfalfa and synthetic xanthophyll materials often bring the problem of foreign exchange, and keeping quality of the materials due to long transportation periods.

The investigations will be useful in cutting down the importation of at least alfalfa meal.

The local leaves will be picked, dried artificially to about 40 degrees C. The meal produced will be fed for about 33 weeks to laying hens. Colour of the yolk of the eggs obtained will be assessed visually by standard visual techniques.

Total and pigmentsing xanthophyll content of cassava (manihot utilissum) and Madras Thorn (Pithecellobium dulce) have been determined. Feeding trials show that up to 5 percent of these leafmeals can be incorporated with layer diets for good yolk colour. T e leafmeals are also better sources of xanthophyll than some samples of imported alfalfa meal and synthetic xanthophyll.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0034, LOCAL FEED INGREDIENTS IN POULTRY RATIONS

E.W. AGUDU, (GH.020.0013)

Both imported mash and high protein concentrate are very popular in Ghana. Only a few farmers depend on locally compounded poultry diets. These imported diets might deteriorate in quality before reaching Ghana.

Two types of commercial diets are tested with locally compounded diet, using day old chicks in a randomized experiment. Growth rate, feed-gain and mortality are recorded at 4 and 8 weeks.

At both 4 and 8 weeks, chicks fed on the locally compounded diet gained highest weight and converted feed most efficiently. The lowest results were obtained from chicks on imported complete mash while the high-protein concentrate mixed with local corn gave results between the other two diets.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0035, FERMACTO 500 SUPPLEMENTATION TO LAYER DIETS

E.W. AGUDU, (GH.020.0014)

Fermacto 500, an unidentified growth factor (UGF) source, is a new product yet to be introduced into Ghana. Other such products are imported, some of which have no effect on production.

The economic value of Fermacto 500 will therefore be assessed in poultry feed in Ghana.

A control diet, Fermacto 500 at 0.05 and 0.10 percent and 2.5 percent fish meal diets are fed to groups of layers for 10 28-day periods and laying performance of the pullets is evaluated.

Results show that addition of Fermacto 500 and 2.5 percent fish meal separately to the control diet improved laying performance. The choice between local fish meal and Fermacto 500 should depend on the availability of the local fish meal, and ease with which Fermacto 500 could be imported.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0036, THE USE OF WHEAT BRAN IN POULTRY DIETS

E.W. AGUDU, (GH.020.0015)

Wheat bran (wheatmixture feed) is produced in large quantities in Ghana. Only a little quantity is used locally, while the bulk is exported and later on imported into Ghana in the form of high protein concentrate.

The investigations therefore will help to assess wheat bran requirements in local poultry feed production, thereby cutting down the cereals (especially maize) the staple foods, which are about 4-5 times as expensive as wheat bran.

Wheat bran up to 50 percent will be incorporated into a basal diet at the expense of maize, and will be fed replicates of chickens. Investigations will be conducted on chicks, broilers, growers and layers.

Preliminary results with broiler finishers and replacement growers where the diets fed were kept isonitrogenous, showed body weight decrease wheat bran.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0037, PROTEIN REQUIREMENT OF CHICKENS IN TROPICAL ENVIRONMENT - PROTEIN LEVEL FOR CHICKS

E.W. AGUDU, (GH.020.0016)

In the tropical environment, information is lacking on the protein requirements of fowl. Very often requirements based on temperature environment are used. The investigations here will test a wider range of protein levels below and above the conventional USA NRC protein level for chicks 0-8 weeks, and to find out the optimum requirement and to observe the effects, if any, of the starter protein levels on laying performance.

Five diets with protein levels of 24, 22, 20, 18 and 16 percent are fed to replicated groups of chicks to 6 weeks of age. From 6 to 20 weeks the chicks are fed on growing mash. At the layer stage, production records are kept for one year.

Chicks showed growth and feed efficiency response to increasing protein levels. No definite starter diet effect on laying
GHANA

performance was observed. The starting protein diet could be reduced to 16-18 percent protein.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0038, AN ECONOMIC ANALYSIS OF PRIVATE COMMERCIAL PIG FARMING IN THE ACCRA URBAN AREA

K. AMONGO, (GH.020.0017)

Objective: 1) To throw some light on the costs and returns of the enterprise and help determine the chief economic factors which influence profit. 2) To stimulate interest in the keeping of accounts and records without which correct decision-making is virtually impossible.

Approach: This is a production survey aimed at stressing the importance of an economic approach to farming. Data is being collected from farms through direct observation and measurement. These farms are situated at reasonable distances from the Institute. Special record sheets have been designed in four different colours for easy identification, and at regular intervals the information sheets, duly completed by the farmers, are collected for analysis.

Progress: Background information which was collected from the farms have already been published. The physical and financial information for the first year are now being analysed and it is hoped that such data will be used in planning pig farms.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

3.0039, THE FEEDING OF WHEAT BRAN TO CATTLE

(SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE)

K. OWUSUDOMFEH, (GH.020.0018)

Objective: (1) To evaluate the performance of mature cattle (bought from the neighbouring countries for our slaughter houses) finished on wheat bran with bagasse supplementation. (2) Effect of different levels of bagasse on wheat bran utilization.

Approach: The animals were divided into six groups of 14 bullocks. The control group was on mixed pastures of Synodon plectostachus, Digitaria decumbens, Panicum maximum and Andropogon gayanus. The other groups were fed wheat bran and bagasse ad libitum as shown: Group 1; 100%/0% Wheat Bran-Bagasse; Group 2; 90%/10% Wheat Bran-Bagasse; Group 3; 80%/20% Wheat Bran-Bagasse; Group 4; 70%/30% Wheat Bran-Bagasse; Group 5; 60%/40% Wheat Bran-Bagasse; Group 6; grazing on Bagasse only.

Progress: The investigation is already completed. Feed intake values of wheat bran tended to increase with increasing percentage of bagasse in the diet. A level of at least 20% bagasse should be included in the diet. The investigation also showed that it might not be economical to fatten the mature animals from the neighbouring countries.

SUPPORTED BY Animal Research Inst. - Achimota, Ghana

ANYINASI AGRICULTURAL EXPERIMENTAL STATION

P.O. Box 10, Anyinasi, Nsima

3.0040, COCONUT FERTILIZER TRIAL (NPK MG)

E.D. ARKURST, (GH.062.0001)

Objective: To study the effects of the application of NPK Mg fertilizer on coconut palms planted under 2 methods of establishing plantations.

Approach: 2 x 2 x 2 x 2 NPK Factorial. Half of the area carrying on replication was burnt and the other half unburnt. 32 plots each with 13 palms.

Progress: Yield of palms were as follows, 1963-1969; burnt plots 4,437; unburnt plots 8,947; Total average weights of fresh kernel were: burnt plots 2,860.48 lbs; unburnt 3,521.54 lbs.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0041, COCONUT FERTILIZER TRIAL NP (KMG)

E.D. ARKURST, (GH.062.0002)

Objective: To study the effects of the application of fertilizers on growth, flowering and kernel yield of palms.

Approach: Complete randomized block design with 8 treatments replicated 5 times. 8 trees per plot. Fertilizers used include urea, single super-phosphate, potash, magnesium sulphate.

Progress: Growth measurements are being recorded every three months.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0042, COCONUT SPACING TRIAL

E.D. ARKURST, (GH.062.0003)

Objective: To study the growth and yield of coconuts under the following planting spacings: 1. 20' x 20' - 140 trees/acre; 2. 28' x 28' - 70 trees/acre.

Approach: Each plot was planted up without any experimental design.

Progress: Yield of units for 8 years gives an average yield of nuts per year of 1,840 for planting at 20' x 20' and 1,940 nuts for 28' x 28'. The fronds of the closer planting are poorly formed and the nuts are smaller.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0043, COCONUT DEPTH OF PLANTING TRIAL

E.D. ARKURST, (GH.062.0004)

Objective: To study the relationships between depth of planting coconut seedlings and their subsequent growth and yield.

Approach: Randomised plots of three treatments with 3 replications. 60 palms per plot. Area - southwestern Ghana at two stations.

Progress: Growth measurements are being taken every three months.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0044, COCONUT INTERCROPPING TRIAL

E.D. ARKURST, (GH.062.0005)

Objective: To observe the effects of intercropping on the establishment of coconuts and to compare with natural bush and weed cover.

Approach: Randomised block of 3 treatments with three replications with 60 palms per plot. Treatments used were: 1. No intercrop; 2. Intercropping with food crops 1-2 meters away from
seedlings. 3. Intercrop planted at 5' radius from palm. Intercrops used are maize, groundnuts and cassava in succession.

Progress: In the 4th year of growth, palms intercropped looked thin and unhealthy, especially those in treatment. (2) Intercropping ceased in 1961. Yield of palms continues to be recorded.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0045, COCONUT AGE OF SEEDLING TRIAL
E.D. ARKURST, (GH.062.0006)

Objective: To study the relationship between ages of seedlings established, and growth, flowering and yield of coconuts.

Approach: Complete randomized layout with 4 treatments. Seedlings of 6, 13, 17 and 20 months were used, replicated 5 times. 9 palms per plot.

Progress: Growth measurements being taken every 3 months.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0046, RUBBER NP (KMG) FACTORIAL TRIAL
E.D. ARKURST, (GH.062.0007)

Objective: To study the response of new budded clones to fertilizers with regard to: (a) Rate of growth; (b) Yield; (c) Bark renewal.

Approach: Randomised block with 8 treatments in 4 replications. Each of 8 clones is replicated in each block and all clones appear in each block.

Progress: Clones RRIM 605, 600, Harbel I RRIM 623 appear to respond to fertilizer treatment best.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0047, RUBBER CLONE MUSEUM
E.D. ARKURST, (GH.062.0008)

Objective: To study the performance of all available clones in Ghana and to superimpose on these clones various tapping systems.

Progress: Growth measurements have been taken every three months by measuring the girth since 1963. The clones have reached tappable stage. Yield of later in the form of lumps of each line plot to be recorded.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0048, RUBBER STOCK/SCION RELATIONSHIP TRIAL
E.D. ARKURST, (GH.062.0009)

Objective: To study the compatibility of clones of 4 selected root stocks with those of unselected root stocks.

Approach: 5 x 3 Latin square. Each plot consists of 25 experimental trees, 8 of each of the clones budded on the same root stock.

Progress: Growth of all clones of root stocks TJir 1 x TJir I. TJi 1 x BDW and unselected has been vigorous, but laps soon TJir 1 x TJir 16 and TJir 1 x BDS.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0049, RUBBER CLONE TRIAL 1965 A AND 1965 B
E.D. ARKURST, (GH.062.0010)

Objective: To study the performance of old and new clones with regard to growth, latex yield and resistance to wind damage and diseases.

Approach: Randomised block replicated 5 times. In trial A there are 9 plots in a block of 50 trees. In trial B, 10 plots in a block of 48 trees per block. Area of experiment - southwest Ghana.

Progress: About 50 percent of trees planted in 1965 failed and were replanted in 1966.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0050, RUBBER INTERCROPPING EXPERIMENT
E.D. ARKURST, (GH.062.0011)

Objective: To study the effects of intercropping with food crops on the rate of growth and yield of rubber.

Approach: Trial A and B originally intercropped with plaintain and cocoyam respectively but they did not thrive. The intercrops were substituted with maize, groundnuts and cassava. Cassava was used to demonstrate to farmers against its use in rubber due to Fomes. Three treatments used as follows: 1) No intercrop; 2) Intercrop 6 ft from rubber; 3) Intercrop 2 - 4 ft from rubber.

Progress: Preliminary results indicated intercrop at 3' - 4' produced the best growth of rubber, possibly due to good effects of leguminous crop, which after harvest is ploughed in.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0051, RUBBER CLONAL SEEDLING FAMILY TRIAL
E.D. ARKURST, (GH.062.0012)

Objective: To study the performance of 4 clonal seedling families under single superphosphate application and its residual effect.

Approach: 4 x 4 Latin square. Plot size of 100 trees (4 lines of 25 trees each) with half plot fertilized.

Progress: After six years, growth measurements reveal that average girth of fertilized plants of all crosses is 17.22 inches and that of non-fertilized plants 16.97 inches. Percentage increase in girth of all crosses due to phosphorous application were: 20 - 30 percent in 1964; 13-15-21 percent in 1965; and 0.5 percent - 15.6 percent in 1966 when fertilizer application ceased.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0052, ROOTSTOCKS FOR LATE VALENCIA ORANGE
W.S. ABUTIATE, (GH.071.0001)

Objective: To determine the overall effects of each of five rootstocks (Rough lemon, Cleopatra mandarin, Sampson tangelo, Lake tangelo and Agego sweet orange) on the growth, disease resistance, yield and fruit quality of the late valencia crop.

Approach: Involves the laying down of a 5 x 5 Latin square trial at Asuansi using the five rootstocks. Growth measurements would comprise taking average tree height and scion girth measurements 6 inches above the union of all the varieties and assessing vigour and growth of each variety during the first five years of growth.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

ASUANSI SUBSTATION

3.0053, ROOTSTOCKS FOR LATE VALENCIA ORANGE
W.S. ABUTIATE, (GH.071.0001)

Objective: To determine the overall effects of each of five rootstocks (Rough lemon, Cleopatra mandarin, Sampson tangelo, Lake tangelo and Agego sweet orange) on the growth, disease resistance, yield and fruit quality of the late valencia crop.

Approach: Involves the laying down of a 5 x 5 Latin square trial at Asuansi using the five rootstocks. Growth measurements would comprise taking average tree height and scion girth measurements 6 inches above the union of all the varieties and assessing vigour and growth of each variety during the first five years of growth.
GHANA

Commencing from the first harvest, yield recording of each variety would be initiated and would continue annually for about 10 years. Fruit quality would be assessed in the 5th year of bearing and would comprise determinations on fruit size, rind texture and thickness, % juice content of fruit, acidity, T.S.S. and sugar/acid ratio.

Progress: Preliminary measurements have shown that Rough lemon grew fastest and the Agego sweet orange slowest among the stocks. During the analysis, Sampson tangelo was entered as a missing treatment because of poor establishment of this rockstock. Mean yields for four years (1967-70) for the other rootstocks have shown that Cleopatra mandarin gave the highest yield of 9 tons and Agego sweet orange the lowest yield of 6 tons per acre. Rough lemon and Lake tangelo yields were about the same.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

DEPARTMENT OF ANIMAL SCIENCE
P.O. Box 68, Legon, Accra

3.0053, SHEEP BREEDING
L.O. NGERE, (GH.322.0001)
Objective: To evolve a medium sized meat sheep.
Approach: Crossbreeding of the local ewe with the Black-headed Persian Ram.
Progress: The Nungua Blackhead sheep has been evolved.
SUPPORTED BY University of Ghana - Accra

3.0054, CROSSBREEDING FOR DAIRY PRODUCTION
L.O. NGERE, (GH.322.0002)
Objective: To develop a local dairy cow.
Approach: Crossbreeding of the Ndama, West African Shorthorn and Gudali with imported Gersey and Friesian semen.
Progress: F1, F2 and 3/4 Jersey crosses have been produced and their performance being studied.
SUPPORTED BY University of Ghana - Accra

3.0055, STUDIES INTO SKIN DISEASES OF FARM ANIMALS
E.N. OPPONG, (GH.322.0003)
Objective: To study the types, their etiology and treatment of skin diseases of farm animals.
Approach: Surveys, lab. studies and chemotherapeutic trials.
Progress: Streptothricosis, demodicosis, mycosis and besnoitiosis diagnosed. Treatment trials in progress.
SUPPORTED BY University of Ghana - Accra

3.0056, IMMUNOLOGICAL STUDIES INTO ANIMAL TRYPANOSOMIASIS
R.K. ASSOKU, (GH.322.0004)
Objective: To study the serology and haematology of trypanosomiasis infection in the laboratory.
Approach: Use of laboratory rats and mice.
SUPPORTED BY University of Ghana - Accra

3.0057, THE USE OF BYPRODUCTS OF CASSAVA PROCESSING FOR LIVESTOCK FEEDING
R.E. LARSEN, (GH.322.0005)
Objective: To use the byproducts of Cassava processing for animal feeds.
Approach: Analysis of various cassava byproducts, acceptability trials, feeding trials and incorporation into various rations.
SUPPORTED BY University of Ghana - Accra

3.0058, STUDIES OF THE GUINEA FOWL (NUMIDIA MELEAGRIS)
G.E. WILLIAMS, (GH.322.0006)
Objective: To find the nutritive requirements of the local guinea fowl, and study its biology.
Approach: Laboratory studies.
Progress: Sexing of birds within two days of hatching.
SUPPORTED BY University of Ghana - Accra

3.0059, INTERCROPPING OF SHEEP UNDER PLANTATION CROPS
F.K. FIANYU, (GH.322.0007)
Objective: Intercropping of sheep under plantation crops.
Approach: Sheep under mango, citrus, avocado and oil palm plantation.
SUPPORTED BY University of Ghana - Accra

DEPARTMENT OF BOTANY
P.O. Box 71, Legon, Accra

3.0060, GENETICS OF COWPEA - VIGNA UNICULATA
E. LAING, (GH.342.0001)
Objective: Genetics (formal, cytogenetic, quantitative) of cowpea, especially of features of agricultural importance.
Approach: Hybridization, cytology, electrophoresis (later, mutagenesis).
Progress: Formal genetics of qualitative characters established in some local varieties; number of effective factors for components of yield established for some lines.
SUPPORTED BY University of Ghana - Accra

3.0061, GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOPORES OF PHYTOPHTHORA PALMIVORA
G.C. CLERK, (GH.342.0002)
Studies on germination of the sporangia and survival of the sporangia in both air and soil. Behaviour of zoospores produced during indirect germination of the sporangia extensively studied to define longevity of the motile phase and chemotaxis of the zoospores.
Zoospores were motile for 84 h. in distilled water at 17 degrees C. Motility time was reduced by non-optimal temperatures, high zoospore density, CaCl2, MgSO4.7H2O, glutamine, glucose, buffer solutions and by frequent contact of zoospores with solid surfaces. Zoospores were disintegrated at pH 2.2 - 5.0 and by 1.0 mM CuSO4 and FeCl2 and 1% peptone solutions. Velocity of
movement increased as temperature rose from 8 to 33 degrees C. Zoospores were attracted by cocoa pod extract, asparagine, glutamic acid, glycine, aspartic acid, glutamine, serine, threonine, fructose, glucose, maltose and sucrose. Sporangia formed zoospores at 10 to 34 degrees C with optimum at 22 degrees C but produced germ tubes at 30 and 34 degrees C only. Several amino acids and carbohydrates depressed zoospore formation at 22 degrees C, while some amino acids and carbohydrates could induce germination by germ tubes at 22 degrees C.

SUPPORTED BY University of Ghana - Accra

3.0062, SCREENING OF GHANAIAN PLANTS FOR ALLELOPATHIC SUBSTANCES
K.O. MENSAH, (GH.342.0003)
Objective: To test exudates from a wide range of plants for inhibitory substances, and their possible role in various ecological processes.
Approach: Exudates and leachates will be collected and tested for their inhibition of seed germination and growth of associated species.
Progress: Only three plants have been tested - Cycas circinaria, Typha sp. and Falbotiella gentii. These are principally preliminary trials and have not yielded much of results worth reporting. However, the study will be extended in due course to include other plants.

SUPPORTED BY University of Ghana - Accra

3.0063, ROOT ECOLOGY OF KHAYA IN GHANA
K.O. MENSAH, (GH.342.0004)
Objective: To study the morphology, anatomy and habits of the roots of Khaya, from seedling stages to mature plants, and relate these to their regeneration.
Approach: Root excavations; sampling of wood of roots after they have been drawn. Sample soil for analysis.
Progress: Pot studies of the seedlings have established marked differences in growth rates of roots; work is just starting on the morphology of mature trees; also their anatomy.

SUPPORTED BY University of Ghana - Accra

3.0064, THE ADAPTABILITY OF THEOBROMA CACAO SEEDLINGS TO HIGH LIGHT INTENSITY
D.U. OKALI, (GH.342.0005)
Objective: To determine if reported increases in yield of the cocoa plant in full daylight could possibly have increased photosynthesis by individual leaves as its basis.
Approach: Combination of growth analysis, measurements of leaf photosynthetic responses to increased lighting and comparisons of levels of activity of chlorophyll and photosynthetic enzymes in leaves of shade-grown and light-grown plants.
Progress: First growth analysis experiment completed; chlorophyll content and photosynthetic rates measured; data awaiting processing; follow-up experiment to begin shortly.

SUPPORTED BY University of Ghana - Accra

DEPARTMENT OF ZOOLOGY
P.O. Box 71, Legon, Accra

3.0065, ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA
W.Z. COKER, (GH.342.0001)
Objective: 1) Insect pests of cocoa have varied feeding patterns. Do these insects have identical digestive enzymes? 2) Can Mealy-Bug (Coccoidae) species be differentiated electrophoretically?
Approach: By use of acrylamide gel electrophoresis and staining for specific enzymes like esterases, various dehydrogenases, leucine aminopentidase and phosphatases.
Progress: 1) Bathycocelia thalassina differs from Distantiella theobroma and Sahlbergella singularis in having ADH and LDH - B. thalassina and S. singularis have cholinesterase, absent in D. theobroma. 2) Zymograms prepared for Pseudococcus njalens, P. citri, P. celtis and Ferrisiana virgata for several enzymes.

SUPPORTED BY University of Ghana - Accra

EJURA FIELD STATION
Ejura

3.0066, MANGO VARIETY MUSEUM
W.S. ABUTiate, (GH.072.0001)
Objective: To provide a collection of good mango cultivars and to assess their performance and quality under Ghana's climatic conditions.
Approach: Importation of certified budwood and budding or grafting same on the local mango as rootstock. The resulting plants would then be set in a museum. To assess growth, the scion girth six inches above the union and average tree height would be taken annually. The growth habit of the cultivars whether the canopy is compact, open and the branches erect or spreading would be assessed.
When the trees start bearing, the bearing habit of each cultivar in relation to the local mango would be determined. Yield would be determined by number and weight of fruit. The following criteria would be used to assess fruit quality; % of sugar and acidity of the juice; fresh colour and fibre content.
Progress: The following 14 cultivars have so far been assembled and planted out: Irwin, Elden, Ruby, Florigon, Zill, Sunset, Early Gold, Jacquelin, Palmer, Springfels, Keitt, Maden, Bombay Yellow, and Alphonso. Preliminary growth observation and second year yield results have shown that Sunset and Palmer are by far the most vigorous and prolific of the cultivars. All cultivars except Keitt mature their fruit as does the local in April/May. Keitt matures its fruits in about July/August.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0067, EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.072.0002)
Network project: See GH. 061.0046. (3.0172)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana
3.0068, EFFECTS OF FERTILIZER APPLICATION (NPk) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.072.0003)
Network project: See GH. 061.0047. (3.0173)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0069, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.072.0004)
Network project: See GH. 061.0048. (3.0174)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0070, DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE
S.Y. AMANQUAH, (GH.072.0005)
Network project: See GH. 061.0049. (3.0175)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0071, INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS
E.A. ADDISON, (GH.072.0006)
Network project: See GH. 061.0050. (3.0176)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0072, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA
S.Y. AMANQUAH, (GH.072.0007)
Network project: See GH. 061.0051. (3.0177)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0073, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS CAPSULARIS
S.Y. AMANQUAH, (GH.072.0008)
Network project: See GH. 061.0052. (3.0178)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0074, THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING
G. OKRAKUOFFEI, (GH.080.0002)
OBJECTIVE: 1. To rationalise traditional processing techniques and cost relationships; 2. Improvement of processing facilities; 3. Prolonging storage life of processed fish products.
APPROACH: 1. Selection of the most valuable types for smoking; 2. Identification of traditional fish processing characteristics; 3. Redesign of facilities by simple modification; 4. Development of new fish products, e.g. krupkuk, kippers and fermented fish; 5. Costing of processes.

3.0075, DEVELOPMENT OF WEANING FOODS FROM VEGETABLE PROTEIN SOURCES
J.M. KORDYLAS, (GH.080.0003)
OBJECTIVE: To produce high level protein mixtures for infant feeding at the following levels: (a) clinical treatment of Kwashiorkor; (b) malnourished children; (c) commercialised baby food.
APPROACH: Determine the nutritive value of two vegetable sources of protein - groundnut and agushie powders.
PROGRESS: NPU and PER studies (animal work) are being carried out to determine the biological values of these vegetable sources of protein before they are incorporated into various compounded formulae.
SUPPORTED BY Food Research Institute - Accra, Ghana

3.0076, PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES
C. DEGRAFTJOHNSON, (GH.080.0004)
OBJECTIVE: 1. To test the wine producing capabilities of selected local fruits and vegetables; 2. To check the effect of orthodox wine yeast on these local materials.
APPROACH: The sugar content of selected material is standardised; the material treated with baker's yeast (the yeast commonly available) and yeast nutrient added. Open fermentation allowed for 4-5 days.
PROGRESS: Oranges, pineapples and tomatoes were found suitable but alcohol content lower than normal due to the use of baker's yeast.
SUPPORTED BY Food Research Institute - Accra, Ghana

3.0077, THE CHEMICAL COMPOSITION OF COMMERCIAL IMPORTANT GHANAIAN FISHES
K.K. EYESON, (GH.080.0005)
OBJECTIVE: To provide basic information on the composition and nutritive value of the fish to serve as a standard for assessing the effect of handling and processing.
APPROACH: Proximate and mineral content.
PROGRESS: Seven spp. of fish have been analysed.
SUPPORTED BY Food Research Institute - Accra, Ghana

3.0078, THE DEVELOPMENT OF READY-TO-EAT CANNED GHANAIAN FOODS
J.B. AGUBRETUATA, (GH.080.0006)
OBJECTIVE: 1. To study the canning properties and conditions of selected Ghanaian food preparations. 2. To determine the canning process for best effect.
APPROACH: Comparison is being made between canning after cooking and the use of the canning process as well as some precooking and their effect on the final product.
PROGRESS: A number of stews and soups have been canned and are in storage for testing.
SUPPORTED BY Food Research Institute - Accra, Ghana
THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL

A. ANDAH, (GH.080.0007)

OBJECTIVE: To develop factory scale maize meal as raw material for making maize products and preparations.

APPROACH: 1. Isolation and culture of microbes occurring during fermentation; 2. Chemical changes during fermentation of maize meal; 3. Rationalization of dehydration process.

PROGRESS: Loss of flavour occurs on dehydration; determination of acids responsible for flavour.

SUPPORTED BY Food Research Institute - Accra, Ghana

FOOD COMPOSITION TABLES

K.K. EYESON, (GH.080.0008)

OBJECTIVE: To compile a table of basic chemical composition data, through chemical analyses, on raw and cooked local foods.

SUPPORTED BY Food Research Institute - Accra, Ghana

FOREST PRODUCTS RESEARCH INSTITUTE

P.O. Box 63, Kumasi

VEGETATIVE PROPAGATION

S.P. BRITWUM, (GH.100.0001)

Objectives: To develop techniques for propagating asexually valuable timber species in Ghana.

Approach: Attempting various methods of grafting, air-layering and rooting of cuttings and investigating the various factors affecting the success of grafts, rooting of cuttings and air-layers.

Progress: Various grafting methods have been tried. The forest method of budding has so far been found the most successful method of grafting many of the timber trees in Ghana. Rooting of cuttings and air-layering have been tried and found successful for some timber trees in Ghana.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

SELECTION OF PROVISIONAL PLUS TREES

S.P. BRITWUM, (GH.100.0002)

Objective: To select trees of outstanding phenotypes of valuable timber species - Terminalia ivorensis, Triplochiton scleroxylon and Cedrela odorata for breeding purposes. The main objective is to provide improved seeds for afforestation.

Approach: Cruising the virgin forests and plantations throughout the country to select the provisional plus trees.

Progress: Sixty provisional plus trees of the above named species have been selected.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

PROVENANCE TRIAL OF TEAK AND TERMINALIA IVORENSIS

S.P. BRITWUM, (GH.100.0003)

Objective: To determine the best seed sources for Teak and Terminalia ivorensis.

Approach: Collection of seeds of Teak and Terminalia ivorensis from different geographical areas. The seeds are sown and transplanted to the field. Information on growth characteristics are gathered to determine which seed source provides the most desirable trees.

Progress: The seeds for the trial have been collected and sown in the nursery. The trial is now in the nursery stage.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

ESTABLISHMENT OF CLONAL SEED ORCHARDS

S.P. BRITWUM, (GH.100.0004)

Objectives: To develop and supply superior seeds for afforestation.

Approach: Clones of plantation species - Cedrela odorata, Terminalia ivorensis and Triplochiton scleroxylon are obtained and these are used in the establishment of the orchards.

Progress: Eight acres of Cedrela odorata; 10 acres of Terminalia ivorensis and 10 acres of Triplochiton scleroxylon clonal seed orchards are under development.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

ESTABLISHMENT OF CLONE BANKS

S.P. BRITWUM, (GH.100.0005)

Objective: To centralize and prescribe selected provisional plus trees and to provide material for breeding purposes.

Approach: Scion materials are collected from provisional plus trees and then grafted on to rootstocks. The clones obtained are established in the bank.

Progress: A clone bank is being established near Kumasi. The bank so far has a total of 44 clones comprising of 23 Cedrela odorata, 16 Terminalia ivorensis, 7 Triplochiton scleroxylon, and one Afrormosia elata.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

TIMING OF TROPICAL SHELTERWOOD OPERATIONS

S.P. BRITWUM, (GH.100.0006)

Objective: To determine if the time of year of original canopy reduction is significant to success, using the standard T.S.S. method with the modification of pre-overwood removal.

Approach: Thirty-six plots grouped into 3 blocks of 12 plots have been established, each block constituting a replicate. Timber cutting, canopy opening and clearing treatments are carried out. Girth increment sample plots are established for increment and regeneration assessment by diagnostic sampling.

Progress: Treatments have been carried out in the 36 plots. Girth increment sample plots are yet to be established for assessment.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana
3.0087, TIMING OF POST-EXPLOITATION TREATMENTS AND THEIR EFFECTS ON REGENERATION, GROWTH AND INCREMENT
S.P. BRITWUM, (GH.100.0007)

Objective: To assess the "silvicultural condition" of the forest treated under the post-exploitation treatments which combines features of T.S.S. and selection treatments, but separated in time: the exploitation year and one year after exploitation.

Approach: Treatments composed of poisoning, timber cutting and cleaning are carried out after exploitation. Girth increment sample plots of area 2.5 acres are laid out after treatment and assessed by the "LD-method" of the diagnostic sampling technique.

Progress: Exploitation and the prescribed post-exploitation treatments have been carried out. Regeneration and girth increment plots have been established. Measurements are now being carried out periodically.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0088, THE SILVICULTURAL EFFECT OF INTENSIVE FELLING ENVISAGED IN FUTURE FELLING CYCLES ON FOREST BEING WORKED ON SELECTION BASIS
S.P. BRITWUM, (GH.100.0008)

Objective: a) To determine the silvicultural affect of intensive exploitation envisaged in future cycles, on forests being worked on selection basis. b) To determine the extent of exploitation damage to class I trees in the 5' - 9' girth class range.

Approach: An area of 200 acres is divided into 10 acre plots, and the whole area stock surveyed. After exploitation all 9'-plus and girth class I species and all 5'-plus and girth class II species are poisoned. Five post-exploitation treatments replicated four times in a randomized block design are carried out. Assessment plots of 2.5 acres are laid in each treatment plot and increment on sample trees measured once in two years.

Progress: The 10-acre treatment plots have been laid out and the 5 post-exploitation treatments have been carried out. The assessment plots of 2.5 acres are now being laid out.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0089, TENDING OF EMERGENT CROPS TREATED UNDER T.S.S. AND P.E.S. - ASCONYO RESEARCH CENTER
S.P. BRITWUM, (GH.100.0009)

Objective: To determine the effect of modified selection treatment on the rate of growth and survival of commercial timber crops, 15 plus years old, treated under the uniform system by the application of T.S.S. and P.E.S. techniques.

Approach: Compartments which have been treated under T.S.S. and P.E.S. are cut into strips and tending treatments are carried out in alternate strips. Periodic girth increment measurements are carried out on all commercial species in both the treated and control sample plots.

Progress: Tending treatments involving 100 percent timber cutting, cutting or poisoning all non-economic species, competing with class I or II species, cutting and poisoning non-class I species overshadowing class I species have been carried out. Girth increment sample plots have been established and measurements are carried out once in every two years.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0090, ASSESSMENT OF REGENERATION OF PERICOPSIS ELATA
S.P. BRITWUM, (GH.100.0010)

Objective: To trace the growth and survival of tagged seedlings of the species over a period of time to determine the factors which control the progress from the seedling to the established stage.

Approach: Assessment plots are established where regeneration of the species is profuse. Two treatments - clearing and no clearing - are carried out. Assessment involves height measurement of each tagged seedling. Notes on canopy density, survival/vigor of each seedling are kept.

Progress: The assessment plots have been established; height measurements of the tagged seedlings and collection of other data are being carried out every three months in the first 3 years and thereafter, twice yearly.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0091, ENRICHMENT PLANTING IN THE HIGH FOREST, USING INDIGENOUS SPECIES WHOSE RATES OF GROWTH HAVE BEEN SLOW UNDER NATURAL FOREST TREATMENTS
S.P. BRITWUM, (GH.100.0011)

Objective: To devise a technique for enrichment planting in the High Forest using slow growing indigenous species.

Approach: Site preparation treatments involving timber cutting and poisoning of non-economic species are carried out. Strip planting of Pericopsis elata, Entandrophragma spp. and Khaya ivorenensis are carried out 1 chain between strips and one-fourth chain between plants within strips.

Progress: An area of 10 acres has been strip planted with the above named species.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0092, STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA
S.K. ATUAHENE, (GH.100.0012)

Objective: Much work has been done on the extent of damage caused by ambrosia beetles to commercial logs in the forests of Ghana, but very little information exists on the actual composition and annual fluctuations of individual beetles in these forests.

Progress: Trapping experiments have revealed that most of the known tropical genera within the families Scolytidae and Platypodidae exist in the moist semi-deciduous forests and the rain forest vegetation of Ghana. Trapped beetles are being analyzed into Scolytid/Platypodid ratio, seasonal fluctuations of individual species, and the most abundant Scolytid/Platypodid species occurring within the various ecological situations.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0093, STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXPORT TIMBER SPECIES
S.K. ATUAHENE, (GH.100.0013)

The objectives are to study the biology, ecology and where possible, the control of insect pests that are known to be, or are potentially dangerous to plantations of indigenous species.
Progress: A country-wide survey of insect pests in all the important forest plantation areas has begun. The following insects have come out as serious pests: Phytophthora sp. on Chloropora excelsa (Weih) Bth. and Hk.f., Diclidophlebia estopi; Voutracek (Hemiptera; Pylidiidae) on Triplochiton scleroxylon K. Schum., Tridesmodes ramiculata Warr. (Lepidoptera: Thyridae) on Terminalia ivorensis A. Chev; and Hypsipyla sp. (Lepidoptera; Pyraliidae) on Mahogany.

Biological and ecological studies are being done on Diclidophlebia estopi.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0094, STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA
S.K. ATUAHENE, (GH.100.0014)

The objective is to find out and identify pests affecting the fruiting of indigenous forest trees, and where practicable, to control the infestation.

Progress: A complex of insect pests responsible for severe reduction in the quantity and quality of fruits of Triplochiton scleroxylon K. Schum and Terminalia ivorensis A. Chev. has been surveyed. The most important of these include Apuc ghanensis Voss; A. nithonomoides Voss; Nanophyes sp. and Auletobius kuntzeni III. The extent of damage caused by these insects is being studied on selected trees.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0095, SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS
J.E. BARNACLE, (GH.100.0015)

Objective: To determine (1) type, genera and species of borers present and conditions necessary for them to attack, (b) resistance of various local species to attack by one or all of borers.

Approach: Collection of boring animals from trap stakes and nearby wharf structures. Test specimens hung just below low tide at two sites on the coast and condition determined at 3 - 4 monthly intervals by x-ray and by subjective assessment.

Progress: After 2 years exposure, specimens being attacked by at least 2 Teredinid borers and 1 Pirlad borer. One crustacean and possibly a second crustacean present (in piling), but not attacking specimens. More trap stakes will be set using different assemblies to determine how all 4 borers can be induced to attack.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0096, DIFFUSION-IMPREGNATION OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS
F.F. AMPONG, (GH.100.0016)

Objective: To determine the effectiveness of the diffusion method of preservative treatment for the treatment of non-durable timber species for use in buildings under non-leaching conditions.

Approach: Sawn timber of non-durable species of various dimensions are dipped in a known concentration of the preservative, block stacked for periods dependant on sizes, dried and tested for the depths of penetration of the toxic components of the preservative.

Progress: Three non-durable species and the sapwood of a durable one mated by diffusion and found treatable by the method.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0097, EFFICACY OF PRESERVATIVES UNDER GHANAIAN CONDITIONS
J.E. BARNACLE, (GH.100.0017)

Objective: As a first step to obtain quickly an estimate of preservative performance in round wood in Ghana.

Approach: To find and examine poles in service for 20 years plus to obtain estimate of average life of properly treated poles. Comparison of these data with those for more recently treated poles failing prematurely will give indication of corrective measures necessary for improved future performance.

Progress: Inspection of more than 2,000 poles in Northern Savannah and secondary moist semi-deciduous zones now complete. Report being drafted.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0098, TESTING NEW SPECIES FOR USE AS RAIL SLEEPERS
J.E. BARNACLE, (GH.100.0018)

Objective: To increase the number of species that can be used as rail sleepers in Ghana.

Approach: To determine location and availability of species likely to be suitable for rail sleepers to get them cut, seasoned, treated and installed in service together with currently acceptable species. Emphasis will be on testing species rather than preservatives.

Progress: Suitable species have been nominated and agreement reached with forestry department and railways. Funds for purchase of some sleepers have been obtained. Preliminary discussions had with large sawmill regarding supply.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0099, FIELD TEST OF TREATED ROUND POSTS FOR FENCING
J.E. BARNACLE, (GH.100.0019)

Objective: To establish basic data on preservative treatment of suitable locally grown species and to demonstrate their suitability as fence posts.

Approach: To collect posts of species which have suitable characteristics and which can now or in the future be obtained in sufficient quantity for use as fence posts. To carry out treatment trials for determination of penetrability and any associated problems.

Progress: Tectona Grandis, Celtis spp., Gmelina arborea and Eucalyptus Naudiniana appear most likely species. Treatment problems with intermediate wood in teak, and frequently, unpredictable treated zone in posts of Celtis. Treatment of posts for field test proceeding.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0100, COMPOSTING OF SAWDUST
G. HOLOTA, (GH.100.0020)

There is abundance of unused sawdust in Ghana and at the same time agricultural activity is limited by the shortage of nutrients and organic substances in the soil.
GHANA

But introduction of untreated sawdust into soil is hazardous as the lack of nitrogen in sawdust causes nitrogen deficiency and deterioration in plants.

Aim of this project is to find the most suitable method for converting sawdust into soil fertilizer of high nutrient content and good soil-moisture-air relationship regulating properties.

Kinetics of degradation of 10 species of Ghanaian woods has been determined on lab size experiments.

Trials with 500 lb and 6 tons of sawdust on 4 species have been carried on. The quality of compost prepared in that way was proved by experimental plantation of tomato and corn plants by The Faculty of Horticultrue, University of Science and Technology, Kumasi. The results are very impressive.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0101, EDIBLE AND INDUSTRIAL GUMS
G. HOLOTA, (GH.100.0021)

There are many species of trees in Ghana which, due to wounding of bark or insect attack, produce exudates. These exudates, called gums, are soluble saccharides and their derivates. Gums are semisolid gelatine-like materials of polyionic nature. In appropriate solvent or swelling agent they produce highly viscous colloidal solutions. Due to these properties gums are widely used in confectionary, perfumery and cosmetic industry or as foaming and foam-creating agents.

In the first stage of research the viscosity of gums of 14 Ghanaian species of various concentration was established. At present we are working on determination of chemical characteristics of gums.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0102, TANNIN EXTRACTION
G. HOLOTA, (GH.100.0022)

There are many species of trees in Ghana which have bark rich in tannin and are used by natives for tanning. However no work was done to compare the quality of the leathers.

The aim of this project is to investigate the tannin content in selected species of wood and vegetable materials and to find the best technology for extraction of tannin.

About 40 species were already analysed and 10 species of the highest tannin content have been used as raw material for preparation of a large quantity of solid tannin extract. This extract was used for manufacturing leather. The quality of leather prepared by that way was good - of course, of different shade of colour and softness.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0103, TIMBER SPECIES FOR WOOD WOOL CEMENT SLABS
W.K. ASHIABOR, (GH.100.0023)

Objective: To test timber species for their suitability for manufacture of wood wool cement building slabs.

Approach: Species are tried for their poisoning of cement during setting by minimal fixed weights of shavings, cement and water and curing them in moulds.

Progress: Thirty-seven species of Ghanaian timber have been tested, out of which eleven were found suitable.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0104, PROPERTIES OF GHANAIAN TIMBERS
W.K. ASHIABOR, (GH.100.0024)

Objective: To test and collect data on mechanical and physical properties of Ghanaian timbers.

Approach: Standard tests on clear specimens of Ghanaian timbers are performed according to BS 373 : 1965.

Progress: Over 50 species of timbers have been tested and data is available on them.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0105, LOG CONVERSION FACTORS
W.K. ASHIABOR, (GH.100.0025)

Objective: To determine factors for converting Hoppns foot volume of logs into weights in tons.

Approach: The density of the species is determined from the weight of sample round logs and the Hoppns foot per ton factor calculated.

Progress: The factors have been determined for 36 species of timbers in Ghana.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0106, WOOD WOOL LOW COST HOUSES
W.K. ASHIABOR, (GH.100.0026)

Objective: To investigate possibility of using wood wool building slabs for low cost houses.

Approach: Design and construction of about 5 houses in three climatic regions of Ghana, taking into consideration the known properties of woodwool building slabs. Observation of the performance of the material and also recording of temperatures and radiation in houses.

Progress: First house is under construction in Kumasi.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0107, ACTIVATED CHARCOAL
B. ADAMCZAK, (GH.100.0027)

To explore the possibility of production of activated decolorizing carbon from locally manufactured charcoal.

In a laboratory apparatus, charcoal from different hardwood species will undergo activating process. The physico-chemical properties of the obtained product will be determined. The optimum conditions for manufacture of activated carbon will be established.

An activated, decolorizing carbon had been proposed with an absorption capacity of about 50% lower than that one imported into Ghana.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0108, THERMAL DECOMPOSITION OF WOOD CHARCOAL
B. ADAMCZAK, (GH.100.0028)

To determine the suitability of various hardwood species for distillation purposes.
Various hardwood species will be destructively distilled and the yield of charcoal and other distillation products together with some of their physico-chemical properties will be established.

Woods of Apromu, Dohoma, and Esa has been destructively distilled and the yield of charcoal, acetic acid, methyl alcohol, acetone, wood tars and nonconductive gas, together with some of their physico-chemical properties, were established for given conditions of distillation.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0110, PRESERVATION OF SMALL SIZED TIMBER AGAINST FUNGAL AND TERMITE ATTACK
B. ADAMCZAK, (GH.100.0030)

To find out the most suitable preservative, and method of its application, for poles of lesser-known species for Agriculture and Industry.

Pickets of natural round wood of lesser-known species have been treated with some recommended preservatives and their effectiveness examined in test-fields established in various geographical regions of Ghana.

Different kinds of wood species have been treated with wood preservatives: Aldrin/P.C.P., Creosote, Fungamin, Tanalith and Termex A, and installed in the test fields. The conditions of their pickets are being examined once a year.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

3.0111, PROTECTION OF WOOD AGAINST FIRE
B. ADAMCZAK, (GH.100.0030)

To examine the effectiveness of different fire retardant chemicals in protection of tropical wood against fire and to establish the best method of their application.

Standard samples of tropical wood will be treated with different fire retardant preservatives and the combustible properties of treated wood will be determined.

Standard samples of Mahogany, Odum, Sapele and Kusia had been treated with a mixture of boric acid-borax in the form of 25% water solution and their combustible properties are being examined by using Fire-Tube-Test.

SUPPORTED BY Forest Products Res. Inst. - Kumasi, Ghana

KETA SUBSTATION
Keta

3.0111, INVESTIGATIONS ON THE CAPE ST. PAUL WILT-DISEASE OF COCONUT
E.A. ADDISON, (GH.073.0001)

Objectives: 1. To find coconut varieties resistant to the disease. 2. To find the causal agent of the disease. 3. To study the incidence and pattern of spread of the disease.

Approach: (a) Varietal resistance trial: In the absence of the knowledge of the specific cause of the disease, the obvious action is to search for resistant varieties. Dwarf varieties are imported for planting in the endemic area. (b) Spread of the disease: Regular observations are made on the spread of the disease in the affected area particularly regarding any new outbreaks. Intensive surveys are also made of the coconut areas along the coast.

Progress: The cause of the disease still remains unknown. The varietal resistance trials carried out so far have not yet yielded any encouraging results. Only one green Malayan Dwarf palm out of a total of 43 Malayan Dwarf plants planted in 1956/57 has withstood infection up to date.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0112, N.P.K. FACTORIALS - FERTILIZER TRIAL IN SUGARCANE
Y. TWENEBOAH, (GH.067.0001)

Objective: 1) To determine the fertilizer requirements for sugarcane under irrigation conditions at Kpong. 2) To determine the best source of nitrogen in the fertilization of sugarcane.

Approach: 1) Three varieties of cane CP 48-103, FR 980 and 1341227 were used with the following fertilizer levels: N: 0, 50, 100; P2O5: 0, 50, 100; K2O: 0, 40, 80 lbs/acre. 2) Sulphate of ammonia and ammonium nitrate were used to determine which of the two is more suitable.

Progress: Results of both experiments not yet available.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0113, TREATMENT OF SUGARCANE PLANTING METHOD
Y. TWENEBOAH, (GH.067.0002)

Objective: To compare germination of canes treated with chemicals before planting and those not treated.

Approach: Four treatments were used as follows: 1) Dipping sets in Aretan 6 solution. 2) Heat treatment. Keeping sets in hot water at 50 degrees C for 2 hours. 3) Heat treatment and dipping in Aretan solution. 4) Control - No treatment.

Progress: Aretan treatment gave higher bud germination than no treatment - 62 percent as against 53 percent. The heat treatment appeared to have killed a lot of buds. Germination percentages for treatments (2) and (3) were 18 percent and 22 percent respectively. This was probably due to the fact that it was difficult to maintain constant temperature (50 degrees C).

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0114, SUGARCANE VARIETY STUDIES
Y. TWENEBOAH, (GH.067.0003)

Objective: To determine the performance of different cane varieties with different maturation periods.

Approach: 6 early maturing varieties (10 months), 8 early-medium varieties (11 months), 6 medium varieties and 5 late maturing varieties were planted out in variety trials in October, 1969.

Progress: Among the early varieties, CP 48-103, NCO 310 have the highest cane yield of 33.71 and 31.03 tons/acre with high sucrose contents of 18.70 and 17.96 respectively. They also gave the highest sugar per acre yield of 4.31 and 3.74 respectively. The low results were attributed to poor sprouting.
GHANA

Early-mid varieties - yields were very low due to poor drainage, hence poor germination. However, varieties CP 44-101 and PR 1085 gave yields of 28.81 and 26.74 tons per acre respectively with sucrose content of 20.36 and 20.22.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0115, TYPE OF PLANTING MATERIAL AND SPACING TRIALS IN SUGAR CANE
Y. TWENEBOAH, (GH.067.0004)

Objective: 1) To determine the more suitable type of planting material - (a) whole cane, (b) Cut cane with 3 bud sets; 2) To determine the optimum spacing for sugarcane.

Approach: 1) Sets of canes were planted in replicated plots with whole canes and their sprouting percentage, number of canes/acre and yield assessed. 2) Three varieties of cane CP 48-103 PR 980 and B4 1227 were planted at 3', 4', and 5' apart in rows.

Progress: 1) Preliminary results indicated whole stalk planting was not inferior to sets. Yields were 43.21 and 45.13 tons/acre respectively. Planting costs can therefore be reduced using whole canes, but straight canes must be used. 2) Results not yet analysed.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0116, CHEMICAL WEED CONTROL IN SUGARCANE
Y. TWENEBOAH, (GH.067.0005)

Objective: To determine the most effective herbicide for weed control in sugarcane.

Approach: Three herbicides, Lasso Ec.48 percent, Lasso G. 10 percent and CP44939, all pre-emergent herbicides, were tested at different rates in 1969, and in 1970, Fenac EC, Fenac Salt, Simazine and Bladex, were introduced in addition to the above. Sprouting percentage, weed suppression and cane tillering were assessed.

Progress: Preliminary results indicated that: Lasso EC at 4 lbs Al/acre, Lasso G at 4 lbs Al/acre and CP 44939 at 3 lbs Al/acre could be effective provided they are used in combination with other herbicides which will give better control of dicots. All herbicides gave good control of grass weeds but CP 44939 gave far better control than the two Lasso forms. As regards overall control of both types of weeds, Simazine and Bladex were found very effective herbicides for weed control in sugarcane. These must be applied pre-emergent to both cane and weeds; Simazine at 4 lbs and Bladex at 4 lbs active ingredient per acre.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

KUSI OIL PALM RESEARCH CENTRE
P.O. Box 74, Kade

3.0117, WEED CONTROL IN YOUNG AND MATURE OIL PALMS (ELAEIS GUINEENSIS), USING HERBICIDES
M.A. ADANSI, (GH.068.0001)

Objective: To discover, by screening trials, herbicides which are safe, efficient and economic in the control of obnoxious weeds in young and mature oil palms.

Approach: Using a polychair sprayer, various herbicide samples are obtained from manufacturers' agents for trial. Low, medium and high rates of the herbicides are applied and replicated. The effect of these herbicides on weeds and oil palms are evaluated through standard scoring techniques.

Progress: It has been found through screening trials and literature reviews that some 17 odd herbicides are safe for oil palms. Presently MSMA (Ansar 529) and Gramoxone (Paraquat) are recommended while Ametryne, Eptam 6E and Bladex have shown great promise.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0118, RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERIES AND NURSERIES
M.A. ADANSI, (GH.068.0002)

Objective: To compare the various techniques of raising seedlings in nurseries and to develop a standard method best suited to conditions in Ghana.

Approach: (1) Treatments: (a) Pre-nursery in sandbeds and transplanting to a field nursery. (b) Pre-nursery in mini-poly-bags and transplanting to a field nursery. (c) Pre-nursery in mini poly-bags and transplanting to large poly-bag nursery. (d) Direct planting of germinated seed into large poly-bags, i.e. no separate pre-nursery and nursery stages.

Evaluation by taking measurements as follows: height of seedlings; circumference at base; transplantable seedlings (pre-nursery to nursery); incidence of blast (%), transplantable seedlings (nursery to field). (2) This nursery experiment was aimed at finding the most suitable time establishing dry season nurseries under the conditions of soil and climate prevalent in Ghana. This experiment was of a repeated split plot randomized block design in 5 replications.

There were 8 main treatments: Planting of pre-nursery seedlings into the nursery every first and fifteenth day of the month from 1st August to 1st November, and the 8th treatment seedlings planted in large poly-bags in June/July. Each plot was divided into 2 halves, one half being shaded with castor oil plant, the other half not shaded. One half of each sub-plot received a monthly complete fertilizer application while the other half was not fertilized.

Records kept were: Height and butt circumference of seedlings measured monthly; the number of seedlings killed by blast (census taken monthly); the number of transplantable seedlings; cost involved in each of the 8 treatments.

Progress: Treatments (c) and (d) did not differ significantly from each other, and were superior to (a) and (b). Cost of producing one seedling was lowest in (d). August/early September was not suitable for transplanting seedlings to dry season nursery.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0119, FODDER CROP IMPROVEMENT
J.B. WONKYIIAPPIAH, (GH.068.0003)

Objective: To produce high yielding material of good bunch and fruit composition and to organize a seed production programme for the production of D x P extension work seed (e.w.s.).

Approach: Materials have been introduced from oil palm breeding centres in different parts of the world to form the basic stock of the O.P.R.C's breeding programme. Statistically designed progeny trials (mainly simple randomized block and balanced lattice designs) are laid out to compare T x T, D x D and T x D crosses. The D x P hybrid seed is synthesized from the best T x D combinations by obtaining the Ps from the best T x T crosses or selfings and the Ds from the best D x D crosses or selfings. (D x P hybrids). High-yielding Ts and Ds of good bunch and fruit composition are also selected for a recurrent selection programme.

28
Progress: About a hundred introductions have been made, mainly from parents which have been progeny tested at N.I.F.O.R. (Nigerian Institute for Oil Palm Research). These are the F1s and form the basic stock of the O.P.R.C.'s breeding programme. F2s of the recurrent selection programme were planted in 1970. The total area of selection fields at the O.P.R.C. for the breeding programme stands at 176.5 acres of which 120.6 acres are in full production. About 800 duras and 12 pisiferas have been selected for the production of D x P extension work seed. The number of e.w.s produced in 1971 was 1.2 million.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0120, OIL PALM FERTILIZER REQUIREMENTS IN GHANA
J.B. WONKYIAPPIAH, (GH.068.0004)

Objective: To determine the fertilizer requirements of oil palms in the various parts of the forest belt of Ghana.

Approach: Fertilizer experiments of simple factorial designs with N, P, K, Mg, Ca were laid down by the West African Institute for Oil Palm Research (W.A.I.F.O.R.) in various parts of Ghana from 1954 to 1957. 8 - 12 year yield records together with foliar analysis data taken from these trials were analyzed. A new fertilizer experiment of a 4 x 4 x 4 x 2 confounded factorial design with N, P, and K at 4 levels and Mg at 2 levels was established at the O.P.R.C. Kade/Kusi in 1969.

Progress: Briefly, results of the simple factorial experiments were as follows: Results showed P and K deficiencies in oil palms on soils of three geological formations - Forest Oxysoils and Forest Ochrosol-Oxysol. Integrates developed over granites, Lower Birrimian rocks (phyllites) and Oxysoils over Tertiary sands. Consistent and highly significant yield responses of 30 - 35% to phosphate fertilizer were found in an experiment on soils over tertiary sands (Anyinasi) and in one trial on soils over granites (Assin Fosu), while both experiments also showed a significant K effect in some years. A PK interaction, by which responses to potash fertilizers became highly significant (20% yield increase) in the presence of added P, was found in another trial on soils over granites (Pretsea). Yield recording in the new fertilizer trial started in 1972.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0121, IMPROVEMENT OF OIL PALM SEED GERMINATION
J.B. WONKYIAPPIAH, (GH.068.0005)

Objective: The object is to devise methods which lead to a more rapid and more regular germination of oil palm seeds and to find easier but efficient methods of germinating the unprotected seeds of fertile pisifera palms.

Approach: The shock-heat treatment: A series of experiments are carried out in which samples of seed are dipped in hot water (at 60 degrees C) for varying periods, followed by a dry temperature treatment of longer durations. The effects of these treatments are tested for seed of different ages, origins and moisture content.

Dry-heat treatment: Seeds are subjected to dry-heat treatment for varying periods (40, 47, 54, 61, 75 and 80 days). Then percentage germination is assessed for each treatment. Germination of pisifera seeds: Conditions are created for the seeds to germinate in situ, and also without removing the mesocarp of loose fruits.

Progress: There is a great variation in the reaction to the shock-heat treatment between crosses. In the dry-heat treatment there were significant differences in response between different types of extension work seed. Seeds which received 70 days heat treatment gave higher percentage germination than the standard 80 days heat treatment.

It has been possible to germinate some fertile pisifera seeds in situ.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0122, ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM
J.B. WONKYIAPPIAH, (GH.068.0006)

Objective: 1. To investigate the causes of variation (annual and regional) in yields of oil palms and to extend these investigations further in an attempt to predict yield levels for areas suitable for large scale oil palm development; and 2. To study the root distribution of the oil palm.

Approach: The parameter "effective hours sunshine" is used to correlate climatic data with yield variation. The extent of drought period is also correlated with yield. The extent of drought is determined by measuring the degree of midday closure of stomata with a test, using various iso-propanol/water concentrations.

Mean annual water deficit was calculated for various regions in the forest zone of Ghana. Some profile pits were dug in different soil series to study the root distribution of the oil palm.

Progress: A highly significant negative correlation could be established between the number of dry weeks and individual yields of palms.

The parameter 'mean annual water deficit' has been used to define in broad terms the climatically suitable areas for economic oil palm production within the forest zone of Ghana.

Results of the root studies showed that over 55% gall roots is concentrated in the topfoot and over 80% in the first 2 feet.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0123, WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES
J.B. WONKYIAPPIAH, (GH.068.0007)

Objective: The object is to find a means of making a more effective use of the available water in the soil during the dry season by reducing evapotranspiration of the ground water through improved cultural practices and to investigate the effect on growth and production of the oil palm.

Approach: In Expt. 853 - 2 at the O.P.R.C., Kade/Kusi (planted 1966) two main treatments, normal brushing of the leguminous cover crop and very low brushing of the cover during the dry season, and 3 sub- treatments of ringweeding to different distances (3', 5', 7') are compared. There is a sub-sub-treatment comparing 2 different D x P e.w.s. The experiment is of a randomized block design in 5 replications.

Weekly yield recording began in 1969. Stomatal aperture tests were conducted weekly to determine the extent of water stress during the dry seasons.

Progress: The measurements of water stress in the dry seasons of 1968/69 and 1970/71 did not show any significant difference between the two main treatments, i.e. normal brushing and very low brushing, and in the sub- and sub-sub-treatments. The treatments did not show significant differences in production for the first 3 years. However a significant negative correlation was obtained between palm production and length of periods of water stress. This indicates that there are differences in water availability in the field independent of the experimental treatments due to variations in soil types.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana
GHANA

3.0124, REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS
J.B. WONKYIAPIIAH, (GH.068.0008)

Objective: The object is to investigate the effect of deflowering young palms, during a certain period before first harvesting, on the vegetative growth and bunch production in the years thereafter.

Approach: Remove all inflorescences monthly in young palms using a special tool designed by the I.R.H.O. Two deflowering experiments have been superimposed on progeny trials: Expt. 852 - 1 (Planted 1964) and Expt. 853 - 1 (Planted 1966) with deflowering and non-deflowering as the sub-treatments.

Another experiment, Expt. K1-3, (Planted 1967) has been laid down to investigate the effect of removing, at monthly intervals, all inflorescences on young palms over varying periods before first harvesting on production.

Progress: In Expts. 852 - 1 and 853 - 1, the significant effect of deflowering in total bunch weight over the non-deflowered plots in the first and second years of harvest had disappeared in the third year. There was interaction between progenies and deflowering.

In Expt. K1 - 3 the second 1 1/2 years' yield (1970 - 1971) did not show significant differences between treatments.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0125, FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD
J.B. WONKYIAPIIAH, (GH.068.0009)

Objective: The object is to test the effectiveness of different fungicides in the control of fungal disease in the oil palm.

Approach: Experiments so far conducted are aimed at using different fungicides for the control of Cercospora and Anthracnose. The fungicides being tried are: Dithane M.45, Benlate (Benzyl fungicide), Kecide and Daconil. Comparative trials on rates and frequency of application are conducted in the nursery and field, and their relative effectiveness and costs are assessed.

Progress: Trials so far have indicated that spraying with Benlate, 0.5g/lit. every 6 weeks is as effective as the standard treatment with Dithane M.45, 2g/lit. sprayed fortnightly in controlling Cercospora in the nursery. Kecide was eliminated from the trials due to its scorching effect on the leaves. Daconil sprayed at 24.6g/lit. fortnightly was effective in controlling Cercospora.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0126, OIL PALM SPACING AND DENSITY TRIALS
J.B. WONKYIAPIIAH, (GH.068.0010)

Objectives: (1) To determine the optimum spacing for oil palm under the environmental conditions. (2) To test certain spacing systems which allow intercropping. (3) To investigate the effect of systematic thinning to a lower density on the production of mature oil palms.

Approach: (1) Two experiments of randomized block design were laid down in 1956. The main treatments compared various triangular and rectangular spacings. The sub-treatments were intercropping and no intercropping. (2) Two thinning trials were conducted on two mature plantations - both were of a simple randomized block design in 2 or 3 replications. (3) Another experiment was to investigate the effect of various triangular spacings combined with double (hexagonal) spacing up to the 2nd or 3rd year of production on yield of D x P progenies with different yield composition.

Progress: A summary of the results of two-spacing and intercropping experiments (based on 10 years' yield records) at Anyinasi and Bunso is as follows: At Bunso none of the treatment effects were significant. At Anyinasi, spacing was significant.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

KWADASO AGRICULTURAL EXPERIMENTAL STATION
F.O. Box 3785, Kumasi

3.0127, STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA
O.B. HEMENG, (GH.061.0001)

Objective: The purpose of the investigation is to study the parasitic nematode fauna in the country and to isolate the economically important individuals for the study of their biology, pathogenicity and control.

Approach: Soil and root samples are collected from the fields of economic crops including sugar cane, tobacco, cotton, maize, oil palm, coconut, rubber, mango, cassava, yam, groundnut, banana, plantain, rice, pineapples and vegetables. After extraction nematodes are fixed and mounted for microscopic examination.

Progress: Nematodes from the fields of the following crops, rice, mango, coconut, oil palm, yam, banana, sweet orange, coffee and pineapple have been processed and are awaiting microscopic examination.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0128, INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS
O.B. HEMENG, (GH.061.0002)

Objective: The purpose of this investigation is to study the life cycles of the species of Meloidogyne attacking tomato, tobacco, kenaf and jute and to find the effective methods for controlling these nematodes.

Approach: Each tomato seedling growing in sterilized soil in clay pots has been inoculated with single larva. The seedlings will be allowed to grow for 3 months for the nematodes to multiply. Meloidogyne sp. in each pot will be identified by examining posterior cuticular patterns under microscope. Larvae will be inoculated to the host plants. At 2 day intervals the roots will be stained and examined to study the development of the larvae. Nematagon granules, D-D and Ethylene dibromide will be tried to determine which of them gives the best control. Varieties of tomato, tobacco, kenaf and jute cultivated in the country will be screened for root-knot nematode resistance.

Progress: Pure cultures of individual Meloidogyne species have been established and they are being multiplied in the mesh house.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0129, INVESTIGATIONS INTO THE CONTROL OF SUGAR CANE NEMATODES
O.B. HEMENG, (GH.061.0003)

Objective: The objective of this work is to determine the effective time for Nemagon application and how different varieties of sugar cane response to Press mug, molasses, trash burning and
3.0130, INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA
E.A. ADDISON, (GH.061.0004)

Objectives: To study the diseases of important crops of Ghana that are transmitted through seed. To evolve effective methods for the detection of important seed-borne diseases. To evolve effective control measures.

Approach: Seed samples collected from various parts of the country are incubated at different temperatures and varying conditions of light for different periods. At the end of the incubation periods the seeds are examined under binocular low power microscopes and the pathogens recorded.

Progress: Rice, millet and guinea corn seeds have been studied. Several important rice pathogens have been recorded. A paper has been published in the Ghana Jnl. Agric Sci.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0131, EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLFSII ON VEGETABLES AND LEGUMES
E.A. ADDISON, (GH.061.0005)

Objective: To find suitable fungicides which can be applied to growing vegetables and legumes in an infested soil to protect them against sclerotium wilt.

Approach: Chemicals are first screened in the laboratory by adding 5ml portions to PDA in petri dishes and inoculating with sclerotium rolfsii. Those chemicals which partially or completely inhibit the growth of the fungus are used for further testing in pots using tomato (Lycopersicon esculentum) and eggplant (Solanum melongena) as test plants. When suitable chemicals have been found they will be tried on the other host plants of Sclerotium rolfsii in order to establish the tolerant non-phytotoxic dose for each host.

Progress: Of the chemicals tried to date, only formaldehyde of 10ml in 500ml water and 10ml in 800ml water and mercuric chloride at 1g in 500ml water gave complete control.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0132, INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON
G.K. BUAIHIN, (GH.061.0006)

Objective: To study the bionomics of the most important insects which damage cotton and to test insecticides and to devise suitable control strategies to reduce the losses due to insect damage.

Approach: 1. A countrywide survey of insect pests of cotton was conducted by maintaining micro-plots (1/20 ac.) of cotton planted at monthly intervals and studying the insect pest complex on the crops (3 years). 2. Uses of light traps and trap crops to study activity of insect pests. 3. Reduction of damage done by insects.

Progress: The destructive insects of cotton in Ghana have been identified and catalogued. Their distribution and bionomics have been partially studied. The bollworms - Pectinophora gossypiella, Earias biplaga, Prodenia litura and Heliothis armigera, Axyroplaco leucetra, Diparopsis wiesi, the most important insect pests of cotton. Dysdercus spp. cause damage to the bells and lint during the latter stages of the crop. Some 50 other minor insect pests were observed.

For their control the recommended pesticides are Toxaphene/DDT, Endrin/DDT and Nuvcron. Work is still continuing on the economics of pesticide use and the evaluation of ultra low volume spray techniques and new pesticides. The effect of pesticides on non-target insects is also being studied.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0133, VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL
G.K. BUAIHIN, (GH.061.0007)

Objective: To study the bionomics of the most important insect pests which cause economic crop losses to vegetables intensively cultivated in Ghana and to evolve suitable control measures. Vegetable crops covered in investigations: tomato, (Lycopersicon esculentum); eggplant, (Solanum melongena); cabbage and lettuce (Brassica sp.); okra, (Hibiscus esculentus) and cowpea, (Vigna spp.).

Approach: 1. Survey of insect pests on micro-plots (1/10 acres) cultivated in 3 typical agroclimatic zones and studies on population dynamics, and biology of insect pests. 2. Testing suitable chemicals for their control.

Progress: 1. Recommendations for the control of leaf eating insect pests on okra, cabbage, tomato and eggplant made as a result of investigations include the use of liquid and dust formulations of Sevin, Malathion, Agrothon and Nuvcron. 2. Investigation on the insect pests of cowpeas is continuing. The important insect pests of cowpeas feed on the buds, flowers and pods and they are Maruca, Euchrysos and Riptorius. Nuvcron and Agrothon are two insecticides which have so far shown promise in the screening of suitable pesticides.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0134, INVESTIGATION INTO THE INSECT PESTS OF BAST FIBRES AND THEIR CONTROL
G.K. BUAIHIN, (GH.061.0008)

Objective: To investigate the insect pests which cause economic damage to the bast fibre during the production phase.

Approach: The agroclimatic zones suitable for the cultivation of fibres (Kena) - Hibiscus cannabinus, Urena lobata and (Jute) Corchorus olitorius and C. capsularis, have been demarcated by the Agronomist. Within these areas the major insect pests destructive to the crop have been surveyed and their potentiality assessed. The biology and population dynamics of the insect pest are studied under field and laboratory conditions. The distribution of the insect pests and their alternative host plants are being investigated.
GHANA

Progress: A survey of the insect pest of (Kenaf), Hibiscus cannabinus and Urena lobata has been done and the insects identified. Studies on the biology of the major pest - Pedagogria spp. and Alcidodes sp. have been partially completed. The use of pesticides to control these pests was not found economic at the present production levels.

Preliminary work has been started on the insect pests of Corchorus spp. - a crop recently introduced for experimentation.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0135, INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE
G.K. BUAIHIN, (GH.061.0009)

Objective: A sugar cane industry to cultivate about 20,000 acres has been started and 14,000 acres planted at Komenda and Asutsuare areas. The objective of this study is to identify the insect pest problems and attempt to find solutions to them.

Approach: 1. Insect population studies on fortnightly planted canes. At fortnightly intervals 1/10 acres of cane is planted. At weekly intervals after the 4th week the 50 shoot stalks are removed from each planting, split open and examined for insect infestation. 2. Insecticides have been screened for control of termites and stalk borers.

Progress: Bionomics: (a) There are two peaks of stemborer infestation on sugar cane. The first occurs in May/June and the second in September/October. The population for the second peak is about 2-3 times than for the first week. (b) Egg batches of Sesamia and Eldana have not been observed under natural field conditions but caged on young canes in the field; the females will oviposit into the leaf sheath. (c) Youngest shoots attacked by stemborers are about 5 weeks old but intense infestation occurs on plants 10 weeks old and older. (d) Maize is a more attractive crop to stem borers than sugarcane.

Control measures: (e) Aldrin 0.1% a.i. applied either as spray or dip for cane cuttings gave protection of planting material against termites. (f) Preliminary experiments on screening pesticides showed significant differences between Dieldrin, Grammalin, Dieldiram and Tosaphene/DDT in the control of stemborers on canes. Pest infestation was generally low during the season the experiment was performed.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0136, BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA)
G.K. BUAIHIN, (GH.061.0010)

Objective: Reduction of crop loss due to damage by lepidopterous stem borers to cereal crops - maize, (Zea mays); rice, (Oryza sativa); sorghum, (Sorghum vulgare) and millet, (Pennisetum typhoidesum).

Approach: 1. Survey and identification of lepidopterous caterpillars which cause damage to stems of graminaceous crops by sampling plants in the three zones (forest, savannah woodland and savannah) of intensive cereal cultivation. 2. Studies on the population dynamics of the pests, the alternative host plants, parasites and predators. 3. Testing of pesticides and different formulations in liquid, dusts and granules.

Progress: 1. The important cereal stalk borers are species of Sesamia, Eldana, Busseola, Chilo. 2. Reduction in yield is greater during the second season crop (Aug - January). 3. About 60 - 70% reduction in damage is achieved by spraying with DDT or Sevin or application of granules of Endrin 2%, Niran 10%G and PPS 5.

The use of pesticides has several drawbacks including high cost and practicality due to low agronomic practice.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0137, EFFECTS OF FERTILIZER PLACEMENT ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS L.
S.Y. AMANQUAH, (GH.061.0011)

Objective: To determine the best methods of applying fertilizers to kenaf fields for high yields of dry fibre.

Approach: Four different methods of fertilizer application will be studied at Kwadaso Station. These include: (1) broadcast followed by incorporation into the soil, (2) broadcast without mixing with soil, (3) banding of fertilizers between rows on the surface, (4) banding of fertilizers between rows about 4 inches deep below the soil surface, (5) no fertilizer.

Design is 5 x 5 Latin Square. Plant height and stem diameter measurements will be taken at various stages of growth of the plant.

Progress: Banding of fertilizers between rows either on the soil surface or below the soil surface, gave taller stalks and a higher yield of dry retted fibre than broadcasting and no fertilizer.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0138, EFFECTS OF OPTIMUM TIME OF APPLYING FERTILIZERS ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS AND URENA LOBATA
S.Y. AMANQUAH, (GH.061.0012)

Objectives: To determine the optimum time of applying fertilizers for a good yield of fibre.

Approach: There are 16 treatments consisting of full rate applied at planting and at 2, 4, 6 and 8 weeks after planting; split application with half applied at planting and the other half applied at 2, 4, 6 and 8 weeks after planting; a second split application with one-half at 2 weeks after planting and the other half at 4, 6 and 8 weeks after planting; a third split application with half applied at 4 weeks after planting and the other half at 6 and 8 weeks after planting; a fourth split application with half applied at 6 weeks after planting and the other half at 8 weeks after planting; and the control (no fertilizer).

Progress: The split application produced a higher yield of dry retted fibre than the full application, but the differences were too small to be important, considering the extra labour required for the second application.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0139, REPRODUCTIVE BIOLOGY OF KENAF
S.Y. AMANQUAH, (GH.061.0013)

Objective: The aim is to study floral morphology, and flowering periods, self-fertility, pollen viability, inheritance of floral response, and also flower and capsule distribution in kenaf.

Approach: Some kenaf varieties will be planted in the field and a detailed study of the flower and days of flowering will be made throughout the flowering period. The different types will be crossed. The F1 will be selfed. Backcrosses to both parents will be made. The parents F1, F2 and backcrosses will be planted in the field for studies. Pollen germination studies will also be done.

Progress: Self-fertility (per cent) of some kenaf varieties was found to vary from 33.3 to 79.2. Some of the results are still being processed.
3.0140, NATURAL CROSSING IN KENAF IN GHANA
S.Y. AMANQUAH, (GH.061.0014)

Objectives: The aim is to: 1. study natural crossing in kenaf, and 2. agents concerned with natural crossing in kenaf in Ghana.

Approach: 1. Plants with contrasting characters will be planted in alternate rows, as contiguous plants and at some distances from pollen source to determine the degree of natural crossing. 2. Some plants will be planted in insect-proof structures to determine the agents of natural crossing in kenaf.

Progress: 1. Wind is probably not an agent of natural crossing in kenaf. 2. Nomia Brachysoma, Aphis mellifica and Baris impolita which are constant visitors to kenaf flowers may be concerned with pollination in kenaf in Ghana. 3. Natural crossing occurs in kenaf in Ghana. When sown in alternate rows, the amount of natural crossing varied from 1.05 per cent to 11.01 per cent with a mean of 5.19 per cent. When sown as alternate plants in the same rows (contiguous plants), the amount of natural crossing was about 13.83 per cent.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0141, EFFECTS OF AGE AT HARVEST ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS, L.
S.Y. AMANQUAH, (GH.061.0015)

Objective: To determine the optimum age at which kenaf could be harvested for a yield of dry retted fibre.

Approach: 1. Kenaf will be planted in completely randomised blocks replicated four times. 2. Stalks will be harvested when the plants are 50, 70, 90, 110, 130, 150 and 170 days old for fibre yield.

Progress: Preliminary results indicate that for a high yield of fibre, kenaf could be harvested from 90 to 130 days after planting, depending on the variety.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0142, EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS, CANNABINUS, L.
S.Y. AMANQUAH, (GH.061.0016)

Objectives: To determine how long kenaf seeds can remain viable (germinable), when they are stored under the following conditions - atmospheric temperature and humidity, deep freezer, ordinary compartment of a refrigerator, cold room and an air-conditioned room.

Approach: 1. Kenaf seeds stored in sealed polythene bags and kept in the five different conditions will be sampled after certain periods of storage for germination studies. 2. The design will be completely randomized block replicated four times. 3. A seed will be considered emerged as soon as the plumule appears. 4. The data will be presented as total emergence, percentage emergence and rate of emergence.

Progress: Preliminary results indicate that both length of storage and conditions of storage affect seedling emergence of kenaf. Total percentage emergence and rate of emergence decreased from 74 days to 137 days of storage. While the rate at which percentage emergence decreased with time appeared to be slightly higher in seeds in an air-conditioned room, insect pest infestation was greater in seeds stored at room temperature and humidity.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0143, FERTILIZER TRIALS ON FLUE, FIRE AND AIR CURED TOBACCO
E.O. QUAO, (GH.061.0017)

Objective: To investigate the effects of increasing NPK fertilization on flue, fire and air cured tobacco in the particular areas of production.

Approach: Using the randomised block in a factorial design to observe the effects of higher levels of NPK applied by placement on flue, fire and air cured tobacco.

Progress: Current rates of NPK fertilization for farmers are 9 lbs N, 751 lbs P2O5, and 54 lbs K2O per acre by placement. Results of trials show that for air and fire cured tobacco, nitrogen could be increased up to 39 lbs/acre. For flue-cured tobacco increased above 20 lbs/acre presented curing problems. At 150 lbs/acre phosphate tended to depress yield. Increasing potash to 500 lbs/acre improved quality but its influence on income makes high potash fertilization unprofitable.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0144, AIR CURED TOBACCO VARIETY TRIAL
E.O. QUAO, (GH.061.0018)

Objective: To compare the performance of the following three air-cured varieties grown in the coastal savanna area: Virginia Hybrid, Garcia, and Burley.

Approach: Randomised block design was used to observe and compare yield and income from the three varieties.

Progress: Virginia Hybrid was consistently the best of the three. Burley was lowest in yield and income but had the best quality leaves.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0145, EFFECT OF TIME OF LAND PREPARATION AND PLANTING ON YIELD QUALITY OF FLUE CURED TOBACCO
E.O. QUAO, (GH.061.0019)

Objective: To investigate if time of land preparation and time of planting can influence yield and quality of flue cured tobacco.

Approach: Three planting dates are superimposed on land ploughed in December and again in March, and that ploughed only in March. Yield and income are assessed.

Progress: Early planting showed decisive influence on yield and income. Better cures were obtained from the early plantings. Average price per pound decreased with later plantings. Effects of ploughing in December and again in March were not strong enough.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0146, POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS
E.O. QUAO, (GH.061.0020)

Objective: To find a sequence of crops for flue cured tobacco farmers with regard to economics and maintenance of soil fertility.

Approach: Four cash crops - maize, cowpea, sorghum, and groundnuts were planted after tobacco in a Latin square design. Income and soil fertility after harvest were assessed.

Progress: 1971 maize and groundnuts did well. Cowpea failed. Maize and sorghum would require additional fertilization. Residual effect of tobacco fertilizer was adequate for groundnuts. Leaching almost washed the soil clean of nitrogen.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana
3.0147, FIRE CURED TOBACCO VARIETY TRIAL
E.O. QUAO, (GH.061.0021)

Objectives: To compare the performance of the following eight fire-cured tobacco varieties with a view to recommending suitable ones to farmers: Ky 170, Ky 151, Ky 171, Ky 160, DP 300, Brown Leaf, Madole, and Black Mammoth.

Approach: Using randomized block design to observe and compare performance of each variety with the currently grown variety, Dark Heavy Western.

Progress: In 1971 Ky 151, Madole, Black Mammoth, and Ky 160 compared favourably in yield with Dark Heavy Western. In 1972 Madole and Black Mammoth emerged superior to Dark Heavy Western with regard to yield and quality. Factory test reports are still awaited.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0148, TOBACCO SUCKER CONTROL WITH CHEMICALS
E.O. QUAO, (GH.061.0022)

Objective: To investigate the effectiveness and economics of using MH 30 and Off Shoot T to control suckers on tobacco.

Approach: Using randomized block to compare the performance of MH 30 and Off Shoot T with manual sucker control.

Progress: In 1971 both MH 30 and Off Shoot T effectively controlled suckers. Yield on plots where suckers were chemically controlled were higher than manually controlled plots. Average price per pound was higher on manually controlled plots.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0149, TOMATO VARIETY TRIAL
F. AGBLE, (GH.061.0023)

Objective: To find out which tomato variety yields best at the station (Forest-Savannah Mosaic Zone).

Progress: Of the 10 cultivars so far only one is yielding below 5 tons/acre. The other cultivars are yielding between 10 to 15 tons/acre. The work is still in progress.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0156, TOMATO BREEDING
F. AGBLE, (GH.061.0024)

Objective: To develop suitable tomato cultivars for processing. Cultivars to be high yielding, disease resistant as much as possible, and to have good fruit qualities.

Approach: Crossing local cultivars with introduced varieties followed by selection at different generations. Use of colchicine to produce polyploidy. Use of cobalt 60 source of irradiation to induce polyploidy if possible.

Progress: The work is still in progress and no specific results have been obtained as such.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0151, TOMATO - COWPEA ROTATION
F. AGBLE, (GH.061.0025)

Objective: To find a suitable rotation crop for tomato to avoid building up nematode population in the plot.

Approach: Every tomato crop is followed by cowpea cropping. The cowpea is harvested and the vines ploughed back into the soil. The plot is allowed to fallow for at least two months before tomato cropping.

Progress: Results so far obtained indicate that cowpeas are a good rotation crop.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0152, THE PRODUCTION OF HIGH YIELDING VARIETIES OF GROUNDNUITS
H. MERCERQUARSHIE, (GH.061.0026)

Objective: To develop high yielding varieties of groundnuts with high oil content for the oil trade and large seeded varieties with low oil content for the confectionery trade.

Approach: Varietal selection. Planting at close spacing to ensure increased yield per unit area, weed and rosette control.

Progress: Out of 137 cultivars screened, 40 gave calculated yields ranging from 1158 - 2316 lbs per acre (shelled). Heavy Yielders are being multiplied for release to farmers.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0153, COWPEA INVESTIGATION
H. MERCERQUARSHIE, (GH.061.0027)

Objective: To select high yielding, palatable varieties of cowpeas for commercial cultivation in Ghana and investigate agronomic techniques which are necessary to obtain high yields.

Approach: Investigating to choose between the major and the minor seasons of planting, different rates of fertilizer applications. Selection for heavy yielding, early maturing (non-heavy growth), and resistance to diseases and pests.

Progress: Remarkable yields of 659-3205 lbs/acre have resulted from 29 varieties selected from 50 varieties after a screening. Many high yielding varieties, are available which are superior to the small seeded reddish brown local variety which does not yield over 200 lbs/acre.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0154, SUGARCANE AGRONOMIC INVESTIGATIONS
H. MERCERQUARSHIE, (GH.061.0028)

Objective: To select early, medium, and late maturing varieties with a high tonnage of sugar per acre coupled with resistance to disease and pests, and possessing the required agronomic characteristics.

Approach: Spacing investigation. Different rates of fertilizer application. Irrigation verses non irrigation for optimum age with regard to disease and pests.

Progress: Out of 40 cultivars screened, 50 gave calculated yields ranging from 116 to 120 lbs/acre. Selection for heavy yielding, early maturing, and resistance to diseases and pests.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0155, CASSAVA IMPROVEMENT
H. MERCERQUARSHIE, (GH.061.0029)

Objective: To select varieties of a high yield of palatable tubers combined with high resistance to cassava mosaic virus disease. Determine desirable cultural treatments.

Progress: 86 cultivars tested at Kwadaso with and without fertilizers produced the following yields: 23 cultivars without fertilizers yielded 15-35 tons/acre (calculated); 45 cultivars with $ fertilizers yielded 15-41 tons/acre (calculated).

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0156, SORGHUM INVESTIGATION IN THE TROPICAL FOREST ZONE
H. MERCERQUARSHIE, (GH.061.0030)
Objective: To determine the possibility of sorghum cultivation in Ashanti Region mainly for livestock feed and manufacture of local (pito) beer.

Approach: Different spacing and time of planting. Selection for high yielding varieties. Selection against the following: Late maturing. Lodging. Varieties that are susceptible to diseases and pests.

Progress: Dwarf white milo, Dwarf Feterita 7028, Dwarf Hegari and 27 others from U.S.A. have under 2' x 8' or 12' spacings with high dressing of N x P fertilizer in the major season, yielded from 1000 to 10538 lbs per acre (calculated) and with economic yields under 2' x 1' spacing in the minor season.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0157, TO DETERMINE WHETHER WHEAT COULD BE SUCCESSFULLY CULTIVATED IN GHANA
H. MERCERQUARSHIE, (GH.061.0031)
Objective: To conduct preliminary investigations to determine whether wheat could be successfully cultivated in Ghana.

Approach: Different spacings and time of planting. Selection for high yielding varieties with qualities for early maturing, non-shattering heads, non-lodging and disease free.

Progress: Varietal trials have shown remarkable yields between 800 - 1000 lbs/acre.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0158, SESAME INVESTIGATION
H. MERCERQUARSHIE, (GH.061.0032)
Objective: To determine whether sesame could be successfully cultivated in Ghana as another source of oil and for other purposes.

Progress: Kwadaso trial investigations have confirmed those at Bunso that sesame can be successfully cultivated in Ghana with good yields of 800-1000 lbs/acre in the major season and economic yields in the minor season.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0159, COLLECTION AND CLASSIFICATION OF YAM CULTIVARS
A.H. OPOPPONG, (GH.061.0033)
Objective: To establish a classification of yams based on morphological, anatomical, genetic and growth characteristics.

Approach: Farms in yam growing centres in the various regions of the country to be visited, and the characteristics of yam varieties under cultivation to be briefly recorded. "Seeds" of these varieties to be collected. An exchange programme has been initiated to collect cultivars from other tropical countries. The collections will be maintained in museums in the three typical agroclimatic zones of Ghana.

Progress: Eighty-seven cultivars, belonging to the 4 species-Dioscorea rotundata (64 cultivars), D. alata (15 cultivars), D. cayennensis (5 cultivars), and D. demortorum (3 cultivars), have been collected. These have been planted at 3 stations: Nyankpala (Sudan savanna), Ejura (Savanna woodland), and Kwadaso (Forest) - where their growth characteristics, anatomy, cytology and biochemical composition are being studied.

In addition to the indigenous material, 9 cultivars have been received from Puerto Rico. These are being multiplied at Kwadaso.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0160, CYTOLOGY OF YAMS
A.H. OPOPPONG, (GH.061.0034)
Objective: The aim is to study the cytological differences between the different yam varieties to provide a basis for selection and future breeding work.

Approach: Vine cuttings from various cultivars are cultured in tap water to root. The root tips are then removed for cytological studies. Techniques for slide preparations are being tested.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0161, MAIZE IMPROVEMENT THROUGH BREEDING
M.K. AKPOSSE, (GH.061.0035)
Objective: To develop high yielding, lodging resistant, high protein maize varieties.

Progress: 1. Two composite varieties (a) Golden Crystal and (b) Composite-4 having high yield potentials have been developed and released. 2. A lodging resistant population based on the brachytic-2 gene has been established. 3. A high lysine/tryptophan population is in the final stage of evaluation. 4. Early maturing yellow endosperm composite variety has been developed especially for the minor season and regions of low rainfall.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0162, INFLUENCE OF COTORAN AND PLANAVIN HERBICIDES ON THE YIELD OF COTTON
S.E. KOLI, (GH.061.0036)
Objective: To determine which of the two herbicides is effective for weed control in cotton fields.

Approach: Various concentrations of the herbicides applied; weed-free periods for the various treatments recorded.

Progress: Cotoran more effective than planavin. Cotoran applied at 0.75 - 1.50 lbs/acre active ingredient controlled weeds for 42 days and 2.0 and -2.5 lbs/acre active ingredient kept plots weed-free for 52 days.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0163, NITROGEN EFFECT ON GROUNDNUT YIELD
S.E. KOLI, (GH.061.0037)
Objective: To assess response of groundnuts to nitrogen fertilizer.

Approach: 4 levels of nitrogen with application of basal P and K.
3.0164, EFFECT OF DIFFERENT LEVELS OF NPK ON THE YIELD OF YAM
S.E. KOLI, (GH.061.0038)
Objective: To determine fertilizer requirements of yam in northern Ghana.
Approach: 3 x 3 x 3 NPK factorial - first year. Then more emphasis on nitrogen levels.
Progress: Nitrogen most limiting. Phosphorus slightly increased yield. Potassium not important.

3.0165, EFFECT OF LOCAL FARMER'S PRACTICE OF STEPPING ON GROUNDNUTS
S.E. KOLI, (GH.061.0039)
Objective: To determine whether there is any merit in the local farmer's practice of stepping on groundnuts prior to pod formation with the belief that some of the aerial roots will be forced into the soil to develop into pods.
Approach: Stepping compared with no stepping.
Progress: Stepping on groundnut with the hope of forcing the gynomorophs into the ground does not increase yield.

3.0166, SPACING ON 4 COWPEA VARIETIES
S.E. KOLI, (GH.061.0040)
Objective: To find spacing at which each of the varieties performs best.
Approach: 4 spacing and 4 varieties in all combinations.
Progress: First year's trial just harvested.

3.0167, COMPARISON OF COW MANURE, POULTRY MANURE AND CHEMICAL FERTILIZER ON MAIZE YIELD
S.E. KOLI, (GH.061.0041)
Objective: To determine the effect of the manures and chemical fertilizer and then combinations, on soil and maize yield.
Approach: Randomised block design. Treatments applied on same plots each season.
Progress: First year's trial not yet completed.

3.0168, COMPARISON OF MONOCROPPING AND INTERCROPPING OF SOME FIELD CROPS
S.E. KOLI, (GH.061.0042)
Objective: To compare monocropping and intercropping to know the best system for growing some crops.
Approach: 4 treatments - 1. Monocropping; 2. Inter-row intercropping; 3. Inter-hole intercropping; 4. Inter-row intercropping with closer hill spacings.
Progress: Monocropping yield higher in maize/groundnut, and barley millet/ sorghum but intercropping gave higher cash return in maize/ sorghum.

3.0169, RATE AND TIME OF NITROGEN APPLICATION ON MAIZE, YAM AND RICE
S.E. KOLI, (GH.061.0043)
Objective: To locate best time to apply nitrogen and the best dosage.
Approach: 3 nitrogen levels with 5 times of nitrogen application subtrtreatments.
Progress: Results indicate that time and rate of nitrogen application affects yields significantly.

3.0170, VARIETAL IMPROVEMENT OF UPLAND RICE
J.E. QUANSAH, (GH.061.0044)
Objective: Improvement of the grain yielding capability of two rice varieties.
Approach: Pure line selection within two early maturing rainfed rice varieties, C2 and C18.
Progress: First cycle of selection effected.

3.0171, FERTILIZATION OF SMOOTH CAYENNE PINEAPPLE IN GHANA
W.S. ABUTIATE, (GH.061.0045)
Objective: To determine the fertilizer requirements of the smooth cayenne pineapple in the major growing areas of Ghana.
Approach: The project involves the siting and laying down of replicated randomised block design trials to determine the application rates, schedules, methods of application and forms of fertilizer best suited for use in the growing areas, effect of fertilizer on yield and fruit quality as determined by % total soluble solids and 1% acidity. To achieve the above objective some fertilizer trials have been laid down in the forest and coastal savannah growing areas. Cultural improvement methods have been incorporated in some of the trials. Experiments currently in progress include: 1. Effects of plant density, nitrogen levels and growth hormone on the yield and quality of smooth cayenne pineapple in the forest zone of Ghana. 2. Effects of increasing levels of N and K in combination with magnesium on the yield and quality of smooth cayenne pineapple in the forest zone of Ghana. 3. Effects of various levels of NPK fertilizer on the growth, yield and fruit quality of smooth cayenne pineapple in the coastal savannah zone of Ghana.
Progress: The results of a preliminary trial on the responses of smooth cayenne pineapple to nitrogen, phosphorus and potassium conducted in the forest zone have showed that yield and mean fruit weight responded significantly to nitrogen and potassium application. Phosphorus depressed yield. Nitrogen addition reduced while potassium addition raised the TSS of the juice. There was significant NP interaction on the acid content of the juice.

3.0172, EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.061.0046)
Objective: To determine the optimum level of nitrogen which could give high yield of dry retted fibre.
Approach: The experiments will be sited in the Forest zone, Forest-Savannah Transition zone, Northern Savannah zone and Southern Savannah zone. 2. Nitrogen will be applied to kenaf plots at the following rates (lbs/acre): (a) 0; (b) 30; (c) 60; (d) 90; (e) 120; (f) 150. Each plot also will receive 60 lbs./acre phosphorous.

36
and 60 lbs/acre potassium. Plot (g) will receive 150 lbs/acre of nitrogen, 60 lbs/acre phosphorus, and 120 lbs/acre potassium. 3. Kenaf seeds will be planted in completely randomised blocks replicated six times and plant height and stem diameter measurements will be taken at 50, 70, 90 and 110 days after planting. Yield of fresh green stalks and dry retted fibre will be recorded.

Progress: Preliminary results are being analysed statistically.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0173, EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L.

S.Y. AMANQUAH, (GH.061.0047)

Objective: To determine the best combinations and levels of nitrogen, phosphate and potash as sulphate of ammonia, single superphosphate and muriate of potash, respectively, which can give high yield of dry retted fibre and seed.

Approach: 1. The experiments are sited in the different ecological zones of Ghana. 2. The treatments are 0, 30 and 60 lb per acre sulphate of ammonia, single superphosphate and muriate of potash respectively in a 3 x 3 x 3 factorial arrangement. 3. The design is completely randomised blocks with four replications. 4. The fertilizers are mixed and applied between the rows on surface 14 days after planting. 5. Records on plant height, stem diameter, yield of fresh green stalks, and yield of dry fibre are taken.

Progress: The results of the experiments indicated that for a high yield of dry retted fibre, the best combinations of NPK which could be used are the following: 30:30:30 or 60:30:30 for the forest zone; 60:60:60 or 60:60:30 for the Northern Savannah zone and 60:60:30 or 60:60:60 for the Southern Savannah zone. The application of 30 lbs/acre of potash increased seed yield at Kwadaso.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0174, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.

S.Y. AMANQUAH, (GH.061.0048)

Objective: To determine the optimum date of planting kenaf for high yield of fibre.

Approach: 1. The experiments will be sited in the different ecological zones of Ghana. The experiments will be laid out in randomised blocks with six replications. 2. Planting will be done at fortnightly intervals from March to July. 3. Plant height and stem diameter measurements will be taken at 50, 70, 90 and 120 days after planting and at maturity. 4. Plant height will be measured from the ground level to the growing point of each plant. 5. Stem diameter will be taken at a point 12 inches from the ground level. 6. Other data to be taken are fresh green weight of plant, dry fibre weight and fibre per cent.

Progress: Results indicate that for fibre production, kenaf must be planted during the main rainy season with the start of the rains. Planting could be done from March to early May in the Forest zone, Forest-Savannah Transition zone and the Southern Savannah Zone. In the North, planting may be done in May and June. For seed production, planting could be done in the South in September/October.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0175, DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE

S.Y. AMANQUAH, (GH.061.0049)

Objective: To develop varieties of kenaf with desirable agronomic characteristics for commercial fibre production.

Approach: The studies involve: 1. Introduction of kenaf from different countries. 2. Collection of seed of cultivated and wild types from different parts of Ghana. 3. The introduced and local types will be observed for disease and nematode resistance. 4. Other aspects of these studies will involve: (a) comparison of the fibre yield of the different varieties in the different ecological zones of Ghana (b) development of pure-lines through selfing and selection, (c) hybridization to combine desirable characteristics, (d) testing.

Progress: 1. One variety A63-440 was released to the Bast Fibres Development Board in 1971 for commercial fibre production. 2. Eight different types have been isolated from the composite variety "Ghana Mixed". A paper is being prepared for publication. 3. Two photo-insensitive strains have been selected for further studies.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0176, INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS

E.A. ADDISON, (GH.061.0050)

Objective: To determine the effectiveness of fungicidal seed dressing in controlling soil-borne pathogens responsible for pre-emergence and post-emergence delay and damping-off.

Approach: Selected fungicides are used in dressing seeds before sowing. Seedlings showing symptoms of post-emergence damping-off and seeds which fail to germinate are collected and examined in the laboratory. Emergence and establishment counts are taken on the 14th and 28th days after sowing.

Progress: The crops which have been studied to date are maize at Kwadaso, Ohawu and Ejura, and millet and maize at Nyankpala. Chemical treatment of the seed, especially with Dieldrex A and migma A, has been found to be beneficial and has resulted in considerable increase in yield, especially at Nyankpala. Other important economic crops will be taken up.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0177, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA

S.Y. AMANQUAH, (GH.061.0051)

Objective: To determine the optimum dates on which Urena lobata could be planted for a high yield of fibre.

Approach: 1. Urena lobata will be planted at two weekly intervals in the different ecological zones of Ghana from March to July. 2. The experiments will be laid out in completely randomised blocks with six replications. 3. Plant height and stem diameter measurements will be recorded when the plants are 50, 70, 110 and 130 days old. 4. Stalks will be harvested for yield of fresh green stalks and dry retted fiber.

Progress: Results indicate that planting may be done in the Forest zone in March/April, Forest-Savannah Transition zone in April, Northern Savannah zone in May/June and probably early July and at Ohawu, Southern Savannah zone from the second half of March to the second week in May.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

37
GAHANA

3.0178, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS
S.Y. AMANQUAH, (GH.061.0052)

Objective: To determine the optimum dates of planting jute, Corchorus, capsularis for a high yield of fibre, in the different ecological zones of Ghana.

Approach: 1. Jute, Corchorus, capsularis, will be planted at two weekly intervals starting from the onset of the rains, in completely randomised blocks replicated six times. 2. Data to be taken will include plant height, stem diameter, yield of fresh green stalks and dry retted fibre.

Progress: Preliminary results indicate that Corchorus, capsularis could be planted at Kwadas, Forest zone, from March to April. At Nyankpala, in the Northern Savannah zone, jute could be planted for fibre in May/June. Generally, early planting with the start of the rains is preferable to late planting.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

MANGA SUBSTATION

Manga

3.0179, DEVELOPMENT OF MEDIUM MATURING, SHORT STATURE, HIGH YIELDING SORGHUM VARIETIES OF ACCEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE
H. MERCERQUARSHIE, (GH.066.0001)

Objective: High yielding, short stature sorghum having the same maturing period as local types in the Sudan Savanna Zone of Ghana and with a semi-compact panicle bearing flinty grains and resistant to Smuts, Striga and Sorghum Midge.

Approach: Introduction of early maturing, short stature sorghum with high yield potential. Screening of these for pests and disease resistance. Yield trial of local varieties to select top yielders. Crossing of selected early maturing, short stature types with selected tall, medium maturing ones. Selection from segregating populations of desirable short stature, medium maturing types.

Progress: A sorghum selection, Naga White, of medium stature (7ft.) and medium maturity (80 days to flowering when planted in June) yielding 2600 lbs/ac on the average, which is 80 percent higher than the yield of the best local variety, has been recommended. Many more lines resulting from crosses have been carried to F5 generation, and are being yield tested for those still higher yielding than Naga White to be recommended.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0180, THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING, PALATABLE VARIETIES OF PENNISETUM MILLET RESISTANT TO DISEASES, PESTS AND LODGING
H. MERCERQUARSHIE, (GH.066.0002)

Objective: An early maturing, disease and pest resistant, thick and long headed, highly tillering, high yielding crop.

Approach: Collection and evaluation of varieties in Ghana to see if enough variation exists. Introduction of varieties from other sources to improve genetic base material in Ghana and evaluation of these to see if any could be recommended over and above the existing ones. Formation of composite with local collections and introductions.

Recurrent selection on composite to improve yield while bearing in mind other objectives.

Progress: One composite from crosses of only Ghanaians and Nigerian material yielding 20 percent higher than an earlier recommendation was recommended in 1969. A composite containing genes from many more countries and selection only once showed an increase in yield to 1002 lbs/ac from a yield of the previous year of 876 lb/ac.

Its genetic variation as measured from genetic co-efficient of variation had been reduced from 32 percent to 14 percent.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

NYANKPALA AGRICULTURAL EXPERIMENTAL STATION

P.O. Box 54, Nyankpala via Tamale

3.0182, INVESTIGATION OF OPTIMUM PLANTING DATE FOR COTTON
S.E. KOLI, (GH.064.0001)

Objective: To determine the effect of planting date on mean yield of seed cotton.

Approach: Cotton variety, Allen 333, was used in a randomised complete block of five replicates. Plot size was 30' x 12' of 4 rows with the two middle rows (190 sq.ft.) harvested for yields. Planting commenced in late May at fortnightly intervals through the middle of July (five plantings).

Progress: Results obtained have been following the same trend every year. Early planting gave highly significant results (at 1 percent level). June planting therefore appeared to be the best time for sowing cotton at the ecological sites (Damongo and Nyankpala).

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0183, THE DEVELOPMENT OF LATE MATURING, HIGH YIELDING, PALATABLE VARIETIES OF MILLET (PENNISETUM) RESISTANT TO DISEASES, PESTS AND LODGING
H. MERCERQUARSHIE, (GH.064.0002)

Objective: A late maturing, disease and pest resistant, thick and long headed, highly tillering, high yielding crop.

Approach: Collection and evaluation of varieties in Ghana to see if enough variation exists. Introduction of varieties from other sources to improve the genetic base of material in Ghana and to see if any could be recommended over and above the existing ones. Formation of composite with local collection and introductions. Recurrent selection of composite to improve yield while bearing in mind other objectives.

Progress: No introduction has been superior in yield to local types. Varieties maturing earlier than local ones have generally
been poor in yield. One cycle of selection on the late millet composite resulted in an increase in yield of 5.2 percent. However, the genetic variation of the composite as measured from genetic coefficient of variation was reduced from 29.7 percent to 12.4 percent.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0184, THE DEVELOPMENT OF LATE MATURING, SHORT VARIETIES OF ACCEPTABLE PALATABILITY & RESISTANT TO PESTS & DISEASE

H. MERCERQUARSHIE, (GH.064.0003)

Objective: High yielding, short stature sorghum having the same maturity period as local types and with a semi-compact panicle bearing flinty grains and resistant to Smuts, Striga and Sorghum Midge.

Approach: Introduction of early maturing, short stature varieties with high yield potential screening of these for pests and disease resistance. Yield trial of tall, late maturing local varieties to select top yielders. Crossing of selected early maturing, short stature types, with selected tall, late maturing ones. Selection from segregating populations of desirable short stature, late maturing types.

Progress: A selection of medium stature (7 ft) but late in maturity (110 days to flowering when planted in June) with an average yield of 1500 lbs/ac has been recommended. Eighty one desirable lines from crosses of tall X short varieties have been carried to the F5 generation. Some have been back crossed to the shorter parents and the resulting segregates are undergoing yield testing.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0185, THE INTRODUCTION AND SELECTION OF HIGH YIELDING VARIETIES OF GROUNDNUTS PROCESSING HIGH OIL CONTENT FOR NORTHERN GHANA

H. MERCERQUARSHIE, (GH.064.0004)

Objective: Maturity period 120-140 days. High kernel yield. High oil content. Disease and pest resistance. Variety with dormancy and good pod retention at digging.

Approach: Collection of local varieties and introduction of more varieties from outside. Screening of these for all objectives except yield and oil content. Varieties found suitable from the screening test go into a yield trial for two or more years on a number of locations. Oil content of the few top yielders are determined. Varieties possessing the highest oil yield for the different locations are then recommended to farmers. Recommended varieties are then mass selected to further improve them.

Progress: In the screening exercise it appeared early maturing varieties (less than 100 days) were more susceptible to cercospora leaf spot and rosette than the late maturing ones (120 days or more).

Field trials have indicated Mani Pintar to be the best variety in the Northern Region and Tirik to be the best in the Upper Region. One year of mass selection within Mani Pinter resulted in an increased yield of 5-8 percent in trials comparing selected and unselected Mani Pintar in 3 locations.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0186, INVESTIGATION INTO FERTILIZER LEVELS FOR UPLAND RICE

J.E. QUANSNH, (GH.064.0005)

Objective: Test for interactions between variety, fertilizer level and location.

Approach: Scatter block technique. Split plot design with varieties, IR.20, C21, 617A and C4 - 63 as main plots and sixteen fertilizer levels as sub-plots and replicated three times.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0187, TIME OF NITROGEN TOP DRESSING OF UPLAND RICE

J.E. QUANSNH, (GH.064.0006)

Objective: Determination of the most suitable growth stage of the rice crop at which to top-dress.

Approach: Split plot experiment with four replicates and four varieties as main plots and the following fertilizer regimes as sub-plots. 1. 100 percent N at planting. 2. 50 percent N at planting and 50 percent N at maximum tillering. 3. 50 percent N at planting and 50 percent N at booting. 4. 10 percent at planting and 100 percent N at maximum tillering. 5. No N as control.

Progress: Top-dressing appears to be most beneficial at maximum tillering stage.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0188, WEED CONTROL OF UPLAND RICE

J.E. QUANSNH, (GH.064.0007)

Objective: Screening of herbicides.

Approach: Split plot experiment with four replicates and four herbicides, stam F34, TOK E25, Amiben-P.C.D. and Natchett as main plots and levels as sub-plots.

Progress: Natchett applied at 4kg/ha one day after sowing appears most promising.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0189, IMPROVEMENT OF GRAIN - STRAW WEIGHT RATIOS OF UPLAND RICE

J.E. QUANSNH, (GH.064.0008)

Objective: Maximisation of grain: straw weight ratios of two rainfed rice varieties 617A and C21.

Approach: Backcross technique.

Progress: Initial cross effected.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0190, DETERMINATION OF THE RESPONSE OF COTTON TO N, P, K 3X3X3 FERTILIZER LEVELS

S.E. KOLI, (GH.064.0009)

Objective: To find out a fertilizer dosage for cotton.

Approach: NPK was mixed in 27 treatment combinations at (N-0, N-40, N-80) x (P-0, P-50, P-100) x (K-0, K-20, K-40) lbs per acre. The plot size was 30' x 12' of 4 rows with the two middle rows (180 sq.ft.) harvested for yields. Ammonium sulphate was used for N. Single superphosphate for P and muriate of potash for K.

Progress: Results obtained so far showed that nitrogen fertilizer (ammonium sulphate) increased yield significantly (5 percent level), by 185 lbs per acre seed cotton and almost significant at 1 percent level. P2O5 and K2O have not yet responded significantly to treatment.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0191, POPULATION AND FERTILIZER STUDIES ON CEREALS

S.E. KOLI, (GH.064.0010)

Objective: To determine the effects of spacing and fertilizer on the yield of cereals.
GHANA

Approach: Spacing tested were: 1' x 1', 2' x 6', 2' x 1', 2' x 2', 3' x 6' and 3' x 1' Fertilizer levels were: 48 lbs/acre each of N, P2O5 and 20 lbs. of K2O; (F2) twice the above.

Progress: Maize: Results showed highly significant differences between spacing means, fertilizer means and the interactions between the two were significant. Fertilizer use up to F1 level is recommended. Spacings 2' x 1', 1' x 1', and 3' x 6' gave highest yields at F1 level. However 2' x 1' spacing is to be recommended at F1 level.

Sorghum: Results have indicated that 3' x 6', 2' x 1' and 1' x 1' plant per hill are optimum and fertilizer application of 40-50 lbs/acre each of N, P2O5 and 20-30 lbs/acre of K2O are adequate in achieving good yields. Significant interaction between spacing is listed.

Early Millet: Results have shown that 3' x 6', 1' x 1' and 2' x 1' spacings give highest yields. The recommended spacing of 3' x 1' gave lower yields and should be discouraged.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0192, STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS
S.E. KOLO, (GH.064.0011)

Objective: To determine the optimum planting dates for maize, sorghum, millet, rice, groundnuts, cowpeas and yams.

Approach: Trials laid out on randomised complete block design with five replications. Treatments were five for each crop and effected at fortnightly intervals starting at beginning of cropping season. Recommended fertilizer rates and spacings for each crop employed.

Progress: May to early June planting recommended for maize in Northern Region. Sorghum, late millet - late May to June planting recommended for Northern and Upper Regions. May and June respectively, planting advisable in both regions for groundnuts. Planting early millet in early May in Upper Region advisable. Planting rice from June to mid-July best and late May to late June advisable in Northern and Upper Regions respectively. Planting yams prior to onset of major rains recommended. Yields indicate planting cowpeas from late June to July is to be recommended.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0193, EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.064.0012)

Network project: See GH.061.0046. (3.0172)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0194, EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.064.0013)

Network project: See GH.061.0047. (3.0173)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0195, EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.064.0014)

Network project: See GH. 061.0048. (3.0174)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0196, DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE
S.Y. AMANQUAH, (GH.064.0015)

Network project: See GH.061.0049. (3.0175)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0197, INVESTIGATIONS OF FUNGICIDAL SEED DRESSING
E.A. ADDISON, (GH.064.0016)

Network project: See GH. 061.0050. (3.0176)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0198, EFFECTS OF DIFFERENT DATE OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA
S.Y. AMANQUAH, (GH.064.0017)

National Network project: See GH. 061.0051. (3.0177)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0199, EFFECTS OF DIFFERENT DATES OF PLANTING OF THE GROWTH AND FIBRE YIELD OF JUTE, CORchorus, CAPSULARIS
S.Y. AMANQUAH, (GH.064.0018)

Network project: See GH. 061.0052. (3.0178)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

40

OHAWU AGRICULTURAL EXPERIMENTAL STATION
P.O.B., Ohawu

3.0200, CROPS SEQUENCE TRIAL
A.F. KISSEDU, (GH.065.0001)

Objective: To determine optimum crop succession in a rotational system of farming.

Approach: 7 x 7 Latin square replicated 3 times. Plot size 1/40 of an acre. Seven treatments - (1) maize/fallow; (2) cassava; (3) tobacco/ fallow; (4) maize/cowpea; (5) fallow/fallow; (6) cowpea/cowpea; (7) maize/maize. 1st year: Each of 3 blocks divided into 7 plots (7/40 acre) so that each block contains all 7 treatments. 2nd year: Each 1st year plot is sub-divided into 1/40 acre plots each undergoing for one treatment. 3rd year: The whole field put under test crops. Characteristic to be measured: crop yield/plot, disease, pest resistance, input/output ratio.

Progress: Assessment of the trial can only be drawn after the test crop in the third year.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0201, EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.065.0002)

Network project: See GH.061.0046. (3.0172)

SUPPORTED BY Crops Research Institute - Kumasi, Ghana
3.0202, EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELDS OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.065.0003)
Network project: See GH. 061.0047. (3.0173)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0203, EFFECTS OF DIFFERENT DATES OF PLANNING ON THE GROWTH, FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L.
S.Y. AMANQUAH, (GH.065.0004)
Network project: See GH. 061.0048. (3.0174)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0204, DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE
S.Y. AMANQUAH, (GH.065.0005)
Network project: See GH. 061.0049. (3.0175)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0205, INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS
E.A. ADDISON, (GH.065.0006)
Network project: See GH. 061.0050. (3.0176)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0206, EFFECT OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA
S.Y. AMANQUAH, (GH.065.0007)
Network project: See GH. 061.0051. (3.0177)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0207, EFFECTS OF DIFFERENT dates OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CAR-CHORUS, CAPSULARIS
S.Y. AMANQUAH, (GH.065.0008)
Network project: See GH. 061.0052. (3.0178)
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0208, INTRODUCTION OF EXOTIC PLANTS
M.A. ADANSI, (GH.065.0001)
Objectives: (a) To provide a basis for crop improvement and diversification. (b) To obtain from foreign countries crop plants deserving priority attention for programmes in pathology, genetics, agronomy, horticulture, etc. (c) To multiply introductions for distribution after preliminary evaluations. (d) To prepare plant inventories of introductions with economic potential.
Approach: (a) By written requests to known sources for plant materials to be supplied gratis, on payment or exchange basis. (b) Introductions are planted for observation and multiplication after phytosanitary precautions. (c) Evaluation is on the basis of adaptation to local conditions, growth measurements, phenology, yield, disease and pest resistance etc.
Progress: Over 800 introductions have been made to date from the U.S.A., India, Australia, S. America, China, Israel, Philippines, Hawaii and many other countries. These include Malayan Dwarf Coconuts from Jamaica and the Ivory Coast for testing against the Cape St. Paul wilt disease of coconuts, commercial mango and avocado, rice, sesame, soyabean, citrus rootstocks, wheat etc. The greatest difficulty, however, is lack of proper storage facilities.
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0209, PLANT EXPLORATION AND COLLECTION
M.A. ADANSI, (GH.065.0002)
Objectives: (a) To help conserve germ plasm. (b) To participate in FAO world-wide plant material exchange programme.
Approach: By exploration and collection expeditions, direct purchases from local markets and exhibitions at agricultural shows in various regions. Emphasis is on: (a) Primitive material used in agriculture and related wild species; (b) new plants with economic potential; (c) special stocks including lines with known genetic factors or species cytological characteristics, resistant types, obsolete cultivars and mutants.
Progress: Progress has been slow due to inadequate findings. There have been no exploration expeditions to date, but over 300 collections have been made to meet foreign plant material requests. Interesting collections of indigenous plants with sweetening principles or taste-modifying properties are currently receiving international attention as potential substitutes for sugar and cyclamate.
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

POKOASE FOOD STORAGE SECTION

3.0210, INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA
A. OFOSU, (GH.069.0001)
Objective: To collect general information on (a) the types of insects infesting maize and cowpeas, (b) price fluctuations, (c) purity of the maize and cowpeas, (d) moisture content, and (e) magnitude of losses on the markets.
Approach: 3 standard measures are purchased weekly from each market on market days and examined in the laboratory.
Progress: Information on types of insects, price fluctuations, and moisture content of maize on 4 markets has been obtained.
SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0211, THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS
A. OFOSU, (GH.069.0002)
Objective: To reduce infestation and losses during the storage of maize on the cob in farmers' cribs.
GHANA

Approach: Insecticides that can be applied directly to maize grains are first tested in the laboratory using Sitophilus zeamais (Motsch) and Tribolium castaneum (Herbst) as test insects.

Selected insecticides are then sprayed on maize in cribs. Percentage weight loss, number of insect exit holes per 100 maize grains and number of insects present in a subsample are the parameters for assessing the effectiveness of an insecticide.

Progress: A method for controlling insects and rodents attacking maize in cribs using ethylene dibromide and rat bales has been recommended and is in use by farmers in the country (1).

Malathion, (dust and concentrate), pyrethrins in odourless oil (2.3), sevin and agrothion (4) have been found to give control of storage insects for periods up to 3 months.

Bromophos (5), Nuvan 7 (dichlorvos) and "Actellic" (a phosphorothionate) are undergoing laboratory tests.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0212. STORAGE OF MAIZE IN A CONCRETE SILO
A. OPOSU, (GH.069.0003)

Objective: To determine the conditions necessary for successful storage of maize in a concrete silo in a warm and humid environment.

Approach: A sixty-ton capacity concrete silo of the Tema Food Complex Corporation is to be filled completely with maize (m.c. not above 12%) and fumigated with phosphine. Temperature changes at various points in the silo are to be monitored with thermistors.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0213. THE PRESERVATION OF PALM FRUIT AS DEFIBRED MESOCARP PASTE
A. OPOSU, (GH.069.0004)

Objective: To increase the shelf life of palm fruit and thus facilitate its distribution.

Approach: Fresh palm fruits are boiled and pounded in a mortar. Nuts are separated from the mesocarp mass. Palm fruit paste is pressed out of the mesocarp with a press modelled after the Duchscher curb press. The paste is sterilized in cans and 'killer' jars at 15 lb/in² pressure for 30 minutes.

Progress: Palm fruit paste has been extracted successfully from palm fruit. The ratio of paste to raw fruit is 1:6 for local varieties and 1:4 for improved varieties of palm fruit. Sterilized palm fruit paste has been stored successfully for 12 months.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0214. MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS
A. OPOSU, (GH.069.0005)

Objective: To determine safe storage moisture contents of Ghanaian foodstuffs usually stored dry.

Approach: The foodstuffs are placed in open petri dishes and kept over saturated salt solutions in desiccators for 6 weeks at room temperature (26 degrees - 30 degrees C). Moisture content is determined by heating sub-samples in ventilated electric oven at 120 degrees C for 4 hours.

Progress: The 'safe' storage moisture contents of garri, cassava kokonte flour, roasted corn meal, dried ripe pepper powder and maize grains (local, GS2, Composite 2C4) have been determined. The results are shown below: Garri - 12.3%, Cassava Kokonte flour - 12.4%, Roasted corn flour - 10.2%, Dried ripe pepper powder - 12.2%, Maize grain (local, white) - 12.9%, Maize grain (GS2 - slightly yellow) - 12.4%, Maize grain (Composite 2C4, White) - 12.9%.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

3.0215. SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK
A. OPOSU, (GH.069.0006)

Objective: To find varieties of maize and cowpeas resistant to attack by Sitophilus zeamais (for maize) and Callosobruchus spp. (for cowpeas).

Approach: There are three aspects to the problem of infestation and destruction of maize and cowpeas by primary storage insects. The three aspects are to be examined separately for each maize or cowpea variety. (a) Field infestation (Giles & Ashman, 1971); (b) Inherent susceptibility (Wheatley, 1971); (c) Susceptibility to feeding by adult insects (Davey, 1965).

Progress: Susceptibility indices and percentage weight loss as parameters for measuring (b) and (c) respectively have been determined for 10 maize varieties.

SUPPORTED BY Crops Research Institute - Kumasi, Ghana

RADIOISOTOPE LABORATORY OF THE COCOA RESEARCH INSTITUTE OF GHANA
P.O. Box 8, Tafo

3.0216. THE FATE AND POSSIBLE NUTRITIONAL AND TOXICOLOGICAL SIGNIFICANCE OF METHYL BROMIDE RESIDUES IN FUMIGATED COCOA BEANS
D. ADOMAKO, (GH.832.0001)

Objective: Methyl bromide is extensively used for fumigation of bagged cocoa beans in warehouses against insect infestation before export from West Africa. The fumigant reacts with constituents of the beans with the formation of inorganic bromide and yet unknown methylation products. The investigation is to provide information on the magnitude and possible toxicological significance of these residues.

Approach: Small scale fumigation experiments are carried out with C14 labelled methyl bromide under conditions simulating warehouse practice, and residues in fermented and roasted cocoa beans are determined radiometrically after a suitable extraction and fractionation procedure.

Progress: Fumigation at 24mg/L followed by 8 days aeration results in residue levels of .30ppm in unroasted beans. Roasting reduces this level by 20 percent but this effect becomes smaller with increasing aeration time. Indications are that roasting has also an influence on the nature of the residues bound to the bean tissue.

Internat. Atomic Energy Agency - Austria

3.0217. THE DISTRIBUTION AND ACTIVITY OF ROOT SYSTEMS OF COCOA
Y. AHENKORAH, (GH.832.0002)

The objective of this project was to study the distribution and intensity of root activity of fruiting cocoa trees in wet and dry seasons. A knowledge of root activity would help to determine
where and when fertilizers should be applied to ensure maximum efficiency of utilization.

The experimental technique was based on the injection of P32 solution at a number of points round a tree at specified depth and distance under test. The P32 content of leaves of similar age and position sampled at intervals of 10 to 40 days after P31 application was used as a measure of root activity.

Twenty year old cocoa trees (variety Amelonado) planted at 2.4 X 2.4 meters on a sandy loam soil type showed highest root activity in the upper 2.5 cm and 7.5 cm layers of soil in both dry and wet seasons at 150 cm distance from the tree. Root activity was about six times higher in wet seasons than in dry seasons. In a comparison of different varieties, high yielding varieties had higher root activity than low yielding varieties in the upper layers of soil - but this was not always so at lower depths.

Internat. Atomic Energy Agency - Austria

RADIOISOTOPE LABORATORY OF THE SOIL RESEARCH INSTITUTE
Academy Post Office, Kwadaso, Kumasi

3.0218, FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA
C. OFORI, (GH.831.0001)

The object of this project is to see how best phosphatic and nitrogen fertilizers should be applied to grain legume crops without losing the benefits of their nitrogen fixing capacity. Field experiments will be designed to obtain answers to the following questions: 1. What is the influence of method, time and source of fertilizer application on the efficiency of fertilizer utilization? 2. What is the effect of fertilizer application on symbiotic nitrogen fixation? 3. What is the influence of other cultural practices such as irrigation and the liming of acid soils on the efficiency of fertilizer utilization and on nitrogen fixation?

In 1973 an experiment will be done to study the efficiency of different methods of placing superphosphate fertilizer and how this would interact with a small dose of starter nitrogen (30 kg N/ha as urea) and nitrogen fixation.

Using N15 labelled urea and P33 labelled superphosphate, the actual amounts of N and P taken up by the crop will be measured. The total nitrogen in the crop would be derived from fertilizer, soil and symbiotic fixation. The amount of soil N in the crop will be estimated by carrying out an experiment with N15 labelled urea on a non leguminous crop. Hence the fixed N can be estimated. Field observations will also be made to study the influence of various fertilizer treatments on nodulation and N fixation.

Internat. Atomic Energy Agency - Austria

3.0219, USE OF ISOPTES IN STUDIES ON THE NUTRITION OF GROUNDNUTS
C. OFORI, (GH.831.0002)

The objective of the project was to investigate the sulphur, nitrogen and phosphate requirements of ground nuts and obtain preliminary information on optimum methods and times of fertilizer application.

Fertilizers labelled with N15, P32 and S35 were used in field experiments to measure the actual amounts of the various fertilizer nutrients N, P and S respectively utilized by the crop.

The results showed no significant differences in P utilization between different methods of superphosphate application although there was some indication that split application - broadcast at planting, and banding 3 weeks after germination - can prove beneficial. Sulphur increased phosphate utilization and forage yields, but has a tendency to decrease pod and kernel weight except when applied with urea. The application of N at 30 kg N/ha and P at 50 kg P2O5/ha resulted in highest yields, and there was no difference between urea and ammonium sulphate as sources of N. Banding N fertilizer without P or with P broadcast reduced nodulation. However, when both N and P fertilizers were broadcast or bonded together, nodulation was not inhibited.

Internat. Atomic Energy Agency - Austria

SOIL RESEARCH INSTITUTE
Central Agricultural Station, Kwadaso, Kumasi

3.0220, DETAILED RECONNAISSANCE SOIL SURVEY OF UPPER AFRAM BASIN
S.V. ADU, (GH.160.0001)

OBJECTIVE: (1) To identify and classify the soils of the basin. (2) To evaluate them in terms of their suitability for crop production. (3) To compile basic physico-chemical and mineralogical data on existing soils as aids to working out a soil classification system with practical significance for Ghana.

APPROACH: Soil inspection holes dug either with chisel or an auger are inspected and the soils classified on the series level. Geology, vegetation and land-use and miscellaneous information recording are also made. Final soil association, land capability, geology, vegetation and land-use and miscellaneous information maps and a comprehensive soils report are produced after the completion of the survey.

PROGRESS: So far about 2,000 sq. miles of the total area of 2,975 sq. miles has been completed and 5 soil associations with 25 soil series mapped or identified.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0221, SOIL GENESIS STUDY OF UPLAND DRIFT SOILS AND ASSOCIATED RESIDUAL SOIL
G.K. ASAMOA, (GH.160.0002)

OBJECTIVES: Establishing discontinuities in transport and residual soils. 2. Studying translocation of clay and sesquioxides in relation to discontinuities in order to assess soil development.

APPROACH: Particle size analysis of 5-cm incremental samples. Determination of NH4-oxalate and Na-Dithionite extractable Fe203 and Al203. Least squares analysis of results.

PROGRESS: Analyses nearing completion - 2 profiles remain to be done. Results so far indicate close correlation between clay and free Fe203 distribution in Forest oxisols and ochorrals; 2, and
between silt (2-20) and free F203 in savannah ochrosols and ground water laterit. There was evidence of layering in drift soils.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0222, DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA
G.K. ASAMOAH, (GH.160.0003)

OBJECTIVES: 1. To map and classify the soils of the Region. 2. To evaluate the soils for agricultural land-use. 3. To compile basic data on soils and their environment as aids to working out soil classification system of practical significance.

APPROACH: The detailed reconnaissance method using available roads foot paths and cut lines as traverses for recording soils vegetation and land-use.

PROGRESS: Over half the area (about 1,300 sq. miles) under moist- semi-deciduous, forest and short grass savannah patches and thicket has been covered. Work is still in progress.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0223, DETAILED RECONNAISSANCE SOIL SURVEY OF THE LOWER AFRAM BASIN
J.A. MENSASHAHANSAH, (GH.160.0004)

OBJECTIVES: (1) To identify and classify the soils of the Basin. (2) To assess the soils of the Basin in terms of their suitability for crop production. (3) To provide information on the physico-chemical and mineralogical characteristics of the soils which will aid in the soil classification system of Ghana.

APPROACH: Method of survey involves the use of roads, footpaths, hunter's trails and Forest Reserve boundaries and where necessary, cut- lines generally spaced at interval of 6,600 feet apart. Soil inspection holes are dug and soils classified on series level. Geology, vegetation and land-use and land capability will be produced. A comprehensive soils report will be produced on completion of the survey.

PROGRESS: The basin covers approximately 2,135 square miles. Up to date, 1,900 square miles has been surveyed. Tentative Soil Map showing the delineation of the soils encountered with the basin in broad outlines or Soil Associations and Complexes is being prepared.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0224, EFFECT OF SPACING, VARIETY AND FERTILIZER RATE ON MAIZE YIELD IN GHANA
C.S. OFORI, (GH.160.0005)

OBJECTIVE: To determine optimum spacing and plant population of three promising maize varieties from the plant breeder's selections and to determine fertilizer application levels for these varieties.

PROCEDURE: Split-plot field experiment with spacing as main treatment and split into sub and sub-sub-plots for variety and fertilizer levels.

PROGRESS: Spacing of 3' x 9' and 3' x 1' with one seed per hole were found best for the varieties tested.

Fertilizer rates of 60 lb N, 40 lb P2O5 and 40 lb K2O were found to give economic yield returns. Higher nitrogen rates may not give extra yield under the conditions prevailing on this soil.

Of the three varieties, the composite 3 was found best with a yield level of 3746 lb/acre; followed by composite 2. The variety currently distributed by the Ministry of Agriculture - the Ciscol 153 was found to be inferior in yield to the two composites.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0225, STUDIES ON THE NUTRITION OF GROUNDNUTS (ARACHIS HYPOGEA L.)
C.S. OFORI, (GH.160.0006)

OBJECTIVE: (1) To determine the importance of fertilizer nitrogen beyond "starter level" to groundnuts. (2) To evaluate the efficiency of atmospheric and soil nitrogen supply to groundnuts. (3) To study methods of placement of starter N and superphosphate on the uptake of fertilizers N and P by legumes (groundnut).

PROCEDURE: Field experiment using labelled N15 fertilizers.

PROGRESS: First crop not yet harvested.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0226, EFFECT OF PLOUGHING AND FERTILIZER APPLICATION ON THE YIELD OF CROPS (MAIZE, CASSAVA AND COWPEAS)
C.S. OFORI, (GH.160.0007)

OBJECTIVE: (1) To determine yield effect of ploughing as against the traditional method of cultivation (no ploughing). (2) To compare medium and deep ploughing on maize, cassava and cowpeas. (3) To determine relationships if any between ploughing and fertilizer response. Using split-plot design.

PROCEDURE: Ploughing was main treatment. This was split to have 23NPK fertilizer treatment.

PROGRESS: Ploughing was found to increase the yield of maize and cassava significantly above the traditional hoe cultivation method. Results so far obtained showed no significant ploughing x fertilizer response interaction.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0227, THE EFFECTS OF PLANTING DATE ON THE EFFICIENCY OF FERTILIZER NITROGEN AND PHOSPHORUS IN MAIZE PRODUCTION IN SELECTED AREAS IN GHANA
C.S. OFORI, (GH.160.0008)

OBJECTIVE: To determine the efficiency of nitrogen and phosphorus fertilizers in relation to various planting dates of maize.

PROCEDURE: Date of planting is used as main treatment and split into sub-plots for 3 x 4 (PN) treatments.

PROGRESS: No data yet available.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0228, CORRELATION OF SOIL TEST METHODS WITH CROP YIELDS (MILLET AND GUINEA CORN)
A.T. HALM, (GH.160.0009)

OBJECTIVE: (1) To find the most suitable extract to available P determination. (2) To determine the critical level of P.

PROCEDURE: Field experimentation. A randomised block design with 3 replicators was laid on 20 farmer's farms for the experiment. Various rates of P (including no P treatment) were used; Millet and guinea corn were used as test crops. (2) Laboratory analysis: Four methods were used for available P determination - Bray P, Bray P2, Truong and Olsen. (3) Greenhouse experiment: Soils from the various farms were collected and used in the greenhouse for pot experiments.

PROGRESS: Correlation coefficient studies between crop yields and available P extractions showed that only the Olsen method was significant.

44
3.0229, RESPONSE OF LOWLAND RICE TO NITROGEN, PHOSPHORUS AND POTASSIUM
A.T. HALM, (GH.160.0010)

OBJECTIVE: To investigate the nutritional requirement of lowland rice in Northern Ghana.

APPROACH: 3 x 3 factorial replicated 2 times. Fertilisers applied were Nitrogen at 0, 40 and 80 lbs. N/acre as ammonium sulphate, Phosphorus at 0,30 and 60 lbs. P2 O5/acre as single superphosphate and Potassium at 0, 20 and 40 lbs. K2O/acre as muriate of potash.

PROGRESS: First year results showed that N40 P30 K0 was the best nutritional requirement of lowland rice.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0230, FIXATION OF APPLIED PHOSPHORUS IN SOME GHANA SOILS
A.T. HALM, (GH.160.0011)

OBJECTIVES: (1) To determine the phosphorus fixing capacity of some Ghana soils and (2) to determine the amount of P fertiliser required to offset the fixation.

APPROACH: Single superphosphorus was added to the soils at 0, 50, 100, 150, 200, 250, 300, 400, 500 and 600 ppm P. The treated soils were then incubated for 4 days at room temperature. After the incubation period available P was extracted from the moist soils by using (1) Bray P, (2) Bray P2 (3) Truong and (4) Olsen methods.

PROGRESS: Results showed that the rate of fixation was 70% in one soil, between 42-48% in 3 soils, 48-33% in another 3 soils and as low as 22% in the remaining 3 soils.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0231, RESPONSE OF MAIZE TO NP IN SELECTED MAIZE GROWING AREAS
A.T. HALM, (GH.160.0012)

OBJECTIVE: To determine the NP fertiliser requirement of maize in some of the maize growing areas.

APPROACH: Randomised block designs with 3 replications were laid on farmers farms of about 20. Varying rates of phosphorus were used in the treatments.

PROGRESS: Results indicated that on the whole the best fertiliser requirement was N80 P60.

SUPPORTED BY Soil Research Institute - Kumasi, Ghana

3.0232, LIVESTOCK DISEASE INVESTIGATION
J.K. OBINIM, (GH.212.0001)

Objective: Diagnosis of livestock diseases.

Approach: Examination of post-mortem material using bacteriological, serological, histological and parasitological aids where necessary. Field visits and examination of clinical cases where necessary.

SUPPORTED BY Ministry of Agr. - Accra, Ghana

3.0233, THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK
M.B. USHER, (GH.411.0001)

Objective: To give definitive results on the average natural resistance and its variation of a large number of timber species occurring in Ghana.

Approach: Samples of wood were collected from 83 timber species and from a number of separate areas so that there was replication of each of the species used in the tests. Samples were cut from sapwood, outer-heartwood and inner-heartwood so as to study the characteristics of radial variation in termite resistance. Conventional grave-yard tests are being carried out. These tests will yield data on the species used for outdoor work, such as posts, poles and sleepers. Small-scale tests between glass plates to be carried out later will yield data on species for indoor use. Laboratory tests are also planned.

Progress: First inspection of blocks after 4 weeks exposure to subterranean termites has been carried out. This indicates that Pyenanthus angolensis, Ceiba pentandra, Anthrocaryon microstera and Daniella ogua are particularly susceptible to termite attack and make excellent bait wood species. No attack was observed on Erythrophleum ivorense, Nauclea diderrichii, Strombosia glaucescens and Trichilia prieuriana.

SUPPORTED BY University of Sci. & Tech. - Kumasi, Ghana

3.0234, TERMITE ECOLOGY AT FUMESUA, GHANA
M.B. USHER, (GH.411.0002)

Objective: In preparing a test site it was decided to investigate: (1) The species of termites present; (2) The numerical abundance of these species; (3) The probability that a standard piece of wood (Triplochiton scleroxylon, 15 X 10 X 4 cm) of a specified age would be attacked by each species; (4) Any succession of species on wood; (5) The relation between microclimate and termite distribution.

Approach: A total of 926 standard pieces of wood have been buried and examined every 4 weeks. Soil and micro-climate analyses are being made.

Progress: 31 species of termites have been recorded. T. Scleroxylon sapwood less than 4 weeks old has a probability of 0.17 to 0.013 of attack by ancistrotomes (the most common of species), whilst wood over 4 weeks old has a probability of attack of about 0.30 to 0.02 in any period of 4 weeks exposure (95 percent confidence limits given).

SUPPORTED BY University of Sci. & Tech. - Kumasi, Ghana

3.0235, A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK
J.K. OCLOO, (GH.411.0003)

Objective: To study the natural variability in the resistance of heartwood and sapwood cut at different heights in the same tree and the variability between trees of specified age. The natural radial variation in the resistance of the wood to terminate attack also will be studied. The correlation of the resistance with physical and anatomical properties will be studied.

Approach: Two trees are being tested. Five discs, 30 cm thick, were cut at regular intervals (4.88 m) along each tree. Test
GHANA

pieces were prepared from each disc, 8 zones (depths) being tested. Conventional grave-yard tests are being carried out now. Small-scale tests between glass plates will be carried out later. Physical properties such as the tensile modulus of elasticity and the specific gravity of each zone are being measured.

Progress: The first inspection of the grave-yard test is due in March 1973. The mean modulus of elasticity is found to be 7.5×10^9 N.m squared.

SUPPORTED BY University of Sci. & Tech. - Kumasi, Ghana

VOLTA BASIN RESEARCH PROJECT
University of Ghana, Legon

3.0236, HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN
S. BISWAS, (GH.350.0001)

Hydrobiological projects are being actively pursued in water chemistry and water movements, quantitative aspects of phytoplankton, zooplankton bottom-living animals, aquatics weed, and on many aspects of the biology of fishes, including studies on their food, growth, and reproductive behaviour.

SUPPORTED BY University of Ghana - Accra

3.0237, AGRICULTURE RESEARCH IN DRAWDOWN AREAS
J. AMAMETAPKOR, (GH.350.0002)

The seasonally flooded drawdown area around the lake situated between 500 and 400 square miles on Agricultural research.

SUPPORTED BY University of Ghana - Accra

3.0238, ECONOMIC AND SOCIOLOGICAL SURVEY OF THE VOLTA BASIN
UNKNOWN, (GH.350.0003)

Economic and sociological survey of the basin in agriculture, fishing, marketing, trade, household economy and nutrition, religious practices.

SUPPORTED BY University of Ghana - Accra
IVORY COAST

BASE DE MULTIPLICATION ET DE VULGARISATION IFCC DE SAN PEDRO
B.P. 1827, Abidjan

4.0001, MINERAL FERTILIZATION ON COFFEE
P. JADIN, (IV.133.0001)
Network project - see IV. 132.0032 (4.0145)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0002, MINERAL FERTILIZATION ON COCOA
J. SNOECK, (IV.133.0002)
Network project - see IV. 132.0033 (4.0146)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0003, STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION
J. BESSE, (IV.133.0003)
Network project - see IV. 131.0014 (4.0111)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0004, GENERATIVE IMPROVEMENT OF THE CACAO-TREE
J. BESSE, (IV.133.0004)
Network project - see IV. 132.0004 (4.0120)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

BASE DE MULTIPLICATION ET DE VULGARISATION IFCC DE ZAGNE
B.P. 1827, Abidjan

4.0006, MINERAL FERTILIZATION OF COFFEE
J. SNOECK, (IV.134.0001)
Network project - see IV. 132.0032 (4.0145)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0007, MINERAL FERTILIZATION ON COCOA
J. SNOECK, (IV.134.0002)
Network project - see IV. 132.0033 (4.0146)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0008, IMPROVEMENT OF THE COLA TREE - COLA NITIDA
J. CAPOT, (IV.134.0003)
Network project - see IV. 132.0027 (4.0140)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0009, GENERATIVE IMPROVEMENT OF THE CACAO TREE
J. BESSE, (IV.134.0004)
Network project - see IV. 132.0004 (4.0120)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0010, STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION
J. BESSE, (IV.134.0005)
Network project - see IV. 131.0014 (4.0111)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0011, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY VEGETATIVE MEANS
J. CAPOT, (IV.134.0006)
Network project - see IV. 132.0006 (4.0122)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0012, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY GENERATIVE MEANS
J. CAPOT, (IV.134.0007)
Network project - see IV. 132.0007 (4.0123)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0013, IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION
J. CAPOT, (IV.134.0008)
Network project - see IV. 132.0008 (4.0124)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.
IVORY COAST

CENTRE DE RECHERCHES ZOOLOGIQUES DE MINAKRO-BOUAKE
B.P. 1152, Bouake

4.0014, EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES
B. GOMBAUD, (IV.161.0001)

OBJECTIVE: To determine the potentialities of intensive fattening of N'Dama animals started at different classes of age: possibility of rapid finishing of replacement cows, of five-year-old steers, longer for young bullocks or steers of 30 months.

EXPERIMENTAL ARRANGEMENT: Division of the animals into three lots according to age - Distribution: of Panicum maximum as green fodder, of coarse rice meals, crushed maize as concentrate fodder, of cotton seed. Weighing of the animals each week, weight of fodder distributed, weight of fodder left uneaten.

RESULTS: Weight: replacement cows: 370.5 g/animal/day; adult steers: 377.4 g/animal/day; calves: 349 g/animal/day. Economic: replacement cows: profit of 15,000 F (French African currency) per lot of 10; adult steers: profit of 2,000 F (French African currency) per lot of 9; calves: deficit of 65,000 F (French African currency) per lot of 11.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0015, EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT
B. GOMBAUD, (IV.161.0002)

OBJECTIVE: To determine the potentialities of fattening of Fulani zebu calves purchased very young in the Bouake market. To find their adaptability to Stylosanthes.

EXPERIMENTAL ARRANGEMENT: Division of the animals into 3 lots: 2 lots of 11 and 1 of 10. Lot 1: 1 lot on pasture for 160 days. Lot 2: 1 lot on pasture for 60 days then on pasture plus fodder supplement for 100 days. Lot 3: 1 lot supplemented at pasture for 160 days. Nutrition: Stylosanthes cultivated as pasture. Supplement: coarse rice meals plus cotton-seed.

RESULTS: Weight: lot 1: 651.3 g/animal/day. Lot 2: 565.1 g/animal/day. Lot 3: 594 g/animal/day. No reaction to the supplement. Difficulty: poor acceptability of the concentrate, health difficulties (streptothricosis). Economic: lot 1: benefit of 14,230 F (French African currency) per lot of 21; lot 2: benefit of 11,379 F (French African currency) per lot of 10; lot 3: benefit of 10,829 F (French African currency) per animal.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0016, UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE
B. GOMBAUD, (IV.161.0003)

OBJECTIVE: To test the provision in the ration of a concentrate based on molasses with the prospect of the development of a large-scale sugar industry in the Ivory Coast.

EXPERIMENTAL ARRANGEMENT: Division of the animals into 3 lots: 1 lot permanently housed receives panicum as green fodder and the "molasses, rice, meal, cotton-seed" concentrate. 1 lot on permanent Stylosanthes pasture receives the same supplement.

RESULTS: Weight gain: housed lot: 493.9 g per animal per day; pastured lot: 688.9 g per animal per day. Obvious acceptability of the supplement - production of carcasses of high quality. Economic: 6,147 F (French African currency) profit per animal for the lot at pasture. 1,537 F (French African currency) profit per animal for the housed lot.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0017, EXPERIMENT ON THE FATTENING OF N'DAMA AND BAOULE BULL CALVES ON PERMANENT PASTURES OF STYLOSANTHES GRACILIS
B. GOMBAUD, (IV.161.0004)

OBJECTIVE: To determine the bases for a rustic fattening unit (feed-lot) in a zone for reclassification of populations of displaced agricultural workers. Study of the profitability of such an undertaking. To test the best adapted breed of cattle.

EXPERIMENTAL ARRANGEMENT: The animals are placed on a permanent pasture of Stylosanthes gracilis (84 animals on 30 hectares: rate of stocking 2.7 head/ha.) Inspections of fodder consumption are made before and after grazing. The animals are weighed every fortnight.

RESULTS: Weight gains: N'Dama: weight gain per animal per day 350 g. Baoule: weight gain per animal per day 200 g. Forage consumption: 35.8 kg of green Stylosanthes per animal per day. Economic: N'Dama: net profit per hectare 24,189 F (French African currency). Baoule: net profit per hectare 5,464 F (French African currency).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0018, SELECTION OF N'DAMA CATTLE IN THE RANCHES OF THE IVORY COAST
B. GOMBAUD, (IV.161.0005)

OBJECTIVE: To carry out a preliminary investigation in a considerable population of animals of the N'Dama breed in order to determine the mean weight by age-group and the possibilities of increasing it.

APPROACH: Weighing at various times of the year of young males divided into age-groups. Statistical study made on this population with determination of the mean weight per age-group, evaluation of the deviation from the mean for each age-group, calculation of the regression type of the confidence interval, definition of the mean coefficient of variance.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0019, CROSSBREEDING JERSEY N'DAMA. FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE
J.C. MATHON, (IV.161.0006)

OBJECTIVE: To determine the possibilities of growth and fattening of Jersey N'Dama cattle under different methods of management.

APPROACH: Crossbred cattle are placed for fattening either on Stylosanthes gracilis pasture or in fattening enclosures (feed-lot) where they are fed at troughs with Panicum maximum and with local agricultural by-products (cotton-seed, meals based on rice, manioc.)

RESULTS: 1/ Fattening on Stylosanthes fallow: On the station: half-bred cattle, average age of 41 months at the start of the experiment, have made a mean daily weight gain of 470 g per animal in 97 days on experiment. In a rustic sector the mean daily gain made in an experiment lasting 271 days was 303 g. 2/ Intensive feeding in cattle pens (feed-lots): This experiment carried out over three months with half-bred Jersey cattle aged 3 1/2 months
has enabled the attainment of a mean daily weight gain of 592 grams. After 2 months on experiment, the mean daily gain was 750 g per animal. 3/ Beef qualities: The true carcass yield of half-bred Jersey animals varies from 60% to 66%. The percentage of choice cuts (sirloin plus quarter) is 55%. The organoleptic qualities of the beef are excellent. ‘Marbled’ meat is more easily obtained than with N'Dama animals.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0020, CROSSBREEDING JERSEY-N'DAMA. 1/4 N'DAMA ANIMALS
J.C. MATHON, (IV.161.0007)

OBJECTIVE: To improve milk production, precocity and conformation of cattle of the local breed without too much reduction in their rusticity; this would enable a supply of milk to the urban centres of the Ivory Coast.

APPROACH: Regular recording of weight and measurements provides inspection of growth. Individual milk yields are recorded every day. An inspection of the butterfat content is carried out fortnightly.

RESULTS: 1/ Growth: The 3/4 Jersey males weigh on average 21.3 kg at birth, 166 kg at 1 year and 338 kg at 2 years, as compared with 17.3 kg, 128.5 kg and 230.9 kg for the N'Dama at the same age. 2/ Milk production: The aptitude for milking (docility; udder conformation.) is good. The mean yield in first lactation is 1791 kg with 5.8% butter-fat. The present record is 2040 kg with 5.66% of butterfat in 270 days (3rd lactation). 3/ Rusticity: The adaptation to the climate and the tolerance to trypanosomiasis are less good than in the half-bred Jersey N'Dama. Chemoprophylaxis against trypanosomiasis is necessary.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0021, CROSSBREED JERSEY-N'DAMA. STUDY OF THE PERFORMANCE OF HALF-BREED JERSEY CATTLE
J.C. MATHON, (IV.161.0008)

OBJECTIVES: to improve precocity, conformation and milk production of N'Dama cattle without too far reducing their rusticity and their tolerance to trypanosomiasis.

APPROACH: Regular recording of weights and measurements enable inspection of growth. Individual milk yields are recorded at the time of the two daily milkings. An assay of the butter-fat content is carried out fortnightly.

RESULTS: 1/ Growth: The weight of half-breed Jersey males is 19.3 kg at birth, 143.1 kg at 1 year and 347.4 kg at 3 years, as compared with 17.3 kg, 128.5 kg and 277.9 kg for the N'Dama of the same age. 2/ Performance of females: At adult age the half-breed Jersey cows weigh an average 340 kg against 290 for the N'Dama dams. The average age at first calving is 36 months; average interval between calvings 337 days. The mean milk yield in 3rd lactation (22 cows) is 1325 kg with 5.54% of butter-fat in 3rd lactation. The record yield in 3rd lactation is 2100 kg with 5.35% butter-fat, or 7.7 litres per day. 3/ Rusticity: The adaptation to the climate and the tolerance to trypanosomiasis appears to be conserved. The animals can be used in a peasant environment under the same conditions as the N'Dama.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0022, CROSSBREED JERSEY N'DAMA. STUDY OF THE PERFORMANCE OF 3/8 JERSEY - 5/8 N'DAMA CATTLE
J.C. MATHON, (IV.161.0009)

OBJECT: To determine if this percentage of Jersey blood enables any appreciable improvement of conformation, precocity and milk production of cattle of the N'Dama breed, while conserving the animals' good tolerance for trypanosomiasis.

APPROACH: N'Dama cows being served freely by a 3/4 Jersey bull. Weights and measurements recorded regularly provide the study of growth. Milk yield of the females will be tested: recording of individual yields, assay for butter-fat.

RESULTS: The relationship of the weights at birth, at six months and at 1 year of the 3/8 Jersey to those of the N'Damas is as follows: 90%, 140%, 142% for the males; 90%, 140%, 147% for the females. The precocity of these animals seems to be excellent. They have excellent tolerance for the climatic conditions and good tolerance for blood parasitism (trypanosomiasis in particular).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0023, IMPROVEMENT OF FORAGE PRODUCTION BY ASSOCIATED CULTIVATION OF GRAMINAE AND OF LEGUMINOUS CROPS
G. ROBERGE, (IV.161.0010)

OBJECTIVES: Study of the individual behaviour in the association of two types of grass and three leguminous crops. Study of the advantage of the association for forage. Determination of the modalities of the exploitation.

APPROACHES: Two Graminaceae, Melinis minutiflora (sown in seed-holes 40 x 40 cm) and Pennisetum purpureum (cuttings, 100 x 50 cm) are grown experimentally with Pueraria javanica (10 kg/ha), Centrosema pubescens (10 kg/ha) and Stylosanthes gracilis (4 kg/ha). These leguminous plants are sown in drills 25 cm apart, between the rows of Gramineae.

RESULTS: Production: The associations Melinis x Stylosanthes and Pennisetum x Centrosema produce 12.8 tons of dry matter/ha/year. The association Pennisetum x Stylosanthes: 12.6 at the rhythm of exploitation of 3 to 4 cuts per year. The associations with Pennisetum, though they present an advantage from the point of view of productivity, are constantly out of balance. The grass constricts the establishment of the legume. The latter becomes really dominant in the course of the 3rd year.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0024, EXPERIMENTS WITH FORAGE PLANTS IN IRREGATED CULTIVATION
G. ROBERGE, (IV.161.0011)

OBJECTIVES: Determination of the productivity of 10 forage plants in irrigated cultivation with manuring.

APPROACH: 2 types of experiments have been in progress since June 1971 for three years: 1 productivity experiment of factorial design with 6 repetitions dealing with 4 plants: Panicum maximum K187B, Trypsacum laxum, Pennisetum purpureum and Stylosanthes gracilis - with 2 rhythms of production and 2 levels of fertilization: 1. 120N - 100P - 100K, 2. 300N - 200P - 300K; (for Stylosanthes, same fertilization but no N). 1 orientiation experiment of latin-square design with 6 repetitions dealing with 6 plants: Panicum maximum G23, Brachiaria mutica, Brachiaria ruziieni, Andropogon gayanus, Dolichos lablab, Pueraria javanica - 1 level of fertilization and 1 rhythm of production.

RESULTS: After one year the strongest production is provided by Panicum maximum with 40 to 49 tons of dry materials/ha. The weakest by Dolichos lablab with 9.4.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France
IVORY COAST

4.0025, ASSOCIATION OF AGRICULTURE WITH ANIMAL RARING IN THE CENTRAL IVORY COAST
G. ROBERGE, (IV.161.0012)

APPROACHES: Carrying out a production programme starting from a family business associating cropping with animal rearing. Size of the business at the start: 5 cultivated fields of 0.85 ha and one natural pasture of 7 ha. Initial rotation: 1. Yams. 2. Maize followed by cotton. 3. Half maize and half groundnuts followed by tobacco. 4. and 5. Stylosanthes methods: 2 workers, 1 pair oxen, 3 cattle for fattening, implements for team cultivation.

RESULTS: Absolutely too complicated; modified in this way: 1. Yams. 2. Maize followed by cotton. 3. Maize. 4. and 5. Stylosanthes. The production of maize being irregular, the experiments will be continued with the following rotation: 1. Yams. 2. Maize followed by cotton. 3, 4. and 5. Stylosanthes. Economic result: profit $1.20 per working day.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0026, STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND
G. ROBERGE, (IV.161.0013)

OBJECT: Creation of reserves of forage for the dry season. Study of productivity of different forage plants at different levels of low ground.

APPROACHES: Experimental work dealing with nine Gramineae: Digitaria unfolozi, Tripsacum laxum, Melinis minutiflora, Panicum maximum, Pennisetum merkeres, Pennisetum purpureum, Setaria spachelata, leguminous plant Stylosanthes gracilis. Each plant is tested at 7 levels varying from 0 cm (marsh) to the bank 220 cm. Study of the influence of the water level on productivity.

RESULTS: At levels 0, 1 and 2, Brachiaria mutica gives the best yields with 36, 19 and 15 tons dry material per hectare per annum. At level 6, Panicum maximum gives the best yield with 12.3 tons of dry material/ha/year.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0027, IMPROVEMENT OF FORAGE PRODUCTION IN SAVANNAH ZONE BY MODIFICATION OF THE TRADITIONAL SYSTEM
G. ROBERGE, (IV.161.0014)

OBJECTIVE: Determination of the possibilities of stocking and economic influences.

APPROACH: 2 systems are studied: management of savannah: extirpation of bushes by manual grubbing out and maintenance of the pasture by gyrotillot. Improvement of the savannah: technique analogous to the preceding one completed by a traverse with crossed disks and a broadcast or drill sowing of 4 kg of Stylosanthes gracilis.

RESULTS: Management of savannah. The carrying capacity attained is 0.8 tropical animal unit (T.A.U.) per hectare against 0.2 T.A.U. per hectare on natural non-managed savannah. The net cost of the standing feed unit produced is 3.9 F (currency of French Africa). Improvement of savannah. The carrying capacity attained is 1.2 T.A.U. per hectare. Net cost of the standing feed unit is 3.9 F, weight gain per hectare in N'Dama steers at pasture day and night without supplementation, 170 kg per hectare per annum.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0028, VARIATION IN THE FOOD VALUE OF FORAGE PLANTS ACCORDING TO THE RHYTHM OF PRODUCTION
G. ROBERGE, (IV.161.0015)

OBJECT: To study the evolution of dry matter, nitrogenous matter, cellulose and minerals, and determination of the optimum stage for utilization.

APPROACH: In the first place 4 plants are studied in a fertilized and irrigated experiment in the following rhythms: Trypscum and Stylosanthes: 28, 42, 56, 70 days after start of regrowth. Pennisetum and Panicum: 14, 28, 42, 56 days after start of regrowth. After each mowing, a complete analysis is carried out.

RESULTS: The analyses of dry matter show that the percentage of cellulose increases with duration and that the percentage of protein materials decreases. These modifications are similar for Panicum, pennisetum and Trypscum. With Stylosanthes, the decrease in the percentage of protein materials is less. In irrigated cultivation the dry matter increases little with time of re-growth.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0029, STUDY OF THE ESTABLISHMENT OF PASTURES OF PANICUM MAXIMUM
G. ROBERGE, (IV.161.0016)

OBJECTIVES: Establishment of techniques for planting and for utilization. Study of productivity - experiment on the stocking rate (number of animals per hectare).

APPROACHES: 1) Study of behaviour of 24 ecotypes without fertilization. 2) Experimental study of productivity as dry cultivations with or without fertilization, on the K 187 B variety. 3) Plantation and exploitation as a large-scale irrigated cultivation: cuttings (0.40 x 0.40 m) - exploitation as restricted grazing enclosed by electric fencing - fertilization. 4) Selection in progress.

RESULTS: 1) Of 24 ecotypes studies, the best are as follows: K 187 B equals 15.8 T dry matter/ha; O 304 equals 14.2 T; G 18 equals 13.7 T. 2) Dry cultivation, not fertilized: 17.1 to 19.2 T of dry matter (DM) per hectare; dry fertilized 34 T; irrigated, not fertilized 24.5 T; irrigated and fertilized 39 to 45 T. Mean value as dry cultivation 0.45 feed units (FU) per kg of DM. Mean value as irrigated cultivation 0.55 FU per kg of DM. 3) Exploitation on 13 hectares as restricted grazing. Rhythm of utilization: 4 weeks. Estimated productivity: 50 T of DM per hectare per annum. Mean stocking rates 13 to 19 tropical cattle units per hectare for daytime grazing. 4) Selection in progress.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

4.0030, STUDY OF THE ESTABLISHMENT OF ARTIFICIAL PASTURES OF STYLOSANTHES GRACILIS
G. ROBERGE, (IV.161.0017)

OBJECTIVES: Establishment of techniques for plantation and exploitation, study of the productivity, study of the possibilities of stocking. Economic influences.

APPROACHES: 1. Study of the productivity in experiment in dry cultivation with or without manuring, and in irrigated cultivation with or without manuring. Plantation and exploitation on a large scale. 2. Plantation after clearing, ploughing, traverses with the tiller, harrowing, sowing with the driller with raised water channels at the rate of 7 kg per hectare. Maintenance - rototiller operations. 3. Study of plantation after chemical weeding.

RESULTS: 1. Annual productivity on experiment: dry cultivations without fertilization 6,400 to 8,400 feed units; dry cultiva-
tions, fertilized 7,800 F.U.; irrigated, non-fertilized cultivations 9,700 F.U.; irrigated and fertilized 10,900 to 13,800 F.U. 2. Cultivation on a large scale: carrying capacity attained 2.7 Tropical Animal Units per ha per annum; weight gain per hectare per annum: 350 kg on N'Dama; net cost per F.U. produced 1.2 to 2.1 F (French African currency). 3. Plantation after chemical weeding; results in progress.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

CENTRE IFCC D'ABIDJAN
B.P. 1827, Abidjan

4.0031, INDUSTRIAL PROCESSING OF COFFEE
M. RICHARD, (IV.130.0001)

OBJECTIVE: Reorganization of industrial processing of Coffee robusta in Ivory Coast.

APPROACH: Comparative trials of different processing equipments.

RESULTS: Establishment of a plan for processing with adapted equipment.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0032, INDUSTRIAL PROCESSING OF COCOA
M. RICHARD, (IV.130.0002)

OBJECTIVES: Mechanisation of different processing operations at the industrial level.

APPROACH: Trial of two types of shelling equipment. Design of a 1000 T unit of commercial cocoa (fermentation - drying - bagging).

RESULTS: Decision on the best shelling equipment. Establishment of a 1000 T unit of commercial cocoa.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0033, COCOA PROCESSING AT THE FARM LEVEL
M. RICHARD, (IV.130.0003)

OBJECTIVES: Improvement of fermentation methods (Amelorado); Improvement of sun-drying.

APPROACH: Comparison trials with several methods of fermentation; comparison trials with several systems of mixing; comparison trials with several durations of fermentation; Comparison of different types of sun-drying systems. Study of a new type of drying system - SAMOA - called "swinging shelf".

RESULTS: Establishment of a fermentation method well adapted at the farm level; establishment of a "swinging" dryer.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0034, STORAGE AND CONSERVATION OF COFFEE
M. RICHARD, (IV.130.0004)

OBJECTIVES: Long-term conservation of dry berries and green beans.

APPROACH: Comparative study of different storage systems.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

IVORY COAST

4.0035, STORAGE AND CONSERVATION OF COCOA
M. RICHARD, (IV.130.0005)

OBJECTIVE: Long-term conservation of dry cocoa-beans.

APPROACH: Comparative trials with different types of storage.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

CENTRE ORSTOM D'ADIPODOUME
B.P. 20, Abidjan

4.0036, OPERAION OF RESEARCH IN EGOYDYNAMICS, GEOCHEMISTRY AND GEOMORPHOLOGY IN THE IVORY COAST
J. DELVIGNE, (IV.300.0001)

Objective: This operation has for its object the reconstruction of the history of the climatic variations in time and space while determining the evolutionary processes of the superficial geological formations.

APPROACH: Cartography and determination of the geomorphological units. Geochemical, mineralogical and petrographic study of the alteration. Study of the hardened levels of laterite: bauxite, ferruginous hardened crusts. Sedimentology of the loose superficial formations. Study of the soils on the different morphological units. Studies on watersheds: hydrology, geochemistry, pedology, etc.

RESULTS: Determination of 5 morphological units in the Ivory Coast and countries next to it. Improvement of geochemical methods of mining survey. Process of formation of the beds of aluminium (bauxite). Process of alteration of the rocks and of formation of soils according to the age of the formations. Movements and geochemistry of the surface moisture, that of infiltration and that at depth.

4.0037, TYPOL0GY AND CLASSIFICATION OF FERRALYTIC SOILS IN AN EQUATORIAL TO TROPICAL CLIMATE
Y. CHATELIN, (IV.300.0002)

Objective: To treat pedological information which is multiple and complex by a typological terminology and a system of classification.

APPROACH: Based on the Glossary for the description of soil horizons used by French pedologists, and on the typological terminology established for ferrallitic soils. Application of these basic documents to the soils of the Ivory Coast.

RESULTS: The classification of the ferrallitic soils of the Ivory Coast has already yielded several approximations in succession.

4.0038, EVOLUTION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING
V. ESCHENBRENNER, (IV.300.0003)

Objective: To reconstitute the history of soils and of the landscapes which are linked with them. To explain as a function of this history the distribution of certain pedological characteristics.
IVAIVY COAST

Results: Reconnaissance, in the course of the quaternary period, of three complex episodes which have given a succession of hardened slopes. Identification of two tertiary hardened surfaces, the one ferruginous and the other bauxite. Differentiation of the slopes and of the versants according to climates. Great importance of modifications and of heritage.

4.0039, MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE

F. SOUBIES, (IV.300.0004)

Objective: Analysis of the conditions for formation of minerals in ferralytic soils. Limits of formation of gibbsite, of kaolinite. Forms of iron and their relation to micro-aggregation.

Approach: Following regional studies, choice of characteristic ferralytic soils. Classical analytical methods: X-ray diffractometry, with or without deferrification, total or fractionated chemical assays, extraction of amorphous materials.

Results: Numerous observations on the alteration of the micas, the formation, then the destruction, of the kaolinite, the distribution of the gibbsite, the transition of the goethite to haematite in relation to the appearance of a pulvulcent structure.

4.0040, STUDY OF THE MECHANISMS OF THE EVOLUTION OF SOILS AFTER CLEARING AND PUTTING UNDER CULTIVATION IN AN EQUATORIAL CLIMATE

P. DEBLIC, (IV.300.0005)

Objective: Study of the modifications brought to the current mechanisms of pedogenesis by the passage of either a natural ecosystem or a traditional agriculture, with a modernized method of utilization characterized by reduction of the fallow period and mechanization of the cropping techniques.

Approach: This study is conducted in the centre of the Ivory Coast in a climate in transition from the equatorial, with a faint degree of dryness.

The observations are, in the first place, limited to the phase immediately following the clearing operations: definition of the environmental conditions before clearing; plantation of pairs for study, cleared blocks - zones not cleared; particular emphasis on the evolution of the organic materials and of the physical and mechanical properties; definition of spatial and seasonal variability.

Results: Analysis, on some more or less recent clearings, of the spatial variability on the scale of the cultivation block and of the small plot.

4.0041, SUSCEPTIBILITY OF SOILS TO EROSION AND EVOLUTION OF THEIR STABILITY UNDER MECHANIZED CULTIVATION - HYDRAULICITY OF A WATERSHED

E.J. ROOSE, (IV.300.0006)

Objective: Extensive study of rivulet formation and of erosion on an experimental plot. Study of the evolution of the soil according to its nature, of the cultural treatments and of the plant covering. Study of the role of the soil in the hydraulicity of a watershed.

Approach: Utilization of an apparatus simulating rainfall. The apparatus model retained is the SWANSON "Rotating-Boom Rainfall Simulator" which provides the irrigation of two 50-square-centimetre plots with intensities of 60 or 120 mm/hour, the kinetic energy of the drops being comparable to that which is observed in nature at such intensities.

Results: The apparatus is mounted at present and ready for functioning. The demonstration should commence as soon as a pressure stabilizer has been received.

4.0042, STUDY THE RATES OF FLOW OF THE DIFFERENT WATER-COURSES IN THE IVORY COAST

H. CAMUS, (IV.300.0007)

Objective: a) - Techniques: knowledge of the hydrological rates of flow of the water-courses with a view to the hydraulic management of the country. b) - Scientific: determination of the exceptional amount of output in flooding and of the characteristic rates of flow of the rivers.

Approach: Exploitation of 84 control stations and of output measurements distributed over the territory as a whole: Each station is provided with an observer recording daily readings on a scale. Three field squads carry out at regular intervals rounds of inspection and gauging on the whole of the network. The findings are collected and analyzed at Abidjan.

Results: Regular publication of a year-book.

4.0043, HYDROLOGICAL RATES OF FLOW, SOLIDS CARRIED BY AND CHEMISTRY OF THE WATERS OF THE SAN PEDRO, NERO, AND BRIME RIVERS

M. MOLINIER, (IV.300.0008)

This study is being carried out by an agreement with the "ARSO" organization.

Objective: Determination of the annual amounts of water supplied and of the amount of flow at low water of the three rivers named. Study of the quality of the river waters in the region of San Pedro as a research site for the setting up of a paper-pulp factory.

Approach: Installation of three stations for inspection of the flow, each provided with a limnigraph. Monthly rounds of one week in the territory for collection of data on rates of flow, degrees of salinity and amounts of solid matter carried.

Results: Measurements carried out regularly in the course of the first campaign provide determination of the contributions of the three rivers and to specify the extent and the evolution of salinity.

4.0044, STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST

A. LAFFORGUE, (IV.300.0009)

Objective: Comparative hydrological study of two small areas under forest and in savanna and complete study of a watershed including them (both) in the region of Toumodi (equatorial climate in transition): 1) Very accurate study of the moisture balance, of the solid materials carried and of their mechanisms. 2) Study of the role of water in geodynamic and geomorphological processes.

Approach: Study of the watershed of Sakassou. Classical equipment: meteorological station, 3 hydrometric stations, 6 pluviographs (recording rain-gauges), 28 pluviometers. In project for
1973/74: Network for surveillance of the water table (wells and piezometers); apparatus for measuring humidity of soils; apparatus for measuring hypodermic flow; plots for rivulet formation and rainfall simulator.

Results: Installation of the hydrometric infrastructure. Observations of surface hydrology for the 1972 rainy season (analyses in progress).

4.0045, STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KORIOGO WATERSHED

H. CAMUS, (IV.300.0010)

Objective: Fine analytical study of the conditions for rivulet formation and for infiltration on a small watershed from permeable granitic sands containing a covering that conducts the water which is drained by the thalweg away from the watershed. General understanding of the mechanism of penetration of water into the surface horizons.

Approach: Classical equipment: meteorological Station, hydrometric station, 3 pluviographs, 27 pluviometers. 1 ERLO case (E. ROOSE). 16 tubes for a neutron humidimeter.

Results: Knowledge of the permeability of the different types of soil. Knowledge of the annual amplitude of the moisture profile of these five types of soil. Knowledge of the phenomena of rehumecation and of drying-up-again linked with a heavy downpour of rain.

4.0046, PROBLEMS CAUSED BY THE CONTACT OF FOREST WITH SAVANNAH IN THE IVORY COAST

J.M. AVENARD, (IV.300.0011)

Objective: Study of the forest-savannah contact in the Centre, the West-Centre and the South of the Ivory Coast. Attempt to draw up an ordered list of the predisposing, causal factors and the factors of maintenance of the separation of the forms of vegetation. Proposals for a better possible utilization of the land.

Approach: 1) Inventory of the environments facing each other by a systematic balance of their characters; 2) Ranging of the factors in order of importance and regional and total synthesis at the national level (Ivory Coast). Research work undertaken, either by physical geographers alone, or as interdisciplinary teams including also political geographers, soil scientists, botanists and one palynologist. They are concerned chiefly by soil moisture (repeated measurements at the stations), the soil-geomorphology-plants relationships at the level of transects cutting across the topography, the study of the relationships of man with the environment, the study of the geomorphological evolution which has entailed the present separation in the zone studied.

Results: The soil moisture is the primordial element in the separation of forms of vegetation: the forest blocks and forest corridors correspond with favourable basic environments, the savannahs are located on the soils that retain moisture less efficiently. The different observations on the transects seem moreover to show the importance and the predominance of the geomorphological conditions.

4.0047, STUDY OF THE POLLENS OF THE REGION OF CONTACT BETWEEN FOREST AND SAVANNAH

J.P. YBERT, (IV.300.0012)

Objective: To reconstitute the evolution of forests and savannahs in the course of the 1st quaternary period.

Approach: a) To assemble a collection of the pollens of plants living at present in savannah and in forest, starting from samples collected in the field or in a herbarium and treated by the acetolysis method. b) To study the distribution of the pollens belonging to the two groups of ecosystems with the aid of traps arranged in forest and in savannah and intended to gather the falling pollen. The analysis of the contents of these traps should enable the selection of the ecologically representative pollens. c) To study the atmospheric pollen content with the aid of traps mounted on weather vanes (Montpellier laboratory type for Palynology) in order to determine the distances pollen is carried. d) To analyze the pollen content of the quaternary sediments.

4.0048, STUDY OF GROWTH AND OF RHYTHMIC DEVELOPMENT IN JOINTED PLANTS AND FLUSH PLANTS

PREVOST, (IV.300.0013)

Objective: The object is a macroscopic and histological study of two modes of rhythmic growth not linked with climatic factors, in the Lower Ivory Coast.

Approach: Description of the architectural types by phenological observations (branching, position of the inflorescences). Regular measurements to define these rhythms. Histology of the growth points (normal growth, branching). Morphogenic correlations regulating development (apical dominance).

Results: Definition of the joint linked with the life span of the apical meristem. Classification of the architectural types within the Apocynaceae. Lateral apical ramification (pseudodichotomy). All this has been observed on some woody Apocynaceae of the Ivory Coast.

4.0049, STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT

M.F. TROUSLOT, (IV.300.0014)

Objective: To demonstrate the factors which determine tuber formation, the dormancy and the emergence from the dormant state of tubers in a tropical environment.

Approach: Observations and sampling in the field; in the laboratory, experimental work in climatic rooms or cells, and under glass.

Results: For practical reasons (restricted equipment), this study has been made up to the present time on an orchid of small size (genus Nervilia). The intention is to continue this study on some other species, especially food plants, within the limits of the means of the laboratory. Non-regulative role of the photoperiod in the tuber formation of 4 species of Nervilia. Importance of the thermoperiod. Importance of the conditions of storage of the tubers on their sprouting, the growth and the tuber formation which arise from them.

4.0050, FOREST ECOLOGY IN THE LOWER IVORY COAST
F. BERNHARDREVERSAT, (IV.300.0015)

Objective: Description of the evergreen forest and of its functioning at different levels.

Approach: a) Numerous surveys in three types of forest. b) Cycles of organic matter and of mineral elements; applications to the soil by the litter and leaching by the rains; decomposition of the litter by losses of weight and liberation of mineral elements; experimental study of the causal factors: rain, nature of the soil, biotic factors; storage in the vegetation; losses by lixiviation. c) Growth of trees in relation to the weekly moisture balance of the forest. d) Ecology and physiology of natural regeneration.

Results: Demonstration of seasonal cycles of growth activity. Estimations of biomasses, of productivity and of moisture and chemical balances.

4.0051, MECHANISMS OF CLIMATIC ACTION ON PRODUCTION AND CONSUMPTION OF WATER BY A FORAGE CROP IN A HUMID TROPICAL CLIMATE
M. ELDIN, (IV.300.0016)

Objective: To analyze the yield of moisture and of energy from a growing crop in a humid tropical climate so as to be able to define the methods of cultivation (density of plantation, height and frequency of mowing, rates and rhythms of irrigation) and the anatomical and physiological variable factors to be selected in order to obtain a maximal production.

Approach: Determination of the different terms of the balances of mass and of energy of a plant cover in its entirety, then by horizontal sections of plant material in relation to the anatomy and biology of the plants studied. In the first stage, the study will be carried out in the absence of advection to the range of cover studied. In a second stage, the influence of the proximity of the forest on the production and the water consumption of the crop will be analyzed.

Results: Establishment of techniques and apparatus for measuring; Results concerning the energy balance of the cover in its entirety; Cartography of the evaporation-transpiration potential and of moisture deficits in the Ivory Coast.

4.0052, STUDY OF THE INTERACTIONS BETWEEN THE SOIL AND FORAGE PLANTS IN A HUMID TROPICAL ENVIRONMENT
B. BONZON, (IV.300.0017)

Objective: To specify the interest of a forage crop in the cropping arrangements and rotations in a humid tropical environment.

Approach: a) Study on a multilocal arrangement: Adiopoume (1122) - AF; Bauake (1411) Gagnoa (1131) - LF1) of the evolution of the principal characteristics of these soils under different forage crops with or without fertilization, in slow or intensive utilization; 2) of the evolution of the principal characteristics of these crops: productions, residues, their root development, minerals taken from the soil and those immobilized; 3) of the residual effects of these crops upon a maize crop. b) Studies of the cation exchange capacities of the roots, of the rhythms of emissions from the roots, of the components of the yield. c) Methods and means: analyses, determination of the hydrodynamic characteristics of the soils by the VERGIERE method; surveys of moisture profiles using the neutron probe; laboratory for study of the root systems (cation exchange capacity of roots).

Results: Measurements of forage crop production obtained on the three stations.

4.0053, METHODOLOGY FOR THE IMPROVEMENT OF COFFEE-TREES BY INTERSPECIFIC HYBRIDATIONS
F. BERTHOU, (IV.300.0018)

Objective: Programme carried out within the framework of a convention (ORSTOM - IFCC) for the qualitative improvement of the coffee produced in the Ivory Coast by means of interspecific hybridization. (Coffee arabica times C. robusta).

Approach: Research on how C.robusta and C. arabica parents can be produced that will be of value, not for themselves, but for the quality of the hybrids directly obtained from them. 1) Determination, starting from a diallele set of interspecific hybrids, of aptitudes of Carabica and C. canephora parents. 2) Research on the genetic variabilities of C. arabica and on the possibilities of creating structures with high aptitudes in interspecific hybridization. 3) Same procedures for C. robusta-C. canephora, with the addition of the exploration of an intermediary link for amplification of the variability, the transition from the diploid to tetraploid forms.

Results: In the progeny from the crossing of an C.arabica female with a C. robusta tetraploid male, two categories A and R can be distinguished. The rate (incidence) of A forms depends on the C.robusta sire irrespective of the C.arabica utilized. The A and R forms have characters which are dependent on general aptitudes of the C.robusta parent.

4.0054, BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM
J. PERNES, (IV.300.0019)

Objective: To establish: 1) Methodology for the utilization of apomixy in improvement of plants. 2) The genetic bases for the improvement of Panicum. 3) The possibilities of the specific improvement of the seed value of the best clones.

Approach: 1) Analysis of the heredity of apomixy and of sexuality. 2) Study of the quantitative genetics of Panicum species and definition of their aptitudes for intergroup combination. 3) Genetic processes of dormancy and their regulation.

Results: Panicum maximum is an autotetraploid, whose mode of reproduction is facultative apomixy. The sexuality can be restored in two ways: The one, starting from sexual diploid forms, by the intermediaries of sexual artificial tetraploids and of hybrids between these forms and the apomictic ones (the hybrids may be either sexual or apomictic). The other, passes through hybrid forms with another species of the group Panicum infestum, by increase in the level of sexuality. The diploid forms and the sexual tetraploids derived from them constitute a starting material for production of forage plants comparable to the best apomictic ones.

4.0055, BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT
J. BRZOZOWSKA, (IV.300.0020)

Objective: To demonstrate biochemical mechanisms, at the cellular level, by means of which plants withstand drought. The results should provide guidance for selection work aimed at obtaining varieties that are more resistant and better adapted to the African environment.
Approach: Cultivation under glass; osmotic shock in polyethylene glycol or drying of the soil; ultracentrifugation for separation of the subcellular fractions; electrophoresis on gel and chromatography (proteins and amino-acids); spectrophotometry (gel and phenolic compounds); enzymic activity (acid phosphatase).

Results: Composition of the chloroplast membrane; distribution of acid phosphatase at the subcellular level; composition in polyphenols of species susceptible and resistant to drought.

4.0056, STUDY OF THE ORGANIC NITROGENOUS CONSTITUENTS OF THE LATEX OF HEVEA BRASILIENSIS J. BRZOZOWSKA, (IV.300.0021)

Objective: To know the distribution of the nitrogenous constituents, principally the free amino-acids, in the different compartments of the latex and their evolution according to different physiological and organic variables. Their availability for the reactions of biosynthesis is linked with the regeneration of the latex, a limited factor in production.

Approach: Sampling of the latex from different clones; stimulation of the trees by ethylene; ultracentrifugation to separate particular fractions; assay of free amino-acids by column chromatography (autoanalyzer).

Results: Qualitative and quantitative differences between the pool of free amino-acids of the cytoplasms and of the lutoids.

Objective: The very superficial character of the coagulation of the latex remains unexplained. Knowledge of the mechanism of the coagulation should enable an effect to be produced on the duration of the flow, thus on the yield in rubber.

Approach: Sampling of the latex under oxygen and under nitrogen. Research on the enzymes responsible for coagulation. Study of the phenolic compounds of different compartments of the latex.

Results: Demonstration of the role of oxygen and of nitrogen in the process of coagulation. Fall in the polyphenoloxidase activity under the effect of the stimulation bringing about an increase in yield of latex.

Objective: We are seeking to demonstrate an intervention of processes of proteo-synthesis in the labilization of the lutoid membranes and in the activation of certain enzymic activities of the lutoids.

Approach: Latex, collected in plantations after tapping, is centrifuged: a fraction enriched in lutoids is thus obtained (differential or isopycnotic centrifugation). The properties of this fraction are then studied by classical biochemical methods (assay of proteins, nucleic acids and of various enzymic activities, separation of molecules by gel electrophoresis, by chromatography, by density gradient centrifugation).

Results: In a first stage RNA (ribonucleic acid) has been isolated from this subcellular fraction. We must now study its nature, and in a subsequent stage, its intervention in a possible lutoid protein synthesis.

4.0059, ECOLOGY OF RODENTS OF THE SAVANNAH - ADAPTATION OF THESE RODENTS TO THE CULTIVATED ENVIRONMENT L. BELLIER, (IV.300.0024)

Objective: The object of the studies undertaken is to specify the ecology of these savannah rodents and to define their adaptations to the environment of cultivated land; on the basis of the findings it will be necessary to establish methods for controlling these destructive rodents.

Approach: It has appeared to be necessary in order to adapt to African conditions the trapping methods used in Europe, to undertake a revision of the systematic classification of the rodents of the savannah, to determine the species that is destructive in the palm plantations at Dabou; to study the ecology of the savannah rodents in their natural environment (Lamto RCP No. 60 of the CNRS) and in the Dabou plantations; to proceed to experiments with poisons in the laboratory and in nature.

Results: At the present stage it may be considered that the systematic part and the ecology of the species is at an end. The evolution of the populations in plantation and the destructive species in palm plantations determined.

The next stage envisaged will be the study of toxic substances on the principal species of rodents.

4.0060, BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT J.C. GAUTUN, (IV.300.0025)

Objective: To determine the external and internal factors which govern the reproduction of a wild rodent (Lemminuscomys striatus) in a tropical climate.

Approach: This study is made with the aid of classical techniques (histology and evolution of the weight of the sex organs) and of new ones (assays of hormones). It has necessitated the creation of a breeding unit in order to establish the duration of gestation, the duration of the vaginal cycle and the study of puberty.

Results: A general sexual cycle has been demonstrated in the central savannahs of the Ivory Coast (region of Bouke) and a modification of this cycle by minimization in the palm plantation of Dabou. We have made a study of the fertility of certain species, thanks to their breeding in captivity. We have determined the age of puberty, after checking the validity of the criteria of age utilized in the case of some other species in Europe.

4.0061, BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOMOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH Y. GILLON, (IV.300.0026)

Objective: Knowledge of the elements of the fauna and of their relative importance according to the environment (groups of arthropods and species in certain cases). Measurement of flows of energy corresponding to feeding, to production and to the speed of renewal of the insect populations.
IVORY COAST

Approach: Quantitative samplings (cases of 1 square metre and of 10 sq. m.; surveys in broad daylight over 25 sq. metres). Quantitative and qualitative rearing. Calorimetric measurements.

4.0062, BIOGENETIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST
D. DUVIARD, (IV.300.0027)

Objective: Ecology of the insects that are harmful to the cotton-plant; mode of infestation of fields from the natural habitats surroundings.

Approach: Study carried out in liaison with the IRCT. Trapping and collection of insects in the different biotopes studied. Meteorological and microclimatic study of the factors responsible. These studies as a whole have necessitated the installation of a permanent field station.

Results: Ecology of Dysderos voelkeri (Hemiptera, Pyrrhocoridae). Inventory of the host plants. Annual cycle and preliminary data on the population dynamics. Physiological and climatic mechanism of the seasonal migrations. Ecology of the aphids of the cotton-plant; seasonal fluctuations of the winged populations; mode of infestation of the field. Ecology of the Jassidae of the cotton-field; inventory of the species seasonal fluctuations; mode of infestation of the cotton-field.

4.0063, BIOLOGICAL RESEARCH ON MIRID OF COCOA - DISTANTIIELLA THEOBROMAE
J. PIART, (IV.300.0028)

Objective: Experimental study of the phenomena of feeding and of reproduction of mirids. Relations between the condition of the cacao tree and the biological characteristics of the mirids.

Approach: Continuous breeding of mirids in the laboratory. Study of the different biological characteristics as a function of the diet. Study of ovogenesis.

Results: Establishment of a method for rearing the insect studied. Demonstration of the nutritional origin of the fluctuations of fertility observed in breeding studies. Proof of the influence of diet, linked with the phenology of the cacao tree, on post-embryonic development and the reproduction potential of the insect. Study of the feeding behaviour and analysis of the phenomenon of stenophagy. Influence of the nature of the diet on the course of ovogenesis in the females. In the pathology department of the laboratory, description of a bacterial disease and of four fungal diseases affecting mirids.

M. GOUJON, (IV.300.0029)

Objective: Inventory of the biological Tribes of Hemileia vastatrix in the Ivory Coast. Evaluation of the resistance of the coffee-shrubs intended for the replantations programme in the Ivory Coast.

Approach: Establishment of the technique of artificial infection of the leaves of the coffee-shrub with Hemileia vastatrix. Constitution of the collection of differential clones to facilitate distinction between the Tribes of rusts according to the range of disease signs obtained. Provision of incubation chambers in order to reproduce the conditions of temperature, humidity and lighting required for artificial infection. Collection of samples (leaves from coffee-shrubs bearing the rust).

Results: Generalized presence of Tribe II and detection of one sample attributed to Tribe X.

4.0065, MORPHOGENESIS OF FUNGI WITH RHIZOMORPHS AND WITH SCLEROTIA
M. GOUJON, (IV.300.0030)

Objective: Research on procedures capable of blocking the internal mechanisms of morphogenesis of soil fungi propagating themselves by rhizomorphs or preserving themselves by sclerotia.

Biological material: Leptosporus lignosus (K.I.) Hein; Corticium rolfsii (Sacc.) Curzi.

Approach: Study of the morphology of the hyphal obtained in pure culture. Demonstration of the existence of two different states: thallus A and thallus B for L. lignosus and lateral filaments and leader filaments for C. rolfsii. Study of the physiological aptitudes of each of these two states. Research on the morphogenetic factor; experiments with cuttings and with grafts.

Results: Isolation of the morphogenetic factor - findings on its nature and on its synthesis (C. rolfsii). For L. lignosus the determination of differentiation is dependent upon an internal morphogenetic factor and upon a propagation factor in the substrate.

4.0066, STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA
DECLERT, (IV.300.0031)

Objective: Identification of the disease agents of marshland plants observed in the different cultivated plantation zones and in different seasons of the year. Classification of these agents in order of importance. Study of the preservation, of the spread and of the infection in the case of the most important. Study of their sensitivity to the conventional fungicides. Study of the sensitivity of the varieties used.

Results: Partial for Alternaria solani and Corynespora casicola, parasitic on the tomato.

4.0067, VARIABILITY OF THE PATHOGENIC CAPACITY OF PARASITIC FUNGI
M. GOUJON, (IV.300.0032)

Material: Ascomycete parasitic on tropical plants: Ceratocystis fimбриata (ELL Halst).

Objective: To define the genetic nature of the parasitic specificity of the different strains of the fungus and to specify the mechanisms of variation of the pathogenic capacity.

Methods: Study of the sexuality, genetic analysis of the crossings between clones of the parasite. Study of the parasexuality, the
obtaining of Heterocaryons and analysis of the possible mitotic recombinations.

4.0068, STUDY OF THE MECHANISMS OF PARASITISM
M. GOUJON, (IV.300.0033)

Objective: To study the geographical distribution of S. bradys, notably Scutellonema bradys in the Ivory Coast. 2) Attempts to suppress the exophytic and endophytic populations of S. bradys in the tubers (heat treatment). 3) To study the evolution of exophytic and endophytic populations of S. bradys in the soil and in the tubers, their penetration into the tubers. 4) To establish techniques for extraction of nematodes from the tubers at that time and to specify the best methods for sampling the tubers. 5) To define the range of host-plants contraindicated in crop associations with yams. 6) Morphological studies of S. bradys and related species. 7) Study of the development of S. bradys.

Results: S. bradys is very widely distributed in the Ivory Coast. A comparative study has been made of the nematodes associated with yams. A new species Peltamigratus striatus has been described for the Ivory Coast, also a new species of Scutel­lonema. S. bradys is the cause of deterioration in the quality of the tubers placed in storage. The heat-treatment chosen for ridding the tubers of nematodes has the advantage of not being phytotoxic. The exophytic populations of S. bradys have difficulty in surviving in the soil in the absence of yams; The onophytic populations, despite their high mortality rate, are maintained especially in the tubers.

4.0069, STUDY OF THE BIOLOGY OF HETERODERAS ORYZAE, A TROPICAL NEMATODE, PARASITE OF INUNDATED RICE IN THE IVORY COAST
G. REVERSAT, (IV.300.0034)

Objective: To know the factors influencing the hatching of the eggs which ensure the conservation of the species in the course of the interval between cropping campaigns, and the factors necessary for the penetration of the nematodes into the roots of the host. To determine among these the factors that are capable of being controlled.

Approach: Study of the respiratory physiology of two successive stages (eggs, then larvae) in relation to the factors which intervene in the course of this stage (hatching, then penetration). Monoxenic rearing of the parasite on rice plantations cultivated in a sterile environment. Measurements of the respiratory intensity with the aid of an apparatus with an exterior stopper. The penetration of the parasite into the host, under the influence of genetic or physiological factors, distinct according to whether they are linked with the parasite, with the host or with the environment, is studied quantitatively by the methods of classical nematology. Comparative experiments on penetration according to the rearing conditions are in progress. The influence of ecological factors on the respiratory intensity of the parasite is studied by microrespirometry. Measurements of the respiratory intensity of the eggs and of the larvae according to the environmental conditions.

Results: Establishment of techniques for monoxenic breeding and for microrespirometry. The penetration of the nematodes into the roots seems to depend on numerous variables (quantity of inoculum, number and age of the plants, volume and nature of the solid substrate, and mode of cultivation, dry or submerged). The respiratory mean of an active larva is at least twice as high as that of the eggs in a cyst. Hatching therefore corresponds to an activation of the metabolism of the young larva.

4.0070, NEMATOLOGICAL STUDIES ON THE PARASITES OF YAMS, NOTABLY SCUTELLONEMA BRADYS
J.J. SMIT, (IV.300.0035)

Objective: To study the geographical distribution of Scutel­lonema bradys and other nematodes associated with yams cultivated in the Ivory Coast, and the means of control (in particular, treatments appropriate for the seed tubers, the principal source of new infections).

Approach: 1) Nematological surveys in the major yam-producing areas of the Ivory Coast. 2) Attempts to suppress the nematodes in the tubers (heat treatment). 3) To study the evolution of exophytic and endophytic populations of S. bradys in the soil and

IVORY COAST

G. GERMANI, (IV.300.0036)

Objective: To define the possible role of the phytoparotic nematodes, detected in the rhizosphere of the plants with virus disease and belonging to the genera Trichoderus and Xiphinema, known to be vectors of viruses, in the transmission of the disease.

Approach: The hypothesis of a nematode vector of virus having been set forth, research work has been undertaken on the direct action of the nematodes present on the plant and the possible role of the two genera of nematodes in the virus disease ("streak"). Two types of research have been undertaken: 1) Prickings-out of seedlings that have emerged from seeds of plants susceptible to the virosis, on sterilized soil and on soil coming from the diseased zone. 2) Inoculation of Trichodorus and Xiphinema on young seedlings of Panicum maximum, susceptible to the virus, with the object of setting up the "symptoma". This work is being carried on jointly with the ORSTOM laboratory of Virology, thus ensuring the necessary virological analyses.

Results: Triturations of Trichodorus and Xiphinema originating from virus-diseased strains have been analysed under the electron microscope. Only those of Trichodorus harboured viral particles.

4.0072, NEMATOLOGICAL STUDIES ON COTTON PLANTS AND DIFFERENT FIBRE PLANTS IN DAHOMEY
G. GERMANI, (IV.300.0037)

Objective: This study on the possibility of a role played by nematodes in Parakou disease is being made by agreement with the I.R.C.T. In the course of the missions sent to Dahomey these studies have been extended to other parasites of the cotton plant, especially Meloidogyna, and to other fibre plants (Hibiscus, Corchorus).

Approach: 1) Parakou disease - To confirm or invalidate the hypothesis that this disease was caused by one or more nematodes capable of acting directly or by introducing into the plant a virus or a toxin. Three types of research have been carried out: 1) To compare the exophytic scidophytic populations of nematodes associated with affected plants and with healthy plants. 2) To at-
tempt to set up the symptoms of the disease by inoculation of young cotton plants, in sterile land, with nematodes found associated with affected plantations. 3) To attempt to get the disease under control by nematocide treatment. II. Meloidogyne and other nematodes. In the South of Dahomey, cotton-plant Hibiscus and Corchorus are severely attacked by nematodes belonging to the genera Meloidogyne, Pratylenchus and Rotylenchulus. The research studies undertaken are: 1) Nematocide experiments on cotton and Hibiscus, evaluation of the economic loss due to nematodes on different varieties, determination of the efficacy of soil treatment under the local ecological conditions, research for less susceptible varieties for the affected zones; 2) Survey of the incidence of Meloidogyne in the South of Dahomey. 3) Study of the pathogenicity of the three genera of nematodes for the cotton plant and that of Meloidogyne for Hibiscus.

Results: The nematodes do not play any role in Parakou disease of the cotton-plant. Nevertheless, the pathogenic effect of the nematodes on the cotton plant is probably associated in the etiology of this disease with the activity of the disease agent responsible for this affection.

4.0073, NEMATOLOGICAL STUDY OF CHLOROSIS OF LEGUMINOUS PLANTS AND OF STUNTING ("CLUMP") OF GROUNDNUTS IN UPPER VOLTA

G. GERMANI, (IV.300.0038)

Objectives: 1) As the connection between chlorosis and the nematode Aphaasmatylenchus straratus can be considered as certain, a solution is being sought to check this disease. The biology of the parasite is being studied. 2) The stunting of groundnuts ("clump"), like chlorosis, presents the aspects characteristic of a nematode (development in patches, slow extension in the course of the years). To define the possible role of nematodes or nematode population in the disease.

Approach: The studies on chlorosis and "clump" are the subject of an agreement with the I.R.H.O. and "clump" is also being studied by O.R.S.T.O.M. in Senegal. Trials of nematocide preparations, evaluation of the economic influences, delimitation of their geographical distribution, breeding of Aphasmatylenchus, research on the host plants, research for a virus or other associated disease agents.

Results: Nematode trials positive. The surveys show that the chlorosis area may be extended to the South of Upper Volta and that the nematode Aphasmatylenchus must be considered as a limiting factor in the cultivation of leguminous plants; five host-plants, all Leguminosae, identified. Aphasmatylenchus is maintained on Arachis and Cajanus indicus; relation between the intensity of the symptoms of chlorosis and the number of nematodes present. In Senegal, the symptoms of "clump" have been reproduced in Arachis by inoculation with a population of nematodes not yet identified. See also Project SG.151.0040.

4.0074, IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM

L. GIVORD, (IV.300.0039)

Objective: Identification of the pathogenic agent and of the natural vector of the disease with a view to a study of the possibilities of control.

Results: It is probably the question of a virus transmitted by the soil.

4.0075, THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA

L. GIVORD, (IV.300.0040)

Objective: Identification of the pathogenic agents. Determination of the natural mode of transmission. Selection of resistant varieties for controlling the disease.

Approach: Classical methods of plant virology, of entomology and of genetics.

Results: Symptomatology and transmission of mosaic disease of the cotton plant. Transmission of the disease, with electron microscopic observations.

4.0076, IDENTIFICATION OF DISEASES OF FOOD CROPS - MANIOC (CASSAVA) AND YAMS

J. DUBERN, (IV.300.0041)

Objective: Identification of the pathogenic agents and of their natural vectors with a view to study the possibilities of control.

Approach: Study the modes of transmission; Demonstration of the "range" of hosts and the in-vitro properties; Establishment of a purification technique; Immunological study.

Results: Earlier studies resumed and confirmed: positive transmission of an Aleurode. The methods habitually used in virology have all failed; it has not been possible to transmit or to isolate any virus nor to detect any in the electron microscope.

4.0077, IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSION-FRUIT AND PEPPER

L. GIVORD, (IV.300.0042)

Objective: Identification of the disease agent and its natural vector in view of a study of the possibilities of control.

Approach: Study of the modes of transmission. Description of the range of hosts and in-vitro properties. Establishment of a purification technique. Immunological study.

Results: The virus of the mosaic disease of Gombo (Okra mosaic virus), the passion-fruit ringspot virus and the pepper veinal Mottle virus have been identified, their properties have been described and a method of purification established. A fine serological study has been made.

CENTRE ORSTOM DE PETIT BASSAM

B.P. 4293, Abidjan

4.0078, BALANCE AND PROSPECTS ON THE USE OF TRACTORS IN AGRICULTURE IN THE IVORY COAST

P. BONNEFOND, (IV.310.0001)

Objective: Evaluation of agricultural motorization as an agent for development: ways of bringing it in, economic effects and future prospects in an African country on the way to development.

58
Approach: Evaluation of the tractor park and its geographical spread. Provincial types of farms or enterprises employing tractors, nature of uses, cultivators concerned. Types of owners in the Ivory Coast, motivation and reactions, economic consequences of the use of tractors in agriculture, practical problems concerning the calculation of charges for motorization, financing of investments, problems of management and development of motorized farms.

4.0079, INFLUENCES OF THE SODEPALM OPERATION IN THE EBRIE COUNTRY
A.M. PILLETSCHWARTZ, (IV.310.0002)

Objective: Study of the encounter of a traditional system of exploitation with a recently planted industrial system of plantation.

Approach: Social and economic history of the region, study the entire group of villager-planters connected with the complex, study of the workers' village; their economic integration and their relations with the zone. Study of an "Ebrie" community in the complex, evolution of the agrarian structures of the land-tenure and the times taken for tasks, budgetary inquiry and utilization of the income, the relations with Bingerville.

Results: In the course of being edited.

4.0080, FACTORS AND PROCESS OF CHANGE IN THE "BETE" COUNTRY
J.P. DOZON, (IV.310.0003)

Objective: Study of a social group, up to now not participating in the dynamic process of development of the country, faced today with: possibilities of social change (urbanization and migration), possibilities of technical innovation (intensive cultivation of rice).

Approach: Analysis of the conditions of transition from traditional rice cultivation to an intensive rice cultivation. Analysis of the social relations of production and of (land-tenure systems; relations between autochthonous groups and "foreign" groups. Analysis of the situation of retarded people in the medium-sized towns Gagnoa and Delay.

Results: Publications.

4.0081, CONTINUITY AND CHANGE IN THE STRUCTURES OF 'TRADITIONAL' PRODUCTION UNITS - THE CASE OF THE KOKUMBO REGION
J.P. CHAUVEAU, (IV.310.0004)

Objective: Study, through the production concerns, of the transition of a precolonial dynamism to a present-day dynamism.

Approach: History of the region; analysis of the historical methods of production; studies of present-day exploitations in eight villages in the region.

Results: Publication.

4.0082, A RESIDUAL SOCIAL GROUP CHALLENGED WITH THE DEVELOPMENT OF MARKET CROPS - ALLOCHTHONOUS IMMIGRATION AND LAND PROBLEMS
J.P. CHAUVEAU, (IV.310.0005)

Objective: Study of the reactions of an ethnic group of residual type to the challenge of the intensive introduction of the monetary economy in the form of a development of speculative cultivations by allochthonous immigrants.

Approach: Social anthropology of the Gban group. Study in a historical perspective of the economic anthropology of the Gagou people. Studies of the immigration and of the social relations between original inhabitants and immigrants. Study of the relations between land questions and agrarian structures.

Results: Publications.

4.0083, PHENOLOGY AND ECOLOGY OF THE SIPO (ENTANDROPHRAGMA UTIL) - RHYTHM OF GROWTH IN NATURAL FOREST
DELAUNAY, (IV.041.0001)

Objective: The sipo is an important species in plantation at present. Its conditions of growth in natural forest are to be specified.

Approach: Continuous study of the growth with dendrometers. Phenological observations. Study of the growth rings after felling.

Results: Preliminary information on the reading of the rings (anatomy division). Setting up of dendrometers in 1972 and start of phenological observations.

Only provisional internal reports to the C.T.F.T. of the Ivory Coast have appeared.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

4.0084, EXPERIMENTS ON SOURCES OF ORIGIN OF DIFFERENT SPECIES OF TREES FOR PLANTATION
DELAUNAY, (IV.041.0002)

Objective: Increase the productivity of forestry plantations by improvement of the planting material.

Approach: To obtain a better genetic advantage in forestry improvement. The indications are to follow the following stages: selection at the level of source of origin; selection of the best phenotypes; individual selection. At present we are at the stage of comparing sources of origin for the following species: teak, Terminalia superba, Tavoronisis, pine, Cedrela, Eucalyptus.

Results: First results on the experiments set up in 1969 (Cedrela).

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

4.0085, STUDY OF THE BORER OF THE MELIACEAE - HYPSIPYLLA ROBUSTA (MOORE)
M. MALAGNOUX, (IV.041.0003)

Objective: Knowledge of the parasite, the present limiting factor in plantations of Khaya ivorensis in the Ivory Coast.

Approach: Silvicultural method of control. Chemical method of control: protection of nurseries study the different parasites of the borer.

Results: Regulation of the light in plantation reducing the level of attack. Protection of nurseries by chemical control. Knowledge of the life-cycle of the Borer. Determination of several Hypsipylus.
IVORY COAST

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

4.0086, PROMOTION OF ABUNDANT COMMERCIAL SPECIES OF WHICH LITTLE USE IS MADE
L. VERGNET, (IV.041.0004)
Objective: Development by exploitation of species that are little used at present, bearing in mind the richness of the forest in principal known species.
Approach: Making out a list of species to be promoted. Synthesis of knowledge acquired on these species. Creation of a Technology Laboratory. Carrying out of experiments (physical, mechanical, industrial yield). Completion on the spot or by sending of samples.
Results: Technical memoranda established for a part of the woods to be promoted.
SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

ESSAIS IFCC DE TOMBOKRO
B.P. 1827, Abidjan

4.0087, IRRIGATION OF THE CACAO-TREE
J. SNOECK, (IV.135.0001)
OBJECTIVE: Cultivation of the cacao-tree in regions of marginal rainfall within the framework of the development of the approaches to the Kossou Dam in the valley of the Bandama.
APPROACH: Comparison of the productions of irrigated and non-irrigated fields.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0088, IRRIGATION OF THE COFFEE-SHRUB
J. SNOECK, (IV.135.0002)
OBJECTIVE: Cultivation of the coffee-shrub in regions of marginal rainfall within the framework of the development of the approaches to the Kossou Dam in the valley of the Bandama.
APPROACH: Comparison of the productions of irrigated and non-irrigated fields.
RESULTS: Favourable on the development of young coffee-shrubs. No production as yet (plantation 1971).
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0089, MINERAL FERTILIZATION ON COFFEE
J. SNOECK, (IV.135.0003)
Network project - see IV. 132.0032 (4.0145)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0090, MINERAL FERTILIZATION ON COCOA
J. SNOECK, (IV.135.0004)
Network project - see IV. 132.0033 (4.0146)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

FERME DES CULTURES IRRIGUEES DE TOMBOKRO IRAT
B.P. 12, Yamoussoukro

4.0091, REQUIREMENTS IN WATER OF IRRIGATED CROPS
J. RIDDERS, (IV.024.0001)
Objectives: To determine the water requirements of the following crops: 1) annuals: rice - maize - cotton; 2) perennials: forage crops - cacao-trees - coffee-shrubs - oil palm tree - coconut palms - rubber trees - pineapples.
Establishment of a method of obtaining a warning when more irrigation is necessary by means of a simple measure (for example: evaporation in a vat).

4.0092, DETERMINATION OF SOIL CHARACTERISTICS FOR IRRIGATION
J. RIDDERS, (IV.024.0002)
Objective: To determine the maximal rates of irrigation to be applied to the principal types of soil as a function of the crop and of its stage of growth or development. Rates and frequencies of irrigation to be applied to the crops according to the type of soil.
APPROACH: Determination of the useful moisture Reserve of soils: apparent density, capacity in the field, wilting point.

4.0093, INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS
H. MERLIER, (IV.024.0003)
National network project: See IV. 021.0050. (4.0206)

4.0094, CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
G. RENAUT, (IV.024.0004)
National network project: See IV. 021.0049. (4.0205)

PLANTATION EXPERIMENTALE IRHO
Robert Michaux, B.P. 8, Dabou

4.0095, FUSARIOSIS OF THE OIL PALM TREE - SELECTION OF RESISTANT MATERIAL
R. J. RENARD, (IV.074.0001)
Objective: General improvement of the behaviour of the progeny subjected to fusariosis.
APPROACH: 1. Inoculation with Fusarium oxysporum f.sp. elaei of young palm plants in a nursery - each year 200 progeny tested. 2. To define the best conditions for inoculation. 3. To enumerate percentage of diseased plants - classification of progeny and of parents. 4. Comparison of result of test with behaviour in
the field. 5. Test of progeny resulting from self-fertilization of resistant parents.

Results: 1. 32 DURA, 11 TENERA and 21 PISIFERA transmit a good resistance. Crosses between resistant parents are themselves resistant. Behaviour of progeny of parents originating from self-fertilization of resistant palms is being studied (50% of resistant individuals?). 2. Very good correlation results of the test with those in the field. 3. Utilization of a very aggressive strain for the test. 4. Resistance of the polygenic type.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0096, CONTROL OF BLAST OF THE OIL PALM TREE R.J. RENARD, (IV.074.0002)

Objective: To find a means of protection against blast during the critical period.

Approach: 1. To reproduce the disease by inoculation of Pythium and Rhizoctonia, presumed agents of the disease. 2. Studies of external conditions (irrigation - shade - soil). 3. Control with fungicides. 4. Hypothesis of a virus or mycoplasma (as possible causal agents) is also envisaged.

Result: Shade generally prevents the appearance of the disease. The cost and the difficulty of providing it in certain situations prompt us to search for other means of control.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0097, CERCOSPORIOSIS OF THE OIL PALM TREE R.J. RENARD, (IV.074.0003)

Objectives: 1. To determine an effective means of control of Cercosporiosis of the oil palm in nurseries. 2. Similarly, to define a method for control of the disease of plantations of Elaeis melano­cocca.

Approach: 1. To define the degree of infection of the palm tree. 2. Campaign with fungicides, either contact or systemic. 3. Inoculation experiments - to define the optimal conditions for development of the disease.

Results: Control with fungicides in nurseries is possible but not perfect, in plantations on palm trees of 2 - 3 years of age it is ineffective.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

STATION CENTRALE IFCC DE DIVO
B.P. 176, Divo

4.0098, STUDY ON MANUAL POLLINATION AND FERTILIZATION OF THE CACAO-TREE AND THE INFLUENCE OF A COMPLEMENTARY MANUAL POLLINATION J. BESSE, (IV.131.0001)

Network project - see IV. 132.0001. (4.0117)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0099, STUDY OF THE TRAINING (PRUNING) OF THE COFFEE-SHRUB ROBUSTA J. CAPOT, (IV.131.0002)

Network project - see IV. 132.0002. (4.0118)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

Network project - see IV. 132.0003. (4.0119)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0101, GENERATIVE IMPROVEMENT OF THE CACAO-TREE J. BESSE, (IV.131.0004)

Network project - see IV. 132.0004. (4.0120)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0102, VEGETATIVE IMPROVEMENT OF THE CACAO-TREE J. BESSE, (IV.131.0005)

Network project - see IV. 132.0005. (4.0121)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0103, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY VEGETATIVE MEANS J. CAPOT, (IV.131.0006)

Network project - see IV. 132.0006. (4.0122)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0104, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY GENERATIVE MEANS J. CAPOT, (IV.131.0007)

Network project : see IV. 132.0007. (4.0123)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0105, IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION J. CAPOT, (IV.131.0008)

Network project - see IV. 132.0008. (4.0124)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0106, STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB ROBUSTA J. CAPOT, (IV.131.0009)

Network project - see IV. 132.0009. (4.0125)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0107, RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT J. BESSE, (IV.131.0010)

Network project - see IV. 132.0010. (4.0126)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0108, PHYTOTECHNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE J. BESSE, (IV.131.0011)

Network project - see IV. 132.0011 (4.0127)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0109, TECHNOLOGICAL STUDIES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF
IVORY COAST

CACAO TREES UTILIZED IN THE SELECTION PROGRAMME

J. BESSE, (IV.131.0012)

Network project - see IV. 132.0012 (4.0128)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0110, RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A 'DISTINCT' TOLERANCE TO PHYTOPHTORA PALMIVORA

J. BESSE, (IV.131.0013)

Network project - see IV. 132.0013 (4.0129)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0111, STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION

J. BESSE, (IV.131.0014)

OBJECTIVE: To study the increase in yield of the elite hybrids as a result of the application of fertilizers, in the case of plantations managed under regrowth and then in full sunlight, according to different basic climatic conditions.

APPROACH: These experiments are implanted on progeny tests, either in course of production, or from the first year of plantation. Implantation according to an experimental arrangement as a split-plot. Study of the total effect on the whole group of hybrids and of the individual effect on each hybrid.

RESULTS: Increases in yields of the whole group of hybrids of 25 to 35% are observed. Certain lines of descent are doubling their yield.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0112, MINERAL FERTILIZATION ON COFFEE

J. SNOECK, (IV.131.0015)

Network project - see IV. 132.0032 (4.0145)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0113, MINERAL FERTILIZATION ON COCOA

J. SNOECK, (IV.131.0016)

Network project - see IV. 132.0033 (4.0146)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0114, IMPROVEMENT OF THE COLA TREE - COLA NITIDAFIELDs. Economic study on the impact of various fertilizers on the yield in different environments.

J. CAPOT, (IV.131.0017)

Network project - see IV. 132.0027 (4.0140)

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0115, UTILIZATION OF HERBICIDES IN COFFEE CROPPING

J. SNOECK, (IV.131.0018)

APPROACH: Trials with different types of herbicides - singly, combined or in alternate applications.

RESULTS: Reduction of labor without notable change in total costs of cultivation. Growth stimulation of young coffee plants compared with traditional weeding techniques (manual cutting).

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0116, UTILIZATION OF HERBICIDES IN COCOA CROPPING

J. SNOECK, (IV.131.0019)

OBJECTIVES: Labor saving study on the impact of herbicides on growth and production.

APPROACH: Trials with different types of herbicides, singly, combined and in alternate applications.

RESULTS: Reduction of labor without notable change in total costs of cultivation.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

STATION EXPERIMENTALE IFCC DE BINGERVILLE

B.P. 1827, Abidjan

4.0117, STUDY ON MANUAL POLLINATION AND FERTILIZATION OF THE CACAO-TREE AND OF THE INFLUENCE OF A COMPLEMENTARY MANUAL POLLINATION

J. BESSE, (IV.132.0001)

OBJECTIVES: To verify if natural pollination is a limiting factor of production for a plantation of selected hybrid cacao-trees and for the Biclonal Seeding Fields. To study the influence of a complementary manual pollination on the total production of the trees and the drying of the seeds ('cocoa beans'). To study a practical and not too onerous method of manual pollination.

RESULTS: Experiments in progress.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0118, STUDY OF THE TRAINING (PRUNING) OF THE COFFEE-SHRUB ROBUSTA

J. CAPOT, (IV.132.0002)

OBJECTIVE: To establish a method of pruning, as simple as possible and ensuring a regular cropping, without any interruption and preserving the long-term productive potential.

APPROACH: Establishment of comparative pruning experiments: shaping of the young trees; methods of pruning; number of stems per shrub.

RESULTS: To plant coffee-shrubs at an inclination of 30 degrees from the vertical. (To encourage the spontaneous emission of young shoots at the tree base.) To apply the pruning method known as "quinquennial" which consists in: training the coffee-shrubs on 4 stems (minimum) - 5 stems probably constituting the optimal number; to carry out the first close pruning, on descent of the sap, at 7 years, then every 5 years. (Modalities adapted to the recommended density of 1,320 coffee-shrubs per hectare).

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.
4.0119, STUDY OF DENSITIES AND ARRANGEMENTS FOR PLANTATION OF THE CACAO-TREES
J. CAPOT, (IV.132.0003)
OBJECTIVE: Research on the planting distances between cacao-trees ensuring the highest production per surface unit.
APPROACH: Establishment of comparative density experiments.
RESULTS: 3 x 2.5 metres, or 1,320 cacao-trees per hectare, general recommendation. At Abengourou, the density of 3 x 2 m is superior to 3 x 2.5 m (plus 11%).
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0120, GENERATIVE IMPROVEMENT OF THE CACAO-TREE
J. BESSE, (IV.132.0004)
OBJECTIVE: The obtaining of selected, vigorous, high-producer hybrids, presenting a high degree of tolerance to the known hazards, and satisfactory commercial qualities.
RESULTS: 500 hybrids (UPA x Amelonado or Trinitario) undergoing testing yields 1. 3 T on average. 100 elite hybrids retained for Local Adaptation Tests yields 1.8 T on average. 12 selected hybrids, reconstituted in Biclonal Seeding Fields yields on average 2.3 T. cacao/hectare in experiment.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0121, VEGETATIVE IMPROVEMENT OF THE CACAO-TREE
J. BESSE, (IV.132.0005)
OBJECTIVE: The obtaining of selected, vigorous, high-producer clones presenting a high degree of tolerance to hazards and having satisfactory commercial qualities.
APPROACH: Constitution of collections from trees marked in the Ivory Coast (notably in progeny tests) and from introduced clones or populations. Choice of heads of clones, which are afterwards multiplied vegetatively by means of cuttings in a propagation enclosure. Testing of clones in comparative experiments. Statistical interpretation of the results. Popularization by cuttings of the selected clones.
RESULTS: 84 clones undergoing testing. The 20% heading the classification constitute the elite clones.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0122, IMPROVEMENT OF THE COFFEE-SHRUB (C.CANEHORA) BY VEGETATIVE MEANS
J. CAPOT, (IV.132.0006)
RESULTS: The obtaining of clones highly productive of a good quality of coffee. Propagation in progress throughout the whole of the coffee-growing zone.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0123, IMPROVEMENT OF THE COFFEE-SHRUB (C.CANEHORA) BY GENERATIVE MEANS
J. CAPOT, (IV.132.0007)
APPROACH: Prospecting and introductions of plant material. Establishment of comparative experiments to test general aptitude for combination ("rogue" progeny) (phase 1). Crossings between the best parents detected by the issue of phase 1. Establishment of comparative experiments to test specific aptitude for combination (legitimate progeny) (phase 2). Creation of oligocolonal seed-production fields reproducing the best combinations detected by the issue of phase 2. Propagation of selected seeds.
RESULTS: Obtaining descendants having a high production of a good quality coffee.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0124, IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION
J. CAPOT, (IV.132.0008)
OBJECTIVE: Creation of hybrid varieties (ARABUSTA) combining the organoleptic quality of C. arabica with the rusticity and the productivity of C. canephora at zones of low altitude.
APPROACH: The obtaining of clones and tetraploid descendants of C. canephora. Introduction of forms and cultivars of C. arabica. Selection of parents in the two groups. Carrying out hybridisations between C. canephora tetraploid (T) and C. arabica (A): the obtaining of descendants of A x T and T x A. Selection from among hybrid descendants and multiplication by means of cuttings: obtaining of clones. Installation of multilocal clonal experiments with ARABUSTA. Creation of propagation enclosures with the best ARABUSTA clones. Propagation.
RESULTS: Obtaining of ARABUSTA clones having satisfactory production of a coffee with very large berries and with greatly improved organoleptic qualities as compared with the Robusta variety.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0125, STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB ROBUSTA
J. CAPOT, (IV.132.0009)
OBJECTIVE: Research on the intervals between coffee-shrubs and on the arrangement of the rows (equidistant, paired) ensuring the highest production per surface unit.
APPROACH: Establishment of comparative experiments on densities and arrangements in plantation with or without leguminous cover and with or without strawing.
RESULTS: 3 x 2.5 metres, or 1,320 coffee-shrubs per hectare. When use is made of Flemingia congesta between the rows (a leguminous plant mown every three months for use as straw) it will probably be advantageous to adopt an arrangement in paired rows (4 plus 2) x 2.5 m in triangle, or 1,320 coffee-shrubs per hectare, the Flemingia being cultivated in the wide interval between rows.
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.
IVORY COAST

4.0126, RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT

J. BESSE, (IV.132.0013)

OBJECTIVE: Research among selected interclonal hybrids for vigorous and hardy F1 generations, good at establishing themselves in severe conditions and tolerant to drought.

APPROACH: Planting of hybrids in full sunlight, without lateral or apical protection, and without strawing. Limited phytosanitary surveillance. Counting of the dead trees per F1 and measuring of the vegetative development.

RESULTS: Popularization of the best adapted hybrids in zones where basic conditions, particularly those of climate, are marginal.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0127, PHYTOTECHNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE

J. BESSE, (IV.132.0011)

OBJECTIVES: To establish cultural methods adapted to the new hybrid varieties and enabling the full exteriorization of the productivity potential. To establish an economic balance of the various methods recommended.

APPROACH: Experiments on methods of planting and comparison of the yields, under regulated forest for one portion, under natural re-growth, then full sunlight for another portion. Studies of cultivation methods associating food crops with the cacao plantation. Planting and managing cacao-trees conditions of an industrial plantation. In each experiment, study costs and net price.

RESULTS: The elimination of shade is tolerated by hybrids of parents from the High Amazon and entails a distinct increase in the yields. The first results leave room for hope for a positive balance from the economic point of view for this new method. The association with food crops is possible under certain conditions.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0128, TECHNOLOGICAL STUDIES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF CACAO TREES UTILIZED IN THE SELECTION PROGRAMME

J. BESSE, (IV.132.0012)

OBJECTIVES: To study the physical, chemical and organoleptic qualities of the clones used as parents, and of the elite hybrids obtained in selective breeding. To estimate certain characteristics of these clones and hybrids.

APPROACH: The obtaining of samples by microfermentation. Test physical qualities (in the Ivory Coast, notably the dry weight of a bean). Test chemical qualities (content in oily matter, acidity, pH, etc.) and organoleptic qualities in the I.F.C.C. Laboratoire of Technology at Nogent. The obtaining of sufficiently important samples to be treated by industrial or semi-industrial methods by manufacturers. Study the variability and the homogeneity of the commercial product.

RESULTS: Elimination of the clones or hybrids not giving satisfaction. Obtaining characteristics enabling the calculation from number of pods/hectare of the weight of commercial cacao/hectare in a precise manner for each hybrid.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0129, RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA

J. BESSE, (IV.132.0018)

OBJECTIVE: Research on clones or hybrids tolerant to P. palmivora in experimental conditions in the field.

APPROACH: Counts of black pods on experimental plots. Introduction of clones considered to be tolerant in their country of origin. Creation of hybrids between tolerant clones. Obtaining self-fertilized descendants from tolerant clones in such a manner as to single out in the F1 generation some trees presenting reinforced characteristics of tolerance. Test these descendants by inoculation, in collaboration with the laboratory of Phytopathology.

RESULTS: Elimination of parent clones or hybrids that are more susceptible than Forestero Amelonado to Phytophthora palmivora.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0130, ECOPHYSIOLOGICAL RESEARCH ON THE COFFEE-SHRUB

J. SNOECK, (IV.132.0015)

Objective: Research on correlations between production and climatic factors.

APPROACH: Setting up a network of climatological stations studying temperature, insulation, evaporation and rainfall. Observations on the annual growth cycle of coffee-shrubs.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0131, ECOPHYSIOLOGICAL RESEARCH ON THE COCOA-SHRUB

J. SNOECK, (IV.132.0016)

Objective: Research on correlations between production and climatic factors.

APPROACH: Setting up a network of climatological stations measuring temperature, insulation, evaporation and rain. Observations on monthly productions of cocoa-shrubs.

RESULTS: Definition of relations between monthly productions and the rain, insulation and evaporation of the preceding months. Specification of the importance of each one of these climatic factors.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0132, STUDY ON THE UTILIZATION OF GROWING SUBSTANCES IN COCOA CROPPING

J. SNOECK, (IV.132.0017)

OBJECTIVES: Reduction in young fruit drop. Acceleration of crown formation of cocoa trees.

APPROACH: Trials with growth delaying substances.

RESULTS: Preliminary results: favourable effect of B9 on the crown formation (dimethy-hydrozide succinic acid).

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0133, STUDY ON THE UTILIZATION OF GROWTH SUBSTANCES IN COFFEE CROPPING

J. SNOECK, (IV.132.0018)

OBJECTIVE: Reduction in young fruit-drop. Shortening harvesting period.

APPROACH: Trials with growth delaying substances. Trials with abscisin chemicals.

RESULTS: Preliminary results. Concentration of maturation period by the use of Ethrel (ETHEPHON).

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.
4.0134, STUDY THE ATTRACTIVITY OF PLANT MATERIAL TO THE NOCTURNAL MOTH OF THE CACAO-TREE - EARIAS BIPLAGA

J. NGUYENBAN, (IV.132.0019)

Objective: Field observations on the behaviour of 3 clones and of 3 hybrids of High-Amazonian origins with regard to attacks by Earias biplaga (WIK).

Approach: The block comprises 12 component plots: 6 of cuttings and 6 of hybrids.
Each clone or each hybrid is represented by 12 useful trees planted entirely at random on the inside of the component plot. Total surface area: 0.5 hectare.

Results: Demonstration that one clone has obtained a characteristic of tolerance linked to foliar morphology.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0135, STUDY THE RESISTANCE OF 6 HIGH-AMAZONIAN HYBRIDS TO MESOHOMOTOMA TESSMANI - A JUMPING PLANT LOUSE OF THE CACAO-TREE

J. NGUYENBAN, (IV.132.0021)

Objective: Field observations on the behaviour of 6 elite hybrids in response to the bites of the jumping plant louse, Mesohomotoma tessmani (Aulm).

Approach: The block comprises 6 component plots planted with High-Amazonian hybrids. Each hybrid is represented by 6 trees in completely random arrangement in the component plot.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0136, ECOLOGICAL STUDY OF THE CACAO-TREE IN RELATION TO BLACK-POD

M. TARJOT, (IV.132.0022)

Objective: The object was to see how the potential inoculum (soil and floral cushions) varied as a function of microclimates, and on the other hand, what was the importance of the losses as a function of microclimates.

Approach: The parasite has been trapped during different periods of the year and in different geographical situations. On the other hand, by means of recording hygrometers, it has been possible to define the "tampon ability" of a cacao-tree, i.e., its faculty of attenuating variations in relative humidity.

Results: It has been possible to prove: that the parasite was present in very varied sites on the cacao-tree, but that the potential inoculum was higher in humid microclimates; that definite correlations exist between importance of the losses and "tampon ability".

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0137, STUDY THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD

M. TARJOT, (IV.132.0023)

Objective: The object was to see, by appropriate analyses, if differences between the composition of the cortex of susceptible pods and that of resistant pods could be proved.

Approach: The first analyses dealt with the moisture content of the tissues of the pericarp in different conditions, then the content in mineral elements was studied. Study of the content in glucides is in progress, and the study of the polyphenols is about to be started.

Results: It can be proved: that the increase in the water content of the tissues correlated with the increase in susceptibility; that each time the susceptibility increased, there was a noticeable decrease in the calcium content and an increase in the potassium content.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0138, TREATMENT OF COFFEE AT THE CROP-HUSBANDRY STAGE

M. RICHARD, (IV.132.0025)

Objective: Improvement of solar drying of coffee berries.

Approach: Comparison of several types of sun-drying apparatus.

Results: Adaptation of a drying apparatus known as "basculant" (a "rocker" or "see-saw").

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0139, STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHthora PALMIVORA

M. TARJOT, (IV.132.0026)

Objective: As no cacao-tree has revealed a total resistance to the parasite during the whole year, the object is to attempt to increase these characters of partial resistance.

Approach: The attempts at improvement are being made in two directions: the genetic method: self-fertilizations or crossings are carried out on the most interesting trees. The study of the descendants will reveal whether it has been possible to obtain trees whose behaviour is better than that of the parents.

These trees have been chosen after study of strains of the parasite present in the Ivory Coast and after study of resistance following some experimental inoculations from 1963 to 1971.
The chosen trees present characters of more or less pronounced resistance for about 9 months of the year; but during about 3 months a general susceptibility is noted.
The physiological method: as environmental conditions play an important role in the behaviour of cacao-trees, some experiments on density and on shade have been set up to study their influence upon the resistance of the trees.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0140, IMPROVEMENT OF THE COLA TREE - COLA NITIDA

J. CAPOT, (IV.132.0027)

OBJECTIVE: Increase the production of good quality nuts in the cola tree.

APPROACH: Survey and introduction of plant material. Establishment of collections for observation. Installations of clonal experiments and tests on legitimate and illegitimate progeny. Creation of propagation enclosures and seeding fields.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0141, PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE CACAO TREE

P. JADIN, (IV.132.0028)

OBJECTIVES: To determine the characteristics of soils suitable for the cultivation of the cacao tree. To determine, for the Ivory Coast, the surface areas that can be planted with cacao trees.

APPROACH: Pedological surveys. Mapping of the soils. Laboratory analyses.
IVORY COAST

RESULTS: Definition of the characteristics of soils suitable for the cultivation of the cacao tree. Approximate evaluation of the surface areas that can be planted with cacao trees.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0142, PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE COFFEE TREE

P. JADIN, (IV.132.0029)

OBJECTIVES: To determine the characteristics of soils suitable for the cultivation of the cacao tree. To determine, for the Ivory Coast, the surface areas that can be planted with cacao trees.

APPROACH: Pedological surveys. Mapping of the soils. Laboratory analyses.

RESULTS: Definition of the characteristics of soils suitable for the cultivation of the cacao tree. Conduct on evaluation of the surface areas that can be planted with coffee trees.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0143, HAPLOIDY IN THEOBROMA CACAO

P. DUBLIN, (IV.132.0030)

OBJECTIVES: Establishment and utilization of haploid plants for cacao breeding.

APPROACH: Research on haploid induction techniques applicable to Theobroma cacao.

RESULTS: Establishment of haploid plants through polycormonic dissociation of Theobroma cacao.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0144, FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS

J. NGUYENBAN, (IV.132.0031)

OBJECTIVES: Research on insecticide treatments at ultra low volume (ULV) against cocoa Mirids.

APPROACH: Comparative trials in cocoa plantation on flat units of 2.500m² in which 25 trees are completely enclosed. Trials with 10 replications for each product. 20 specific products have been tested.

RESULTS: Thiodan 18 (endosulfan) has an average effectiveness of 98.6% against cocoa Mirids.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0145, MINERAL FERTILIZATION ON COFFEE

J. SNOECK, (IV.132.0032)

OBJECTIVES: Increasing yields.

APPROACH: Fertilizer trials in nurseries. Fertilizer trials on young coffee plants during their vegetative growing period. Fertilizer trials on coffee in production plantation.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0146, MINERAL FERTILIZATION ON COCOA

J. SNOECK, (IV.132.0033)

OBJECTIVES: Increasing of yields.

APPROACH: Fertilizer trials in nurseries. Fertilizer trials on young cocoa plants during their vegetative growing period. Fertilizer trials on cocoa in production plantation. Study and establishment of soil diagnostic techniques.

RESULTS: Nurseries: stimulation of young plant development by application of NP. Vegetative phase: favourable effect of supplement of P and N. Production phase: favourable effect of NPK formula. Soil diagnostic: calculation of balanced NPK Ca Mg fertilizer formula based on soil chemical analysis. These formula aimed at the establishment of defined soil equilibrium between: exchangeable bases and total N, total N and total P, and K - Ca - Mg ratios expressed in % of total exchangeable bases.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

STATION IFAC D'AGUEDEDOU

B.P. 1740, Abidjan

4.0147, PINEAPPLES - PHYSIOLOGICAL STUDIES

J. LACOEUILHE, (IV.112.0001)

OBJECTIVE: To improve the efficacy of fertilization. To obtain more complete mastery of the plant's behaviour. To eliminate certain physiological changes in the fruit.

FIRST RESULTS: Establishment of foliar diagnosis 'a posteriori' (by analyses of 'D' leaves sampled at the moment of the treatment for flowering and serving for the next crop (in succession). Establishment of increasing fertilization. Establishment of techniques for the control of flowering and for the maturation of the fruit.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0148, TO AVOID THE DEGRADATION OF SOILS BY CONTINUOUS CULTIVATION OF PINEAPPLES

J. GODEFROY, (IV.112.0002)

OBJECTIVE: To avoid the degradation of soils by continuous cultivation of pinapples.

FIRST RESULTS: Establishment of techniques to limit degradation of soils (control of erosion, limitation of the desaturation in cations).

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0149, PINEAPPLES - PHYTOSANITARY PROTECTION

P. FROSSARD, (IV.112.0003)

OBJECTIVE: Control of the parasites of the crop to increase the yield.

FIRST RESULTS: Establishment of techniques for the control of nematodes and of scale insects. Establishment of techniques
for the control of Phytophthora. Establishment of techniques for chemical weed destruction.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0150, PINEAPPLES. IMPROVEMENT OF THE PLANT - INTERACTION BETWEEN PLANT AND ENVIRONMENT
J.J. LACOEUILHE, (IV.112.0004)

OBJECTIVE: To adapt the cultivation of the pineapple to the local ecological conditions and to the principal economic objectives sought. Fruits weighing from 1.300 kg to 1.500 kg for exportation as fresh fruit. Fruits weighing from 1.800 kg to 2.000 kg for manufacture of preserves.

APPROACH: Genetic selection of the plant material (1958).

FIRST RESULTS: The obtaining of a homogeneous plant material corresponding to the economic requirements. Establishment of the crop in certain ecological conditions.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

STATION IFAC D'AZAGUIE
B.P. 1740, Abidjan

4.0151, IMPROVEMENT OF THE BANANA PLANT
J. GUILLEMOT, (IV.111.0001)

OBJECTIVE: To determine the possible improvements of genetic or phytotechnical order according to the ecological conditions of the Ivory Coast.

APPROACH: Comparison of the production potential of new selected cultivars, with the current types: susceptibility of the cultivar to the enemies of cultivation, growth and development of the vegetative succession, effect of the light factor and efficient photosynthesis, evolution of the dimensions of the inflorescences and of the fruits, competition between shoots and racemes, development of the racemes. Analysis of the microclimatic factors.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0152, INFLUENCE OF MINERAL FERTILIZATION ON THE GROWTH OF BANANA PLANT AND THE METABOLISM OF SUGARS
J. GUILLEMOT, (IV.111.0002)

OBJECTIVE: Determination of the influence of mineral fertilization on the growth, the development and the metabolism of sugars.

APPROACH: Study of the penetration into the plant and of the migration in it of exogenous and endogenous substances. Interaction of external conditions of and of mineral elements (influence on the composition of the pulp). Study of fertilizers adapted to particular conditions, relations between fertilization and the content of the organs in mineral elements, metabolic influences.

RESULTS: Obtained: establishment of techniques for fertilization adapted to different regions of production. These techniques, as a function of the stages of development of the plant and of the external conditions; reduction of abnormalities.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0153, EVOLUTION OF THE SOILS OF BANANA PLANTATIONS. CULTIVATION IN ORGANIC SOILS
J. GUILLEMOT, (IV.111.0003)

OBJECTIVE: Study of the evolution of the soils of banana plantations, definition of the techniques for cultivation in organic soils.

RESULTS: Obtained: establishment of fertilizations adapted to the type of soils and to the effects of the climate (amount of rain, temperature). Awaited: definition of the diagnostic elements enabling a regulated fertilization.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0154, INTEGRATED CONTROL OF THE PARASITES AND MARAUDERS OF THE BANANA PLANT
P. FROSSARD, (IV.111.0004)

OBJECTIVE: Elimination of the factors of parasitism, in an integrated control programme.

RESULTS: Obtained: Reduction in the incidence of parasitic affections by the establishment of effective techniques for their control. Awaited: Definition of the secondary effects of the treatments in order to avoid possible damage.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0155, STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST
J. BOURDEAUT, (IV.111.0005)

OBJECTIVE: Definition of the species of fruit crops adapted to the climate of the Lower Ivory Coast, of their performances, of the utilization of the products.

APPROACH: Specific experimental arrangements, situated in chosen mesoclimatic sites, for the study of the adaptability of species of fruit cultivated as homogeneous populations or as associations: avocado tree, papaw, mangosteen, guava, grenadilla (Passion fruit), mango, sapodilla, custard-apple (Anona).

RESULTS: Obtained: Definition of the techniques for multiplication of the avocado tree in order to obtain planting material free from contamination with Phytophthora cinna (cause of withering and decay of avocado plants). Definition of the techniques for cultivation of papaw (annual crop-preservation of the...
IVORY COAST

genetic purity of the types introduced), of the mangosteen, grena­
dilla and guava trees. Awaited: Selection of a stock (for grafting)
resistant to Phytophthora cinnamo for the avocado tree. Defini­
tion of the suitability for fruit trees of the different climatic zones
of the Ivory Coast and of the cultivation techniques with a view
to the creation of agro-industrial unit-types for production.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

4.0156, STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST
J. BOURDEAUT, (IV.111.0006)

OBJECTIVE: Development and diversification of the cultivation
of citrus trees, still limited to the production of essential oils.
APPROACH: Study of the resistance to fungal disease agents
(Phytophthora), elimination of viral factors and study of the resis­
tance to virus diseases transmitted by insect vectors. Study of the
behaviour of the different varieties in the diverse climatic zones
(stocks for grafting and subjects - scions). Phytotechnical and en­
tomological definitions. Pomological studies and quality of the
essential oils.

RESULTS: Obtained: regeneration of the plant material, defi­
nition of the conditions of cultivation. Awaited: selection of the
varieties adapted to the climatic conditions, development of the
cultivation of citrus fruit trees, new uses for the fruits for human
food and for industry.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Abidjan, I.C.

STATION IRAT DE BOUAKE
B.P. 635, Bouake

4.0157, STUDY OF THE GERMINATIVE CAPACITY OF WEED SEEDS
H. MERLIER, (IV.021.0001)

Objective: To obtain batches of seeds with a high capacity for
germination for the study of the biology of weeds.

Approach: Test of germinative capacity as a function of the
size of the seeds. Test of germinative capacity as a function of the
presence and of the absence of floral sheath (Gramineae).

4.0158, BALANCE OF MINERAL ELEMENTS UNDER CULTIVATION - MAINTENANCE FERTILIZATION
P.F. CHABALIER, (IV.021.0002)

Objectives: To establish a balance of the elements in the
course of cultivation.

Approach: Lysimetric study of the losses by lixiviation. Study
of the elements removed by the crops. Determination of the min­
erals and organic matter applied. Possible degradation of the mineral
elements applied by fertilization (phosphorus in particular).

Results: A preliminary, provisional balance has been worked
out for the different outstations.

4.0159, IMPROVEMENT OF RICE (INDICA GROUP)
M. JACQUOT, (IV.021.0003)

Objective: Principal criteria for selection: relatively short
height of the plants, resistance to drought, horizontal resistance to
piriculariosis, range of vegetative cycles from 100 to 140 days.

Approach: Crossings between adapted varieties and tall varie­
ties in the hope of some favourable transgressions. Crossings be­tween adapted varieties and of the short variety. Genealogical
selection in general, bulk plus singularity.

Results: A semi-dwarf line, the issue of a crossing between two
adapted and tall varieties.

General weakness of the lines issuing from crossings or within
Taichung Native 1 for horizontal resistance to piriculariosis.

4.0160, COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS
M. JACQUOT, (IV.021.0004)

Objective: Knowledge of the behaviour of rice in the pluvial
system. Improvement of the genetic resources. Reserve of plant
breeding stock.

Approach: Genealogical selection with self-fertilizations un­
der paper bags. Sowing every year or storing in a cold room, as the
case may be.

Results: General weakness of the varieties of the IRRI type
in horizontal resistance to piriculariosis: early stock from Brazil
and from Taiwan, varietal differences in susceptibility to borer
insects, 520 varieties retained for the collection at end of 1972.

4.0161, HYBRIDATIONS BETWEEN VARIETIES OF RICE (INDICA AND JAPONICA)
M. JACQUOT, (IV.021.0005)

Objective: Advantage and modalities of using the japonica
varieties in crossing with the indica varieties.

Approach: F2 generation important (20,000 plants at the
minimum), genealogical selection and/or bulk.

Results: First crossings in 1972.

4.0162, MUTATIONS INDUCED IN RICE (INDICA VARIETY) FOR THE REDUCTION IN THE HEIGHT OF THE PLANTS
M. JACQUOT, (IV.021.0006)

Objective: Research on mutations for a shorter height
of plants in an indica variety, while still conserving food erectness of
the panicle.

Approach: Variety employed: 63-83 from Senegal, treatment
of one initial batch of seeds with gamma rays.

4.0163, TESTS OF LINES OF PLUVIAL RICE FOR THEIR ECOLOGICAL ADAPTABILITY
M. JACQUOT, (IV.021.0007)

Objective: To select lines having a wide adaptability for
pluvial cultivation in West Africa, or to select varieties having a
good adaptability to particular ecological conditions.

Approach: Tests of behaviour starting from the F4 generation
in different experimental stations in West Africa. Comparative
statistical experiments with the most interesting lines in these stations.

4.0164, SELECTION FOR A STRONG INITIAL GROWTH OF PLUVIAL RICE NOT LINKED WITH A STRONG TENDENCY FOR TILLERING
B. LEDUC, (IV.021.0008)

Objective: To create a variety of pluvial rice with strong initial growth. This characteristic enables the variety to withstand possible periods of drought.

Approach: Choice of a restricted collection of 14 varieties of pluvial rice of very different types. Research on a varietal test for appraisal of the initial growth: staggered sowings in the field and observations on the morphology of the plant throughout the whole cycle; periodic sampling of seedlings. According to variety, division into classes for vigour, and sketching of a diagram; measurement of the dry matter produced at different stages of the cycle.

Results: Orientation of the choice of methods.

4.0165, MAINTENANCE OF A WORKING COLLECTION FOR INUNDATED RICE-FIELDS
B. LEDUC, (IV.021.0009)

Objective: To conserve the plant material aquired from surveys or introductions in order to utilize it as reference control in varietal experimental work and possibly as a sire.

Approach: Selection for conservation; study of the phases of the cycle, morphology of the variety, yield factors, reaction to accidents during growth, processing tests.

Results: In collection: 28 varieties.

4.0166, MAINTENANCE OF A WORKING COLLECTION FOR IRRIGATED RICE
B. LEDUC, (IV.021.0010)

Objective: To conserve the plant material obtained from surveys or introductions in order to utilize it as reference control in varietal experimental work and possibly as a sire.

Approach: Selection for conservation. Study of the phases of the cycle, morphology of the variety, yield factors, reaction to accidents during growth, processing tests.

Results: In collection: 13 varieties.

4.0167, VARIETAL EXPERIMENTAL WORK FOR PLUVIAL RICE
B. LEDUC, (IV.021.0011)

Objective: To replace the popularized varieties by better varieties for yield (utilization of nitrogenous manuring), resistance to placuliriosis, resistance to periods of drought, behaviour during processing.

Approach: Collection of introduced varieties and of lines tested at 4 experimental establishments. Multilocul varietal experiments re-grouped according to characteristic: short varieties, early varieties. In each case, study of the phases of the cycle, morphology of the variety, yield factors, reaction to accidents during growth, processing tests.

Results: Maintenance in popular use of varieties Iguape Cateto and Moroberakan. Possible replacement varieties to be confirmed: 63-83. Orientation of a part of the programme on the Brazilian varieties of 100 days type IAC 25/64. Elimination on account of placuliriosis of varietieso IRAT type.

4.0168, VARIETAL EXPERIMENTAL WORK FOR Irrigated RICE
B. LEDUC, (IV.021.0012)

Objective: To replace some popularized varieties by better varieties for resistance to pliraculiriosis, the utilization of fertilization, the quality of the grain.

Approach: Varietal and multilocul experiments in irrigated rice-fields. Studies of the phases of the cycle, morphology of the variety, yield factors, reaction to accidents during growth, processing tests.

Results: Maintenance in popular use of varieties IR 5, IR 8, and IR20; tests in progress on replacement varieties CICA 4 from Colombia and JAYA.

4.0169, VARIETAL EXPERIMENTAL WORK FOR INUNDATED RICE
B. LEDUC, (IV.021.0013)

Objective: To replace the popularized varieties by better varieties for yield, resistance to pliraculiriosis, to being beaten down (or overturned), to drought at the outset of growth, to processing.

Approach: Behaviour plots. Multilocul varietal experiments (study of the phases of the cycle, morphology of the variety, yield factors, reaction to accidents during growth, processing tests).

Results: Maintenance in popular use of varieties of inundated rice: 1M 16, OMA ROSSO and L 78.

4.0170, TECHNIQUES FOR PRODUCTION OF RICE SEEDS OF GOOD GERMINATIVE QUALITY
R. GUEGAN, (IV.021.0014)

Objective: The germinative capacity of rice seeds harvested in the Ivory Coast is variable: influence of the level of humidity harvesting (cleavage, rotting diseases) and of the conditions of cultivation in general.

Utility, therefore, of specifying the places and optimal seasons for production of seeds, as well as the techniques for cultivation, harvesting, drying, winnowing, storage.

All this with the object of obtaining regularly, homogeneous batches of seeds with high germinative capacity.

Approach: Analysis of different samples obtained from batches of seeds and from different crops. Experimental verification of the hypotheses formulated from these analyses.

Results: Importance of cleavage in the North of the Ivory Coast; good healthy quality of the harvests of the 2nd season of irrigated rice at Gagnoa.

4.0171, DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT
F.N. REYNIERS, (IV.021.0015)

Objective: To measure on a few varieties of rice, some factors of resistance to drought known in respect of other plants.

Approach: Two types of factors of resistance to drought are measured: a) factors enabling (the plant) to retard the drying process: cuticular transpiration, the number of pores per unit of leaf surface, the regulation of the opening of the pores, the absorption
by the roots. b) factors enabling the plant to withstand the drought: latency, vigour, liberation of hydrolytic enzymes. Specific laboratory techniques for each characteristic will be used.

Results: The first measurements of cuticular transpiration have shown that it represents an important percentage of the total transpiration for rice, and that it presents important varietal variations.

4.0172, FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO DROUGHT IN THE GENUS ORYZA
F.N. REYNIERS, (IV.021.0016)

Objective: To determine for a single variety, the fluctuation of the factors of resistance to drought and if the fluctuations always vary in the same direction according to varieties. To determine in the species Oryza sativa and O. glaberrima, the amplitude of the variability of the factors of resistance to drought.

Approach: On a few varieties cultivated in pots in controlled conditions (air humidity, periods of drought at different stages of cycle of development, etc.) the factors of resistance to drought are measured by laboratory techniques. On the basis of the results obtained the standard conditions for measurement will be determined.

Simple tests will be established which will enable screening for each factor of resistance to drought among a considerable collection of varieties of rice of different ecological origins.

4.0173, SPECIFIC EFFECTS OF THE FACTORS OF RESISTANCE TO DROUGHT IN RICE
F.N. REYNIERS, (IV.021.0017)

Objective: To classify the factors of resistance to drought according to their importance in the total resistance to drought.

Approach: Some varieties cultivated in pots will be subjected to periods of drought at different stages of development. In the course of cultivation, the maximum factors of resistance to drought will be estimated (factors enabling the plant to retard the drying process and factors enabling it to withstand the drought).

Correlations will be established between the varietal variations of the factors of resistance to drought and the varietal variations in yields as a function of the periods of drought.

This type of correlation will be established separately for the two types of factors of resistance.

4.0174, VARIETAL IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY UTILIZING HYBRID FORMULAS
J.L. MARCHAND, (IV.021.0018)

Objective: To create hybrid formulas of good productivity and with a length of cycle adapted to the different zones of the Ivory Coast.

Approach: Parents: in general one parent from the tropical zone, one parent from a temperature zone. Formula: the most frequent is: population or composite - simple hybrid. Double or three-way hybrid formulas are also envisaged.

Results: In 1972, of 63 hybrid formulas under testing, 50 have exceeded 60 q/ha and 18 have exceeded 80 q/ha, the record (yield) being 100 q/ha (the local improved control yields 40 to 50 q/ha).

4.0175, VARIETAL COLLECTION OF MAIZE
J.L. MARCHAND, (IV.021.0019)

Objective: To assemble a considerable collection of varieties or maize, from the tropical zone especially, in order to conserve varied genotypes and there find stock for use in varietal improvement projects.

Approach: African material: surveys and study of the material assembled, before it is placed in the collection; foreign material: introduction of varieties or lines already improved.

Results: End of 1972: 106 varieties or lines from Tropical Africa (of which 80 from the Ivory Coast), 102 varieties or lines from Tropical America, 49 lines from temperature zones (South America and the U.S.A. especially).

4.0176, VARIETAL IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY RECURSE TO COMPOSITES
J.L. MARCHAND, (IV.021.0020)

Objectives: To obtain two composites of excellent agronomic value and presenting between them a strong heterosis.

Approach: Creation and improvement by recurrent selection of an African composite and of a foreign composite.

Results: A foreign composite of 14 varieties from Latin America is in the course of selection (cycle 2 in 1972-73) and will be completed, some African varieties have been assembled and observed. Four African composites with a small number of varieties have been created in 1972.

4.0177, MULTILOCAL TRIALS OF MAIZE
J.L. MARCHAND, (IV.021.0021)

Objective: Testing in wide-spread ecological zones of varieties and types obtained from different countries.

Approach: Varietal experiments repeated in several places: Tests of CYMMIT: numerous varieties (50), little repetition (2) distribution world-wide; Tests of PC 26: number of varieties reduced (12) distribution West Africa; IRAT: number of varieties reduced (12) distribution: IRAT Bureau of West Africa.

Results: Better knowledge of the local varieties. Introduction, utilization and possibly popularization of foreign varieties.

4.0178, VARIETAL COLLECTION OF YAMS
R. VANDENVENNE, (IV.021.0022)

Objective: Conservation and enrichment of the collection. The obtaining of true clones for the varieties adapted to mechanized cultivation.

Approach: Introduction of varieties from other countries. Clonal multiplication from tubers from a chosen plant. Study of the possibility of successful use of multiplication by stem cuttings.

Results: At present 87 varieties, 6 species cultivated in collection.

4.0179, STUDY OF THE PHYSIOLOGICAL AGE OF THE TUBERS OF YAMS AND OF THEIR BUDDING
R. VANDENVENNE, (IV.021.0023)

Objectives: To obtain regular system in the lifting of the tubers of a given variety.

Approach: Study of the relationship between the date of growth of the first tuber and the time of budding of this new tuber.
formed by: gradated sowing and harvesting, cultivations out of season (de-seasoning of the tubers).

Observations: In the field beginning of tuberization of each plant after harvesting; beginning of budding of the tubers of each plant studied.

4.0180, VARIETAL COLLECTION MANIOC
R. VANDEVENNE, (IV.021.0024)
Objective: Conservation and enrichment of the collection.
Approach: Introduction of varieties of high yield from other countries.
Results: At present 85 varieties in collection.

R. VANDEVENNE, (IV.021.0025)
Objective: To find varieties of Manioc having a high yield after 10 months of cultivation, to enable an integration of this crop into a rotation of annual crops.
Approach: Comparative experiments with varieties comprising: two dates for planting: 15 April - 15 August; three dates for harvesting: 10 - 15 - 20 months of cultivation.
Results: At present giving satisfactory results after 10 months of cultivation, varieties H 57, H 58, H 43, CB.

4.0182, VARIETAL WORK ON SOYA
C. DUMONT, (IV.021.0026)
Objective: To test the possibility of cultivating soya beans: as a single cycle only, in the zone having one rainy season; as one or two cycles in the zone having two rainy seasons.
Approach: Introduction of varieties from research stations: Bamby (Senegal), Madagascar, IITA Ibadan (Nigeria).
Results: Bertoua variety having brown seed with potentiality of 2 T/ha in second cycle or single cycle (cycle of 100 days). Improved Pelican variety having comparable potential and cycle, with yellow seed.
Results Sought: Earlier variety for the first cycle of cultivation.
Network project: See IV. 022.0007, IV. 023.0004, IV. 025.0005.

4.0183, CHEMICAL DESTRUCTION OF WEEDS ON A PLOT OF YAMS (Dioscorea)
G. RENAUT, (IV.021.0027)
Objective: To replace manual weeding by treatment with herbicides in a crop of yams.
Approach: Method of the Commission for Biological Studies (C.E.B.): Test of preparations, Behaviour experiment (to determine the minimum effective dosage), Test of selectivity (to determine the maximum dosage tolerated by the crop), Economic test (to examine the efficacy of the formulation in conditions bordering on the practical).
Results: The preparation Diuron (3 - 3.2 kg/ha) plus Paraquat (0.3 kg/ha) gives good results at the pre-emergent stage on yams. The experimental work is going on all the time, on account of the appearance each year of new preparations.

4.0184, MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS
H. MERLIER, (IV.021.0028)
Objective: To determine the evolution of the composition of the weed flora as a sequel to the use of chemical herbicides as compared with that which follows hand weeding.
Approach: Plot of 0.6 ha in biennial rotation: rice and maize/cotton, the two phases of the rotation being present on each half of the plot. In the course of the rotation, the same strips receive the chemical treatments relative to each crop. Records of the weed flora each year before the application of the treatments and at harvest time. Long-duration experiment (5 years minimum).

4.0185, WEEDING OF PLUVIAL RICE, COMBINING CULTIVATION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS
G. RENAUT, (IV.021.0029)
Objective: To obtain, by the combination of cultivation techniques and chemical treatments, a better destruction of weeds than that obtained by these techniques used alone.
Approach: Comparative experiment, as Fisher blocks, for study of the following: quantities of seed, density of sowing, method of sowing, manual weeding, motorized weeding, chemical weed destruction, directed or not.
Results: The results obtained are not yet conclusive on account of the unfavourable climatic conditions to which all the experiments have been subjected.

4.0186, STUDY OF THE DORMANCY OF WEED SEEDS
H. MERLIER, (IV.021.0030)
Objective: To find the most effective methods for stimulating the seeds from dormancy.
Approach: Comparison between the following treatments: thermal: soaking in baths at different temperatures, alternation of hot and cold; chemical: by soaking in chemical solution; mechanical: scarification.

4.0187, DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES
H. MERLIER, (IV.021.0031)
Objective: To enable a precise inspection of the efficacy of the means of control used against weeds on plantations by the possibility of determination of these weeds as soon as they start and at the first stages of development of the leaves, and before their elimination by the treatments.

4.0188, STUDY OF THE BIOLOGICAL CYCLES OF WEEDS
H. MERLIER, (IV.021.0032)
Objective: To determine the biological cycle of weeds in the natural environment and the variations brought by interspecific competition (other weeds and cultivated plants) and the conditions of cultivation.
IVORY COAST

Approach: Study of the complete cycle in natural surroundings and in pots. Independence or interdependence of the different phases of the cycle. Variations of the cycle of the species in competition: with the other weeds, with the rice, with the other weeds plus the rice. Variations with intensity of working of the soil.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0189, STUDY THE INFLUENCE OF THE DROUGHT FACTOR ON THE RESISTANCE OF RICE TO PIRICULARIOSIS
J.M. BIDAUX, (IV.021.0033)

Objective: It has been noticed on several occasions that pirciculariosis was more important when the rice was suffering from drought. To study the action of drought on the expression of horizontal resistance of rice.

Approach: Plantations of rice are cultivated under different conditions of nutrition in water: irrigated, pluvial to capacity in the field, pluvial to capacity in the field and an antitranspirant, pluvial with high pH value, pluvial with high pH value and antitranspirant. The behaviour of the epidemic after artificial inoculation is compared.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0190, CHEMICAL CONTROL MEASURES AGAINST PIRICULARIA ORYZAE
J.M. BIDAUX, (IV.021.0034)

Objective: To find efficacious preventive or curative preparations that are of economic value and suitable for use in experimental work, on seed multiplication farms or on rice-fields that are already very productive.

Approach: Several stages in laboratory testing and micro-assays: in vitro sensitivity test on P. oryzae (growth of mycelium and germination of the spores); test efficacy as a treatment for the seeds and for the soil; test of efficacy as a treatment for the leaves, with artificial inoculation with the parasite; test of efficacy as a treatment for the panicle with artificial inoculation of the necks; test for residual effect of the preparations; residues of active material in the plant.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0191, STUDY OF THEGENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PIRICULARIA ORYZAE
J.M. BIDAUX, (IV.021.0035)

Objective: It is expected that the horizontal resistance of rice is governed by a polygenic genetic system, in which epistases and interactions play an important role. The object here is to gather more exact information on the functioning of these genetic structures in order to orient the selection of resistant varieties in the most profitable ways.

Approach: Choice of 8 to 10 parents (Oryza sativa indica varieties) which have already undergone severe pressure - challenge from the parasite in the course of selection. The choice is based not only on resistance characters but at the same time morphological or physiological characters. Diallele test with 8 parents, with all possible crossings. Analysis of the results on F1 and F2 generations and self-fertilizations.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0192, RESEARCH IN CULTIVATED RICE FOR SIRENS HAVING HORIZONTAL RESISTANCE TO PIRICULARIA-OSIS
J.M. BIDAUX, (IV.021.0036)

Objective: The reaction of varieties of rice to pirciculariosis is very variable. A search is made for varieties resistant to all strains of the parasite. These varieties would be used as stock in a selection programme.

Approach: A vast collection has been assembled of varieties or lines originating from West Africa, from selections of the Ivory Coast IRAT, from international IBN tests, from the traditional crops of peasant farmers. These varieties (about 3000) will be subjected to successive screenings, with artificial inoculations with Pircularia, in order to reveal and recognize the different expressions of horizontal resistance, and later to utilize as sires the varieties possessing a high level of horizontal resistance. For each type of expression of horizontal resistance the maximal differences which exist between the susceptible and the resistant varieties are to be characterized. A study will also be made of the correlations which may appear between the expressions of horizontal resistance obtained in the field and in different experimental conditions (hot-house, cultivation in earthenware pans, etc.)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0193, ANALYSIS OF THE RELATIVE INCIDENCE OF STRAINS OF PIRICULARIA ORYZAE IN RICE-FIELDS
J.M. BIDAUX, (IV.021.0037)

Objective: The population of Piricularia oryzae comprises numerous strains whose relative incidence depends upon the host and on the environment. To analyze the relative incidence of the strains in order to recognize the genes that are most sensitive to the differential forces of selection, the genes that are very easily exploited in selection.

Approach: At the beginning and at the end of an epidemic, samples will be taken from patches (spots) from which 200 to 300 single-spore strains will be isolated. The spectrum of virulence of these will be tested with the aid of a scale of differential varieties inoculated artificially.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0194, CREATION OF A DIFFERENTIAL SCALE OF STRAINS OF PIRICULARIA ORYZAE
J.M. BIDAUX, (IV.021.0038)

Objective: The obtaining of a differential scale of strains of Piricularia oryzae to enable rapid analysis of the genetic structures which, in rice, govern vertical resistance.

Approach: Two types of approach: As the isolations and virulence tests of the parasite proceed, it will be possible to create the scale step by step - 16 strains are necessary. The spectrum of virulence of these strains being very precise, it will be necessary to have recourse to artificial mutations to modify the spectrum of adjacent isolates in order to create this theoretical scale.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bouake, l.C.

4.0195, EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING
KAIMS, (IV.021.0039)

Objective: To determine whether cropping without tillage is possible. If it is, in what types of soils and under what conditions?

Approach: Experiments in open field comparing the treatments: non-working of the soil, minimum working and conventional working with the plough.
Results: Experiments not comprising non-working have shown that in numerous cases ploughing to 25 cm in depth was favourable.

National network project: See IV. 025.001.

4.0196, ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE - MAIZE) P.F. CHABALIER, (IV.021.0040)

Measurement of the true coefficient of utilization of fertilizer-N by the plant (pluvial and irrigated cultivation). Measurement of the coefficient of transformation of the fertilizer-nitrogen into grain proteins (pluvial and irrigated cultivation). Study the influence of repeated burials of straw on these coefficients (pluvial cultivation). Curves of response to nitrogen in the presence or absence of burial of straw. Utilization of nitrogenous fertilizer labelled with 15N.

National network project: See IV. 022.0003.

4.0197, EVOLUTION OF NITROGEN IN CULTIVATED SOILS P.F. CHABALIER, (IV.021.0041)

Study of the participation of the fertilizer-nitrogen in the pool of mineral nitrogen (ferralytic soil and hydromorphic soil). Study of the incorporation of the fertilizer-nitrogen in the nitrogen of the soil (ferralytic soil and hydromorphic soil). Study of the influence of repeated burials of straw on these phenomena (ferralytic soil). Application of 3 to 5 doses of nitrogen in the presence or absence of buried straw, utilization of labelled nitrogen 15N. The experiment carried out without 15N shows that the application of straw does not influence the yield but does appreciably modify the dynamics of the nitrogen (ferralytic soil).

National network project: See IV. 022.0004.

4.0198, STUDY OF INOCULATIONS OF RHIZOBIUM ON SOYA P.F. CHABALIER, (IV.021.0042)

To choose a highly effective strain of Rhizobium and to determine the fertilization that is economically the most profitable. Experiments and tests with inoculation. Factorial experiments of inoculation times applications of nitrogen. At present the Rhizobium being used is that under the trade mark Nitragin which gives quite good nodulation. This nodulation is influenced by the pH of the soil and by the applications of fertilizer-H.

4.0199, EROSION OF TILLED LAND J. GIGOU, (IV.021.0043)

Comparison is made in a small plot on the erosion of soils that have been worked in the following ways: no tillage, harrowing, ploughing, ploughing and harrowing. The deep working lessens rivulet formation and erosion.

4.0200, CORRECTION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST B. LEBUANEC, (IV.021.0044)

Objective: The principal mineral deficiencies having been catalogue it. It remains to determine rates of application of elements necessary to correct them.

Approach: Method of curve of response to one element, all the others being applied at a sufficient rate to ensure good mineral nutrition for the plant.

Results: The responses to phosphorus and nitrogen are very clear-cut. For phosphorus, they depend essentially on the type of soil. For nitrogen, they depend on the soil but especially on the plant cultivated (difference between species and varieties).

4.0201, EVOLUTION OF SOILS UNDER CULTIVATION B. LEBUANEC, (IV.021.0045)

Objective: To study the evolution of the fertility potential of soils subjected to mechanized agriculture (team or motorized) after clearing of savannah or forest.

Approach: Observation of the yields and measurement of the principal agronomic variables of the soils in the course of time on a certain number of plots, either in large-scale cropping or in classical experiments with small plots.

Results: On one of the stations, at Bouake, at the end of ten years of cropping, the productivity potential of the soils has been conserved (rotation of 3 to 5 years comprising 1 or 2 years of forage crops).

4.0202, DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST B. LEBUANEC, (IV.021.0046)

Objective: To determine the mineral deficiencies existing in the soils of the Ivory Coast after clearing (dry, irrigated and inundated cropping). To study the dynamics of the appearance of deficiencies in time, in cases of unbalanced fertilization.

Approach: Withdrawal experiments in the field, in continuous cropping, with total quantities taken out at harvesting (elements studied: N, P, K, S, Ca, Mg).

Results: In dry and inundated cropping, there is general phosphorus deficiency. Deficiency in nitrogen, existing from the outset in savannah, appears more or less rapidly in forest (2 to 5 cycles). Deficiency in potassium, non-existent at the start, appears at the end of 4 to 5 cycles. In low-lying irrigated land, there is no deficiency at the start; the deficiency in nitrogen appears rapidly and is followed by that in potassium (exception: deficiency in P in the West).

4.0203, ACIDIFICATION DUE TO THE INTENSIVE USE OF FERTILIZERS B. LEBUANEC, (IV.021.0047)

To study the intensity of the phenomena of acidification as a function of the nature and the rate of application of fertilizers. Block experiments in open field. Study of the plant production and regular measurement of the pH value.

IVORY COAST

4.0204, CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE
G. RENAUT, (IV.021.0048)

Objective: To replace manual weeding by chemical treatments on pluvial rice.

Results: The mixture propanil (2.1 - 2.5 kg/ha) associated with 2, 4, 5-TP (0.5 - 0.75 kg/ha) gives satisfactory results, as an application in the 15 to 20 days after pricking-out. Experimental work is going on all the time on account of the appearance, each year, of new preparations.

4.0205, CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
G. RENAUT, (IV.021.0049)

Objective: To replace manual weeding by chemical treatments.

Results: The mixture propanil (2.1 - 2.5 kg/ha) associated with 2, 4, 5-TP (0.5 - 0.75 kg/ha) gives satisfactory results, as an application in the 15 to 20 days after pricking-out. Experimental work is always in progress on account of the appearance, each year, of new preparations.

National network project: See IV. 021.0004, IV. 023.0003, IV. 024.0004.

4.0206, INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS
H. MERLIER, (IV.021.0050)

Objective: (1) To determine the composition of the weed flora as a function of the age of rice-fields. (2) To verify whether differences in composition of the flora exist according to the ecological zones of the Ivory Coast which would justify specific approaches in the matter of control by chemical or cultural means.

Approach: Botanical survey in the different ecological zones at different periods of the year.

Result: The study is to start in 1973 and should be finished in 1974.

National network project: See IV. 023.0002, IV. 022-0005, IV. 025.0003, IV. 024.0003.

STATION IRAT DE FERKESSEDOUGOU
B.P. 121, Ferkesessedougou

4.0207, EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING
KAIMS, (IV.025.0001)

National network project: See IV. 021.0039. (4.0195)

4.0208, CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE
G. RENAUT, (IV.025.0002)

National network project: See IV. 021.0048. (4.0204)

4.0209, INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS
H. MERLIER, (IV.025.0003)

National network project: See IV.021.0050. (4.0206)

4.0210, CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
G. RENAUT, (IV.025.0004)

National network project: See IV.021.0049. (4.0205)

4.0211, VARIETAL EXPERIMENT WORK ON SOYA
G. DUMONT, (IV.025.0005)

Network project: See IV.021.0026. (4.0182)

STATION IRAT DE GAGNOA
B.P. 602, Gagnoa

4.0212, SPECIFIC ROLE OF ORGANIC MATTER IN TROPICAL SOILS
P.F. CHABALIER, (IV.022.0001)

Objective: To understand the mechanisms of action of organic matter on soils and yields.

Approach: Treatments with considerable mineral fertilization: P - K - S - Ca - Mg. Increasing rates of application of nitrogen with or without applications of pre-moistened organic matter. Factorial experiment 2 x 6 with 8 repetitions.

Results: After clearing, the application or organic matter is clearly seen. Effect is less clear-cut the following year on the yields of grain crops, but still clear-cut on the straw (s). Depressant effect for the high rates of application of nitrogen.

4.0213, BALANCE OF MINERAL ELEMENTS UNDER CULTIVATION - MAINTENANCE FERTILIZATION
P.F. CHABALIER, (IV.022.0002)

Network Project: See IV. 021.0002. (4.0158)
4.0214, ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE)
P.F. CHABALIER, (IV.022.0003)
International network project: See IV. 021.0040. (4.0196)

4.0215, EVOLUTION OF NITROGEN IN CULTIVATED SOILS
P.F. CHABALIER, (IV.022.0004)
International network project: See IV.021.0041. (4.0197)

4.0216, INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS
H. MERLIER, (IV.022.0005)
National network project: See IV. 021.0050. (4.0206)

4.0217, CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
G. RENAUT, (IV.022.0006)
National network project: See IV. 021.0049. (4.0205)

4.0218, VARIETAL EXPERIMENT WORK ON SOYA
G. DUMONT, (IV.022.0007)
Network project: See IV.021.0026. (4.0182)

4.0219, CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE
G. RENAUT, (IV.023.0001)
National network project: See IV. 021.0048. (4.0204)

4.0220, INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS
H. MERLIER, (IV.023.0002)
National network project: See IV. 021.0050. (4.0206)

4.0221, CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
G. RENAUT, (IV.023.0003)
National network project: See IV. 021.0049. (4.0205)

4.0222, VARIETAL EXPERIMENT WORK ON SOYA
G. DUMONT, (IV.023.0004)
Network project: See IV.021.0026. (4.0182)

4.0223, STUDY THE LUTOIDS OF THE LATEX OF THE RUBBER TREE - HEVEA
L. PRIMOT, (IV.091.0001)
Objective: 1) Study the lutoid membrane: fundamental characteristics, function, reactions provoked by different physico-chemical factors. 2) Study the modifications and the evolution of the lutoids by tapping. 3) Comparative study of the lutoids of different clones of rubber.
Approach: Utilization of radioactive markers to determine the characteristics of the membranous permeability of the lutoids.

4.0224, REGENERATION OF THE LATEX OF THE RUBBER TREE AFTER TAPPING
L. PRIMOT, (IV.091.0002)
Objectives: Research on organic and mineral criteria of fatigue of the tree during tapping. Correction of fatigue of the tree. Study of other phenomena intervening in the regeneration of the latex after tapping.
Approach: Study of the physiological fatigue of the trees during tapping by the intervention of the glucides of the latex and by study of the translocation of these glucides.
Results: It appears that the content of the latex in glucides may be a very important limiting factor in the regeneration of the rubber tree.

4.0225, TAPPING OF THE RUBBER TREE - STUDY THE FLOW OF THE LATEX
L. PRIMOT, (IV.091.0003)
Objective: Study the factors which intervene in the flow of the latex: rhythm of pulse flow, length of the notch, influence of the climate, influence of regulation of moisture, of solar radiations, etc.
Approach: Observation and experimental work on the factors brought into play in the flow of the latex. Utilization of bioclimatological techniques.

4.0226, TAPPING OF THE RUBBER TREE - STUDY OF NEW PREPARATIONS FOR STIMULATION OF PRODUCTION
L. PRIMOT, (IV.091.0004)
Objective: To study the utilization of new stimulant preparations appearing on the market, with a view to testing their effect and recommending them for large-scale applications.
Approach: Experimental work on the new stimulants: rates of application and conditions for use.
IVORY COAST

4.0227, IMPROVEMENT OF THE RUBBER TREE - VEGETATIVE IMPROVEMENT - STUDY OF THE PLANTING MATERIAL
J.C. COMBE, (IV.091.0005)

Objective: Pursuit of the improvement of the rubber tree by the study of the planting material on the spot and by the introduction of interesting selections originating from the Far East or from other rubber-growing countries.

Approach: Study of the characteristics of clones: growth, precocity, production, resistance to wind in the established fields for clone comparison following the normal methods which enable statistical analysis of observations.

Results: The fields for comparison of clones already established have enabled the recommendation of certain highly productive clones that are particularly well adapted to the local conditions.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0228, IMPROVEMENT OF HEVEA BRASILIENSIS - RESEARCH ON CRITERIA FOR SELECTION
J.C. COMBE, (IV.091.0006)

Objective: The obtaining of vegetative criteria to be used in the tasks of improvement (architecture of the trees, character of the wood in connection with wind-resistance, etc.).

Approach: Anatomical structure of the wood of the rubber tree to determine the specific factors of its resistance to wind. Anatomical study of the latex tubes in the young plant.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0229, VEGETATIVE IMPROVEMENT OF HEVEA - REDUCTION OF THE INTERCLONAL VARIABILITY
J.C. COMBE, (IV.091.0007)

Objective: Research for a greater homogeneity in growth; cultivation and production of clones for large-scale propagation.

Approach: The experimental work in progress is aimed at establishing criteria for choice at three levels: 1) Selection of the stock (for grafting) in the nursery, based on the rhythm of growth, 2) Research for the scion having the greatest aptitude for organogenesis of vegetative axes with early ramifications, 3) Research on criteria for elimination among grafted saplings.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0230, PREPARATION OF PLANTING MATERIAL FOR HEVEA
P. GENER, (IV.091.0008)

Objective: Determination of the best planting techniques adapted to climate and to the terrain. Study of the methods for preparation of the corresponding plant material (seeds, germinated seeds, cuttings, stumps).

Approach: Setting up comparative experiments on techniques. Definition of the costs of execution, of delays in obtaining plantable material. Influence on growth, entry into production and on production. Study the profitability of the different methods studied.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0231, IMPROVEMENT OF HEVEA BRASILIENSIS - EARLY FLOWERING
D. NICOLAS, (IV.091.0009)

Objective: Research on induction of early flowering in order to shorten the delays in obtaining successive generations.

Approach: Utilization of physiological techniques and of chemical substances.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0232, IMPROVEMENT OF HEVEA BRASILIENSIS - CONTROLLED CROSSINGS OF OLD EXISTING ORIGINS
D. NICOLAS, (IV.091.0010)

Objective: Utilization of ancient origins chosen as a function of new criteria for the obtaining of new clones.

Approach: Starting from new criteria for selection, research for mother-trees among those of ancient origin. Controlled crossings of these mother-trees. Application of the criteria for selection to the populations obtained. Observation of these populations. Application of techniques for early flowering to the interesting individuals.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0233, IMPROVEMENT OF HEVEA - THE OBTAINING OF CROSSINGS STARTING FROM THE NEW ORIGINS
D. NICOLAS, (IV.091.0011)

Objective: The obtaining of highly productive crossings by introduction of new (material of) Amazonian origin.

Approach: Mission for observation and collection of material of new origins in the Amazon country. Application of selection criteria to these origins. Crossings of those retained. Selection in the populations so made, as a function of the selection criteria for obtaining, either mother-trees of clones, or families for use without grafting.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0234, IMPROVEMENT OF HEVEA BRASILIENSIS - THE OBTAINING OF POLYPLOIDS
D. NICOLAS, (IV.091.0012)

Objective: The obtaining of tetraploids (2N equals 72) of high productivity.

Approach: Utilization of mutagenic substances and techniques.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0235, DETERMINATION OF THE OPTIMUM PLANTATION DENSITIES AND ARRANGEMENTS FOR RUBBER TREES
A. CORNIER, (IV.091.0013)

Objective: Study the influence of plantation density and arrangement on growth and production.

Approach: Experiment planted in 1959. Surface area 23.8 hectares. Here a study is being made of 55 arrangements by the combination of 5 different distances between rows and 11 different spacings of trees in the row; the planting densities vary with every 30 trees, from 500 trees/ha up to 800 trees/ha.

76
Results: The low densities at time of planting enable early production and lower expenses for tapping (elements to be considered in financial calculations of profitability). But the higher initial densities constitute an assurance for having the trees prepared for tapping and consequently for a sufficient number of trees fit for tapping per Ha to redeem the fixed expenses of investment, despite the losses arising from diseases of the roots in a forestry zone.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0236, METHODS OF PREPARING THE GROUND FOR PLANTATION OF RUBBER TREES
A. CORNIER, (IV.091.0014)

Objective: To determine the best methods for preparation of the ground, for felling forest for replacement by plantations.

Results: On a forest site on tertiary sands, the mechanical preparation seems to give better results than manual preparation for the felling as well as for the digging of holes. This is noticeable by the growth measurements and the attacks of diseases of the roots.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0237, PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES
P. GENER, (IV.091.0015)

Objective: Research for growth substances (and their tolerance by plants) favouring recovery and plant development.

Approach: At first, work on the stimulation of root growth and causing the buds to burst by steeping or powdering the base of the cuttings before planting them. Afterwards, stimulation of growth by application of stimulant preparations on the buds that have burst.

Results: Positive results have been obtained with indolbutyric acid and with 2 (Beta-chloro-Beta-cyanoethyl) 6-chlorotoluene (PR 38).

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0238, WEED DESTRUCTION BY HERBICIDES IN HEVEA PLANTATIONS
R. ROUXEL, (IV.091.0016)

Objective: Perfecting the techniques elaborated by the IRCA on the upkeep of the rows and of the intervals between rows in plantations by attention to the level of weed growth and the use of herbicides; in the case of the tertiary sands and in that of the soils of the south-west of the Ivory Coast.

Approach: Treatments starting from a threshold level of weediness. Inspection of the residual effects of the treatment. Comparative economic studies of the treatments taking into account their cost price, difficulty of manipulation, efficacy and the residual activity of the preparation.

Results: After having defined the maximum level of weediness tolerable to the rubber plant according to its age, the IRCA has defined a series of regulated treatments during the entire immature period, allowing the tree its best growth at a minimum cost of treatment while allowing the soil to conserve its fertility.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0239, MINERAL NUTRITION AND FERTILIZATION OF YOUNG PLANTATIONS OF RUBBER TREES
A. CORNIER, (IV.091.0017)

Objective: On soils of tertiary sands, possible correction of deficiencies observed in the contents in mineral elements of the leaves so that the tree may come into production as quickly as possible and in the best condition.

Approach: Research on deficiencies of the plantation soil by the test of cultivation of plants (Pueraria) in pots. Analysis of leaves - foliar diagnosis. Attempt to correct deficiencies by applications of fertilizer before making use of the trees.

Results: Good results have been obtained on the soils of the Dabou savannah and on replantation soils. Improvements are necessary for determining the exact rates for application of fertilizer and to avoid wastage of fertilizers.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0240, MINERAL NUTRITION AND FERTILIZATION OF RUBBER TREES ON PLANTATIONS IN PRODUCTION
A. CORNIER, (IV.091.0018)

Objective: On soils of tertiary sands, to maintain the mineral nutrition of the trees at a satisfactory level to obtain the maximum production.

Results: Positive results have been obtained in the savannah of Dabou in particular. An experiment set up in 1961 on a 1958 plantation has yielded interesting data for the economic study of fertilization.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0241, MINERAL NUTRITION OF HEVEA - IMPROVEMENT OF THE TECHNIQUES FOR INSPECTION OF MINERAL NUTRITION
A. CORNIER, (IV.091.0019)

Objective: To improve the techniques for foliar diagnosis, withdrawal tests by cultivation in pots, analysis of soils. To improve the relations between these techniques, their results and production.

Approach: To make foliar diagnosis more specific for the age of the trees, for the position of the leaf, for the date of sampling in the vegetative cycle. To co-ordinate the results of the withdrawal tests on Pueraria grown in pots with the results of the soil analyses.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

77
IVORY COAST

4.0242. EARLINESS OF TAPPING OF RUBBER TREES

A. CORNIER, (IV.091.0020)

Objective: To increase the productiveness of the plantation by practising an early starting of tapping.

Approach: To make a comparison of different treatments involving modifications of the normal practice with regard to the start of tapping (circumference of the trees, number of trees fit for tapping per hectare). Measurement of growth and of production. Economic study embracing several years.

Results: Experiment set up at end of 1969. Data still insufficient for conclusions of any value to be drawn from them.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0243. STIMULATION OF RUBBER TREES FOR EARLY PRODUCTION

A. CORNIER, (IV.091.0021)

OBJECTIVE: To increase the profitability of the plantation by practising stimulation to obtain an increase in production from the first few years of the concern.

APPROACH: Application of stimulants at different rates and at different intervals, very strict supervision of growth in order not to hinder the development of the tree and compromise its production potential in adult age. Also very strict supervision of the state of health of the tapping panel in order not to compromise use being made of the second and third panels.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0244. TAPPING OF RUBBER TREES - RESEARCH ON PRODUCTION - GROWTH EQUILIBRIUM

A. CORNIER, (IV.091.0022)

OBJECTIVE: In the exploitation of the adult tree, with the immediate and foreseeable economic returns in mind, to study the conditions of production - growth equilibrium for increasing the profitability of the plantation.

APPROACH: Combination of systems of exploitation integrating the different intensities of exploitation (length of the notch, frequency of tapping, stimulation, arrest of tapping) with a regular growth of the tree, increasing its production capacity and its economic yield.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0245. TAPPING OF RUBBER TREES - RESEARCH ON THE EQUILIBRIUM BETWEEN YIELD BY THE HECTARE AND YIELD BY WORKER

A. CORNIER, (IV.091.0023)

OBJECTIVE: Study the combinations likely to give the best yield by the hectare, while still keeping the cost of the concern (especially in expenditure on labour) at a minimum level.

APPROACH: Attempt to reduce the intensity of tapping compensated by stimulation. Experiment on cumulative tapping, reducing the intervention of labour by the increase in the tasks of workers. Use of more efficient stimulant preparations, enabling reduction of the number of tapping operations.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0246. INFLUENCE OF THE PERIOD OF ARREST OF TAPPING RUBBER TREES UPON GROWTH, PRODUCTION AND TAPPING CUT DISEASES

A. CORNIER, (IV.091.0024)

OBJECTIVE: To determine the periods of arrest of tapping that are the most favourable for growth, for production and for reduction of the incidence of tapping cut diseases according to the climatic conditions (recorded rainfall).

APPROACH: Experimental work in the field with intervention of different periods of arrest of tapping.

RESULTS: Previous experimental work has shown that the growth of the majority of the clones widely distributed in the Ivory Coast was better and that the incidence of diseases of tapping cut was reduced when the annual arrest of tapping took place during the rainy season.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0247. CUMULATIVE TAPPING OF RUBBER TREES

A. CORNIER, (IV.091.0025)

OBJECTIVE: To study the method of collection in plastic bags to replace the collection of the latex in cups, with a view to the reduction of the running cost, and the toughness and flexibility of this material.

APPROACH: Research to ascertain the organization of the work to obtain the best yield in kilograms/worker/day, taking into account the qualities of the rubber obtained after factory processing.

RESULTS: It appears that the tapping into polythene bags entails an appreciable economy in the harvesting of rubber. However, a higher cost of processing than with the latex must be noted and also a slight depreciation of the product in relation to the rubber from latex.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0248. TAPPING OF RUBBER TREES - ANTI-RAIN BANDS

A. CORNIER, (IV.091.0026)

OBJECTIVE: To reduce to the minimum the losses of production due to rivulets of water during the rains before and during tapping.

APPROACH: Study of the best form to be given for a maximum efficacy for deflection of the rain water and the water streaming down the trunks. Research on the most economical material: the use of these bands depends upon its price, therefore upon its composition and the duration of its efficiency.

RESULTS: Several materials have been studied and adequate forms have been found, but their price is still too high.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0249. DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS

R. ROUXEL, (IV.091.0027)

OBJECTIVE: Study of the influence of the cover plants upon the development of the fungus. Study of preparations having a curative action. Study of other influences such as method of clearing. Density of plantation, humidity of the soil, and of the climate. Method of biological control.
RESULTS: Already utilized as a cover plant, Tithonia has a certain effect in controlling the incidence of Fomes lignosus and considerably reduces the losses by cryptogamic diseases of roots. For the direct method of control, different fungicidal preparations are being compared for application on the roots and the tap-root. It should also be pointed out that with mechanical clearing there would be fewer losses than with manual clearing, on soils composed of tertiary sands.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0250, BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS
R. ROUXEL, (IV.091.0028)

OBJECTIVE: Biological control particularly of the fungi Fomes, Armillaria and Ganoderma spp. To replace the artificial control methods which are expensive, by natural methods which are more efficacious and less onerous.

APPROACH: 1. Deepening the knowledge acquired on the subject of biological control (influence of soil cover, role and mode of action of sulphur, influence the mode of preparation of the planting material and of planting). 2. Study the host - parasite interactions (routes and mechanisms of infection, physiological and biochemical mechanisms of resistance to infection). 3. Study the relations between the pathogenic agents and their environment. Ecology and biological environment (antagonistic saprophytes).

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0251, DISEASES OF LEAVES OF HEVEA IN NURSERY
R. ROUXEL, (IV.091.0029)

OBJECTIVE: Control of the diseases of leaves in nursery (Helminthosporium and Gloeosporium).

APPROACH: Tests of commercial preparations. Statistical arrangement enabling comparisons of efficacy and of persistence.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0252, CONTROL OF DISEASES OF THE TAPPING PANEL OF HEVEA
R. ROUXEL, (IV.091.0030)

OBJECTIVE: To obtain a practical and economical method for control of diseases of the tapping panel of rubber trees, caused by Phytophthora and secondary parasites.

APPROACH: Experimental work in the field on the use of active fungicides that are not toxic for the bark; research on combinations for use of fungicides and of preparations for stimulating the production of the tree; research on the utilization of agronomic means (density and arrangement in plantation, arrest of tapping in appropriate periods, etc.).

RESULTS: Demonstration of the efficacy of different fungicides, of the advantage of plantation arrangements (distance between trees in the plantation row) and of the arrest of tapping in the rainy season.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

G. LOYEN, (IV.091.0031)

OBJECTIVE: Determination of the chemical and technological properties of the rubbers produced in the Ivory Coast in view of their sale on technical specification in accordance with the normal international practice.

APPROACH: Chemical analyses of the substances and elements figuring in the normal international specifications. Determination of the technological properties.

RESULTS: The inspections carried out have provided a sound knowledge of the properties of the rubber productions of the Ivory Coast, and have enabled the establishment of a practical and effective method for sampling and for determinations.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0254, TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING
G. LOYEN, (IV.091.0032)

OBJECTIVE: Study rubbers yielded by cumulative tapping with a view to their improvement and their specification.

APPROACH: Research on procedures which would allow an increase in the plasticity retention index (PRI) of certain clones. For other clones, research on techniques or on preparations to improve the colour of the rubber.

RESULTS: Demonstration of differences in PRI and in colour according to the clonal origin of the rubber. The obtaining of an improvement by the use of chemical preparations and of factory processing techniques.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0255, TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL
G. LOYEN, (IV.091.0033)

OBJECTIVE: To increase the facility of working up the rubber and the value of the product by adding by-products of oil-refinery.

APPROACH: Extension by oil at the latex stage: Study of the types of oil capable of being incorporated; study of the quantities to be incorporated; statistical analyses of the results of the technological experiments; research on a harmonious comprise between price and characteristics.

RESULTS: Results of interest to the manufacturer have been obtained: lowering of the Mooney viscosity and of the expenditure of energy.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0256, TECHNOLOGY OF NATURAL RUBBER MASTER-MIXTURES BASED ON LOCAL PRODUCTS
G. LOYEN, (IV.091.0034)

OBJECTIVE: Incorporation in the latex products or by-products of local origin, enabling an increase in value of the rubber and an improvement in the technological qualities of the product to be exported or for use in the producing countries.

APPROACH: Introduction of charges of minerals such as clay. Selection beforehand of the levels of clay to be incorporated in the rubber. Introduction of organic charges such as caseins, proteins obtained from the waste materials of local industry (canning factories, etc.).
IVORY COAST

RESULTS: Interesting results have been obtained with proteins extracted from the waste material from tunny-fish and sole.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0257, TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM

OBJECTIVE: Research on methods for processing rubber in a granular form - a practical, economic product favourable to the factory: latex, dregs from the cups, rubber from cumulative tapping.

APPROACH: Experiments in the factory on the equipment for processing (crisping "crepeing"), cleaning of rubber, granulation, drying, packing.

RESULTS: Establishment of an effective and economical apparatus for granulation (crushers with a set of hammers) and of conditions for drying the granulated rubber.

SUPPORTED BY Inst. de Rech. Caoutchouc Afrique - France

4.0258, VARIETAL EXPERIMENTS WITH IRRIGATED COTTON

S. GOEBEL, (IV.061.0001)

OBJECTIVE: Varietal tests (combined with agronomic factors) with the aim of defining the type of cotton plant and the system of cultivation best adapted to the ecological conditions and of mitigating the pleurometric deficit at end of growth cycle.

APPROACH: 1971 - Irrigation sprinkling. Experiment with 10 varieties, 2 different distances between rows, 2 dates of sowing, 4 rows per plot - 1972: Experiment with 11 varieties - 3 repetitions, 4 dates of sowing - 3 rows per plot. Behavior experiment with 33 varieties, 4 repetitions - 3 rows per plot - Irrigation by gravity - Paired experiment with two varieties, 2 sowing dates - 5 rows per plot. Control plots without irrigation.

FIRST RESULTS: 1) Interest of high density. 2) Advantage of varieties of short height, resistant to being beaten down.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0259, AGRONOMIC-VARIETAL EXPERIMENTS WITH COTTON (RAINFED CULTIVATION)

S. GOEBEL, (IV.061.0002)

OBJECTIVE: Varietal tests combined with mode of action of fertilizers. Research on production factors and on technological improvement.

APPROACH: 8 experiments with 4 varieties, 4 applications of fertilizer, 3 rows per plot, 2 repetitions. Interpretation by total analysis.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0260, VARIETAL IMPROVEMENT OF COTTON

S. GOEBEL, (IV.061.0003)

OBJECTIVE: To take advantage of the variability of interspecific HAR hybrids (G. hirsutum x arboreum x raimondii) in order to obtain commercial varieties.

APPROACH: 1) Establishment of a collection of HAR sires having extreme technological characteristics. 2) Crossing HAR x Allen (1959) and mass selection of pedigree type, with statistical lattice device for sampling of 100 specimens, 3 repetitions. System as free fertilization (pollination) destined to favour recombinations. 3) Re-crossing (1964) of HAR from the collection with the preceding material and selection of the same type. 4) Re-crossing (1971) of HAR from the collection with the material selected from the preceding experiment - for research combinations - for an independent diallele study (programme).

RESULTS: Replacement of the Allen 333 variety. 1 - The obtaining of variety 444-2 (HAR x Allen) propagated in the Ivory Coast territory in 1966 (improvement in length, picking yield). 2 - The obtaining of varieties L 299-10 (HAR x Allen, and L 231-24 (HAR x 244-2) destined for the replacement of 444-2 (improvement in tensile strength and micron index). 3 - The obtaining of varieties L 142-9 and L 229-29, which behave well in irrigated cultivation.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0261, VARIETAL EXPERIMENTATION WITH COTTON (RAINFED CULTIVATION)

S. GOEBEL, (IV.061.0004)

OBJECTIVE: Varietal tests destined for the choice of the best adapted cultivar.

APPROACH: 10 experiments with 10 varieties - 6 experiments with 5 varieties 1 row per plot - 3 rows per plot. Fisher blocks 6 to 10 repetitions - mineral fertilization, insecticide protection.

RESULTS: Propagation of variety 444-2.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0262, STUDY OF QUANTITATIVE HEREDITY IN A TRIPLE-HYBRID MATERIAL BETWEEN CULTIVATED SPECIES AND WILD SPECIES OF COTTON

J. SCHWENDIMAN, (IV.061.0005)

OBJECTIVE: Study of the transmission of principal characteristics in Gossypium hirsutum x G. arboreum x G. raimondii hybrids.

APPROACH: Diallele crossings on 8 basic parents. Factorial analysis on these 8 parents.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0263, INTERSPECIFIC HYBRIDATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES

J. SCHWENDIMAN, (IV.061.0006)

OBJECTIVE: Creation of a triple-hybrid material Gossypium hirsutum x G. anomalum x G. herbaceum.

APPROACH: Crossings, study of the pairing of chromosomes, back-crossings on the cultivated parent, selection for fertility, self-fertilization (pollination).

RESULTS: The obtaining of 60 stabilized progeny.

80
4.0264, STUDY THE HEREDITY OF QUANTITATIVE CHARACTERS IN A HYBRID MATERIAL DESCENDED FROM CROSSING BETWEEN CULTIVATED SPECIES OF COTTON

J. SCHWENDIMAN, (IV.061.0007)

OBJECTIVE: Study the transmission of principal characteristics in Gossypium hirsutum x G. barbadense hybrids.

APPROACH: Dialele crossings on 8 basic parents.

RESULTS: Determination on about ten characteristics of the effects of additivity, dominance and epistasis. Description of the 8 parental genotypes.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0265, INTERSPECIFIC HYBRIDATION ON THE COTTON PLANT BETWEEN CULTIVATED SPECIES

J. SCHWENDIMAN, (IV.061.0008)

OBJECTIVE: Stabilization of the crossing Gossypium hirsutum x G. barbadense and creation of recombined material.

APPROACH: Crossings, self-fertilization and stabilization by selection of recombined types. Study the transmission of qualitative and quantitative characters.

RESULTS: The obtaining of 50 progeny.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0266, EVOLUTION OF POTASSIUM IN THE COTTON-GROWING REGIONS OF THE IVORY COAST

M.J. DEAT, (IV.061.0009)

OBJECTIVES: To follow analytically the evolution of potassium in the soils and its influence on the yields in continuous cotton cultivation and on cultivation of cotton integrated into a crop rotation system.

APPROACH: 3 experiments withholding mineral fertilization, on sites distributed in the zones of cotton production for continuous cultivation.

2 crop rotations of cotton-cotton-rice with or without 2 years of fallow afterwards, in the north zone with a sub-Saharan tropical climate.

1 crop rotation of maize-cotton; maize-cotton; rice with or without two years of fallow afterwards, in the centre zone with a sub-equatorial climate of Baoule, for study within the framework of a crop rotation.

RESULTS: Introduction of potash into the fertilization routine. Adoption of a system of rotation.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0267, STUDY OF THE ACTION OF HERBICIDES IN THE CULTIVATION OF COTTON

M.J. DEAT, (IV.061.0010)

OBJECTIVE: Determination of herbicides efficiency in the cultivation of cotton in the conditions of the Ivory Coast.

APPROACH: Study of the preparations in 3 phases: Herbicidal efficiency of the preparations on weeds. Possible phytotoxicity of the efficient preparations for cotton plants. Economic study of those preparations that have successfully passed the first two tests.

This study is carried out on 4 sites distributed over the cotton-growing area.

RESULTS: Extension of herbicide preparations for popular use.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0268, STUDY OF THE ACTION OF TRACE ELEMENTS ON THE COTTON PLANT

M.J. DEAT, (IV.061.0011)

OBJECTIVES: Demonstration of the role of trace elements in the development of cotton plants. (Flowering, shedding, yields, technological qualities of the fibres).

APPROACH: Experiment carried out on hydroponic culture.

RESULTS: Introductions of trace elements into the popular routine use of fertilizers.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0269, ROLE OF NITROGENOUS FEEDING FOR THE COTTON PLANT

C. BOUCHY, (IV.061.0012)

OBJECTIVE: Increase of yields by complementary applications of nitrogen (when all other mineral deficiencies are corrected).

APPROACH: 4 trials with 7 materials (fractionated scatterings of urea) 8 repetitions - 4 rows per component plot (yields, petiolar diagnosis, curves of flowering, etc.).

RESULTS: Use by popularization (on 10,000 hectares in 1973) of a complementary application of urea (50 kg/ha) at flowering time, giving a yield-plus value of 200 to 300 kg/ha of cotton seed.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0270, ROLE OF ORGANIC MATTER IN RELATION TO MINERAL FERTILIZATION IN THE PRODUCTION OF CROPS - MAIZE-COTTON

C. BOUCHY, (IV.061.0013)

OBJECTIVE: Development of fertility in the case of a continuous cultivation of maize-cotton (yields, foliar diagnosis, soil analyses) with the object of obtaining a stabilization of agriculture in tropical savannah.

APPROACH: Split-plot experiment - 6 materials - 8 repetitions - 6 rows per component plot - mineral fertilization, organic manure (2 applications), interaction of the two manurings.

RESULTS: Experiments in progress - definition of rates of application/acre of mineral elements for an intensive production.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0271, MINERAL DEFICIENCIES OF THE COTTON PLANT

C. BOUCHY, (IV.061.0014)

OBJECTIVE: To define the evolution of mineral deficiencies in continuous cultivation of cotton; to study the correction of those deficiencies set up.

APPROACH: 20 withholding experiments on sites diffusely distributed over the entire cotton zone. Fisher blocks - 4 rows per component plot - 6 materials with 8 repetitions - 5 consecutive years (1966 to 1970 inclusive). 1971 and 1972: Correction of these deficiencies.

RESULTS: Mapping of the mineral deficiencies and popularization of a formula for manure purely for cotton on 50,000 hectares.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
IVORY COAST

4.0272, EVOLUTION OF THE FERTILITY OF SOILS IN CROP ROTATIONS WITH OR WITHOUT FALLOW PERIODS
C. BOUCHY, (IV.061.0015)

Objective: Evolution of fertility in an integrated system of cropping: cotton, food crop and forage crop; usefulness of fallow (natural or temporary prairie).

Approach: 3 permanent outstations (4 to 5 hectares per outstation) - 1 perennial withholding experiment (serving as a guide for fertilization of the rotations). Rotation I (continuous cultivation: cotton, cotton, rice or maize-cotton, maize, cotton, rice). Rotation II (same crops plus 2 years of fallow: natural or with Stylosanthes).

Results: Start of popularization in the form of team and motorized cultivation (300 hectares).

Supported by Inst. de Rech. Cot. et Text. - France

4.0273, STUDY OF ANTHRACnosis OF KENAF - HIBISCUS CANNABINUS
J.C. FOLLIN, (IV.061.0016)

Host-parasite relation - Study the pathogenicity of Colletotrichum hibisci Poll. - Study the mechanisms of resistance of the plant.

Search for very productive resistant varieties - by mass selections from among tolerant to resistant varieties. By crossing between tolerant varieties and a variety totally resistant but having too long a vegetative cycle for practical use.

Supported by Inst. de Rech. Cot. et Text. - France

4.0274, STUDY THE DISINFECTION OF SEEDS
J.C. FOLLIN, (IV.061.0017)

Establishment of laboratory test for the study of simple preparations or those having endotherapeutic activity.

Study the action and the absorption by seedlings of the systemic fungicides; Benomyl, chloroneb, carboxine and thiophanates.

Determination of a non-toxic preparation as a substitute for the organic mercurial compounds.

Supported by Inst. de Rech. Cot. et Text. - France

4.0275, STUDY THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION
J.C. FOLLIN, (IV.061.0018)

Influence of cultural practices: Date of sowing; density.

Varietal influence: Intrinsic resistance. Resistance by association of particular morphological characters (okra leaves, frego bracts, nectar-less pods).

Influence treatments by growth-regulators acting on the morphology of the cotton plant.

Supported by Inst. de Rech. Cot. et Text. - France

4.0276, ACTION OF GROWTH-REGULATORS ON THE COTTON PLANT - SUBSTANCES WHICH INHIBIT GIBBERELLINS
J.C. FOLLIN, (IV.061.0019)

Action on the morphology of the cotton plant; Height and shape (interest of a reduced size for mechanical harvesting and resistance to being beaten down in irrigated cultivation).

Action on the yield and the technological characteristics of the fibres.

Action on the resistance to parasitism.

Supported by Inst. de Rech. Cot. et Text. - France

4.0277, BIOLOGICAL CONTROL OF CRYPTOphlebia leucotreta
A. ANGELINI, (IV.061.0020)

Objective: Biological control of Cryptophlebia leucotreta.

Approaches: Isolation of disease agents causing a cytoplasmic granulosis and a cytoplasmic virosis. Laboratory study of these viruses. Rearing of C. leucotreta in an artificial environment. Multiplication of the viruses.

Results: First field trials significant.

Supported by Inst. de Rech. Cot. et Text. - France

4.0278, BIOLOGICAL CONTROL OF Heliothis ARMIGERA
A. ANGELINI, (IV.061.0021)

Objective: Biological control of Heliothis armigera.

Supported by Inst. de Rech. Cot. et Text. - France

4.0279, CONTROL OF COSMOPHILIA FLAVA
A. ANGELINI, (IV.061.0022)

Objective: Control of Cosmophilia flava.

Approach: The setting up of several experiments including the use of chemical insecticides and of Bacillus thuringiensis. Observations on the development of this marauder in intensive cultivation.

Results: Good results with several chemical insecticides and with B. thuringiensis.

Supported by Inst. de Rech. Cot. et Text. - France

4.0280, SEXUAL ATTRACTION IN CRYPTOphlebia leucotreta
A. ANGELINI, (IV.061.0023)

Objective: Utilization in biological control and as a warning sign.

Approaches: Demonstration of an attraction of the male towards the female. Construction of simple traps to be used in nature. Importance of the attraction.

In progress: Isolation of the pheromone and negotiations with specialized laboratories for the production of this pheromone.

Supported by Inst. de Rech. Cot. et Text. - France

4.0281, CHEMICAL CONTROL OF THE LEPIDOPTERA PARASITIC ON THE COTTON POD IN THE IVORY COAST
A. ANGELINI, (IV.061.0024)

Objective: Determination of the best chemical preparations, the concentrations to employ, the dates for application.

Approach: Carrying out each year 10 assays comparing about 50 preparations as chemical combinations. Daily sampling of shedding. Biological observations.

Results: Establishment of a protection against Heliothia armigera, Dinaropsis waternski, Cryptophlebia leucotreta, Platyedra gossypiella.

Supported by Inst. de Rech. Cot. et Text. - France
4.0282, ECOLOGICAL OBSERVATIONS ON EARIAS SPECIES
R. COUILLoud, (IV.061.0025)

Objective: Determination of the factors influencing the geographical distribution of the two species.

Approach: Collection of larvae in the field, rearing in natural conditions (cotton pods), determination of the imagos. Summaries of the climatic factors. Duration of the chrysalization cycle, larval parasitism, sex-ratios as a function of the different species and of the climatic factors.

Results: Primordial influence of maximal temperatures.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0283, STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST
J. ROCH, (IV.061.0026)

Objective: Series of experiments in the factory while the campaign is in progress.

Approach: Study the influence of speeds, of drying and of the conditions of humidity of the raw material. Study the factors influencing the cleaning of the fibre in factories equipped with cleaning machinery: the relation of combing, the level of dressing, weight of dressed cloth, weight of combed cloth.

Results: Definition of the best working conditions for the different machines, as a function of the processed raw material.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0284, TECHNOLOGICAL STUDY OF THE COTTONS OF THE IVORY COAST
J. ROCH, (IV.061.0027)

Objective: Qualitative study of commercially produced cottons.

Approach: The information will be obtained by laboratory analysis of a certain number of commercial samples furnished by the C.F.D.T.

The study will be: Regional, the number of samples analyzed will be proportional to the surface areas cultivated in the various production zones. Varietal, taking into account the different years when the seeds were set for multiplication.

Result: Will enable the making of a qualitative map of the cottons produced in the Ivory Coast.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

4.0285, ADAPTABILITY TO MECHANICAL HARVESTING OF CERTAIN VARIETIES OF COTTON PLANTS IN THE IVORY COAST
J. ROCH, (IV.061.0028)

Objective: Utilization of a mechanical harvester (Cotton Picker), its working efficiency, the quality of the cotton-seed harvested.

Approach: The trial will deal with the following three varieties: 444-2, 229-29 HAR, Delapine S.L. The trial allows for 3 repetitions. With each variety, determination will be made of: the working efficiency of the machine, the extraneous-matter content of the fibre obtained in comparison with manual harvesting.

Results: With the aim of the possible extension of this method of harvesting.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

IVORY COAST

STATION IRHO DE LA ME
B.P. 13, Bingerville

4.0286, FREEZE-DRYING THE POLLEN OF THE OIL PALM TREE
W.W. WUIDART, (IV.071.0001)

OBJECTIVE: To improve the length of storage life of the pollen by freeze-drying.

APPROACH: Adaptation of the technique of freeze-drying.

RESULTS: Good vitality of the pollen with the following method of freeze-drying: drying for 24 hours, freezing at minus 85 degrees F for 15 minutes, sublimation for 2 hours, storage at 20 degrees to 22 degrees F.

SUPPORTED BY Inst. de Rech. Hui les et Olea. - I.C.

4.0287, OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUINEENSIS
A. ARNAUD, (IV.071.0002)

Objective: To know the anatomical and cytological characters and the fertility of the hybrid Elaeis melanococca X E. guineensis and of its parents for the orientation of selection.

RESULTS: Proof of an endodermal tannin-bearing layer in the roots which could explain the resistance of the roots to disease. Good fertility of the hybrids planted at present. Resistance to rotting of the trunk, caused by Coelaenomenodera elaeidis. Sensitivity to cercospora.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0288, IMPROVEMENT OF THE QUALITY OF PALM OIL (FIRST APPROACH)
W.W. WUIDART, (IV.071.0003)

OBJECTIVE: Research on hybrids presenting a composition rich in unsaturated fatty acids.

APPROACH: Establishment of methods of sampling; to study the composition in fatty acids of the material planted at La Me from 1962 to 1965, Elaeis guineensis; to study the composition in fatty acids of the hybrids Elaeis melanococca x Elaeis guineensis.

RESULTS: Mean fatty acid composition of palm oil: Elaeis guineensis: saturated equals 53.9 unsaturated equals 46.1; Elaeis melanococca: saturated equals 27.9 unsaturated equals 72.1.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0289, IMPROVEMENT OF THE MASCU LINITY OF ELAEIS PISIFERA
W.W. WUIDART, (IV.071.0004)

OBJECTIVE: To improve the production of pollens of the Elaeis pisifera species by working on different factors.

APPROACH: To study the influence of the following factors: 1) Reduction of the foliar surface by periodic ablation of a portion of the juvenile or adult oil palms; 2) Increasing the competition by doubling the density of trees per hectare; 3) Reducing the...
moisture supply by covering the soil; 4) Reducing reserves by the development of parthenocarpic fruits by the use of a hormone.

RESULTS: Subject to reserve for obtaining confirmation; better production of pollen with severe pruning of useless leaves and in double density.

Better production of pollens at Pobe (Dahomey drier) - feminizing action of the juvenile leaves proven in the case of other plants.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0290, INTRODUCTION OF ELAEIS MELANOCOCCA - STUDY OF ITS INTERSPECIFIC HYBRID WITH E. GUINEENSIS
W.W. WUIDART, (IV.071.0005)

OBJECTIVE: To improve the current plant material by the introduction of new genes and characteristics proper to E. melanococca.

APPROACH: 1) Prospecting carried out or in progress: Brazil, Colombia, Costa Rica, Mexico, Panama, Surinam. 2) Introduction to La Me of different strains, cultivation of the envisaged populations. 3) Paternity test on the hybrid E. melanococca x E. guineensis and back cross on E. melanococca.

RESULTS: Characteristics of E. melanococca found again in the hybrid with E. guineensis: growth in height slow, resistance to certain diseases, richness of the oil in unsaturated fatty acids, probable adaptation to marshy zones.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0291, FERTILIZATION OF OIL PALM ON TERTIARY FERRALYTIC SANDS
Y. MOREAU, (IV.071.0006)

OBJECTIVE: Study the mineral deficiencies affecting the development and the production of oil palm plantations planted on severely desaturated ferralytic soils that have originated from tertiary sands, and the formulation of fertilizers which will enable them to be corrected.

APPROACH: Following up of the existing multilocal experiments and setting up of new experiments both on propagation and on replantation.

Study of the evolution of the contents in the various elements by means of foliar diagnosis and of the productions by individual yield.

RESULTS: The advantage of a nitrogenous and magnesium fertilizer is evident quite early in age of the plantation. Later, from the time of entry into production onwards, a potassium fertilizer modulated as a function of the foliar diagnosis and of the level of production, is beneficial. Some reparation of the magnesium and phosphate deficiencies, which most of the time are very localized, is also advantageous.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0292, FERTILIZATION OF OIL PALM ON FERRALYTIC SOILS THAT HAVE COME FROM GRANITE
P. QUENCEZ, (IV.071.0007)

OBJECTIVE: Study the mineral deficiencies affecting the development and the production of oil palm plantations planted on more or less desaturated ferralytic soils that have evolved from ante- Cambrian granite, and formulation of fertilizers that will provide for their correction.

APPROACH: Following up some experiments established on such soils.

Study of the evolution of the contents of the various elements by foliar diagnosis and of productions by individual yield.

RESULTS: No results to date. Experiments too recent.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0293, STUDY THE INFLUENCE OF THE ANIONS SO4 AND Cl IN THE FERTILIZATION OF THE OIL PALM
P. QUENCEZ, (IV.071.0008)

OBJECTIVE: Study the influences of the principal anions applied by manuring on the nutritional state of the oil palm and its development and thus on the production factors.

APPROACH: Research on the critical levels of the elements Cl and S in the leaf by setting up multilocal experiments applying the cations of standard manuring associated with the anions Cl and SO4.

RESULTS: The optimal level of chlorine would be situated in the neighbourhood of 0.5%. Above this content, it is suitable to use potassium sulphate as potassic manure. In the Dabou savannah there exists in the young trees a deficiency in sulphur, the correction by magnesium sulphate procures a considerable increase in production, however little the potassium deficiency may be remedied.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0294, STUDY THE BEST TIME FOR APPLICATION AND FOR FRACTIONATED MANURING OF THE OIL PALM
Y. MOREAU, (IV.071.0009)

OBJECTIVE: Study the best season for a single annual application and the influence of fractionation of weak or strong applications made in July, December and March.

APPROACH: Application at the standard rate of potassic fertilizer at the following three times: July - December - March. Application of a weak (half the standard rate) or a strong dose (double the standard rate) at one time only (July) or fractionated (1/3 in July - 1/3 in December - 1/3 in March).

RESULTS: The strong applications increase significantly the K contents of the leaves but have not yet had any effect on production.

The date of distribution and the fractionation appear to have had no effect.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0295, BALANCE THE SUPPLIES OF MANURE ON CLAY SOILS
J. OLIVIN, (IV.071.0010)

OBJECTIVE: Study the leaching of fertilizers in a tropical climate and the degree of fixation in clayey soils, with the object of choosing the methods of application: localization, fractionation, this balance of fertilizer supply conditioning their efficacy.

APPROACH: Creation of a laboratory for the study of artificial leaching on columns of earth and placing of a lysimeter in plantation as a means of studying leaching as a function of the concentration per surface unit. This study will bear on various fertilizers and various soils. Study fixation in clayey soils. These studies will be completed by analyses of leaves and of soil (these analyses being entrusted to an outside laboratory).

RESULTS: Programme is just beginning.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.
4.0296, STUDY OF MINERAL BALANCES
R.O. OCHS, (IV.071.0011)

Objective: Study the assimilation by the young palm tree of various mineral elements; demonstration of mineral balances peculiar to this plant; and induction of deficiency for study of its manifestations.

Approach: Culture carried out under glass, in nutritive solution or in nursery bags to make it possible to control all the factors of nutrition with the maximum possible precision. The studies will cover: The induction of deficiency; the balance of ions in the leaves and roots as related to growth and metabolism; the action of the growth substances; the phenomena of phytotoxicity of fertilizers and pesticide products.

Results: Programme not yet begun.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0297, STUDY THE ROOT SYSTEM OF THE OIL PALM
B. TAILLIEZ, (IV.071.0012)

Objective: Study the root system in all its aspects: morphology, absorption, and seasonal activity, in order to determine the methods for application of mineral fertilizer and to ensure a better interpretation of fertilization experiments.

Approach: Visual observations, extraction of roots and weight analyses should allow study of the life-span of the roots, their seasonal evolution, and their rate of regeneration after division. How they compete with rhizome-bearing plants; the influence of genetic origin, of mineral manuring, of temporary or permanent hydromorphic structure.

Results: Greater density of absorbent roots under the interval between rows than under the trunk, and in particular, under the interval between rows with a swath. Interesting observations have been made on the comparative anatomy of Elaeis guineensis and E. melanococca: existence in the latter of cells having walls rich in tannin which might be responsible for the superior resistance of E. melanococca to penetration by various pathogenic organisms.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0298, STUDY THE NUTRITION OF THE OIL PALM IN WATER
B. TAILLIEZ, (IV.071.0013)

Objective: Study the physiology and factors of production of oil palm in the absence of a moisture deficit, as a function of types of plant material, and determination of the quantities of water to be supplied in order to realize an industrial oil palm plantation in regions with an important moisture deficit.

Approach: Comparison of 2 types of industrial crossing with or without moisture deficit in the conditions of La Me: sexual differentiation, abortion, foliar emission, number of green leaves, quantitative and qualitative factors of production. Study irrigation in very marginal conditions, definition of the criterion on which may be determined the frequency that is technically the most profitable, as well as the quantities of water to be supplied in order to realize an industrial oil palm plantation under these conditions.

Results: Increase of 66 percent in the production at Grand-Drewin (average over 7 years). At La Me, comparable increase for the first two production campaigns.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0299, STUDY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL
B. TAILLIEZ, (IV.071.0014)

Objective: Study the mineral fertilization necessary for the highly improved plant material (more than 4 tons per hectare of palm oil) which will be produced by 1975.

Approach: Foliar diagnosis studies, attempt to demonstrate differences in the N, P, K, Ca, Mg, S, Cl content between categories of crossing and progeny. As a function of these results, it will be possible to determine the critical levels adapted to the selected plant material produced in large quantity for a given hybrid (hybrids obtained by the use of sires which are the issue of self-fertilization of proven trees). An experiment will then be set up to study the mineral manuring needed to maintain these critical levels as a function of the plant material.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0300, INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS
R.O. OCHS, (IV.071.0015)

Objective: Research on the causes of the disease known as blast - cultural techniques; microclimatic conditions. Research on technical means of suppressing or reducing the shade (to date, the only means in use for control of blast).

Approach: Influence of variations in temperature and humidity produced by: (a) density of shade; (b) application of irrigation; (c) different types of bags. Staggering the dates for pricking-out (in search of an opening - a gap - without blast); disinfection of the planting mould; speeding up of development (mineral fertilizations).

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0301, REGENERATION OF SOILS AND FERTILIZATION IN REPLANTATION OF OIL PALMS
B. TAILLIEZ, (IV.071.0016)

Objective: To define a policy of regeneration of soils by supplying organic matter and basic mineral fertilizer before replantation of oil palm and to adjust the applications of fertilizer after replantation.

Approach: Utilization of plants producing a large quantity of organic matter (Guatemala grass) in comparison with the standard cover plants. To set up experiments on mineral manuring at time of replantation. Observations bearing on vegetative development, the contents in mineral elements of the leaves, and on production.

Results: Demonstration of a nitrogen deficiency in palms re-planted in land regenerated with Guatemala grass.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0302, STUDY OF ASSISTED POLLINATION OF THE OIL PALM
J. OLIVIN, (IV.071.0017)

Objective: Necessity for and economic advantage of assisted pollination. Influence of prolonged assisted pollination on sexual differentiation.

Approach: Different methods of pollination. Production recording (number and weight of racemes). Inspection of failures (abortions) and of the quality of the setting of the racemes.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.
4.0303, STUDY OF CASTRATION OF THE OIL PALM
R.O. OCHS, (IV.071.0018)
Objective: Influence of suppression of the first inflorescences on the vegetative growth of the young palm tree and on the factors affecting the production of oil, number (sexual differentiation), mean weight and oil content of the racemes. Determination of the optimum duration of castration, and also of the best season to allow entry into production.
Approach: Systematic suppression of all the inflorescences, whatever their sex, at the earliest stage possible. Measurement of the vegetative development, recording individual yields, and determination of the rate of extraction.
Results: The first experiments have shown that castration had a favourable influence on the weight of the first harvest while acting on the mean weight of the racemes. It can release the season of coming into production in a more favourable period than the end of the long dry season and makes it possible to allow the trees to come into production only if they have attained sufficient development.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0304, BIOLOGY OF COELAENOMENODERA ELAEIDIS, OIL PALM PEST
D. MARIAU, (IV.071.0019)
Objective: Given a good knowledge of the biology of the insect, establish appropriate methods of control.
Approach: Development and reproduction of the marauder. By artificial infection of palms under muffs, the removal of samples at fixed dates. Description and duration of each stage of development. Placing of adults in cages, enumeration of eggs laid each week. Rate of hatching. Population dynamics of the marauder and of its parasites. Study of mortality. Regular (weekly) collection of samples in different types of plantations, description of the stages encountered (dead - parasitized - destroyed by predators - alive).
Results: The duration of the cycle is 95 days (44 days for the 4 larval stages). The reproduction potential is about 350 eggs per female without great variation in the course of the annual cycles. In a state of pullulation there is not a spread of populations like that produced in a state of endemicity. This non-recovery of generations does not favour the development of the 3 main local parasites, Achrysocharis leptocerus (eggs), Sympiesis aburiana and Pediobius setigerus (larvae of the 4th stage).
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0305, APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELAENOMENODERA ELAEIDIS FOR OIL PALM PROTECTION
D. MARIAU, (IV.071.0020)
Objective: Control of populations of Coelaenomenodera with the aid of insecticide preparations.
Approach: Research on new preparations to control the different developmental stages of the insect (Larvae - adults). The most favourable periods for treatment. Adjustment of material (apparatus) in order to obtain a satisfactory distribution of the insecticide in the crown of the tree. Influence of the treatments on the parasitic and predatory fauna of Coelaenomenodera.
Results: Numerous insecticides have been tested against both the larvae and the adults. The most effective treatments have been carried out on the young larval stages after oviposition and before the appearance of the nymphs. Parathion is one of the most effective of the insecticides with a not too high cost. The I.R.H.O. in collaboration with the Tecnoma Society has demonstrated an application of Le Fludair canons Jumeles (the twin-gun Fludair) very well adapted for palm plantations of all ages. One or a few treatments do not unduly disturb populations of natural insect enemies of Coelaenomenodera.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0306, REARING OF COELAENOMENODERA ELAEIDIS IN AN ARTIFICIAL ENVIRONMENT
D. MARIAU, (IV.071.0021)
Objective: To be able to have readily available in large numbers in laboratory conditions, individuals of Coelaenomenodera at different stages of development so as to practice mass rearing of the parasites.
Approach: Studies of the entomologist in charge of this work in specialized laboratories. Application to the insect in question of methods habitually used for rearing different species of Lepidoptera on artificial media. Studies of the composition of the medium and of the means of making it available to the insect.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0307, METHODS OF BIOLOGICAL CONTROL OF COELAENOMENODERA ELAEIDIS
D. MARIAU, (IV.071.0022)
OBJECTIVE: To ensure a permanent biological control of populations of the marauder by introductions of exotic parasites.
APPROACH: Local biological study and rearing of the parasites - Missions to Latin America and to the Far East with a view to a search for parasites susceptible to being introduced into the parasitic complex of Coelaenomenodera. Local studies of these parasites. Rearing and studies of introduced insects, at first in insulated cells with variable temperature, hygrometric conditions and lighting. In favourable cases, dispersion of the parasites in palm plantations. Study of behaviour in natural conditions.
RESULTS: Study of the indigenous larval parasites has shown that these have a narrow parasitic spectrum and were not in a state to strangle a pullulation before it had caused a severe defoliation. Pleurotropis parvulus has been introduced from the New Hebrides, its rearing carried out in the laboratory; but its behaviour (parasitic spectrum, sex-ratio, parthenogenesis) when faced with Coelaenomenodera has been very different from that which it adopts towards its original host (Promecotheca).
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

W.W. WUIDART, (IV.071.0023)
OBJECTIVE: To study the variations of the characteristics of the raceme and the fruit as a function of different factors.
APPROACH: Monthly variations of the characteristics of the raceme and the fruit as a function of: age of the trees, seasons, production and climatology - position of the raceme in the cycles; stage of maturity.
RESULTS: At present, analysis of the racemes over two years at the rate of 3 analyses per month and per crossing. The racemes are harvested on the average at 5 per 100 fruits detached after cutting.
SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.
4.0309, PROSPECTION AND INTRODUCTION OF OIL PALMS OF AFRICAN ORIGIN
W.W. WUIDART, (IV.071.0024)

OBJECTIVE: Introduction of new materials with a view to enlarging the genetic variability of the current material.

APPROACH: Prospecting and introduction of new materials in the form of seeds and pollen: test of sires with the other strains, genealogical fields. Zones prospected: Yocoboue (Ivory Coast), Angola, material from Ekona and Lobe (Cameroon), Zaire, Sibiti (Congo Brazzaville) Nigeria.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

STATION IRHO DE PORT BOUET
B.P. 7013, Abidjan - Aeroport

4.0310, IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0001)

OBJECTIVE: To improve the productivity of the coconut palm. Its precocity and production of copra and of oil.

RESULTS: The obtaining of earlier and more productive hybrid coconut palm. At 10 years, the hybrid coco-tree (dwarf x large) has produced 18.5 tons of copra per hectare as against about 9 tons for the local material. Since 1969, a great number of new comparative experiments with hybrids have been set up, the results should permit the release to planters a further improved material.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0311, PROSPECTING FOR AND INTRODUCTION OF COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0002)

OBJECTIVE: To increase the collection of plant material suitable for utilization in the programme of improvement of the coconut palm production.

Approach: Prospecting in Asia (Indonesia - Philippines) and Latin America; Prospecting with a view to determining the zones to study; prospecting and utilization of the material retained; shipment of nuts and of pollen.

Results: The Port-Bouet station already possess a collection of 40 varieties introduced from other countries.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0312, IMPROVEMENT OF TECHNIQUES FOR PRODUCTION OF HYBRIDS OF COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0003)

Objective: To improve the techniques for production of hybrids.

Approach: Study of the dispersion of pollen and isolation of seed production fields. Improvement of the technique for directed natural fertilization. Establishment of a method of assisted pollination with the object of producing hybrid seeds. Utilization of insects as pollinating agents. Study the possibilities of concentration of the seed production upon period of the year determined in advance. All these studies necessitate a great number of field experiments.

Results: In the absence of insects having a long range of activity (bees), a seed production field is sufficiently isolated by 200 metres of forest to enable it use. The technique of directed natural fertilization is utilized on a large scale; the number of rogues (illegitimate progeny) varies from 1 to 5 percent; a trial is in progress, the aim is to reduce this percentage still more.

Assisted pollination is yielding its first results; progress will need to be made in the domain of labor economy and of pollen.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0313, FERTILIZATION OF THE COCONUT PALM - FERRALYTIC SOILS ON TERTIARY SANDS
P. COOMANS, (IV.072.0004)

Objectives: Study mineral nutrition on young dwarf x semi-large local hybrids. Principal effects and interactions between the elements P-K-Mg.

Approach: 3 factorial experiments studying the elements N-P-K-Mg at 3 levels. Plant material: hybrid (dwarf x large).

Results: 1) Foliar diagnosis: nitrogen is significantly absorbed. Phosphorus is not significantly absorbed. Applications of potassium depress the phosphorus contents. Potassium is significantly absorbed with an effect according to quantity applied. The application of urea depresses the K contents. Calcium: the application of bicalcium phosphate augments the Ca contents; that of potassium and of kieserite depresses them. Magnesium is significantly absorbed. It is depressed by potassium chloride. Sodium: the application of potassium and of kieserite depress, significantly, the Na contents. Chloride: potassium chloride increases, significantly, the chloride contents with an effect according to quantity applied. 2) Growth: K has significant action on the circumference at the "collar" (25 percent), the number of leaves and the number of foliolo. Mg has significant action on the circumference at the "collar" (at the first application) and on the number of leaves (at the second application only). N shows an increase in the circumference at the "collar" and in number of foliolo. P has a positive influence on the number of leaves at the first application only. 3) First conclusions: necessity of a complete and balanced manuring for coco-trees at a young age.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0314, FERTILIZATION OF THE COCONUT PALM ON LITTORAL FERRALYTIC SOILS
P. COOMANS, (IV.072.0005)

Objectives: Study the mineral nutrition and of the fertilization of the local coconut palm and hybrids planted on littoral ferralytic soils.

Approach: 6 factorial experiments studying the elements N - P - K and Mg.

Results: Necessity of providing potassium from the moment of planting of young coco-trees on littoral sands. When the levels of K are satisfactory, the application of phosphate is indispensable if the contents in the leaves fall below 0.120 percent. Positive effect of magnesium on production when the contents are less than 0.300 percent. Existence of a positive correlation between chloride and yield. Applications of potassium and of bicalcium phosphate are highly profitable.
IVORY COAST

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0315, FLORAL BIOLOGY OF THE COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0006)

Objective: Given a better knowledge of the floral biology of the coconut palm. Improve the possibilities of utilizing the pollen.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0316, STUDY OF K/MG BALANCE IN THE MANURING OF THE COCONUT PALM
P. COOMANS, (IV.072.0007)

Objective: To specify the development of K-Mg antagonism. Study of increasing applications of K and of Mg.

Action of magnesium deficiency on production and research on the correction of this deficiency.

Approach: Four-square factorial experiment studying the elements K and Mg at 4 levels.

Results: To obtain the maximum production, the level of K has to be between 0.8 and 1.0 and that of Mg between 0.250 and 0.300.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0317, OBSERVATION OF THE CHARACTERS OF PRODUCTION OF THE COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0008)

Objective: Establishment of a method for sampling and determination of copra per nut. Study the measurable content of oil and the quality of this oil.

Approach: Study the various components of the fruit (fibre, shell, moisture, albumin) and determination of the sample to be collected. Comparison of methods for determination of oil (oleometer and Soxhlet). Study the fatty acid and amino acid composition.

Results: It will not be possible to draw the first conclusions until after the end of the 3rd year of observations.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0318, STUDY OF CALCIUM IN THE FERTILIZATION OF THE COCONUT PALM
M. OUVRIER, (IV.072.0009)

Objective: To determine the critical level of calcium as a function of relations with K and Mg.

Approach: Factorial experiment on local material 4 x 4 x 2 studying K and Mg at 4 levels and Ca at 2 levels - N and P are constant.

Results: The experiment having been set up in 1972, it is necessary to wait at least five years to have the first results.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

P. COOMANS, (IV.072.0010)

Objectives: To study the action of chloride and of sulphur on the nutrition of the coco tree.

Approach: 1 experiment on local adult coconut palms, studying the action of the anions SO₄ - Cl - NO₃. 1 experiment on hybrid coconut plants in plastic bags on a nursery, studying the chloride - sulphate balance.

Results: Experiments too recent; it is necessary to wait a year to obtain the first results.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0320, STUDY FORMS OF NITROGENOUS FERTILIZERS FOR THE COCONUT PALM
P. COOMANS, (IV.072.0011)

Objective: To study different forms of nitrogenous fertilizers: ammonium sulphate; urea; ammonium nitrate; ammonium chloride.

Approach: Orientation experiment on coco plants reared in plastic bags.

Results: Obtained in nursery: Ammonium chloride: circumference at the collar significantly inferior; causes burns; increases the Cl contents in the leaves. Ammonium sulphate: augments the sulphur contents in the leaves of hybrids; existence in the hybrid alone of a correlation between sulphur content/circumference at the collar; no significant action on the local coco plant; augments the contents of sulphur equal well in the hybrid material and in the local coco plant. Identical action of the nitrogenous fertilizers on the N contents of the leaves.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0321, STUDY FORMS OF PHOSPHATE FERTILIZERS FOR THE COCONUT PALM
P. COOMANS, (IV.072.0012)

Objective: To study the different forms of phosphate fertilizers.

Approach: One experiment comparing bicalcium phosphate to tricalcium phosphate. Orientation experiments on coconut plants reared in plastic bags.

Results obtained in nursery: Tricalcium phosphate gives contents in P inferior or equal to those given by bicalcium phosphate. The simple superphosphate gives higher contents than does bicalcium phosphate. Tricalcium phosphate and the simple superphosphate set up burns due to a toxicity of fluorine.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0322, STUDY THE TIME OF APPLICATION AND FRACTIONATION OF MANURINGS FOR THE COCONUT PALM
P. COOMANS, (IV.072.0013)

Objective: To compare the fractionated application of fertilizers and the application made once only on different dates. To study the rates of application of N, K, Mg.

Approach: Factorial experiment of 3x2x2x2x2 type (three modalities of distribution - two levels of N, K, Mg).

Results: The mode of distribution has a very striking effect on the Cl, S and Mg contents. Distribution carried out at the beginning of the rainy season gives the weakest contents in Cl and S. For Mg the highest contents are obtained with fractionated distribution carried out at the beginning and at the end of the rains.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.
4.0323, STUDY THE ROLE OF TRACE-ELEMENTS IN THE NUTRITION OF THE COCONUT PALM
P. COOMANS, (IV.072.0014)

Objective: To study the role of trace-elements in the nutrition of the coconut palm.

Approach: Study manganese, boron, copper and molybdenum on adult trees of the local variety. Study boron on young hybrid and Renel coconut palms.

Results: On quaternary sands of the seashore, there is no deficiency in Mn, B, Cu and Mo in adult trees. Manganese and boron are significantly absorbed, copper is not. On tertiary sands, existence of a deficiency in boron in young hybrid coco-trees, which appears to be connected with the cultural antecedents and the mode of preparation of the ground.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0324, STUDY THE ROOT SYSTEM OF THE COCONUT PALM
M. OUVRIER, (IV.072.0015)

Objective: To determine from which stage onwards fertilizers can be applied mechanically on a coconut palm plantation.

Approach: Examination of the root systems of coconut palm aged: 5 years; 4 years; 3 years; 2 years. Number of trees studied per age: 30.

Results: The study has just commenced, the first results will be available in a year.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0325, STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM
M. DENUCEDELAMOTHE, (IV.072.0016)

Objective: To inhibit germination of the coconut palm seeds for a more or less lengthy period in order to be able to set plantations at the favourable period for optimum development.

Approach: Realization of experiments in the storage of nuts while making variations in the following factors: humidity; temperature; ventilation. Studies the differences in behaviour.

Results: Storing in a climatic controlled room enables conservation of coconuts for 4 months without their germinative ability being affected.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0326, STUDY OF DENSITY AND PLANTATION ARRANGEMENT FOR COCONUT PALM
M. OUVRIER, (IV.072.0017)

Objective: To determine the optimum density of plantation for hybrid dwarf x large material.

Approach: Study of five densities (110 to 180 trees/ha) according to an arrangement in Fisher blocks - 6 repetitions.

Results: None for the moment, for the experiment is not yet in production.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0327, CONTROL OF ORYCTES IN THE IVORY COAST
J.F. JULIA, (IV.072.0018)

Objective: To find means of limiting the pullulation of Oryctes.

Approach: Study the biology and feeding habits and the mode of reproduction of the marauder. Experiment in chemical control. Experiment in biological control (virus and attractants). Study the populations of Oryctes in plantations which have had different degrees of clearing. Comparison of various techniques for preparing the ground and study the attacks.

Results: A technique has been established for chemical control. A method of sampling enabling precise estimation of the level of the populations and calculation of the damage has been used experimentally with success. It has been discovered that Pueraria, with which it is possible to cover the undestroyed trunks, provides a considerable reduction in the larval populations of Oryctes. A first result, encouraging enough, has been obtained in the laboratory, concerning the study of the virus for use in biological control.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0328, STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOSIS
M. DENUCEDELAMOTHE, (IV.072.0019)

Objective: To detect at an early stage the susceptibility to helminthosporiosis of the different types of crossings. To follow possible modifications of susceptibility up to the entry into production. To study the mode of transmission of resistance.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - I.C.

4.0329, STUDY THE MECHANISM OF THE GENETICS OF HYBRIDIZATION OF TILAPIA SPECIES
PLANQUETTE, (IV.044.0001)

Objective: Demonstration of the mechanism leading in certain interspecific crossings to obtaining fry of exclusively male sex in order to be able to favour this mechanism in other types of intra- or interspecific crossings. The aim of the application is to set up breeding units for enlargement from which reproduction is excluded.

Approach: Biological study of Tilapia species. Selection of species. The regular obtaining of all-male hybrids by crossings of T. hornorum and T. nilotica.

Results: Sterile hybrids of T. hornorum and T. nilotica.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

4.0330, STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES
PLANQUETTE, (IV.044.0002)

Objective: Study the piscicultural management of extensive water reserves in the course of construction (in particular the Kossou dam). The original ichthyological population no longer corresponds to the possibilities offered by the new lake environment.

Introduction of new populations likely to make the maximum use of the possibilities of the environment is essential.

Approach: Preliminary studies of the fish population. Stocking with fry of Tilapia nilotica and Heterotis niloticus. Study the new populations.

89
IVORY COAST

Results: Inspection of the production in the old dams (Ayame, le Kan).

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

STATION REGIONALE IFCC
D'ABENGOUROU
B.P. 147, Abengourou

4.0331, MINERAL FERTILIZATION ON COFFEE
J. SNOECK, (IV.136.0001)
Network project - see IV. 132.0032 (4.0145)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0332, STUDY THE TRAINING (PRUNING) OF THE COFFEE-SHRUB ROBUSTA
J. CAPOT, (IV.136.0002)
Network project - see IV. 132.0002 (4.0118)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0333, STUDY OF DENSITIES AND ARRANGEMENTS FOR PLANTATION OF THE CACAO-TREES
J. CAPOT, (IV.136.0003)
Network project - see IV. 132.0003 (4.0119)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0334, GENERATIVE IMPROVEMENT OF THE CACAO-TREE
J. BESSE, (IV.136.0004)
Network project - see IV. 132.0004 (4.0120)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0335, MINERAL FERTILIZATION ON COCOA
J. SNOECK, (IV.136.0005)
Network project - see IV. 132.0033 (4.0146)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0336, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY VEGETATIVE MEANS
J. CAPOT, (IV.136.0006)
Network project - see IV. 132.0006 (4.0122)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0337, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY GENERATIVE MEANS
J. CAPOT, (IV.136.0007)
Network project - see IV. 132.0007 (4.0123)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0338, IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION
J. CAPOT, (IV.136.0008)
Network project - see IV. 132.0008 (4.0124)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0339, STUDIES OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB ROBUSTA
J. CAPOT, (IV.136.0009)
Network project - see IV. 132.0009 (4.0125)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0340, RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR ESTABLISHMENT AND A HIGH DEGREE OF DROUGHT TOLERANCE
J. BESSE, (IV.136.0010)
Network Project - See IV. 132.0010. (4.0126)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0341, IMPROVEMENT OF THE COLA TREE
J. CAPOT, (IV.136.0011)
Network Project - See IV. 132.0027. (4.0140)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0342, STUDY THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION
J. BESSE, (IV.136.0012)
Network Project - See IV. 131.0014. (4.0111)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0343, RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA
J. BESSE, (IV.136.0013)
Network Project - See IV. 132.0013. (4.0129)
SUPPORTED BY Inst. Fr. du Cafe et Cacao - Abidjan, I.C.

4.0344, RELATIONS BETWEEN SOIL AND GROWTH FOR PRINCIPAL SPECIES FOR FORESTRY PLANTATIONS
F. WENCELIUS, (IV.042.0001)
Objective: To define the relative requirements as to the soil factor of the principal species utilized in forestry plantations in the Ivory Coast.

Approach: Launching of the project on Teak. Systematic studies of plantations of different ages in different zones of the Ivory Coast: on the one hand, study of the productivity of the plantations, on the other hand of the essentially physical characteristics of the soils studied. Exact relationship between soil and dominant trees (small sites for trees of a single species). Comparison of savannah zones with forest zones. Influence of bed-rock.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

STATION SYLVICOLE CTFT DE BOUAKE
B.P. 695, Bouake

4.0344, RELATIONS BETWEEN SOIL AND GROWTH FOR PRINCIPAL SPECIES FOR FORESTRY PLANTATIONS
F. WENCELIUS, (IV.042.0001)
Objective: To define the relative requirements as to the soil factor of the principal species utilized in forestry plantations in the Ivory Coast.

Approach: Launching of the project on Teak. Systematic studies of plantations of different ages in different zones of the Ivory Coast: on the one hand, study of the productivity of the plantations, on the other hand of the essentially physical characteristics of the soils studied. Exact relationship between soil and dominant trees (small sites for trees of a single species). Comparison of savannah zones with forest zones. Influence of bed-rock.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.
4.0345, STUDY CLEARINGS IN FORESTRY PLANTATIONS OF HIGH PLANTATION DENSITY
F. WENCELIUS, (IV.042.0002)

Objectives: To define, first of all for teak, the object of important plantations in the Ivory Coast, the rhythm, intensity and type of clearings to be carried out.

Approach: Setting up arrangements for study of clearings in new plantations (CCT plots, etc.). Observations of old arrangements on old plots.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.

4.0346, SCALE OF PRICES OF CUBAGE WITH DOUBLE ENTRY FOR TEAK - TABLE OF TEAK PRODUCTION IN THE IVORY COAST
F. WENCELIUS, (IV.042.0003)

Objectives: To establish a cubage tariff with double entry which will make it possible to apply this tariff to the whole of the teak populations of the Ivory Coast. To set up a table of production of teak for the Bouake zone.

Approach: In 1973, starting from all the cubages of the preceding years, construction of a double-entry tariff in 1973, setting up the first temporary small planting spots for the construction of the table of production.

Results: Establishment of cubage tariffs on the whole of the plots for study of teak in the Ivory Coast.

SUPPORTED BY Centre Tech. For. Trop. - Abidjan, I.C.
LIBERIA

BOTANICAL RESEARCH DEPARTMENT OF FIRESTONE PLANTATIONS COMPANY

Harbel

5.0001, TAPPING SYSTEMS ON HEVEA VARIETIES
M.H. WELLINGTON, (LI.031.0001)

The experiments in this project are designed to determine optimum tapping systems on Har 1, Har 43, PR 107 and BD 5. The randomized tree plot design is being used in all the experiments.

There seems to be no significant difference in yield between periodic and alternate daily tapping.

The optimum opening diameter seems to be 6.1 inches at 60 inches above the bud union.

Full spiral, fourth daily tapping is producing yields equal to half spiral, alternate daily tapping and slightly less than S/2, 10d/20 tapping.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0002, ETHREL STIMULATION OF HEVEA VARIETIES
M.H. WELLINGTON, (LI.031.0002)

The experiments in this project are designed to determine Ethrel stimulation procedures on Har 1, Har 43, BD 5 and Tjir 1.

The randomized tree plot design is being used in all experiments.

Experimental results indicate Ethrel is superior to 2,4-D. Ethrel in combination with reduced intensity tapping systems is producing yields equal to unstimulated S/2, d/2 tapping.

Ethrel is applied to a lightly scraped two inch band below cut. Above cut application of Ethrel holds promise. Various concentrations of Ethrel in Palm Oil, and Ethrel in water are being tested. Amchems 10% Ready Mix with Penetrant is also being tested.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0003, BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS
L.F. EBELL, (LI.031.0003)

Objectives: Continuous improvement of latex yield and of cultural characteristics such as vigor, bark quality, general conformation, resistance to wind damage and to leaf and panel diseases.

Approach: Through genetic combination of desirable parental qualities, by hand pollinations and by open pollinations in ducclone, isolated seed gardens. Progeny are cloned in 7-tree lines, replicated twice. Selections are made by age 10 to 14, then tested on 1/4 acre plots, replicated 4 times, where earlier performance can be confirmed and statistically superior clones recommended for estate use.

Progress: Preliminary test is underway for many full third cross clones, as well as combinations of primary clone, first second and third cross parents. Harbel clones 1 to 123 are in larger scale trials. Some of the first half have proven equal or superior to available commercial clones and have taken their turn for past and present estate use. Evaluation of the second half continues.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0004, FERTILIZATION OF HEVEA BRASILIENSIS AND ITS EFFECT ON GROWTH
B.V. SCHERRENBURG, (LI.031.0004)

Objective: To determine the economically optimum rate and composition of fertilizer mixtures at different growth stages.

Approach: In field experiments with randomized plot designs different N, P, K and Mg mixtures are compared. Height and girth measurement are taken to determine growth rates.

Leaf samples taken to determine leaf nutrient, (N, P, K, Mg and Ca) contents.

Progress: Rock phosphate mixed with the soil of the planting hole stimulated early growth.

At different growth stages girth increments in treatments with N, P, K, and Mg mixtures were importantly higher than in unfertilized controls.

A trace element application (2 oz FTE 171/tree/year) seems to decrease growth rates.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0005, FERTILIZATION OF HEVEA BRASILIENSIS AND ITS EFFECT ON YIELD
B.V. SCHERRENBURG, (LI.031.0005)

Objective: To investigate the effect of different fertilizer mixtures on rubber yields.

Progress: Preliminary test is underway for many full third cross clones, as well as combinations of primary clone, first second and third cross parents. Harbel clones 1 to 123 are in larger scale trials. Some of the first half have proven equal or superior to available commercial clones and have taken their turn for past and present estate use. Evaluation of the second half continues.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0006, SOUTH AMERICAN LEAF BLIGHT RESISTANCE SCREENING
L.P. GAUT, (LI.031.0006)

Objective: To develop a laboratory test for screening seedlings of Hevea brasiliensis for resistance to the fungus Microcylus ulei.
Progress: Just started.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0007, PINK DISEASE CONTROL IN HEVEA BRASILIENSIS
I.P. GAUT; (LI.031.0007)
Objective: To develop an effective and economical control method for Pink Disease of Hevea brasiliensis, caused by the fungus Corticium salmonicolor.
Approach: Field trials of different fungicides in latex concentrate as a durable carrier, for slow release of fungicide over several months. Mixtures are painted over the affected parts of naturally infected trees.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0008, COMPUTERIZATION OF ROUTINE DISEASE CONTROL WORK RECORDS - HEVEA PLANTATION
I.P. GAUT; (LI.031.0008)
Objective: To store and process all records of disease control work on the plantation through a central computer. Eleven secondary objectives include checking efficiency of control methods, checking disease incidence and spread, and performance or cost-benefit analyses.
Approach: A specially designed form will be given to all men in charge of disease control work, on which they will record numbers of trees in various disease categories per 40 acre block. Completed forms will be submitted monthly for card-punching and processing. Regular print-out will show compiled record for whole plantation and other relevant details.
Progress: Design stage completed. About to start field trial.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0009, BLACK THREAD CONTROL WITH DIFOLATAN AND ETHREL
I.P. GAUT; (LI.031.0009)
Objective: To assess if it is possible to apply the latex stimulant Ethrel in combination with the fungicide Difolatan, for control of Black Thread (Phytophthora palmivora) in Hevea brasiliensis.
Approach: Field experiment with various mixtures applied above, or above and below the tapping cut.
Progress: Just started.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

5.0010, COLLAR CANKER CONTROL IN HEVEA BRASILIENSIS
I.P. GAUT; (LI.031.0010)
Objective: To find most economical treatment for collar canker (thought to be caused by Pythium vexans).
Approach: Field experiment of several treatments, with and without fungicide application.
Progress: Just started.

SUPPORTED BY Firestone Plantations Co. - Harbel, Lib.

CENTRAL AGRICULTURAL EXPERIMENT STATION SUAKOKO
Suakoko

5.0011, SWINE BREEDING
A. RATHORE; (LI.012.0001)
Objective: To observe the performance of Hampshire swine and to carry out selective breeding.
Approach: To record the growth of animals and to carry out selective breeding.
Progress: The herd is still in the process of being increased to a sufficient number to have adequate opportunity for selection.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0012, OBSERVATIONS ON GROWTH AND PERFORMANCE ON NUBIAN GOATS
A. RATHORE; (LI.012.0002)
Objective: To observe the growth and performance of Nubian goats in Liberia
Approach: To protect the animals from tsetse fly and by using Trypanosomiasis suppressants and to observe and record their growth and physiological norms.
Progress: Six nubian goats were obtained. Data on their growth, breeding, Temperature and pulse is being collected. Protection is given against Trypanosomiasis by using Benenial and Antrycide. The flock had increased to ten by new births. But recently it has been reduced to three females by deaths on account of error in administration of medicine. The project may have to be terminated.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0013, STUDY OF RICE DISEASES
A.J. CARPENTER; (LI.012.0003)
Objective: To identify the various diseases of rice and to study the resistance of various varieties to these.
Approach: For rice blast (Pyrilcula oryzae) the international blast nursery tests, using standard varieties from IRRI. For other diseases observations.
Progress: A large number of varieties have been screened from blast disease. Observations have been made on other diseases including those on the physiological condition of "bronzing" which is probably due to iron toxicity. Work is continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0014, STUDY OF RICE PESTS
A.J. CARPENTER; (LI.012.0004)
Objective: To study the pest damage in rice and to find methods of reducing the damage.
Approach: Observation of damage due to various pests; insects, rodents, birds. Trying out various control measures to test their efficacy.
Progress: Use of insecticides, fencing with chicken wire to prevent rodent damage and use of nets to check bird damage are being tried and their usefulness being assessed.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0015, VARIETAL TRIALS ON IRRIGATED RICE
A.J. CARPENTER; (LI.012.0005)
Objective: Development or identification of high yielding rice varieties for conditions in Liberia

93
Liberia

Approach: Conventional methods; starting with blast resistance nursery testing and up replicated observation plots. The promising varieties then to be tried in replicated plots.

Progress: A large number of varieties obtained locally from adjoining countries and from research organizations like IRRI have been tried. Some promising varieties have been identified. The trials are continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0016, STUDY OF WEEDS IN IRRIGATED RICE
A.J. CARPENTER, (L1.012.0006)

Objective: To identify the common weeds in irrigated rice in Liberia and to screen various weeds and methods of application and costs.

Approach: Observation and identification of weeds followed by replicated trials comparing clean weeded, partially weeded and unweeded plots with those protected by use of herbicides comparing yields against costs of various types of weeding.

Progress: Common weeds have been identified. Various herbicides, their dosages and methods of application have been studied and compared with hand weeding. Yields and costs are compared. Work is continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0017, FERTILIZER STUDIES ON IRRIGATED AND UPLAND RICE
A.J. CARPENTER, (L1.012.0007)

Objective: To relate fertility of swamp and upland soils to yields; to study the response to added nutrients under various cultural conditions and varieties; to study methods, periods and forms of application and to study methods of improvement of sandy swamps.

Approach: Factorial and other trials, bucket tests, soil analysis

Progress: Numerous trials have been carried out using varieties, plant nutrients, methods of application, dosage, time of application etc. have been carried out. Costs have been studied. The work is continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0018, COSTS AND METHODS OF DEVELOPING SMALL SWAMPS FOR RICE CULTIVATION
R. FIGUEROA, (L1.012.0008)

Objective: To establish the best combination of machinery and labour inputs and to ascertain comparative costs of developing small swamps for rice cultivation.

Approach: Various methods of clearing, levelling and laying out small swamps for rice cultivation; usage of hand tools and power equipment are tried. Records of costs maintained.

Progress: Total of 1.04 hectares of swamp land has been developed using various methods. The work is continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0019, VARIETAL TRIALS ON UPLAND RICE
A.J. CARPENTER, (L1.012.0009)

Objective: Identification of high yielding upland rice varieties for conditions in Liberia

Approach: Trials on local varieties and those obtained from adjoining countries and other research institutions to find the most promising varieties. These, to be studied more intensively.

Progress: One very promising variety has been identified in trials spread over a wide area. Work with more varieties is continuing.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0020, GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS
J.D. FREEMAN, (L1.012.0010)

Objective: To study the germination and growth of various fruit seeds in Liberia

Approach: Seed of tropical fruits are obtained from regions having comparable climates.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0021, OBSERVATION ON GROWTH AND PERFORMANCE OF SOME EUROPEAN BREEDERS OF CATTLE AND THOSE OF BRAHMA CATTLE
A. RATHORE, (L1.012.0011)

Objective: To observe the growth and performance of exotic cattle in Liberia

Approach: To protect the animals from tsetse fly and by using trypanosomiasis suppressants. And to observe and record their physiological norms and growth.

Progress: A total of twelve young animals belonging to six different breeds were obtained. These are, Aberdeen Angus 2, Brown Swiss 2, Jersey 1, Holstein Friesian 2, Santa Gertrudis 2, Zebu (Brahman) 3. Data on their growth, trypanosomiasis, ticks. Berenil and Antricide are used for protection against trypanosomiasis.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0022, FISH-RICE COMBINATION AND ROTATION STUDIES
P.D. YOUN, (L1.012.0012)

Objective: To grow fish and rice together and also to grow them in rotation.

Approach: Observation on plots in which fish and rice are grown together and on plots in which a fish-rice rotation is followed as compared to control plots.

Progress: One set of trials using, Tilapia melanopleura and Tilapia macrochir in mixed culture, have been completed for observation. More are to be conducted. The same fish would be used.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0023, SOIL ANALYSIS AND CLASSIFICATION
J.S. KERVAH, (L1.012.0013)

Objective: To analyse soil samples to classify the soil and to make land-use recommendations.

Approach: Soil samples are analysed. The results together with additional information from the location is used to classify the soil and to make recommendations.
Progress: The work is of a continuing nature. Mechanical analysis as well as chemical analysis for C,N,K,P and pH in water and kel is carried out.

The data are being accumulated to provide information on the soils of Liberia.

SUPPORTED BY Central Agri. Experiment Station - Liberia

5.0024, SELECTED ECONOMIC ASPECTS OF EXPANDING RICE PRODUCTION IN LIBERIA, MAINLY IN UPPER LOFA AND BONG COUNTIES

C.E. VANSAanten, (L1.012.0014)

Objective: To indicate social economic potentials and constraints of expanding rice cultivation Liberia.

Approach: To carry out agro-socio-economic surveys in selected regions of the country (Lofa & Bong).

Progress: Tentative studies of appraisal of economic aspects of rice production have been prepared and at present an additional survey is carried out to complete the picture.

SUPPORTED BY Central Agri. Experiment Station - Liberia
MALI

CELLULE EXPERIMENTALE IRCT DE KOGONI
Kogoni par Niono

6.0001, EXPERIMENTAL WORK WITH VARIETIES OF THE COTTON PLANT GOSSYPIUM BARBADENSE
A. TANGUY, (ML.021.0001)

OBJECTIVE: Research on the possibilities of cultivating "long silk" cotton plants (Gossypium barbadense) in irrigated culture.

RESULTS: Pima S 4 (origin U.S.A.) shows promise.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0002, INTEGRATED CONTROL OF EARIAS SPECIES
G. PIERRARD, (ML.021.0002)

OBJECTIVE: Definition of an integrated control campaign against Earias spp. for the irrigated cultivation of Gossypium barbadense.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

CENTRE NATIONAL DE RECHERCHES FRUITERES DE BAMAKO IFAC
B.P. 30, Bamako

6.0003, INDUSTRIAL TRANSFORMATION OF FRUITS
B. SAKO, (ML.041.0001)

Objective: To ensure improvement of the fruits produced, an increase and a diversification of the fruit crops.

Approach: Study of the production of essential oils from oranges extracted from natural populations. Quality of the essential oils of bergamot and of lime (distillation). Study of mango products, preserves and drinks. Pilot production unit destined for sampling the possible products and to study their commercialization.

SUPPORTED BY Inst. de Rech. Fruit. Outre Mer - Mali

6.0004, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE
P. JEANTEUR, (ML.041.0002)

Objective: Definition of the species of fruit crops adapted to the climatic zone, their performances and the utilization of the products.

Approach: Specific experimental arrangements, situated in mesoclimatic sites chosen for the study of the adaptability of species of fruit crops cultivated in homogenous or associated populations: mango trees, citrus fruit trees, guava-trees, pineapples, banana, avocado-tree (Sikasso), granadilla (passion-fruit), cashew-tree, strawberry vine.

Results: Obtained: Improvement of existing populations of orange-trees on the plateaux of Fauta Djalón, by the launching of an operation for production of essence of orange pith extracted in the cold. Renewal of the citrus fruit orchard by the introduction; the multiplication and distribution of planting material certified free from the principal known virus diseases and representing the best commercial varieties. Definition of the modes of irrigation with a view to a directed production of citrus fruit. Diversification of the crops as a function of the suitability of the different climatic zones for fruit-growing (pineapples, banana, varieties of mangoes for export). Awaited: Definition of the techniques for cultivation with a view to the creation of agro-industrial unit-types of production.

SUPPORTED BY Inst. de Rech. Fruit. Outre Mer - Mali

CENTRE TECHNIQUE OICMA DE KARA MACINA
B.P. 136, Bamako

6.0005, RESEARCH ON THE AFRICAN MIGRATORY LOCUST
M.M. HUSSEINY, (ML.200.0001)

Objective: Operational studies on appropriate preventive measures for strengthening the efficiency and reducing the cost of the control campaign against the African migratory locust Locusta migratoria migratorioides.

Approach: Research on the biology, the ecology, the population dynamics, the influence of meteorology and of other environ-
mental factors upon the behaviour of the African migratory locust, and on the control methods used against this insect.

RESULT: Preparation and printing of an ecological map of the area over which swarms are formed, in order to facilitate research, surveillance and control.

DIRECTION REGIONALE IRCT POUR LE MALI
B.P. 114, Bamako

6.0006, EXPERIMENTAL CULTIVATION OF COTTON-PLANTS WITHOUT GOSSYPOL
M. COSTARD, (ML.020.0001)

OBJECTIVE: The obtaining of cultivars without glands containing gossypol, having superior commercial characteristics and seeds that can be utilized in human nutrition.

APPROACH: Multilocal experimental work with introduced varieties. Tests of their behaviour particularly when faced with predatory fauna.

RESULTS: Experimental cultivation in rural environment on 85 hectares.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

SECTION DES ESSAIS MULTILOCALS
B.P. 281, Bamako

6.0007, DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERSION
M. DIAKITE, (ML.111.0001)

OBJECTIVE: Determination of the optimal date as a function of the probable date of arrival of the floods.

APPROACH: Study of the vegetative behaviour and of the yield of the two principal varieties in popular use, KHAO GAEB and NAN KIEW, as a function of the interval between sowing and arrival of the floods.

RESULTS: Experimental work too recent for any conclusions to be drawn.

SUPPORTED BY Inst. d' Economic Rurale - Bamako, Mali

6.0008, DATE OF SOWING OF CEREALS IN DRY CULTIVATION
M. DIAKITE, (ML.111.0002)

OBJECT: To see the influence of the date of sowing on the yield of cereals and determination of the optimal date for different ecological conditions.

APPROACH: The experiments are made in accordance with Fisher block arrangements. In dry cultivation the experiments are made mainly on sorghum and are planted up in the different ecological zones. An attempt is made to determine the optimal date as a function of the first useful rain.

RESULTS: Experimental work too recent for any conclusions to be drawn.

SUPPORTED BY Inst. d' Economic Rurale - Bamako, Mali

6.0009, THE FERTILIZATION OF RICE
M. DIAKITE, (ML.111.0003)

OBJECTIVE: To seek to define the potentialities of the environment in the cultivation of rice.

APPROACH: Comparative experiments following the arrangement in Fisher blocks: a) with application of increasing quantities of phosphates in the presence of a N, K, S complement. b) with increasing applications of nitrogen in the presence of a P, K, S complement.

RESULTS: Covering a reduced number of sites. Positive effect of a balanced fertilization. Depressant effect of an excess of phosphorous.

SUPPORTED BY Inst. d' Economic Rurale - Bamako, Mali

6.0010, FERTILIZATION ON GROUNDNUTS AND ITS RESIDUAL EFFECTS
M. DIAKITE, (ML.111.0004)

OBJECT: Research for the mineral formula ensuring the best return and study of a possible residual effect on the cereal which follows.

APPROACH: Comparative experiments in rotation (Arachis - sorghum) in Fisher blocks implanted in the different productive zones. Application at increasing rates of basic fertilizer (principally simple superphosphate) to the Arachis crop with or without application of nitrogen, in the second year Sorghum.

RESULTS: (Applying to restricted number of sites). Direct effect on arachis: the strong applications are equivalent to the popularized rate (60 kg of simple superphosphate to the hectare). Residual effect: the nitrogenous fertilization seems to have no effect on the sorghum except in the case of fertilization of the Arachis at a rate superior to the popularized rate: (3 fields only).

SUPPORTED BY Inst. d' Economic Rurale - Bamako, Mali

6.0011, VARIETAL EXPERIMENTS ON RICE
M. DIAKITE, (ML.111.0005)

OBJECT: To determine the variety to be popularized in each condition of cultivation (pluvial varieties of rice, erect varieties for low-lying or irrigated fields, floating varieties of rice).

APPROACH: The experiments are made according to the arrangement of FISHER blocks: Experiments with erect and floating varieties of local and foreign origin with different depths of water from 30 - 170 cm. Comparative experiments with pluvial varieties of rice.

RESULTS: Experimental work too recent (two campaigns) for conclusions to be drawn from it.

SUPPORTED BY Inst. d' Economic Rurale - Bamako, Mali

6.0012, VARIETAL EXPERIMENTAL WORK ON GROUNDNUTS
M. DIAKITE, (ML.111.0006)

OBJECT: On the one hand to search for varieties significantly superior to the current popularized varieties and suitable for replacing them, and on the other hand to seek the limit of ecological adaptation between the early and late varieties.

APPROACH: Tested collection of a large number of varieties following the arrangement in student pairs. Limit of distribution...
experiments: comparison between two early and late varieties following the arrangement of FISHER blocks.

RESULTS: For a period of several consecutive years and on the Experimental Stations as a whole, the current popularized varieties, 47 - 10, as an early variety and 28 - 206, as a late variety have not yet been outclassed by new varieties. Experimental work too recent as far as the "limit of distribution" experiments are concerned, for any conclusions to be drawn from it.

SUPPORTED BY Inst. d' Economie Rurale - Bamako, Mali

6.0013, VARIETAL EXPERIMENTAL WORK WITH MAIZE
M. DIAKITE, (ML.111.0007)

OBJECT: To find varieties with a high yield in the field.

APPROACH: In each place of experiment, the local population is compared with other and foreign varieties, following the arrangement in FISHER blocks.

RESULTS: Good behaviour of two foreign varieties, yellow composite from BOUAKE (CJB) and white from Senegal (BDS) but in the course of the last two years only, which will probably take the place of the popularized varieties (Tiemanfie and Zanguerini).

SUPPORTED BY Inst. d' Economie Rurale - Bamako, Mali

6.0014, VARIETAL EXPERIMENTAL WORK WITH SORGHUM
M. DIAKITE, (ML.111.0008)

OBJECTIVE: To determine the most productive varieties in each ecological zone.

APPROACH: The experiments are made in accordance with the FISHER block arrangement. Comparison of selected Mali and foreign varieties with the local variety as late and early sorghum. Comparison of 4 improved "DURRA" populations (panicles like croziers with large seeds) with the variety cultivated locally in the Sahel zone.

RESULTS: Among the late sorghums two recent Mali selections SH1D3 and SH2D2 compete with the formerly selected variety Tiemarifing. Among the early sorghums, good behaviour of a few new varieties (12 - 6A; 12 - 7A; 137 - 62 and SH11D1). The experiments are being followed up with the object of isolating the most productive for popularization. The improved varieties of DURRA sorghum seem to be of interest. Experiments for confirmation necessary for 2 or 3 years more.

SUPPORTED BY Inst. d' Economie Rurale - Bamako, Mali

6.0015, VARIETAL EXPERIMENTAL WORK WITH PENNISETUM MILLETS
M. DIAKITE, (ML.111.0009)

OBJECT: To find the varieties that are best adapted for each of the ecological zones.

APPROACH: In each place of experiment the local population is compared with other Mali varieties following the arrangement in FISHER blocks.

RESULTS: Good behaviour for the Mali varieties M9 in the 800 and 1000 metre (altitude) zones and M2 in the 400 to 600 metre (altitude) zone.

SUPPORTED BY Inst. d' Economie Rurale - Bamako, Mali

SOUS-STATION IRAT DE KITA

B.P., Kita

6.0016, CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED
L. Soumare, (ML.063.0001)

National network project - see ML.061.0005 (6.0069)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0017, STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS
F. Jenny, (ML.063.0002)

National network project - see ML.061.0006 (6.0070)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0018, POTENTIALITY OF TROPICAL SOILS - RESPONSE TO K
F. Jenny, (ML.063.0003)

Objectives: Determination of the exact time of potassium shortage in soils under cultivation and the amount required to compensate K uptake and maintain optimal nutrition.

APPROACH: Determination of K response curve with 5 doses of K from 0 to 160 kg/ha at the beginning of a quadrenial rotation involving maize, groundnuts, sorghum, groundnuts. N-P- supplements to each crop.

RESULTS: No direct nor residual effects of K on the first three crops of the rotation. A residual effect on sorghum has been noted on straw yields.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0019, POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN
F. Jenny, (ML.063.0004)

Network project - see ML.067.0005 (6.0053)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0020, MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS
F. Jenny, (ML.063.0005)

Network Project - see ML.061.0008 (6.0072)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0021, RESEARCH ON FERTILIZATION OF GROUNDNUTS
F. Jenny, (ML.063.0006)

Network Project - see ML.064.0002 (6.0048)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0022, POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE
F. Jenny, (ML.063.0007)

Network project - see ML.067.0007 (6.0055)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali
6.0023, STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS

F. JENNY, (ML.062.0001)

Network project - see ML.061.0006 (6.0070)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0024, STUDY OF THE EFFECTS OF TILLAGE

F. JENNY, (ML.062.0002)

Objective: Comparison of the different types of tillage and of their influences on the evolution of the soils.

Approach: Comparison on a large plot of the tillage with the team-drawn plough (ploughing), the pronged cultivator (scraping out) and the traditional work with the hoe. This is carried out in dry cultivation on a rotation of maize - arachis on the Sub-station of SENO and on monocultivation of aquatic rice on the Sub-station of SIKASSO. The effect of these factors on the evolution of the soils and of the crops in the presence or absence of a mineral fertilization.

Results: Work in its first year - no results as yet.

Network project: See ML. 065.0002.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0025, EVOLUTION OF SOILS UNDER CULTIVATION

F. JENNY, (ML.062.0003)

Network project - see ML.065.0003 (6.0031)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0026, POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN

F. JENNY, (ML.062.0004)

Network project - see ML.067.0005 (6.0053)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0027, MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS

F. JENNY, (ML.062.0005)

Network project - see ML.061. 0008 (6.0072)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0028, POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE

F. JENNY, (ML.062.0006)

Network project - see ML.067. 0007 (6.0055)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0029, STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS

F. JENNY, (ML.065.0001)

Network project - see ML 061.0006 (6.0070)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0030, STUDY OF THE EFFECTS OF TILLAGE

F. JENNY, (ML.065.0002)

Network project - see ML.062.0002. (6.0024)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0031, EVOLUTION OF SOILS UNDER CULTIVATION

F. JENNY, (ML.065.0003)

Objective: To follow the evolution - both chemical and physical - of soils under cultivation, in the zones where intensive agriculture is practised.

Approach: On the sub-station of SIKASSO under rice and at SENO under millet. On the plains for Rice Operations (plains of DIORO, SAN and MOPTI - South). To carry out observations (cultural profiles) each year at beginning and end of cycle, samplings of soil and in situ measurements to specify the chemical and physical characteristics of the arable layer, comparing them either with a control, or with the observations and analyses carried out previously.

Results: The first observations and analyses are still too recent and insufficient in number for it to be possible to draw precise conclusions from them concerning the intensification of rice-growing on the soils of the plains of Bani, Niger and the low-lands of SIKASSO.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0032, INTRODUCTION AND BEHAVIOUR TESTS OF PLUVIAL RICE

P. MARTIN, (ML.065.0004)

Objective: To determine the varieties of pluvial rice adapted to this type of cultivation for the region of SIKASSO (recorded rainfall 1,200 mm).

Approach: Some introductions of pluvial rice have been made. Some tests of behaviour enabling a choice of the best adapted varieties. The criteria for selection are: Appropriate growth cycle (100 to 120 days) and resistance to prolonged periods of drought. The resistance to piriculariosis is not yet an essential criterion.

Results: The exceptional character of the year 1972 does not permit any conclusions to be drawn from the experiments undertaken. The dates for sowing will have to be specified.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0033, INTRODUCTION AND TESTS OF BEHAVIOUR OF RICE ON LOW LYING INUNDATED LAND - STUDY OF THE TECHNIQUES OF CULTIVATION FOR THE SIKASSO REGION

P. MARTIN, (ML.065.0005)

Objective: To determine the varieties best adapted for inundated rice-fields.
MALI

Approach: The local varieties and the introduced varieties are compared in behaviour experiments. The various modes of plantation are compared - direct sowing, pricking out. The criterion for selection retained are: Tolerance to submersion lasting for some days, appropriate growth cycle (140 to 160 days), tolerance to a maximum sheet of water of 1 metre.

Results: D52-37 and Segadi are the two most productive varieties at present.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

STATION AGRONOMIQUE DE SAME
B.P. 84, Kayes

6.0034, WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (MALI)
D.A. RIJKS, (ML.801.0001)

Studies of frequencies of deficits and surpluses in the water balance of rain-fed rice-growing at Kenieba, Mali.

6.0035, IMPROVEMENT OF THE CULTIVATING TECHNIQUES IN TRADITIONAL AGRICULTURE
V.U. NGUYEN, (ML.801.0002)

Objective: Improvement of the cropping techniques of regional traditional agriculture: rain-fed crops, flood-watered crops, paddy rice growing - association with livestock raising. Rationalization of vegetable growing.

Approach: Experiments at agronomic stations - demonstration plots in rural areas.

6.0036, COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH
D.A. RIJKS, (ML.801.0003)

International Network Project - See SG. 801.0007. (11.0008)

6.0037, AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN
D.A. RIJKS, (ML.801.0004)

International Network Project - See SG. 801.0008. (11.0009)

6.0038, SELECTION OF THE BEST ECOTYPES OF LOCAL SORGHUM
V.U. NGUYEN, (ML.801.0005)

Objective: Selection of the best ecotypes of Keninke-Dianaa local variety for use.

Approach: Choice of 6 ecotypes and comparison with original and improved progeny.

Results of the 1972 campaign: 1) Improved progeny of a mixture of equal parts of the three best ecotypes: 2510 kg/ha. 2) Original progeny of a mixture of equal parts of the six ecotypes: 1135 kg/ha.

6.0039, CHOICE OF THE BEST IMPORTED VARIETIES OF SORGHUM
V.U. NGUYEN, (ML.801.0006)

Objective: Selection of the best introduced varieties, adapted to the SAME-KAYES area.

Approach: Collection and comparative variety trial (Student's test, Fisher randomized blocks) on late and semi-late sorghum, high and short straw.

6.0040, CEREAL BREEDING - PEARL MILLET
V.U. NGUYEN, (ML.801.0007)

6.0041, CEREAL BREEDING - MAIZE
V.U. NGUYEN, (ML.801.0008)

A. Selection of the best local ecotypes: 29 ecotypes have been tested during two campaigns in 1971-1972. Comparative trials on the 3 best varieties to be conducted in 1973.

B. Collection and inter-regional comparative trials: To be confirmed in 1973, selected varieties in Senegal (ZM10), BDS et JDSD in Mali (Zanguerini, Tiemantic de Zambla) and in Dahomey (NH1).

C. Variety trials to be established in flood recession cultivation.

6.0042, CEREAL BREADING - RICE
UNKNOWN, (ML.801.0009)

Selection of the best erected and floating rice varieties under flood control. Trials to be established on erected rice: Segadis, D52.37, Gombiaka, HKG 98, Phar-Com-En. On floating rice: Malobadian, Nang Kew, Khao Grew, Mali Sawn.

6.0043, OILSEED PLANT BREEDING - GROUNDNUTS
V.U. NGUYEN, (ML.801.0010)

Collection and comparative trials to screen the best late and early varieties.
6.0044, FIBRE CROP BREEDING - COTTON
V.U. NGUYEN, (ML.801.0011)
Selection of the most productive and best adapted varieties for the 1st region of Kayes to replace pluriannual cotton.
Comparative varietal trials: H.A.R. and derived varieties; B.J.A. 592; American varieties: Stoneville, Cockes.

6.0045, FODDER CROP IMPROVEMENT
V.U. NGUYEN, (ML.801.0012)
Selection of the best adapted fodder crops varieties for crop-livestock farming system in the region Kayes.
Grasses: Paspalum sp., Pennisetum, Gayanus, Panicum maximum, Digitaria sp., Rottboelia, Hyparrhenia. Legumes: Dolichos, Stilozobium, Phaseolus. The fodder crop collection is established in liaison with the Guédé Station, (Senegal - SG.801).

6.0046, INTER-RELATION BETWEEN SOIL PREPARATION AND LEVEL OF FERTILIZATION
V.U. NGUYEN, (ML.801.0013)
Objective: Study the interrelationship between soil preparation techniques and level of fertilization. Study of crop rotation to define the most profitable cropping systems.
Approach: Determination of mineral requirements. Comparison of different cropping techniques (without tillage, superficial tillage, tillage with draught animal and tractors). Crop rotation including groundnuts and cotton. Determination of the residual effects of fertilizers.

6.0047, CREATION OF MAIZE HYBRIDS WITH WHITE SEEDS AND WITH YELLOW SEEDS
L. SOUMARE, (ML.064.0001)
National Network Project - see ML.061.0005 (6.0069)
SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0048, RESEARCH ON FERTILIZATION OF GROUNDNUTS
F. JENNY, (ML.064.0002)
Objective: Determination of economic fertilization of groundnuts at the request of operational development, taking into account current prices in Mali. Tentative to obtain an economic residual effect of fertilizer application on cereals following groundnuts. Study on the incidence of such low level of fertilization on the evolution of soils fertility.
Approach: Trials on direct and residual effect of three doses of superphosphate on crop rotation groundnut-sorghum with or without supplement of nitrogen on the cereal crop. Annual low level fertilization on crop rotation groundnut-sorghum, superphosphate and superphosphate plus KCE on groundnut and two N plus P applications on sorghum.
Results: Slight residual effect on cereals with superphosphate applied at 65kg/ha on the precedent crop. Requirement of NP fertilizer application on sorghum; residual effect on sorghum from high doses of superphosphate applied on groundnut. Groundnut is not influenced by high doses of phosphate.
Network project: See ML.063.0006.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0049, SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY
L. SOUMARE, (ML.067.0001)
Network project. See ML.061.0007. (6.0071)
SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0050, CONTROL OF WEEDS ON IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAEMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS
P. MARTIN, (ML.067.0002)
OBJECTIVE: To find efficient means of controlling the principal weeds of irrigated rice-fields in Mali.
APPROACH: Different methods are compared: chemical control or cultivation techniques. The emphasis is placed on research for appropriate techniques. The study of the efficacy of pre-irrigations, of different forms of preparation of the soil and of various modes of conducting the irrigation.
RESULTS: An agricultural type of calendar has been proposed. The research work is being continued in order to find other effective solutions.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0051, COLLECTION AND INTRODUCTION OF VARIETIES OF RICE FOR IRRIGATED CULTIVATION TEST FOR ADAPTATION
P. MARTIN, (ML.067.0003)
OBJECTIVE: to select the varieties that are best adapted to the ecological conditions of the region served by the Niger, the principal zone of irrigated rice cultivation in Mali.
APPROACH: Some introductions of foreign varieties have been completed. Tests for adaptation and varietal experiments are instrumental in the choice of the most productive varieties.
MALI

RESULTS: The varieties distributed are: Segadis, D52-37, Gambiaka Kokum, HKG 98, Kading Thang, Phar Com En and Doc Phung Lun. 15 varieties are still at the stage of comparative experiments.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0052. STUDY THE CROSSINGS WITH SOME IRRIGATED RICE VARIETIES FROM VARIETIES OF IRRIGATED RICE WITH LONG STRAW

P. MARTIN, (ML.067.0004)

OBJECTIVE: To obtain varieties with shortened straw and with very high productivity, starting from varieties of good technological quality but having long straw.

APPROACH: Two varieties, the issue of a crossing of HKG 98 by Kading Thang have been crossed in 1970 with IR 22. In 1971, five crossings have been effected with two other descendants of a crossings of HKG 98 with Kading Thang. The descendants are followed in genealogical selection for the criteria of short straw, long grain, good productivity by good type of plant, tolerance to insects.

RESULTS: The selection is proceeding.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0053. POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN

F. JENNY, (ML.067.0005)

Objective: To test direct effect (on rainfed cereals and rice) and secondary effect (on groundnuts) of 5 increasing doses of N in crop rotation, the phosphorus deficiency of the soils being corrected.

Approach: On rainfed cereals, 5 doses of N from 0 to 150 u/Ha - On cereal-groundnut rotation; each crop in the rotation receives optimum P- K-S doses. On rainfed rice crop, 5 doses of N and complementary supplements of P205 each year.

Results: For Maize and Rice, increasing yields of grains for doses of fertilizers from 0 to 150 u/Ha. No significant response for Rice between 150 and 200 u/Ha. For millet (at SENO) no more increase in yields from 120/Ha. N on cereals has no residual effect on subsequent groundnuts in the rotation.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0054. SPECIFIC ROLE OF ORGANIC MATTER IN SOILS, FERTILITY

F. JENNY, (ML.067.0006)

Objective: Restitution of rice and cereal straw into the soil to avoid losses of this important quantity of minerals and to maintain and improve soil fertility. To follow up with the evolution of soil physical properties and fertility.

Approach: Establishment of a response curve to N with or without burying organic matter from crop residues at the level of 10 T/Ha of dry matter. Doses of Nitrogen vary from 0 and 200 Kg/Ha of N, with K fertilizers complements.

Results: No positive yield effect of organic matter with N during the first year, slight depressive effects of organic matter.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0055. POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE

F. JENNY, (ML.067.0007)

Objective: Determination of P doses to be applied on soils with P deficiencies, to correct this deficiency and ensure optimum nutrition to crop rotation.

Approach: Establishment of response’s curves to P on cereals in rainfed cropping. Application of 5 doses of P (soluble form) from 0 to 160 u/Ha at the beginning of a quadrienal rotation (cereals, groundnuts - cereals - groundnuts) and supplementary applications of NKS on each crop.

On mono-cropping rice with 5 doses of P (soluble form) and N each year.

Results: On exondated soils: the P deficiency of KITA and SENO soils has been corrected with application of 80 to 100kg/Ha of P205. Applied at the beginning of the crop rotation, this has a positive effect on the four crops in the rotation.

On inondated and hydromorphic soils at KOGONI, it has not yet been possible to identify substantive effect of successive application of P.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

STATION IRAT DE MOPTI

B.P. 119, Mopti

6.0056. MULTILOCAL EXPERIMENTS WITH FLOATING RICE PLANTS

P. MARTIN, (ML.066.0001)

Objective: To verify the results obtained in the Station to test the selected varieties in their cultivation environment.

Approach: Varietal experiments, re-grouping the best varieties noted on the Station, are planted out in the large cultivation zones, enabling the ultimate selections to be made.

Results: Five varieties varying in length of cycle have been selected for extensive cultivation. Fifteen others are obviously equivalent. The tests are pursued for further knowledge of the adaptation of the varieties to different depths of water between 0.5 m and 2.5 m.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0057. SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION

P. MARTIN, (ML.066.0002)

OBJECTIVE: The obtaining of very late varieties of Rice (190 - 200 days complete cycle) enabling harvesting in dry conditions.

APPROACH: The two popularized late varieties Khao Gaew and Mali Sawn, of 170 and 180 days respectively, have been irradiated at 35,000 R, duration 35 days in the INRA laboratory, Montpellier, France. The descendants must be followed in genealogical selection. Only the lines that are later than the variety of origin will be kept.

RESULT: The irradiated seeds failed to germinate at the time they were placed under cultivation in July 1972. The technique of irradiation or of cultivation of the "T" planting material, has therefore to be revised.
6.0058, INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES
P. MARTIN, (ML.066.0003)

OBJECTIVE: To know the various insect parasitic on rice in Mali. To define their relative importance. To study their biology with a view to their control. To evaluate the economic importance of the principal insects.

APPROACH: Systematic surveys are carried out during the period of cultivation. The insects collected are reared in the laboratory to determine their life-cycle and to observe a possible parasitism. The importance of the two principal stem borers (Maliarpha and Chilo) is studied by periodic probing in the field; the losses due to insects are studied by experiments on chemical protection of the crop.

RESULTS: It has been possible to compile a preliminary list of harmful insects occurring in Mali. The biological studies are in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0059, STUDY OF CROSSINGS BETWEEN FLOATING RICE AND ERECT RICE
P. MARTIN, (ML.066.0004)

OBJECTIVE: Improvement of the quality of the grain and of the bearing of the panicle of the floating types of rice.

APPROACH: Six crossings have been affected between the popularized floating varieties of rice (Malobadian, Indochina G, Mali Sawa) and erect varieties of rice having good productivity and satisfactory quality of grain (D52-37, HKG 98, PHAR COM EN). The descendants have been studied by genealogical selection with the objective expressed above.

RESULTS: At the end of the F7 generation of these crossings, two lines have been conserved which satisfy the objectives (erect panicle and improved grain). The selection is being pursued.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0060, COLLECTION OF THE FLOATING VARIETIES OF RICE GLACERRIMS AND SATIVA
P. MARTIN, (ML.066.0005)

OBJECTIVE: Conservation of the local varieties and of introduced varieties. Search for adapted varieties or for varieties for use as parents.

APPROACH: By surveys in the Niger delta and by introductions, a collection of 140 floating glacerrims varieties has been amassed. 270 floating sativa varieties have been introduced from the South-East of Asia and from Pakistan. Varietal experiments enable choice of the most productive varieties. Tests enable study of varieties for the main Selection criteria: resistance to drought, aptitude for floating, tolerance to insects, dormancy to maturity.

RESULTS: Work on introduction of new varieties is being continued. Five varieties of sativa have been selected for their good adaptation to the various local conditions. Search is being made for varieties for new crossings.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0061, STUDY OF DIFFERENT TYPES OF PLOUGHING FOR THE CULTIVATION OF FLOATING RICE
P. MARTIN, (ML.066.0006)

OBJECTIVE: To specify the date and the optimal depth for ploughing. Influence of the frequency of a deep ploughing on the yield from floating rice.

APPROACH: Experiments with statistical arrangement enabling comparison of: 2 dates for ploughing - end of cycle or beginning of season; 4 depths for ploughing - 25, 15, 8 cm. and superficial scraping; 3 frequencies for deep ploughing - every 2, 3 or 4 years.

RESULTS: An end-of-season ploughing is superior to that at the beginning of the season - tillage work easier at beginning of season. The experiments are being continued for study of the depth and of the frequency for deep ploughing.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0062, STUDY OF THE PREPARATION OF THE SEED BED AND OF TEAM-CULTIVATION IMPLEMENTS FOR THE CULTIVATION OF FLOATING RICE
P. MARTIN, (ML.066.0007)

OBJECTIVE: To define the most efficacious method for preparation of the soil. To choose the implements that are best adapted for the preparation of the seed bed and for sowing.

APPROACH: Different implements for tillage are compared - tools with prongs (harrows and canadian cultivators) or rotatory implements (roller for crushing, crossills). The different conditions for use are compared - work in dry soil or in moist conditions. The efficiency of the implements is examined as much from the technical as from the economic point of view. Various types of sowing machines (drillers) are tested. The influence of the sowing depth on the resistance to drought and the yield of rice is also studied.

RESULTS: The pronged implements are superior for the preparation of the seed bed. Two sowing machines can be advised. The experiments are being continued, with emphasis on the study of the economic aspect (working time on the tasks, amortization costs).

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0063, ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA)
P. MARTIN, (ML.066.0008)

OBJECTIVE: To get back into cultivation, plots totally invaded by wild rhizome rice. Study of the costs of the different treatments.

APPROACH: Eradication: by end-of-cycle ploughing, by chemical treatment at outset of cycle (Dalapon and Diuron), by scything down in plots in fallow. Definition of the modalities for these different treatments and study of the costs.

RESULTS: All the treatments are more or less efficacious; the study of the costs will determine the choice of method. One to two years of experimental work are still needed.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali
P. MARTIN, (ML.066.0009)

OBJECTIVE: To know the biology of these wild rice species and more especially the conditions for their germination.

APPROACH: The making of graded sowings of wild species of rice for germination must enable determination of the time when they emerge from the dormant state. The germination of seeds sown at different depths is studied in relation to the possibility of the seeds to failing to germinate until after one or more years.

RESULTS: The study undertaken in April 1972 has not yet been made the object of a preliminary scrutiny.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0065, CREATION OF VARIETIES OF SORGHUM WITH SHORTENED STRAW
L. SOUMARE, (ML.061.0001)

Objective: To shorten the straw of the local varieties with the object of increasing the response to manures and productivity.

Approach: Crossing of the most productive local varieties with foreign dwarf strains and selection in the descendants.

Results: Four crossings have been completed in 1968; four others in 1972. The descendents are being followed up.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0066, CREATION OF SYNTHETIC, HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES
L. SOUMARE, (ML.061.0002)

Objective: Improvement of the local varieties in respect to yield and height of straw.

Approach: Starting from a collection of the best refined varieties, crossings are made between these varieties to obtain top-crosses which will give the synthetic population.

Results: A first synthetic population has been obtained in 1971, a second is foreseen for 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0067, CREATION OF PENNISETUM - MILLET HYBRID WITH SHORT STRAW
L. SOUMARE, (ML.061.0003)

Objective: To shorten the straw of the local varieties with a view to increasing the response to manures, and productivity.

Approach: Crossings of the most productive local varieties with the dwarf, half-Indian Composite, from Senegal (Bambey) and selection in the descendents.

Results: One crossing has been completed in 1972, three are anticipated for 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0068, DETECTION OF MINERAL DEFICIENCIES OF SOILS BY THE METHOD OF POT-CULTIVATION
F. JENNY, (ML.061.0004)

Objective: To determine primary and secondary mineral deficiencies of the soils of the experimental stations (and of the agricultural zones) in vitro, before going on to experimental work in the field (and before recommending a fertilization to be applied).

Approach: The method employed has been widely spread by Professor CHAMINADE. It consists in having grasses (rice, and tropical Gramineae) grown in pots containing the soil to be tested, enriched (or non-treated) with the different major nutrient elements. The absence of one of these elements in the soil leaves its mark on the growth (weight of dry matter in successive samples cut).

Results: Some 50 samples from the surface of different soils of Mali (drained and inundated) have been tested. Certain soils, notably alluvial soils or those on basic rock, present no deficiency; the others present for the most part a primary deficiency in phosphorus, and occasionally a secondary deficiency in sulphur or in potassium.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0069, CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED
L. SOUMARE, (ML.061.0005)

Objective: To take advantage of the phenomenon of heterosis for the increase of the yield, while observing the qualities of the seed of the local parent.

Approach: Crossing of the best local variety with four foreign strains. Return crossing to end in 3/4 fixed locals.

Results: The tests on the 3/4 locals are in progress on the stations and substations at Sotuba Katibougou and Kita.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0070, STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS
F. JENNY, (ML.061.0006)

Objective: To determine the direct and residual effects of the Tilemsi phosphate upon the different crops of a rotation of dry cultivation: cereals - groundnuts.

Approach: The method employed has been widely spread by Professor CHAMINADE. It consists in having grasses (rice, and tropical Gramineae) grown in pots containing the soil to be tested, enriched (or non-treated) with the different major nutrient elements. The absence of one of these elements in the soil leaves its mark on the growth (weight of dry matter in successive samples cut).

Results: Some 50 samples from the surface of different soils of Mali (drained and inundated) have been tested. Certain soils, notably alluvial soils or those on basic rock, present no deficiency; the others present for the most part a primary deficiency in phosphorus, and occasionally a secondary deficiency in sulphur or in potassium.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali
6.0071, SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY

L. SOUMARE, (ML.061.0007)

Objective: To obtain dwarf and productive lines adapted to the different local conditions, starting from introduced material not yet stabilized.

Approach: Introductions of F2 populations or of F3 lines coming from Senegal and from Upper Volta, followed by genealogical selection.

Results: The crossing 96 (source Upper Volta) has given short lines well adapted to zones in the 600 to 800 metre range of altitude. The original crossings from Senegal have given early lines at present on trial at Kogoni.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

6.0072, MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS

F. JENNY, (ML.061.0008)

Objective: After correcting major soil deficiencies at the beginning of crop establishment, the soil is kept at an optimum of fertility by additional maintenance level of fertilizers to each crop which are calculated on the basic mineral uptake.

Approach: Trials on rainfed quadrilateral rotation: cereals, groundnuts, cereals, groundnuts. From the start three levels to correct P deficiency are selected: 40 percent, 60 percent, and 80 percent of what is considered the theoretical maximum productivity of the soil; each crop also receives mineral uptake fertilization calculated on the basis of plant analysis on each treatment.

Results: The first year Maize yields increased proportionally with increasing doses of P.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Bamako, Mali

STATION IRCT DE NTARLA MPESOBA
B.P. 28, Koutiala

6.0073, IMPROVEMENT OF VARIETIES OF THE COTTON PLANT FOR DRY CULTIVATION

A. TANGUY, (ML.022.0001)

OBJECTIVE: Improvement and search for new cultivars of Gossypium hirsutum having superior productive and technological characteristics.

APPROACH: Selections made from among the existing material; Crossing between (varieties of) different origins; Search for early varieties to avoid entomological damage; Multilocal varietal experimentations.

RESULTS: Propagation of varieties BJA 592, SM 67 and HAR 447-9-26 on more than 80,000 hectares.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0074, MINERAL FERTILIZATION OF THE COTTON PLANT

C. GABOREL, (ML.022.0002)

OBJECTIVE: To provide the producers with formulas for mineral fertilizers, enabling them to improve their yields and to safeguard the fertility of their soils.

APPROACH: Assays of Mineral Deficiencies; Determination and experimental work with formulas. Study of the direct effects and of the residual effect. Study of the deficiencies and of their symptoms by means of soil-less cultivations. Physical and chemical analyses of soils; Foliar diagnosis.

RESULTS: Popularization each year, on upwards of 70,000 hectares, of the NPS (nitrogen, phosphorus, sulphur) formulas determined: N30, P48, S12 at sowing, N 23 at 50 days.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0075, NITROGENOUS MINERAL NUTRITION OF THE COTTON PLANT

F. MAURE, (ML.022.0003)

OBJECTIVE: To determine the rates and optimal periods for application of nitrogenous fertilizers in the vegetative cycle of cotton plants in dry culture.

APPROACH: Fractionated applications in the course of vegetation. Foliar diagnosis. Determination of dates and of rates of application. Experimentation and study of the effects on yields.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0076, STUDY OF THE SYSTEMS OF WORKING OF SOILS

C. GABOREL, (ML.022.0004)

OBJECTIVE: To define the best systems of working of soils while conserving if not improving their fertility and the resources of the rural masses.

APPROACH: Place of the various crops in rotation. Necessary duration of natural or cultivated fallow. Introduction of the cultivation of forage plants. Role of organic manuring and of the re-incorporation of harvest residues. Evolution of soils with different degrees of intensity of working.

RESULTS: Improvement of the yields of food crops (Sorghum, maize, arachis, etc.) entering into rotation with the cotton crop.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0077, UTILIZATION AS A MINERAL FERTILIZER OF THE NATURAL PHOSPHATES OF MALI

C. GABOREL, (ML.022.0005)

OBJECTIVE: To study the possibilities of utilizing the natural Phosphates of Mali in the mineral fertilization of the cotton plant and of the crops entering into rotation with it.

APPROACH: Comparative multilocal experiments with the monocalcium and tricalcium phosphates. Direct action on cotton plants and residual effects on the other crops succeeding them. Research on the optimal rates of application and economic studies on these rates.

RESULTS: Comparable efficacy for the cotton plant of identical P205 unit applications, but economic interest is still very debatable.$

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

105
Mali

6.0078, UTILIZATION OF HERBICIDES IN THE CULTIVATION OF COTTON
F. MAURE, (ML.022.0006)

OBJECTIVE: The practice of chemical weed-destruction by producers of cotton.

APPROACH: Comparative trials of herbicide preparations. Study of their phytotoxic effects on weeds and on cotton plants. Study of the possible residual effect on later crops in succession. Determination of the optimal rates of application, and some spreading procedures.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0079, POPULATION DYNAMICS OF THE INSECT PARASITES OF THE COTTON PLANT IN MALI
G. PIERRARD, (ML.022.0007)

OBJECTIVE: Exact knowledge of the dynamics of the populations of the predators according to the ecological zones of Mali and of the annual climatic conditions; study on the cotton species Gossypium hirsutum and barbadense.

APPROACH: Periodic estimation on untreated growing cotton crops of entomological ravagers throughout the cotton-producing areas of Mali.

RESULTS: Determination of the most useful periods and of the most effective and most economical "doses" for applications of insecticides.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0080, CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALI
G. PIERRARD, (ML.022.0008)

OBJECTIVE: Research on the most efficacious and most economical formulations for insecticides.

APPROACH: Experiments to compare preparations as to their specificity and their total effect on production. Experiments with dosage, with dates and frequency of applications. Experiments with formulations and mixtures.

RESULTS: Popularization of a standard scheme of treatment with endrin-DDT or with phosalone-DDT on upwards of 60,000 hectares.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0081, ACQUIRED RESISTANCE OF PREDATORS TO INSECTICIDES
G. PIERRARD, (ML.022.0009)

OBJECTIVE: Research on the possible acquisition of a resistance by parasites of the cotton plant to the insecticides recommended for popular use.

APPROACH: Regional investigations of behavior in response to different levels of insecticidal protection. Laboratory study of the sensitivity of the predators to insecticides (topical applications).

RESULT: Suspected resistance of Cosmophila flavia.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0082, BIOLOGICAL CONTROL OF INSECT PARASITES OF THE COTTON PLANT
G. PIERRARD, (ML.022.0010)

OBJECTIVE: Research on the possibilities of utilizing entomophages in the control of the predators of the cotton plant.

APPROACH: Comparison of the specificity of attacks by local and by introduced strains of Trichogramma. Rearing of Trichogramma on eggs of Microlepidoptera destructive of food commodities. Research on the most favorable environment for the rearing of the hosts. Determination of the abiotic factors influencing the survival of the parasites.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0083, INSECTICIDE TREATMENT OF COTTON CROPS AFTER WARNING SIGNS
G. PIERRARD, (ML.022.0011)

OBJECTIVE: Possibility of using warning signs to producers for applications of insecticides.

APPROACH: Research on the critical thresholds of harmfulness of the different predators. Research on a methodology to determine the threshold for intervention of insecticidal control.

RESULT: Limited possibility of utilization in rural environments.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0084, IMPROVEMENT OF VARIETIES OF HIBISCUS CANNABINUS
DINHNGOCXUAN, (ML.022.0012)

OBJECTIVE: Improvement of cultivars of Hibiscus cannabinus (Dah) productive and resistant to Anthracnosis.

APPROACH: Tests of artificial inoculation of varieties already known to be partially resistant. Comparative regional varietal investigations.

RESULTS: The obtaining and propagation throughout the whole of Mali of the first selections in the BG-52 varieties.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0085, SELECTION OF SPECIES OF HESSION Fibres OTHER THAN DAH (HIBISCUS CANNABINUS)
DINHNGOCXUAN, (ML.022.0013)

OBJECTIVE: Research within species other than Hibiscus cannabinus to find cultivars best adapted for the production of hessian fibres: Hibiscus sabdariffa, Urena lobata, Corchorus, etc.

APPROACH: Collections and new introductions. Multilocal varietal experimental work.

RESULTS: Propagation in the South of Mali of the varieties Pokco, THS 22 and THS 30 (Hibiscus sabdariffa) and SB 1 (Urena lobata).

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0086, CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES FOR SACKING
DINHNGOCXUAN, (ML.022.0014)

OBJECTIVE: Determination of cultural techniques relative to the rural production by handicraftsmen of sacking fibres.

RESULTS: Application by the producers (1,000 hectares) of the experimental cultural techniques and those defined by research, and notably: Date for sowing: June; Density: 600,000 plants/hectare (33/5 cms); Mineral manuring; N30, P48, S12 at sowing and N23 at 40 days; Cutting at the outset of flowering.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali
6.0087, TECHNOLOGICAL PREPARATION OF NATURAL TEXTILE FIBRES FOR SACKING
DINHNGO CXUAN, (ML.022.0015)
OBJECTIVE: Technological procedures for the treatment and preparation of long fibres destined for sacking.
APPROACH: Techniques for steeping (retting) in retting pits, natural or artificially laid out. Mechanical stripping of the stalks.
RESULTS: Method of steeping in two stages. Establishment of a prototype for a handicraftsman’s manual stripping tool.
SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali

6.0088, TECHNIQUES FOR MULTIPLICATION OF THE SEEDS OF HIBISCUS SPECIES
DINHNGO CXUAN, (ML.022.0016)
OBJECTIVE: To define the best techniques to use for an optimal production of seeds of Hibiscus spp.
APPROACH: Experimental work at the seed production centres to specify cultural conditions according to the cultivars multiplied: the best dates for sowing; plantation densities; the mineral fertilizers to apply; the cultural rotations to follow; the herbicides to use, etc.
SUPPORTED BY Inst. de Rech. Cot. et Text. - Mali
MAURITANIA

CENTRE DE RECHERCHES FRUITIERES ET DE LUTTE BIOLOGIQUE IFAC
B.P. 87, Nouakchott

7.0001, PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ARID PESTS OF FRUIT CROPS
J.C. TOURNEUR, (MR.051.0001)
Objective: To use combined biological and chemical methods of control in a campaign against the enemies of fruit trees in a Sahara- Sahelian climate.
Approach: Biological control of the scale-insect of the Date-palm Parlatoria blanchardi with indigenous and introduced (Chilocoraz bipustulatus varirranesis) predators. Study of the life cycle and the population dynamics. Intensive breeding of the predators, modification of entomocenosis, maintenance of a high level of predation. Study of the mites, notably Oligonychus austrisaticus; utilization of pesticides in a date-palm plantation subjected to biological inspection. Study of the entomological fauna of fruit trees, biology of the mites, research for predators of mites.
Results: Obtained: Successful control of Parlatoria blanchardi. Awaited: Extension of the campaign to the whole of the Mauritanian palm plantation; extension to Niger and to Mali.
Knowledge of the harmful fauna of fruit crops, programme of adapted control measures.
SUPPORTED BY Inst. Fr. de Rech. Fruit. - Mauritania

7.0004, AGROMETEOROLOGICAL STUDIES IN THE SENEGRAL RIVER BASIN
D.A. RIJKS, (MR.801.0003)
International Network Project - See SG. 801.0008. (11.0009)

7.0005, ADAPTATION TRIAL ON VEGETABLE CROPS
E. LEFORT, (MR.801.0004)
Objective: Trials on seven species of vegetable: french beans, marrow, cucumber, melon, lettuce, tomatoes, cabbage.
Approach: Trials with spray irrigation, during cold period of the dry season.
Trials with surface irrigation, during dry season.

CENTRE NATIONAL D'EXPERIMENTATION AGRONOMIQUE ET DE DEVELOPPEMENT
Agricole de Kaedi, B.P., Kaedi

7.0002, WATER REQUIREMENTS OF IRRIGATED CROPS
D.A. RIJKS, (MR.801.0001)
International Network Project - See SG. 801.0009. (11.0010)

7.0003, COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH
D.A. RIJKS, (MR.801.0002)
International Network Project - See SG. 801.0007. (11.0008)

PERIMETRE FRUITIER DE RINDIAO IFAC
B.P. 56, Kaedi

7.0006, ECOLOGICAL STUDY OF THE ORCHARD - SUBARID ZONE (SAHARO-SAHLIAN)
J. KAPLAN, (MR.053.0001)
Objective: Definition of species of fruit crops adapted to the climatic zone, of their performances and of the utilization of the products.
Approach: Complex experimental arrangement to seek to equate: the species and cultivars (subjects - scions - and stocks for grafting if need be), the agronomic techniques, parasitism, the nature of the soils (corrections), moisture feeding according to the water resources, the microclimatic repercussions of agriocenosis (oasis effect).
Results: Obtained: Definition of a method of protection for the young plantations at the time of creation of the orchards, and for the production of planting material. Utilization of the banana plant for autoprotection of the banana plantation against aridity and for the protection of associated crops (pineapples, papaws). Awaited: Creation of ecosystems based on date-palm, cashew, citrus trees, mango-trees, guavas, grenadillas, bananas, pineapples, jujube, vine, strawberry, serving as a basis for the definition of agro-industrial unit-types of production.
SUPPORTED BY Inst. Fr. de Rech. Fruit. - Mauritania

108
7.0007, DATE-PALM SELECTION. PHYTO-TECHNICAL AND ECOLOGICAL RESEARCH WORK

J. KAPLAN, (MR.052.0001)

Objective: Maintenance of oasis - Research for the zones best adapted for cultivation of date palms.

Approach: Study of the Mauritanian and introduced varieties: definition of the requirements in water and fertilization. Utilization of the surface waters and of the ground water. Research for varieties adapted to Sahelian climatic conditions. Research on systems of cultivation associated with date palm plantations, studies of microclimatic modifications brought about by the palm plantation.

Results: Obtained: Data enabling the choice of zones for cultivation of date palms and of the varieties. Phytotechnical results. Awaited: Definition of stable cropping systems not subject to variations in aridity.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Mauritania
INSTITUT DE RECHERCHES AGRON. TROP.
ET DES CULTURES VIVRIERES
Agence du Niger, B.P. 150, Niamey

8.0001, CROPPING TECHNIQUES FOR IRRIGATED RICE
J. NABOS, (NG.020.0001)
Objective: To improve the productivity of rice-fields by better cropping techniques.
Approach: Experiments on methods of pricking-out and on direct sowing (sowing in rows with the driller).
Results: Recommendations for popularization.

8.0002, GASTRO-INTESTINAL PARASITISM OF ZEBU CATTLE
R.P. DELAVENTAY, (NG.081.0001)
Objective: To determine the nature and the incidence of parasitic infestations.
Approach: Faecal screening and post-mortem examinations in the abattoirs.
Results: 75 percent of the cattle harbour strongyles (Haemonchus - Cooperia). Trematode infestations are encountered in zebu cattle on pastures along the river banks. The levels of infestation are moderate.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0003, ECONOMY OF REARING THE RED GOAT
J.B. HAUMESSER, (NG.081.0002)
Objective: Permanent supervision of the management of a herd of goats in a village.
Approach: Individual marking of the animals - registration of the births, of those sold, those slaughtered, and of the mortality. Comparison by periodic investigations of the composition of the herds in six other villages.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0004, DISEASES OF THE RED GOAT
J.B. HAUMESSER, (NG.081.0003)
Objective: To evaluate the influence of various interventions (treatment of strongylosis, vaccination against rinderpest of small ruminants, and pasteurellosis) on the mortality observed in breeding herds of red goats.
Approach: About 10,000 animals divided into 5 groups of which one is a control.
Results: No significant difference has been recorded to date, in the mortality registered in the different groups.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0005, BACTERIOLOGICAL INQUIRY ON SLAUGHTERED ANIMALS
R. FERRY, (NG.081.0004)
Approach: Judging by the lesions found at meat inspection in animals slaughtered at Niger.
Results: Tuberculosis: bovine animals 1 percent, pigs 2 percent. Rarity of farcy. Demonstration of melioidosis in pigs - 5 to 10 percent of the animals found to have lesions, according to the annual records.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0006, GASTRO-INTESTINAL PARASITISM IN THE RED GOAT
R.P. DELAVENTAY, (NG.081.0005)
Objective: To determine the effect of an anti-parasitic treatment on the weight gain of the animals.
Approach: Three herds chosen, one of which is a control; animals identified individually. Treatment directed against gastrointestinal strongylosis and coccidiosis. Faecal examination before and after treatment. Individual weight recorded every three months.
Results: No difference has been found to date between the control herd and the treated herds. The effect of malnutrition appears to mask the effect of the antiparasitic treatments.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0007, CULTIVATION OF FORAGE CROPS
B. PEYREDEFABREGUES, (NG.081.0006)
Approach: Experiments with local forage plants in irrigation, particularly Echinochloa colonna.
Results: First results encouraging, the yields being acceptable.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

8.0008, EXPERIMENTS WITH FORAGE SHRUBS
B. PEYREDEFABREGUES, (NG.081.0007)
Approach: Establishing experimental plantation of shrubs on sandy soils in an arid zone (Prosopis juliflora).
Results: Results mediocre on account of failure of Prosopis to adapt itself to such difficult conditions.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France
LABORATOIRE DE RADIOAGRONOMIE,
SECTION ECONOMIE DE L’EAU IRAT
B.P. 150, Niamey

8.0009, STUDY OF SOIL - MOISTURE - PLANT RELATIONS (WATER ECONOMY)
S. VALET, (NG.021.0001)
Objective: To specify knowledge of the different variable factors in a climatic context to enable the elaboration of hydro-agricultural management projects and the more rational exploitation of perimeter areas already under administration.
Approach: To determine the properties of the irrigated and irrigable soils of the Niger embankments (water-soil relationship): 1) speed of infiltration, 2) speed of advance of the humectation front, 3) kinetics of flow of the water, 4) capacity in the field. To determine the useful reserves and easily utilizable reserves (Moisture - Soil - Plants) - humidity to the point of permanent wilthly for several plants. Measurement of the amount of water consumed by the principal food and industrial crops: determinations of the actual and of the maximum water consumption (definition of the ETRM).

LABORATOIRE ENTOMOLOGIQUE DES RADIOISOTOPES IRAT
B.P. 150, Niamey

8.0010, MARKING INSECT PREDATORS OF FOOD COMMODITIES
ROUGAN, (NG.022.0001)
Objective: To make use of radio-isotopes in order to mark insects which, when set free in nature, may serve to resolve problems concerning their population dynamics, their distribution and their concentration.
Approach: 1) Inventory of insect predators on food commodities (millet - groundnuts - vigna unguiculata); 2) Study radioactive marking of the principal insects concerned (Trogoderma, weevil of vigna and of groundnuts); 2.1 - Study the means of marking; 2.2 - Possibility of passing-on the marker to the descendants. 3) Ecological studies on marked insects.

SECTION CTF DU NIGER
B.P. 225, Niamey

8.0011, COMPARATIVE PLANTATION OF DIFFERENT SPECIES OF EUCALYPTUS OF DIFFERENT ORIGINS
J.C. DELWAULLE, (NG.041.0001)
Objective: Comparison of several species of Eucalyptus of different origins.

NIGER

Approach: Three arrangements: balanced lattice 10-1 for E. cebræ and E. exserta; single tree and balanced lattice 10-2 for the other Eucalyptus.
Results: Some origins of E. camaldulensis are to be studied.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0012, EXPERIMENT WITH EUCALYPTUS CAMALDULENSIS OF DIFFERENT ORIGINS
J.C. DELWAULLE, (NG.041.0003)
Objective: Comparison of different origins of E. camaldulensis.
Approach: Complete blocks.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0013, EXPERIMENT ON MANUAL TILLAGE BEFORE PLANTATION
J.C. DELWAULLE, (NG.041.0004)
Objective: To define the best technique for manual tillage before plantation.
Approach: Five distinct techniques studied in a single-tree experiment on Eucalyptus camaldulensis.
Results: From now on the control is clearly at a disadvantage, it seems to be so even with the techniques established in an arid Mediterranean zone.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0014, EXPERIMENT ON THE SPACING OF EUCALYPTUS
J.C. DELWAULLE, (NG.041.0005)
Objective: To define which is the optimum spacing in the climatic conditions of Sahele.
Results: Distinct behaviour of the two species. More lively competition than initially foreseen.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0015, STUDY OF EUCALYPTUS - SOIL RELATIONSHIP
J.C. DELWAULLE, (NG.041.0006)
Objective: To study in the most accurate manner possible the relations between the growth of Eucalyptus and the initial data concerning the ground.
Approach: The most accurate description possible by division of the ground into component squares before plantation.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0016, COMPARISON OF NURSERY TECHNIQUES FOR DALBERGIA AZADIRACTA INDICA AND CASSIA SIAMEA
J.C. DELWAULLE, (NG.041.0007)
Objective: To define the best conditions to be fulfilled in a nursery to obtain a successful plantation of Dalbergia, Azadiracta indica and Cassia siamea.
Approach: Several dates of sowing, two techniques, in pots and in beds - complete blocks.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

111
NIGER

8.0017, INTRODUCTION OF EUCALYPTUS
J.C. DELWAULLE, (NG.041.0010)
Objective: Introduction of the maximum number of species of Eucalyptus.
Approach: No particular arrangement, the best species to be the object of more complete experiments at a later stage. Introduction of new species each year.
Results: More than 150 species or origins introduced since 1963, certain of them having since been the object of more complete experiments.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0018, NURSERY EXPERIMENT WITH FOREST TREES
J.C. DELWAULLE, (NG.041.0011)
Objective: To know if it is necessary to look after plantations in a nursery or to accustom them to the difficult conditions which will be their lot.
Approach: 3 soils, 3 types of fertilizer, 3 types of water sprinkling, cubic lattice.
Results: At the end of the first year of plantation, the best results are obtained with the planting materials that have been the best treated in a nursery.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0019, GROWING EUCALYPTUS FROM CUTTINGS
J.C. DELWAULLE, (NG.041.0012)
Objective: Establishment of techniques for cuttings of Eucalyptus.
Approach: Various (substrate, hormones, trimming of the cuttings, misting, lighting, etc.) tending to define the techniques to be employed for success with cuttings.
Results: Maximum lighting, temperature not too high to begin with.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0020, CONTROL OF EROSION OF TROPICAL FERRUGINOUS SOILS
J.C. DELWAULLE, (NG.041.0013)
Objective: Definition of erosion on tropical ferruginous soil and methods of control.
Approach: Five plots of different length, one Wischmeier plot.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

8.0021, CONTROL CAMPAIGN AGAINST TSETSE FLIES AND ANIMAL TRYPANOSOMIASES
H. BRUNS, (NG.060.0001)
Objective: To estimate the extent of the danger of trypanosomiasis and to know the limits of the affected zones in order to conduct on a small scale, experimental control both against the disease and its vectors.
Approach: Chemical prevention of cattle before transhumance stations. Curative treatment of sick animals. Blood tests for verifying the evolution of the trypanosomiasis. Disinfection of the regions harbouring glossina species, first by terrestrial spraying, next by air craft (helicopter); insecticides based on DDT.
Progress: Important regression of trypanosomiasis in treated zones; complete disinfection of the selected section by air craft; establishment of a barrier of cleaned land between the disinfected section and the others.
SUPPORTED BY Service de l' Elevage des Ind. - Niger

SERVICE DE L'ELEVAGE ET DES INDUSTRIES ANIMALES
B.P. 241, Niamey

8.0022, EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE (CANNA)
A. SANCHEZ, (NG.025.0001)
Objective: Study the possibilities and establishment of techniques for cultivation of Canna with a view to starting a sugar-cane plantation on the perimeter at Tillabery.
Approach: Irrigation: 1) Study the requirements in water; 2) conduction and rationing of water supply in the phases of growth and maturation; 3) establishment of techniques for irrigation ensuring the most efficient use of water (into the furrows or by sprinkling).
Results: Definition of the requirements in water and of the critical periods. Establishment of the technique of irrigation by sprinkling: daily period of sprinkling, definition of the mesh and of sprinklers.

8.0023, VARIETAL EXPERIMENTS ON SUGAR-CANE
A. SANCHEZ, (NG.025.0002)
Objective: To find industrial varieties for the dry climatic conditions of the Tillabery region, with a high yield of sugar.
Approach: Test the behaviour of the introductions selected in other countries. Establishment of a scale of varieties for the beginning, middle and end of the production campaign, allowing the production to extend from November to May.
Results: Proposition of 3 productive varieties: 1) NCO 310 for maturation at the beginning, 2) NCO 376 for maturation at the middle of the campaign, 3) CO 740 for maturation at the end of the campaign.

STATION CANNE A SUCRE DE TILLABERY IRAT
B.P., Tillabery

8.0024, ECOLOGICAL STUDY OF THE ORCHARD - SUBARID ZONE (SAHELO-Soudanian)
P. SOULEZ, (NG.161.0001)
Objective: - Definition of the fruit tree species adapted to the
climatic zone; their performance and the utilization of the products.

Approach: Complex experimental arrangement to seek to equate the species and cultivars (subjects - scions and stocks for grafting if need be), the agronomic techniques, parasitism, the nature of the soils (corrections), the supply of moisture according to the water resources, the microclimatic repercussions of agrobiocenosis (oasis effect).

Results: - Obtained: renewal of the citrus orchards by the introduction, the multiplication and the distribution of plant material certified as free from the principal known virus diseases and representing the best commercial varieties.

Determine a method for protection of the young plantations at the time of the creation of the orchards, and for the production of planting material.

Awaited: creation of ecosystems based on date palms, cashew, citrus, mango, guava, granadilla, banana, pineapples, jujube vine, strawberry, serving as a basis for the definition of agro-industrial unit-types for production.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Niamey, Niger

STATION IRAT DE KOLO

B.P. 118, Niamey

8.0025, IMPROVEMENT OF TILLAGE IN IRRIGATED RICE-FIELDS

J. NABOS, (NG.024.0001)

Objective: To improve the productivity of rice-fields by a better working of the soil and by maintenance methods.

Approach: Comparative experiments on different modes of preparing the soil (date - material) and of maintenance methods.

Results: Recommendations to the Popularization services.

8.0026, FERTILIZATION OF IRRIGATED RICE

J. NABOS, (NG.024.0002)

Objective: To improve the productivity of rice-fields by fertilization.

Approach: Field trials to determine the requirements in the major elements.

Results: Popularization of a nitrogenous fertilizer (65 units/ha in the form of urea).

8.0027, VARIETAL EXPERIMENTS WITH RICE

G. DEMAY, (NG.024.0003)

Objective: To search for productive varieties of rice of good quality seed for the various existing rice-fields in Niger: 1) traditional rainy-season rice-fields (standing rice and floating rice); 2) irrigated rice-fields carrying a double crop each year.

Approach: Test for adaptation of introduced varieties. Improvement by hybridization: programme of crossings with a view to improving the quality of the grain of productive introductions (introduced varieties times D.52-37).

Results: Distribution of the D.52-37 variety for cultivation by traditional methods.

STATION IRAT DE TARNA

B.P. 6, Maradi

8.0028, IMPROVEMENT OF SORGHUMS GROWN ON SAND DUNES

P.L. SAPIN, (NG.023.0001)

Objective: To obtain short-stemmed lines, with large white seeds, adapted to sandy soils.

Approach: Crossings between introduced dwarf sterile-males and local "sand-dune" varieties, with an occasional back-cross on the local, or recombination between different plantings of one and the same hybrid, followed by genealogical selection.

Results: Lines in the process of being tested for productivity.

8.0029, IMPROVEMENT OF VIGNA UNGUICULATA UN- SUSCEPTIBLE TO PHOTOPERIODICITY

P.L. SAPIN, (NG.023.0002)

Objective: Improvement of the productivity and the quality. Research for early varieties resistant to drought, with grouped flowering, and of erect bearing. Qualities of the grain required: large size; colouring, cream.

Results: Selection popularized: 4 - 69 (hybrid progeny 90 days), 88 - 63 equals 70 days (selection in local population). Selections in progress.

8.0030, IMPROVEMENT OF GROUNDNUTS

P.L. SAPIN, (NG.023.0003)

Objective: Improvement of production and of quality (yield after shelling and oil content). Selection: for precocity and dormancy.

Approach: Introduction of foreign material (via Senegal Bambe) in the absence of local types. Tests of behaviour of descendants of crossings worked out at Bambey.

Results: Distribution of varieties suited to the different ecological zones: Northern zone: 28 - 204, 55 - 437; intermediate zone: 47 - 16; Southern zone: 28 - 206; "virosis" zone: 48 - 37.

8.0031, IMPROVEMENT OF THE ONION (ALLIUM CEPA)

P.L. SAPIN, (NG.023.0004)

Approach: Study the local material and collection of ecotypes. Recurrent and genealogical selections.

Results: Varieties popularized: Brown-red (violet) from Galmi; White from Soumarana. Selection in progress: White (Galmi); Synthetic (Maggia).

NIGER

8.0032, IMPROVEMENT OF THE BOVINE HERD IN ORDER TO OBTAIN WORK OXEN
C. CUIN, (NG.023.0005)
Objective: To obtain work oxen.
Results: Establishment of a nourishing food supplement. The obtaining of work oxen having rapid growth, and capable of carrying out intensive work.

8.0033, IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION)
P.L. SAPIN, (NG.023.0006)
Objective: To obtain short-stemmed lines, having good quality grain, adapted to clayey soils.
Approach: Crossings between introduced dwarf sterile-male and local valley varieties, with an occasional back-cross or recombination between different plantings of one and the same hybrid, followed by genealogical selection. Introduction of foreign varieties answering the same objective.
Results: Popularization of the 137 - 62 variety. Line is being tested for productivity.

8.0034, THE OBTAINING OF VARIETIES OF MILLET WITH SHORT STRAW
P.L. SAPIN, (NG.023.0007)
Objective: The obtaining of well-adapted dwarf varieties that can be used for intensive cropping.
Approach: Transference of dwarfism D2 by successive back-crosses on three local varieties. Selection for the adaptation starting from dwarf millets originating in Senegal.
Results: None.

8.0035, IMPROVEMENT OF SOILS BY SUPPRESSION OF DEFICIENCIES
J. CHAROY, (NG.023.0008)
Objective: To determine deficiencies of soils in order to suppress them and thus increase the fertility.
Approach: Response-curve experiments to each fertilizing element. In an experiment, only one element is variable, the other elements being liberally supplied.
Results: Demonstration of a slight deficiency in phosphorus.

8.0036, MAINTENANCE OF THE FERTILITY OF SOILS WITHIN THE FRAMEWORK OF ROTATIONS
J. CHAROY, (NG.023.0009)
Objectives: After suppression of deficiencies, determination of the maintenance fertilizations which maintain the level of fertility created.
Approach: Experiments comprising different maintenance fertilizers and followed with regard to mobilizations of the elements by the plants and the amounts taken out of the soil by the crops. In the same way the losses of fertilizing elements by drainage are measured.
Results: Propositions for maintenance fertilizer for the ferruginous soils of Niger.

8.0037, IMPROVEMENT OF THE LOCAL EARLY MILLET
P.L. SAPIN, (NG.023.0010)
Objective: Improvement of the productivity without modification of the varietal type.
Approach: Recurrent selection starting from intervarietal hybrids with S1 tests per se. Test the behaviour on the introductions selected in other countries.
Results: Variety P3 Kolo (mass pedigree selection). Synthetic 1 Zongo (recurrent selection with top-cross test).

8.0038, TILLAGE
J. CHAROY, (NG.023.0011)
Objective: To evaluate the effects on the evolution of soils and productivity of crops of different forms and possible interventions by team cultivation.
Approach: Study of preparation and maintenance modes: modalities and period of intervention. Estimation of the efforts of traction and the times taken for the tasks. Evolution of the soil and reaction of the plant testing and establishment of material.
Results: Determination of the effects of more or less intensive modes of preparation in the framework of the cropping system.

8.0039, STUDY OF THE NITROGENOUS FERTILIZATION OF CEREALS
J. CHAROY, (NG.023.0012)
Objective: To study the nitrogen-soil-plant relationship with the object of obtaining the best possible return from nitrogenous fertilizers for millet and sorghum.
Approach: Study of the dynamics of nitrogen in the soil: phenomenon of mineralization of the nitrogen undercultivation, possibilities of storing by burial of organic matter, losses by drainage. Experimental work on form-rate- mode of application of the nitrogenous fertilizer, with control by foliar diagnosis.
Results: First results on the phenomena of mineralization of nitrogen in sand-dune soils at Tarna.

STATION IRCT DE MALBAZA
B.P. 6, Malbaza

8.0040, VARIETAL EXPERIMENTS OF COTTON FOR FLOOD RECESSION CULTIVATION
J. MONTLIBERT, (NG.051.0001)
OBJECTIVE: To compare the agronomic and technical behaviour of different varieties with the prospect of utilizing them in large-scale cultivation.
APPROACH: 8 varietal experiments. 8 or 6 repetitions. Component plot with three rows (varying from 14 to 24 metres) test subjects receiving mineral fertilization and phytosanitary protection.
RESULTS: Propagation of varieties HL1 then 444-2 (in course of completion).
SUPPORTED BY Inst. de Rech. Cot. et Text. - France
8.0041, VARIETAL EXPERIMENTS ON COTTON IN IRRIGATED CULTIVATION
J. MONTLIBERT, (NG.051.0002)

OBJECTIVE: To compare the agronomic and technological behavior of different varieties with the prospect of utilizing them in large-scale cultivation.

APPROACH: One varietal experiment - 8 repetitions - component plot with 3 rows 20 metres long - test subjects receiving a nitrogenous fertilizer and phytosanitary protection.

RESULTS: Propagation of varieties HLI then 444-2.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0042, VARIETAL EXPERIMENTS ON COTTON UNDER POORER CONDITIONS OF CULTIVATION
J. MONTLIBERT, (NG.051.0003)

OBJECTIVE: To compare the agronomic and technological behavior of different varieties with prospect of utilizing them in large-scale cultivation.

APPROACH: 3 varietal experiments - 8 to 12 repetitions - component plot with three rows or with one row. Test subjects not receiving mineral fertilizer - light phytosanitary protection (2 to 3 treatments).

RESULTS: Propagation of varieties HLI then 444-2.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0043, STUDY OF MINERAL DEFICIENCIES ON ALLUVIALLY DISTRIBUTED SOILS
J. MONTLIBERT, (NG.051.0004)

OBJECTIVE: To detect mineral deficiencies that will serve as a guide to the fertilizers for popular use.

APPROACH: A withholding experiment (N S P K) - Fisher blocks - component plot with 4 rows.

RESULTS: Characteristic nitrogen deficiency.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0044, STUDY OF MINERAL DEFICIENCIES ON TROPICAL FERRUGINOUS SOILS
J. MONTLIBERT, (NG.051.0005)

OBJECTIVE: To detect the mineral deficiencies which can serve as a guide to the manure for popular use.

RESULTS: Significant nitrogen deficiency.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0045, STUDY OF THE PROFITABILITY OF AN APPLICATION OF MINERAL FERTILIZER TO TROPICAL FERRUGINOUS SOILS
J. MONTLIBERT, (NG.051.0006)

OBJECTIVE: To determine the economic interest of a mineral fertilizer applied to a cotton crop.

APPROACH: Comparative experiments with 8 repetitions, comparing a mineral-manured plot with a control not manured.

RESULTS: Masked at times when the recorded rainfall is insufficient. Very noticeable beneficial influence of a N P B o (nitrogen, phosphorus, boron) fertilizer.

Very clear-cut residual effect on the sorghum crop which follows the cotton.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0046, STUDY OF NITROGENOUS NUTRITION ON ALLUVIALLY DISTRIBUTED SOILS
J. MONTLIBERT, (NG.051.0007)

OBJECTIVE: Since the withholding experiments have revealed a deficiency in nitrogen, to study the best way of applying that nitrogen.

APPROACH: Comparative experiments - rates of application and forms of nitrogen (urea and ammonium nitrate applied at 30, 60 and 90 kg per hectare). Forms of nitrogen, dates for spreading (urea and ammonium nitrate applied at 28, 38 and 59 days) - date for stopping the application of nitrogen (11 kg of nitrogen every 10 days up to the 40th, 60th and 80th days).

RESULTS: Nitrogen fertilization has only limited and irregular effects; it appears that the manures are not being absorbed. Future experiments will be directed towards a distribution of nitrogen with the plough, some applications of urea to the leaves by spraying, a fallow of leguminous plants.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0047, STUDY THE RESIDUAL ACTION ON SORGHUM OF THE FERTILIZER APPLIED TO COTTON ON TROPICAL FERRUGINOUS SOILS
J. MONTLIBERT, (NG.051.0008)

OBJECTIVE: To determine the residual activity of the mineral fertilizer applied to cotton.

APPROACH: Comparative experiments with sorghum following the withholding experiments with cotton.

RESULTS: The increase in yield of sorghum is very clear-cut in first and second year after the cotton (with application of 50 kg/ha of urea).

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0048, HERBICIDE EXPERIMENTS WITH COTTON ON ALLUVIALLY DISTRIBUTED SOILS
J. MONTLIBERT, (NG.051.0009)

OBJECTIVE: To determine the efficacy and the toxicity of various herbicides.

APPROACH: Comparative tests of several herbicides at different rates of application.

RESULTS: Good efficiency on Gramineae but no effect on Cyperus rotundus (principal weed). The tests will be resumed, utilizing arsenical derivatives at the post-emergent stage (after the seeds have appeared).

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0049, FOLIAR ANALYSES
J. MONTLIBERT, (NG.051.0010)

OBJECTIVE: To determine whether foliar analyses can enable the detection of deficiencies.

APPROACH: Foliar analyses carried out upon the plants grown in the withholding experiments.

RESULTS: The results obtained confirm those drawn from the field experiments.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0050, EXPERIMENTS ON PHYTOSANITARY TREATMENTS ON COTTON AT THREE LEVELS
J. MONTLIBERT, (NG.051.0011)

OBJECTIVE: After evaluation of the parasitism and establishing the calendar of treatment, to test the efficacy of the standard treatment advised.
NIGER

APPROACH: Comparative experiments enabling comparison of the yield obtained on a plot given standard treatment with those obtained on a plot given intensive treatment and on a non-treated plot.

RESULTS: The efficacy of the standard treatment is considerable and its profitability is always assured. The phytosanitary treatment of crops is an absolute necessity.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

8.0051, TESTING OF PREPARATIONS FOR PHYTOSANITARY PROTECTION ON COTTON
J. MONTLIBERT, (NO.051.0012)

OBJECTIVE: To compare the effect of new preparations to that of the classical mixture.

APPROACH: 2 comparative tests in which the mixture endrin - DDT is made to compete with a new mixture endosulfan - DDT - parathion.

RESULTS: The new mixture has an efficacy comparable with that of the classical mixture.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
NIGERIA

BACITA AGRICULTURAL RESEARCH STATION
Bacita

9.0001, SUGAR CANE NITROGEN FERTILIZER TRIAL
L.B. OSENI, (NI.137.0001)
To determine the effects of different levels of nitrogen fertilizer on three main varieties with a view to determining optimum level of Nitrogen fertilizer for different varieties.

The method is Q-5 by 3 factorial experiment using five levels of ammonium sulphate (NH4)SO4 on three standard varieties with 1 cwt each of triple super phosphate and muriate of potash applied per acre for all plots as blanket application and ammonium sulphate at levels 0-448 lbs/acre with 112 lb increment.

Expected to start this year.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0002, SUGAR CANE HERBICIDE TRIAL
L.B. OSENI, (NI.137.0002)
To compare the effects of some available pre-planting or pre-emergence herbicides with Diuron and 2,4-D as standards. The method is a "randomized block design" with six replicate; while Diuron and 2,4-D are included as standards. Expected to start this year.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

BADEGGI RICE RESEARCH STATION
P.M.B., Badeggi via Minna

9.0003, MANAGEMENT PRACTICES OF TWO RECOMMENDED RICE VARIETIES
A. WILLIAMS, (NI.132.0001)
Objective: To assess the effect of nitrogen response of two recommended rice varieties of different growth habits under five management practices and assess the economic returns of the practices.

Approach: A factorial field trial of management practices under two levels of fertilizer rates (recommended) and two varieties.

Progress: The variety Mas 2401 showed nitrogen response up to 0.5 lb N/acre but dropped at 105 lb N/acre. SML 140/10 showed increasing linear response up to 105 lb N/acre, but its yields were generally lower than that of Mas 2401. The best yield of SML 140/10 was obtained with two handweeddings plus insecticide application while that of Mas 2401 was obtained with herbicide (STAM F-34) application without insecticide application.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0004, PRE-PLANTING HERBICIDE TRIAL ON RICE
A. WILLIAMS, (NI.132.0002)
Objective: To assess the weed flora killed by new pre-planting herbicides and to study their phytotoxicity on rice plants.

Approach: A randomized complete block design comparing 13 herbicides and the local farmers' practice.

Progress: Good weed control of grasses, sedges and some broadleaves were obtained with the following herbicides:- Gramoxone (Dalapon) at 10 lb Al/ac applied at 28 days before transplanting; Weedar at 2 US gal/ac applied at 28 days before transplanting; Planavin at 1 Lb Al/ac applied at 28 days before transplanting; Gramoxone (Paraquat) at 4 pt/ac applied at 7 days before transplanting. Average yield range from 2500-2900 lb/ac or SML 140/10.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0005, RICE STRAW COMPOST TRIAL
A. WILLIAMS, (NI.132.0003)
Objective: To determine the effect of rice straw compost manure with and without nitrogen fertilizer application on the growth and yield of rice.

Approach: A factorial field trial with three rates of rice straw compost application and with three levels of nitrogen fertilizer application.

Progress: Significant yield increases were obtained with addition of rice compost of 5,000 lbs and 10,000 lbs per acre application.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0006, WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE
A. WILLIAMS, (NI.132.0004)
Objective: To determine the effect of water management practices on the water requirements, growth and grain yield of rice of both early and late season crop and to determine the environmental factors on water use.

Approach: 8 treatments of water levels from 20 cm to continuous soil saturation and water stress on plants arranged in completely randomized design. Water tanks, still wells, calibrated hook gauges used in experiment as well as meteorological instruments.

RESULTS: Appreciable yields of 2.9 t/ha - 5.1 t/ha obtained for paddies subjected to continuous water levels of 5-20 cm. Continuous soil saturation gave yield of 2.2 t/ha for two varieties, 056 and SML 140/10 respectively. Reduction in yield of over 75 per-
Nigerian rice blast disease

A. Williams, (NI.132.0005)

Objective: To compare some nursery techniques with direct seeding of rice and their effects on the plant growth and grain yield.

Approach: Five treatments compared with two rice varieties, IR8 and SML 140/10. Treatments include transplanting of 12 ("Dapog method"), 21, 28, 35 old seedlings compared with pre-germinated seed broadcast.

Results: With IR8, no significant differences in yield obtained in the methods used, but for SML 140/10 low yields were obtained with pregerminated broadcast seeds and the "Dapog" method. It is advisable to transplant SML 140/10 with 28 old seedlings.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0007, NURSERY TECHNIQUES TRIAL FOR RICE A. Williams, (NI.132.0005)

Nursery and field spraying trials. Disease incidence determined 35 days after planting in the nursery and at panicle initiation in the field in randomized block designs.

Two fungicides were found to be effective in controlling the blast disease of rice. These were Blasticidin - S applied at 1 gm/litre and Dithane M-45 at 2 gm/litre.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0011, NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION K.A. Ayotade, (NI.132.0009)

Objective: (1) To compare different methods of deep placement of N with broadcasting using yield, N uptake and recovery data as indices of efficiency. (2) To find the best time of N top-dressing on three varieties of different growth duration using yield, yield component, N uptake and recovery and grain productive efficiency data as indices of efficiency.

Approach: Experiments were conducted separately. All plots received a basal dressing of 37 kg/ha P as single superphosphate. No K fertilizer was applied. Na2 ammonium sulphate was applied in one experiment at 2 equal doses. First dose, 37 kg/ha N was applied 2 weeks after transplanting as follows: (a) surface broadcast (b) shallow placement by Japanese rotary hoe; (c) deep placement by native stumping hoe; (d) deep placement by modified farmers' technique; (e) deep placement by mudballs; (f) control (no N). The second half was top dressed at panicle initiation. N (2/3) was applied in the second experiment at the following times - 42, 54, 70, 84, 96, 112 days from seeding. In both experiments a split-plot design was used with varieties (IR8, SML and MAS 2401) as the main plots and methods or times of N application as sub-plots, with 3 replications. 28 day-old seedlings were transplanted. Grain and straw samples were analysed for N. Soil samples were analysed and available - N. Ten hills were collected in the timing experiment for yield component analysis.

Progress: Completed.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0012, FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE K.A. Ayotade, (NI.132.0010)

Objective: (1) To characterize major soils of Nigeria, used for growing rice with a view of determining their fertility status and their production capability. (2) To arrive at recommendations for improved management for rice production on these soils.

Approach: The program of research will include field study of soils in major rice growing areas, giving full cognizance to work already achieved in this field. Initially, field studies would be limited to a few carefully selected regions of the country, where major rice producing areas exist. Selected soils in these areas are to be carefully described and sampled for complete laboratory analyses. In a number of cases, bulk samples will be taken for greenhouse studies. Based on the outcome of the above mentioned studies, maximum yield trials would be set up in agro-ecologically representative locations. Correlation studies between soil morphology and nutrient status characteristics and productivity will be carried out in order to arrive at recommendations for improved soil and plant management.

Progress: The project is just to commence.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria
9.0013, TO SURVEY FIELD PESTS OF RICE IN NIGERIA
E.A. AKINSOLA, (NI.132.0011)
To survey field pests of rice in different ecological areas in Nigeria.
About 13 Lepidopterous and two Dipterous stem boring larvae have been collected from rice stems. Several leaf hopper species and blister beetles are also important rice pests at certain periods of plant growth.
Detailed information on the abundance and relative importance of the different species at different localities in Nigeria is being obtained.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0014, TO STUDY THE BIOLOGY AND ECOLOGY OF DIFFERENT SPECIES OF RICE STEM BORERS
E.A. AKINSOLA, (NI.132.0012)
Five species of rice stem borers are of major significance in Nigeria. Field and laboratory observations are carried out to study the biology and ecology of the different species.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0015, TO CONTROL FIELD PESTS OF RICE - (1) EVALUATION OF DIFFERENT INSECTICIDES
E.A. AKINSOLA, (NI.132.0013)
Field trials are conducted to evaluate different insecticides for the control of stem borers of rice.
The feasibility of using natural enemies in an integrated approach for the control of rice pests is being studied. To this end, survey of natural enemies of the pests in all ecological areas in Nigeria is carried out
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0016, VARIETAL RESISTANCE OF RICE TO THE MAJOR PESTS
E.A. AKINSOLA, (NI.132.0014)
Several varieties are screened both in the field and in the greenhouse to evaluate their resistance to the major pests of rice.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0017, SHRIMP CULTURE
G. IGONIFAGHA, (NI.193.0001)
Objective: The objective is to increase shrimp production in lagoon brackish waters.
SUPPORTED BY Federal Dept. of Fisheries - Nigeria

9.0018, SELECTION OF FISH SPECIES FOR CULTURE IN BRACKISH WATER
G. IGONIFAGHA, (NI.193.0002)
Objective: Identification of local fish species suitable for brackish water culture.
SUPPORTED BY Federal Dept. of Fisheries - Nigeria

9.0019, CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF "PEC" TISSUE VACCINE
O. NDUAKA, (NI.462.0001)
Objective: To control Pneumonia-Enteritis Complex disease which is the most deadly disease of goats in the Eastern States of Nigeria by use of a "PEC" tissue vaccine developed by the above-named workers.
Approach: The vaccine is prepared by inoculating apparently healthy young goats with virulent blood taken at the height of temperature from a goat suffering from Pneumonia-Enteritis Complex. The inoculated goat is killed at height of temperature of 105 degrees F or above. The spleen and lymphoid glands are then removed for preparation of the vaccine. The vaccine is then inoculated subcutaneously after refrigeration for five days. Chloroform is used as agent for inactivating the virus.
Progress: A group of goats immunized by this method appeared to have developed solid immunity against the disease. They have been challenged periodically by use of virulent blood and by natural and direct contact with infected goats. The oldest batch has carried the immunity for six months now.
SUPPORTED BY University of Nigeria - Nsukka

9.0020, THE NUTRITIVE VALUE OF NIGERIAN FORAGES
A.A. ADEMOSUN, (NI.360.0001)
Objective: To study the digestibility of Nigerian forage grasses in sheep and goats in relation to the chemical composition of the forage.
Approach: Stylosanthes graciles harvested at four stages of maturity was ground, mixed with ground corn plus cob and fed to goats and sheep; chemical components of the feeds were determined.
Progress: Digestibility of cellulose, acid-detergent fiber, crude fiber, lignin and cell wall constituents decreased with advancing maturity. Goats digested the various components more extensively than sheep, but sheep had a higher level of feed intake. Maintenance requirements in terms of TDN was estimated at 1.4 kg. per 100 kg. of live weight for goats and 1.9 for sheep. Similar studies are in progress for elephant grass (Pennisetum purpureum).
SUPPORTED BY University of Ife - Nigeria

9.0021, THE CALCIUM AND PHOSPHORUS REQUIREMENTS OF THE LAYING HEN
A.A. ADEMOSUN, (NI.360.0002)
Objective: To investigate the levels of calcium and phosphorus required to sustain high egg production of good shell quality.
Approach - Four levels of Ca and two levels of P were fed to layer birds in battery cages and deep titler in a 4 x 2 factorial design. Feeding period will be one year. Assessment criteria are to
include egg shell quality measured by weight per area, egg production, percent tibia ash, live weight of bird and Ca and pretention by birds in battery cages.

Progress - Shell weight per unit area appears to be a satisfactory method for estimating egg shell thickness. Surface area (S) can be estimated from egg weight (W, grams) by the formula: S not equal to 4.67 W²/³. The feeding experiment is continuing.

SUPPORTED BY University of Ife - Nigeria

9.0022, GENETIC VALUE OF LOCAL CHICKENS AS MATERIAL FOR IMPROVEMENT OF POULTRY PRODUCTION
J.O. AKINOKUN, (NL.360.0003)

Objective - To evaluate local breeds of chickens for breeding stock potential in improving poultry production.

Approach - Data on hatching weight, rate of growth, feed intake, egg production, and fertility of local chickens under modern management methods is being collected and evaluated. Selected individuals will be used to carryout crosses with other local and exotic breeds.

Progress - Initial observations indicate that weights of local chickens in the early stages of growth were similar to those of a light breed of exotic chickens reared under the same conditions.

SUPPORTED BY University of Ife - Nigeria

9.0023, NUTRITIVE VALUE OF OPAQUE-2 MAIZE FOR THE CHICK AND RAT IN THE TROPICS
A.A. ADEMOSUN, (NL.360.0004)

Objective - To compare the amino acid composition and nutritional value of opaque-2 maize with that of local maize.

Approach - The amino acid composition of guinea corn, local yellow maize (NS.2) and opaque-2 maize were compared. Rations containing 90% NS2 maize, opaque-2 maize, guinea corn or NS1 maize supplemented with 0.25% lysine were fed to chickens and white rats for 28 days.

Progress - Feed gain ratio and protein efficiency ratio were improved when opaque-2 maize replaced NS2 maize in the rations. Lysine supplemented the protein efficiency ratio for rats and chicks, but not to the extent produced by opaque-2 maize.

SUPPORTED BY University of Ife - Nigeria

9.0024, USE OF RADIATION FOR THE IMPROVEMENT OF FUNGAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA
E. BALOGH, (NL.360.0005)

Objective - To select fungi with extended mycelial growth and delayed sporulation useful in increasing the protein content of cassava starch paste.

Approach - A selected strain of Rhizopus oligosporus was grown on shaken cultures of cassava starch medium obtained from locally grown tubers. After sporulation, the spores were suspended in mineral solution and irradiated with gamma radiation of 18 to 55 krad intensity. The irradiated material was inoculated on Czapek - Do4 and malt agar media.

Progress - Several mutants were obtained, one of which had delayed sporulation characteristics, both on artificial media and cassava paste extrudates.

SUPPORTED BY University of Ife - Nigeria

9.0025, MICROORGANISMS IN THE RUMEN AND THEIR ROLE IN NUTRITION
A.A. ADEGBOLA, (NL.360.0006)

Objective - To isolate and characterize rumen microorganisms with respect to their role in the nutrition of ruminants.

Approach - Facultative and strictly anaerobic microorganisms in the rumen of goats and cattle have been isolated and cultivated for further studies. Of particular interest will be the cellulolytic bacteria, whose physiology will be studied.

Progress - The total count of viable rumen bacteria have been determined by two different methods. Counts range from 3.5 to 8.1 x 10 to the 8th power/ml for goats and 5.4 to 7.2 x 10 to the 8th power/ml for cattle.

SUPPORTED BY University of Ife - Nigeria

9.0026, THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NIGERIA GRASS-LAND ASSOCIATIONS
A.A. ADEGBOLA, (NL.360.0007)

Objective - To study rootin habits of selected grass species, movement of ions in the root environment and nutrient requirement of the selected grasses.

Approach - Labelled N and P were applied at different depths in the root zone of Northern Gamba grass. Uptake of each element was measured.

Progress - Increase in dry matter yield was due mainly to N. greatest absorption of P32 came from the 7.5 cm depth of application. Recovery of added P was very low.

SUPPORTED BY University of Ife - Nigeria

9.0027, EFFECTS OF MANAGEMENT AND ENVIRONMENT ON GROWTH AND LAYING ABILITY OF IMPORTED COMMERCIAL STRAINS OF CHICKENS
J.O. AKINOKUN, (NL.360.0008)

Objective - To measure rate of growth and egg production of imported commercial chickens under modern management conditions.

Approach - Weight gains and egg production of two breeds of chickens in battery cages and on deep litter are being studied. Changes in performance with time will be evaluated.

Progress - Large variations among individuals of both breeds were observed. Egg production was significantly higher for both breeds in cages than on deep litter.

SUPPORTED BY University of Ife - Nigeria

9.0028, CHANGES IN THE MINERAL CONTENT OF SOIL AND FEED AS RELATED TO THE BLOCK COMPOSITION OF FARM ANIMALS
A.O. AYENI, (NL.360.0009)

Objective - To identify the nature of existing problems of mineral deficiencies and excesses and to forecast problems that could arise as a result of intensified breeding.

Approach - Blood samples of cattle from 7 farms in the Western State of Nigeria have been taken for analysis. Sampling and analysis of forage, grain and soil from the same farms will follow.

Progress - Blood samples are being analyzed and soil and plant sampling will soon begin.

SUPPORTED BY University of Ife - Nigeria
9.0029, DISEASE RESISTANCE OF LOCAL CHICKENS
J.O. AKINOKUN, (NL.360.0010)

Objective: To study the resistance of local chickens to common disease and to compare mortality rates of exotic and local breeds exposed to coccidial infections and lencoria.

Approach: Two breeds of chicken - one exotic and the other local Nigerian - will be bred in single sire pens. Day-old chicks will be housed in wire cages off the floor. Both groups will be infected with coccidial organisms, and a record of mortalities will be kept.

Progress: Suitable breeding stock are being located for the project.

SUPPORTED BY University of Ife - Nigeria

9.0030, THE USE OF DISCARDED COCOA BEAN MEAL IN LIVESTOCK FEEDING
A. ABAELU, (NL.360.0011)

Objective: To investigate methods of treating waste cocoa bean meal to reduce the theobromine content to tolerable levels for livestock without unduly altering the protein composition.

Approach: Various methods of treating discarded cocoa bean meal include hot water extraction, dilute alkali treatment and boiling in water. Economics of promising procedures will be studied, and changes in the chemical composition of the product will be followed. Feeding trials using swine will be used to evaluate the nutritive value and digestibility of the product.

Progress: Preliminary results indicate that hot water extraction can reduce the theobromine content of cocoa bean meal to tolerable levels for swine. Changes in protein content are being investigated.

SUPPORTED BY University of Ife - Nigeria

9.0031, EVALUATION OF CROP RESIDUES, INDUSTRIAL WASTE PRODUCTS AND SILAGE ON THE PERFORMANCE OF BEEF CATTLE
S.A. ADEYANJU, (NL.360.0012)

Objective: To determine the effect of various feed supplements and silage on the performance of beef cattle.

Approach: Feed lot trials using the Mdama breed of beef cattle will be used to study the performance of these animals when fed different levels of brewers, waste, rice bran, molasses and silage.

Progress: Data on availability of industrial wastes are being collected and samples are being analysed in the laboratory.

SUPPORTED BY University of Ife - Nigeria

9.0032, THE PRODUCTIVE POTENTIAL OF LOCAL BREEDS OF PIGS IN THE WESTERN STATE OF NIGERIA
J.O. ILORI, (NL.360.0013)

Objective: To compare nutrient requirements of local breeds of pigs in comparison with exotic breeds and to cross breed local pigs with exotics to improve desirable characteristics.

Approach: Records of performance of local pigs under modern management methods will be kept. Animals with promising characteristics will be used as breeding stock to upgrade local swine and for cross breeding with exotic breeds.

Progress: Local pigs are being procured.

SUPPORTED BY University of Ife - Nigeria

9.0033, THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS
A.A. ADEMOSUN, (NL.360.0014)

Objective: To investigate the potential of rice bran, molasses and brewers' waste as supplemental feeds for sheep and goats.

Approach: Rice bran molasses and brewers' waste will be fed in different amounts to sheep and goats in replacement of grain feeds. The performance of the animals will be evaluated.

Progress: Materials are being collected and analyzed in the laboratory.

SUPPORTED BY University of Ife - Nigeria

9.0034, STUDY OF MARKET STRUCTURE AND ORGANIZATION WITH SPECIAL REFERENCE TO THE BUYING ARRANGEMENTS OF FOOD CONTRACTORS FOR INSTITUTIONS
C.O. ILORI, (NL.360.0015)

Objective: To study the extent to which large purchases of foodstuffs, particularly of institutional buyers, have affected the structure of markets for farm food products.

Approach: Use of questionnaires to survey institutions and food contractors.

Progress: A preliminary survey of institutions has been conducted with a view to selecting samples of food contractors and institutions for interview.

SUPPORTED BY University of Ife - Nigeria

9.0035, THE IMMIGRANT FARMERS OF YORUBALAND - A STUDY IN FOREST-SAVANNA RELATIONSHIPS
C.O. ILORI, (NL.360.0016)

Objective: To study the varied economic opportunities, including the introduction of new crops like cocoa, which have accelerated the pace of migration from the savanna to the forest area of the Southwestern part of Nigeria.

Approach: Interviews of 1500 to 2000 migrant farmers.

Progress: A preliminary survey of the southern forest area has been conducted with a view to locating settlements which have migrant farmers in significant numbers. The settlements so identified have been mapped and have been used as a basis for the population from which a sample of 56 settlements have been drawn.

SUPPORTED BY University of Ife - Nigeria

9.0036, MEASUREMENT OF REAL WAGES AND INCOMES IN WESTERN STATE AGRICULTURE
J.N. ABAELU, (NL.360.0017)

Objective: To measure labour productivity under different farming systems, identify the mode of payment of wages quantitatively, determine the relationship between labor productivity and real wages and to determine the capacity of different farming systems to meet politically acceptable minimum wage rates.

Approach: Field survey of four study villages.

SUPPORTED BY University of Ife - Nigeria

9.0037, AGRICULTURAL CREDIT THROUGH COOPERATIVES IN WESTERN NIGERIA
C.A. OSINTOGUN, (NL.360.0018)

Objective: To evaluate the present system of credit administration in rural cooperatives, study investment of funds and analyze the factors influencing membership support in rural credit societies.

SUPPORTED BY University of Ife - Nigeria
Approach: Field interviews.

SUPPORTED BY University of Ife - Nigeria

9.0038, IMPROVEMENT OF PEPPERS (Piper nigrum)
J.D. FRANCKOWIAK, (NI.360.0019)
Objective: To develop sweet and hot varieties of pepper with good fruit size, some resistance to virus and good yield.
Approach: Selection in the field and breeding.
Progress: Preliminary screening for virus reaction indicates that all introduced varieties are susceptible to the pepper viruses found in Nigeria. Local varieties appeared to be resistant to at least one virus. Many breeding lines have not stabilized for hot taste character.

SUPPORTED BY University of Ife - Nigeria

9.0039, INHERITANCE STUDIES IN COWPEA (Vigna unguiculata)
J.D. FRANCKOWIAK, (NI.360.0020)
Objective: To study the inheritance patterns of cowpea which affect disease reactions, seed and pod characteristics and agronomic traits as a preliminary step in a cowpea improvement program.
Approach: Observation of characteristics in greenhouse and field. Isolation of characteristics and by selective breeding.
Progress: Three genes affecting seed coat color pattern were found to be inherited as monogenic recessives. Two genes which produce black, tan or red seed coat colors are inherited as monogenic dominants. A monogenic recessive which causes dilution of the anthocyanin pigment of seeds, flowers and stems and modifies expression of the Holstein and Watson genes was observed in material desired from a local cowpea variety. At least four genes which produce resistance to anthracnose have been isolated.

SUPPORTED BY University of Ife - Nigeria

9.0040, EFFECTS OF TIME OF APPLICATION OF NITROGEN ON YIELD & OTHER GROWTH CHARACTERISTICS OF UPLAND RICE & RESPONSE OF UPLAND RICE TO PHOSPHORUS
B.E. ONOCHIE, (NI.360.0021)
Objective: To determine the response of three varieties of upland rice to timing of nitrogen application and to applications of phosphorus.
Approach: Nitrogen was applied two weeks after germination, late tillering and booting stages.
Progress: Two varieties produced the highest grain yields, panicle weight and panicle to straw ratio when nitrogen was applied at the booting stage. The third variety attained highest levels or applications made at late tillering. No response to phosphorus was obtained; there was a highly significant variety x time interaction.

SUPPORTED BY University of Ife - Nigeria

9.0041, THE INFLUENCE OF PLANTING DATE AND FERTILITY LEVEL ON THE PRODUCTION OF SEED YAMS FROM CUT SETTS
B.E. ONOCHIE, (NI.360.0022)
Objective: To determine the optimum time of planting yam setts to obtain seed yams for the next cropping season and to determine the effect of fertilizer on the growth of yams emerging from yam setts of different sizes.
Approach: A factorial experiment employing three planting dates, two sett sizes and two rates of fertilizer.
Progress: There was a significant sett size x fertilizer interaction, but the interaction between planting date and fertilizer was not significant.

SUPPORTED BY University of Ife - Nigeria

9.0042, YAM STORAGE TRIAL
B.E. ONOCHIE, (NI.360.0023)
Objective: To determine the influence of varying levels of N, P, K and micronutrients applied as fertilizers to yam on their storage quality.
Approach: Losses through soft rot were measured after six months of storage.
Progress: Without fertilizer, there was a 48% loss due to soft rot during six months of storage. Nitrogen applications increased soft rot; P, K and micronutrients had little effect.

SUPPORTED BY University of Ife - Nigeria

9.0043, SOME PHYSIOLOGICAL ASPECTS OF YAM PRODUCTION
I.C. ONWUEME, (NI.360.0024)
Objective: To study the physiological aspects of yam yields with a view to devising better cultural practices to improve the farmers' production.
Approach: Yam sprouting is earlier and more vigorous for setts taken from the head than for setts from other parts of the tuber. The yam sprout appears to originate and differentiate from a deep-seated meristematic region.

SUPPORTED BY University of Ife - Nigeria

9.0044, POPULATION DYNAMICS OF PLANT PARASITIC NEMATODES IN CULTIVATED SOIL
J.O. AMOSU, (NI.360.0025)
Objective: To determine the kinds and numbers of plant parasitic nematodes in established eight-year crop rotations.
Progress: Laboratory equipment is being assembled for identification of nematodes.

SUPPORTED BY University of Ife - Nigeria

9.0045, INVESTIGATION AND IMPROVEMENT OF NIGERIAN SEED MELON PRODUCTION
I.C. ONWUEME, (NI.360.0026)
Objective: To determine the yield potential of Nigerian seed melons and to develop optimum agronomic practices.
Approach: Study optimum time of planting, spacing, fertilizer requirements and methods of application. Pollination and seed setting characteristics will be investigated.

SUPPORTED BY University of Ife - Nigeria

9.0046, SOCIO-AGRO-ECONOMIC SURVEY OF SOME SELECTED VILLAGES IN IFE DIVISION
H.A. OLUWASANMI, (NI.360.0027)
Objective: To examine agricultural patterns, land use, land tenure and health needs of selected villages in Ife division and then plan a rural development program for selected areas.
Approach: Interviews with 300 persons in 9 villages.
Progress: Data collection has been completed and the results are being processed. Technical assistance programs will follow.

SUPPORTED BY University of Ife - Nigeria
9.0047, DEVELOPMENT OF A LOW COST INCUBATOR FOR LOCAL USE
J.B. ADEYERI, (NI.360.0028)

Objective: To develop a low cost incubator for local use and to find the heating method and type of construction best suited to use in rural areas.

SUPPORTED BY University of Ife - Nigeria

9.0048, SOIL CHEMICAL AND PHYSICAL CHANGES UNDER CONTINUOUS CULTIVATION
E.E. SCHULTE, (NI.360.0029)

Objective: To investigate whether high crop yields can be maintained with generous application of fertilizer under continuous cropping and to study changes in the physical and chemical properties of the soil with time.

Approach: Maize, yams and cassava are planted in rotation in a N (3 levels) x P (3 levels) x K (3 levels) x M (2 levels) factorial experiment, where M is a mixture of Mg, sand micronutrients. Yields, soil nutrient states, soil bulk density, moisture capacity and water infiltration rate are measured at each harvest.

Progress: After four years of cropping, yields are increasing slightly, but water infiltration rate has decreased appreciably.

SUPPORTED BY University of Ife - Nigeria

9.0049, EVALUATION OF NITROGEN FERTILIZERS
A.O. OBI, (NI.360.0030)

Objective: To evaluate the effect of different nitrogen carriers on soil acidification and crop yield.

Approach: Urea, ammonium sulphate and nitrochalk are applied at different rates to field plots. Yields, nutrient removal and soil pH are measured at each harvest.

Progress: Urea depressed soil pH half as much as ammonium sulphate. No significant changes in pH occurred with nitrochalks.

SUPPORTED BY University of Ife - Nigeria

9.0050, RIVER OBUBA-OPA WATERSHED PROJECT - RUN OFF AND EROSION STUDIES
G.E. WILKINSON, (NI.360.0031)

Objective: To evaluate the effects of modern methods of cultivation on soil degradation and erosion.

Approach: Use artificial watersheds with both natural and artificial ground cover. Measure rainfall, runoff and erosional losses.

Progress: Raindrop impact is the principal force involved in soil erosion. When this force was absent, running water caused very little soil loss.

SUPPORTED BY University of Ife - Nigeria

9.0051, THE SULPHUR AND ZINC STATUS OF SOILS OF THE WESTERN STATE OF NIGERIA
E.E. SCHULTE, (NI.360.0032)

Objective: To determine the extent of sulphur and zinc deficiencies in soils of the Western State of Nigeria and to relate these deficiencies to soil properties.

Approach: Maize was grown in 106 soil samples collected at random from the Western State. Response to added Zn and S was measured in the greenhouse. Uptake of Zn and S will be correlated with soil tests, organic matter, pH and clay content, using multiple regression analysis.

SUPPORTED BY University of Ife - Nigeria

9.0052, DESIGN AND DEVELOPMENT OF A TRACTOR AND RELATED IMPLEMENTS FOR LOCAL MANUFACTURE
G.A. MAKANJUOLA, (NI.360.0033)

Objective: To design and construct a 15 horsepower, four wheel tractor and some matching field and processing equipment suitable for local manufacture.

To modify some existing field and processing equipment to match the tractor.

Progress: Application has been made for patent rights for a chain differential unit for the tractor and the equipment is under construction.

SUPPORTED BY University of Ife - Nigeria

9.0053, THE USE OF MASS MEDIA AS A MEANS OF COMMUNICATION BY EXTENSION WORKERS WITH THE FARMERS OF THE WESTERN STATE OF NIGERIA
J.A. EFIONAYI, (NI.360.0034)

Objective: To determine the channels of communication by which farmers receive information on cropping programmes and the impact of mass media on recommended farming practices.

Approach: Field interviews.

SUPPORTED BY University of Ife - Nigeria

9.0054, THE DESIGN, TESTING AND DEVELOPMENT OF A MACHINE FOR SHELLING MELON SEEDS AND EXTRACTING MELON SEED OIL
G.A. MAKANJUOLA, (NI.360.0035)

Objective: To develop mechanical devices for shelling melon seeds and expressing the seed oil.

Approach: The characteristics of melon seeds have been studied and construction of a prototype sheller has begun.

SUPPORTED BY University of Ife - Nigeria

9.0055, GENESIS OF SOME REPRESENTATIVE SOILS OF THE DESIRED SAVANNA REGION
A.G. OJANUGA, (NI.360.0036)

Objective: To study the pedogenic processes differentiating soils in this region and compare the processes with those occurring in the forest region.

Approach: Physical, chemical and petrographic analysis of soil profiles.

SUPPORTED BY University of Ife - Nigeria

9.0056, INVESTIGATION OF THE INFLUENCE OF CLIMATE ON SOIL MORPHOLOGY AND SOIL DISTRIBUTION IN THE METAMORPHIC REGIONS OF NIGERIA
A.G. OJANUGA, (NI.360.0037)

Objective: To study the effect of climate as a soil forming factor on soil morphology and soil distribution in Western Nigeria.

Approach: Analysis of soil profiles from different climatic zones.

SUPPORTED BY University of Ife - Nigeria
9.0057, MALT PRODUCTION FROM LOCAL GRAINS
J.A. DINA, (N1.550.0001)

Objective: Imports of malt amount to millions of pounds annually. Success in this product would result in considerable savings.

Approach: Local cereals namely sorghum, millet and experimentally grown barley are being germinated under varying conditions and subsequently evaluated for malting efficiency. Enzyme kinetics being investigated.

Progress: No significant trend established yet.

SUPPORTED BY Federal Inst. of Ind. Research - Nigeria

9.0058, SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES
H.M. JOSEPH, (N1.550.0002)

Objective: An effort to accomplish total utilization of the cassava plant and to produce a high quality low cost staple food. Yeast has been grown successfully on cassava waste and has been added to gari.

Approach: Cultivation of Candida utilis on cassava peels in a laboratory glass fermenter. Incorporation of yeast into gari (cassava product).

Economic and technological feasibility of integrating both processes of yeast production and gari production.

Progress: Pilot plant production is being organized. 5 percent yeast incorporation into gari is organoleptically acceptable.

SUPPORTED BY Federal Inst. of Ind. Research - Nigeria

9.0059, DEVELOPMENT OF COMPOSITE FLOUR FROM NIGERIAN FOODS
T. SHAMBE, (N1.550.0003)

Objective: Large quantities of wheat are imported. This project hopes to save foreign exchange by developing a substitute. A satisfactory formula has been developed.

Approach: Experimental baking trials with derived formula. Acceptability testing with local bakeries as well as bread consumers. Economic feasibility studies.

SUPPORTED BY Federal Inst. of Ind. Research - Nigeria

9.0060, COMMERCIAL PRODUCTION OF SOY-OGI AND GARI
B. AMODU, (N1.550.0004)

Objective: Staple foods are low in protein. This project attempts to increase the protein content of gari with added protein concentrate.

Approach: Rat feeding tests for protein efficiency and toxicants.

SUPPORTED BY Federal Inst. of Ind. Research - Nigeria

9.0061, BIOLOGICAL EVALUATION OF PROTEIN ENRICHED FOOD
A.B. ONIWINDE, (N1.550.0005)

This project tries to establish that the high protein foods produced here are biologically acceptable. No harmful effects have been detected.

SUPPORTED BY Federal Inst. of Ind. Research - Nigeria

9.0062, FOREST TREES SPECIES TRIALS IN MOIST FOREST
G.O. DADA, (N1.150.0001)

OBJECTIVES: (a) To enhance the number of economic tree species which are fast growing and are suitable for reforestation work. (b) To determine the comparative performance of potential timber crop species in pure stands and to obtain information on their silvicultural characteristics.

APPROACH: Small replicated plots at close spacing have been used to determine the climatic and edaphic suitability of exotic and indigenous species: usually four replications of plots each of twenty-five trees at a four foot spacing. Growth plots are used to determine the behaviour in closed stands, and relative growth rates of potential timber crop species in plots of 2 ch. x 2 ch. with a usual planting spacing of 6 feet by 6 feet. Trial sites are distributed to cover broadly the range of climate and soil types in the high forest zone.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0063, FOREST TREES ESTABLISHMENT TRIALS
G.O. DADA, (N1.150.0002)

OBJECTIVES: To compare: (a) the results of using different types of nursery stock on establishment and growth in reforestation. (b) the effect of different cultural treatments and spacings on canopy closure.

APPROACH: Investigations were initiated in 1966 with small trials comparing establishment and growth for standard bags (10 inches by 2 1/2 inches by 2 1/2 inches) miniature bags (5 inches by 3 inches), and stumps of Cedrela odorata, Cordia alliodora, Nauclea diderrichii, Terminalia ivorenisis and Terminalia superba. Results indicate that height growth and survival of seedlings grown in miniature bags compare favourably with standard bags and are better than results from stumps. Line mixtures of Cedrela odorata with Eucalyptus torelliana, Gmelina arborea and Nauclea diderrichii have been instituted of which Nauclea was best except on shallow soils. Direct sowing of Gmelina arborea was started in 1968 and 1969 and results have been very encouraging.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0064, SILVICULTURE - THINNING AND SPACING TRIALS
R.G. LOWE, (N1.150.0003)

Objectives: To determine the effect of controllable environment and silviculture treatment on growth of tree crop species.
Approach: Work has started on spacing and thinning trials of Tectona grandis and on spacing trials of Gmelina arborea, Nauclea diderrichii and Terminalia ivorensis. Investigations are located in the West and Mid-West States. Assessments and observations to continue in existing trials and to be extended to spacing trials of Terminalia superba and thinning trials of Gmelina arborea. Analysis is to be continued on the electronic computer.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.00665, REGENERATION OF NATURAL MOIST FOREST
R.G. LOWE, (NL.150.0004)
OBJECTIVES: To study the regeneration and development of seedlings of economic species in natural moist forest, and to develop methods for promoting their establishment and growth.

APPROACH: Treatments have been either pre- or post-exploitation and have comprised various degrees of poisoning of unwanted trees with arsenite, climber cutting, removal of herbs and competing thicket.

RESULTS: After several years of research in the high forest, results indicate that the rate of regeneration is slow. For linear quarter chain sampling, it is found that about 25 per cent of the quadrats are stocked, and that well under half of this regeneration belongs to fast growing, relatively valuable species. Only twelve per cent of quadrats contain trees with much chance of eventually forming part of the final crop. Seeding growth is slow, and no seedlings achieved heights exceeding fifteen feet in ten years. Progress in regenerating the natural forest is unlikely, without a better understanding of the behaviour and growth characteristics of the various species.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.0066, IMPROVEMENT OF THE TIMBER POTENTIAL OF NATURAL MOIST FOREST
R.G. LOWE, (NL.150.0005)
OBJECTIVES: (a) To estimate the potential timber productivity of the natural forests; (b) To investigate the effect of periodic exploitation on the felling cycle of the high forest trees; (c) To investigate methods of hastening the growth and yield of potential final crop trees.

APPROACH: An attempt is being made to determine the residual content and also the regrowth of exploited untreated forest, one chain/one quarter chain linear sampling is being conducted through both research plots and state managed areas. Permanent lines are demarcated, and about ten per cent of one square mile compartments is randomly sampled.

Trees of selected species are assessed for their position in the canopy, girth, condition of the bole; the percentage defectiveness, crown characteristics and creeper infestation. Trees are selected for increment measurement to permit stand projection studies.

Experimental plots date from 1952 and range across the Western, Mid-Western and Eastern States of Nigeria.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.0067, ENRICHMENT OF NATURAL MOIST FOREST
R.G. LOWE, (NL.150.0006)
OBJECTIVES: To investigate possible methods of enriching natural forest by low density planting and sowing.

APPROACH AND RESULTS: Attempts at sowing have more or less failed, mainly owing to depredations by vermin. Line planting has given good survival. Costs do not greatly exceed those for natural regeneration operations, but growth rates may be less than a half of those which may be expected in Taungya plantations. The method has many of the disadvantages of T.S.S. (natural regeneration system). Experimental plantings exist in the Western, Mid-Western and Eastern States and date from 1952.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.0068, PREPARATION OF VOLUME TABLES FOR THE MAIN TIMBER CROP SPECIES
J.O. ABAYOMI, (NL.150.0007)
OBJECTIVES: (a) To construct volume tables for each of the following species: teak, Gmelina, Terminalia, Triplochiton and Nauclea. (b) to determine by means of regression techniques the necessary variables for construction of volume tables for the species above. (c) to relate table volumes to merchantable volume output. (d) to produce provisional volume tables for species for which no volume table has yet been prepared.

APPROACH: Analysis of data already collected and the collection of further measurements as needed. Maximum use will be made of electronic computer facilities.

RESULTS: A provisional local volume table has been prepared for teak in Gbambi, Olokemeji and Akilla in Technical Note No. 32. Sample tree measurements have been carried out in different areas on Tectona grandis, Gmelina arborea, Terminalia ivorensis and Nauclea diderrichii.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.0069, CONSTRUCTION OF GROWTH AND YIELD TABLES FOR EVEN-AGED TREE CROPS
J.O. ABAYOMI, (NL.150.0008)
OBJECTIVES: For each of the following species: Gmelina arborea, Nauclea diderrichii, Tectona grandis, Terminalia ivorensis and Triplochiton scleroxylon. (a) To obtain preliminary yield data for the geographical range under which the particular crop is grown. (b) To correlate growth and yield with site conditions, and to determine site quality classes. (c) To produce yield tables.

APPROACH: A total of 34 permanent sample plots had been laid down by 1966 in pure plantations. The plots have received various thinning treatments and have undergone periodic measurements. Nine of the permanent sample plots were reassessed in 1970-71. Since 1966 thirty- seven more sample plots were laid down in various plantations established between 1949 and 1965.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

9.0070, IMPROVEMENT OF POTTING MIXTURE IN FOREST NURSERIES
B.S. ONWELUZO, (NL.150.0009)
OBJECTIVES: (a) To investigate the mineral requirements of seedlings of major plantation species. (b) To develop and improve a cheap and universal potting mixture for Nigerian forest nurseries.

APPROACH: (1) Review of the existing potting medium of the major nurseries in the high forest area of Nigeria. (2) Nutrition experiments will continue on tree seedlings and to determine the deficiencies in the existing potting medium. (3) Experiments to correct the deficiencies and make prescriptions on the requirements of a cheap, effective and well balanced suitable potting medium.

RESULTS: Preliminary work began in 1969 on the mineral requirements of the seedlings of Gmelina arbores and Terminalia superba. Report on this work is being written.

SUPPORTED BY
Forest Res. Inst. of Nigeria - Ibadan

125
NIGERIA

9.0071, SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE
S.J. EKAETE, (NL.150.0010)

Objectives: (a) To study the physical and chemical properties of infertile forest plantation soils with a view to correcting the soil conditions. (b) To discover the effect of liming and application of fertilizers on young trees in different soil types. (c) To study the seasonal dynamics of moisture and its effect on forest plantation soils.

Approach: Inspection tour of reforestation areas in the high forest zone to mark out the infertile soils. Sampling and analysis with a view to setting up experiments to study percolation and subsequent leaching and how they influence tree growth on forest soils.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0072, EFFECT OF FOREST PLANTATION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES
B.S. ONWELUZO, (NL.150.0011)

Objectives: (a) To determine the effect of the various cultural treatments on soil physical and chemical properties. (b) To study the changes in major nutrients of plantation soils throughout. (c) To study the effect of a tree species on soil physical and chemical properties. (d) To study and compare the changes in soil characteristics occurring under different tree species in both the same location and other locations.

Approach: (1) Sampling and analysis of soils from new taungya farms at the start of the farm and at the start of any cultural operation. (2) Work will continue on the Pinus caribaea stand with further sampling and full physical and chemical analyses. (3) Work will be started on Gmelina arborea stands selected in various locations in the high forest zone. (4) A study will be made of other major plantation species in the high forest zone.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0073, FOREST TREES PROVENANCE STUDIES
N. JONES, (NL.150.0012)

Objectives: To determine the qualities of various provenances of indigenous and exotic species of actual or potential value in plantations.

Approach: (1) Definition of provenance boundaries within Nigeria for indigenous species included in the programme. (2) Examination of the distribution of these species outside Nigeria with a view to importing trial quantities of seed. (3) Further quantities of seed of the exotic species are required for testing and should be imported. (The Thai/Danish Teak Improvement Centre should be asked to help with this species).

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0074, SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES
N. JONES, (NL.150.0013)

Objectives: (a) To select, centralize and preserve outstanding trees. (b) To establish clonal banks for the vegetative multiplication of selected trees. (c) To test selected trees from the most desirable provenances to assess outstanding qualities or species characters. (d) To preserve certain outstanding trees of the species at present being heavily exploited though featuring in a small way in plantation programmes.

Approach: Some trees have already been selected and clonal material from Teak, Gmelina, Nauclea and Triplochiton has been established in Ibadan. Some open pollinated seed has been collected for testing.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0075, DEVELOPMENT OF SEED STANDS AND SEED ORCHARDS
B.O. OMOYIOLA, (NL.150.0014)

Objectives: (a) To convert suitable established plantations into seed stands for the interim supply of improved seed. (b) To establish clonal seed orchards by the vegetative propagation of outstanding phenotypes. (c) To establish seed orchards from selected trees which have proved satisfactory after testing.

Approach: (i) To classify seed stands from mature plantation of species included in the various State planting programmes. (ii) To convert young plantations into clonal seed orchards when possible. (iii) To raise clonal stock for planting.

Progress: A number of small Gmelina orchards have been established in various sites in the East-Central, South-Eastern and Mid-Western States. There is one teak seed orchard in the Western State, and there are specified areas for teak seed collection in Olokemeji Forest Reserve and Akilla Forest Reserve.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0076, BREEDING FOR RESISTANCE TO VARIOUS PESTS AND DISEASES
B.O. OMOYIOLA, (NL.150.0015)

Objectives: (a) To vegetatively propagate plants found to be resistant to various insects or fungal pests with special reference to the shoot borer of the Meliaceae, Nauclea sp. (Opepe) and Terminalia sp. (Idigbo) and the gall bug of Chlorophora (Iroko). b. To find if any detected resistance is inherent.

Approach: (i) Any plant which appears resistant to the various specific pests will be collected for propagation. (ii) Vegetatively propagated material will be made available to the entomologists for testing.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0077, VEGETATIVE PROPAGATION OF SELECTED FOREST TREES
S.T. OLATOYE, (NL.150.0016)

Objectives: To determine successful methods of vegetatively propagating important plantation species.

Approach: (1) Assessment of all studies undertaken. (2) Allocation of priorities and requirements by species. (3) Examination of factors influencing the vegetative propagation of species which do not respond favourably to currently used techniques.

Progress: Quite a lot of material has been dealt with over the period 1963-70; incomplete analyses have been made. A thorough study of these results is necessary to allocate priorities.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0078, FOREST TREES SEED DORMANCY, STORAGE AND GERMINATION
S.T. OLATOYE, (NL.150.0017)

Objectives: (a) To determine whether the seeds of Triplochiton scleroxylon require any specialized treatment before or during storage. (b) To determine whether the seeds of Terminalia ivoren­sis and Tectona grandis require any special treatment to break dormancy and what are the best conditions for germination.

Approach: (1) Comprehensive tests to ascertain the best condition for germinating seeds of the species included in the pro-
gramme. (2) Examination of the quality of seeds of these species under different conditions of storage.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0079, GROWTH PATTERNS OF IMPORTANT TIMBER TREE SPECIES
D.E. IYAMABO, (NL.150.0018)

Objectives: (a) To study the patterns of height and diameter growth of important tree species. (b) To determine the beginning and end of tree growth and the length of the growth period. (c) To determine the relationship between seasonal and diurnal variation in growth and environmental factors, for example, rainfall, soil moisture, relative humidity, soil nutrient level, and also with internal moisture stress of the stem, carbohydrate content, etcetera. (d) To determine the distribution of radial growth along tree stems.

Results: Periodicity in girth and radial growth has been shown to occur in Cedrela odorata, Eucalyptus deugpta and Triplochiton scleroxylon (Obeche) around Ibadan (Western State). Seasonal variation also occurs in the starch content of Obeche in Sapoba (Mid-West State) and Mamu (East-Central State).

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0080, PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA
J.R. CHARTER, (NL.150.0019)

Objectives: To obtain accurate data on the synecology and primary productivity of a range of natural forest types in Nigeria, including: (a) mangrove; (b) swamp forest; (c) moist forest; (d) dry forest; (e) woodland; and (f) tropical steppe.

Approach: Establish and assess further sample plots in mangrove, swamp forest, dry forest, woodland and tropical steppe; reassess moist forest plots. Investigate methods of biomass measurement.

Results: Basal area per acre varies from a maximum of 160 square feet in the better-structured moist forests to 119 square feet in the poorer; total number of tree species was 108 in the semi-deciduous forest in the West rising to 160 in the evergreen types; girth increment among the commonest (lower or middle storeys) species showed a considerable range of variation within girth-classes on the same site: low values between 0.10 and 0.20 inches per annum were average. In climber tangle, canopy level was raised at two feet per annum and thorny species such as Acacia and Entada diminished in density.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0081, MAP OF THE NATURAL VEGETATION OF NIGERIA
J.R. CHARTER, (NL.150.0020)

Objectives: To describe and map the natural vegetation of Nigeria. A large amount of information on the ecology of Nigerian vegetation is now available, and there is a need for up-to-date maps and descriptions of types.

Approach: (1) Write descriptive text for forest and savanna zones. (2) Carry out further field surveys in botanically little known areas of Nigeria; correlate vegetation data with air photo mosaics and other ground surveys, prepare draft vegetation maps of the States.

Progress: A body of vegetation data has been abstracted from all sources, and a preliminary version of a map on a scale of 1:3 million has been prepared for the Nigerian National Atlas.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0082, DISTRIBUTION PATTERNS OF YOUNG ECONOMIC TREE SPECIES AND THEIR CORRELATION WITH ENVIRONMENTAL FACTORS
O.T. OKUSANYA, (NL.150.0021)

Objectives: (a) To determine quantitatively, the pattern of distribution of seedlings and saplings of economic tree species and the factors which are responsible for the distribution. (b) To determine the type of association between the species. (c) To study the effect of environmental factors on the growth of selected species.

Approach: Within permanent sample plots in the moist forest, suitable methods of pattern and co-variance analysis would be applied to the seedlings and saplings of the economic tree species encountered in the plots.

Sampling would be carried out over a period of years and during different seasons of the year, environmental factors to be studied would include soil depth, water table, soil moisture content, precipitation, mineral concentration, pH, et cetera.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0083, CLASSIFICATION AND DISTRIBUTION OF MOIST FOREST VEGETATION TYPES
O.T. OKUSANYA, (NL.150.0022)

Objectives: (a) To classify the vegetation into types which could be of use in determining silvicultural treatments. (b) To compile distribution maps of Nigerian trees of economic importance.

Approach: (1) Collection of adequate data from several sample plots in the existing forest reserves and classify using suitable methods of ordination analysis. Particular attention will be paid to those areas near the boundaries of the existing vegetation map. (2) Employing mechanically-sorted cards, preparation of an index from distribution data from botanical and silvicultural records and other sources. Compilation of distribution maps of species where data are adequate.

Progress: (a) This is a new project. (b) A record system of punched index cards employing the Nigerian map grid has been devised; and available distribution data abstracted from records.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0084, FLORA OF NIGERIA
Z.O. GBILE, (NL.150.0023)

Objectives: Production of an illustrated flora of as many genera of vascular plants as possible, written in simple terms for readers who are not specifically trained in Botany.

Progress: Work started in 1957, Nigerian Trees Volumes I and II and the section on Grasses have been published. The section on Cyperaceae is now being drafted by J. C. Lowe and D. P. Stanfield. Work is in progress on the Malvaceae.

Since preliminary studies on the genus Sida (Malvaceae) are already in progress, the section on Malvaceae will be taken up in the Herbarium. The studies will be based on existing data and freshly collected materials.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0085, COMPILATION OF VERNACULAR NAMES OF NIGERIAN PLANTS
Z.O. GBILE, (NL.150.0024)

Objectives: To serve as useful aids to Chemists, Pharmacologists, etcetera, who are particularly interested in the use of Nigerian plants.
Progress: Status: all available data obtainable on all the families represented in the Forest Herbarium have been compiled. A first draft is under preparation.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0086, CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES
M.A. ODEYINDE, (NI.150.0025)

Objectives: (a) Survey of disease incidence on different plantation tree species. (b) Studies of physical properties of teak soils to find out any correlation between disease incidence and soil conditions. (c) Natural control method.

Certain plantation tree species, for example Tectona grandis, Gmelina arborea and Terminalia ivorensis, are susceptible to root diseases. A survey made in 1966 revealed a 15-20 per cent loss in one teak plantation. The situation is definitely worse now than before and requires prompt attention to mitigate incidence and spread.

Progress: Work on chemical control methods was initiated in 1966. Tillex has been tried at two per cent against root rot disease in Ibadan, Kabba, Idah and Oturkpo areas.

Work on pre-treatment of site before planting was initiated in 1967. A new plot was also laid out in 1970.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0087, BIOLOGY OF CAUSAL ORGANISMS OF ROOT ROT OF PLANTATION TIMBER SPECIES
M.A. ODEYINDE, (NI.150.0026)

Objectives: (a) Collection and identification of root rot pathogens. (b) Culturing and preservation of cultures of the pathogens. (c) Establishment of pathogenicity, mode of infection and spread.

Approach: It is planned to make cultures both from diseased trees and fructifications for cross reference, to inoculate healthy trees with associated pathogens and to study mode of infection and spread of the pathogens.

Progress: Some fructifications already collected and identified.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0088, FUNGAL DISEASE OF SEEDS AND SEEDLINGS
M.A. ODEYINDE, (NI.150.0027)

Objectives: (a) To survey the fungal flora of viable forest tree seeds. (b) To continue the survey to seedling stage. (c) To determine probable relationship between fungal presence and seedling health.

Germination losses in the nursery reach between 5-25 per cent in some species.

The discovery of relationship between fungal presence and seed health will go a long way in minimizing seed wastage since it will then be possible to find appropriate control measures.

Approach: (1) Testing for seed viability. (2) Assaying fungal flora on fresh and stored seeds and very young seedlings. (3) Assessing importance of seed-borne fungi with relevance to seed and seedling health.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0089, ESTABLISHMENT OF PINE MYCORRHIZAS
M.A. ODEYINDE, (NI.150.0028)

Objectives: To obtain suitable fungi as mycorrhizal partners for pines.

Pine seedlings survive and grow best when mycorrhizas are established on their roots. Because of the envisaged importance of pines in the economy of the country this project is necessary to assure minimum expenditure on pine establishment.

Approach: It is planned to collect fructifications of basidiomycetous fungi known to form mycorrhizal association and use these in different forms to inoculate seedling roots.

Progress: This is transferred from the Silviculture Section where work was initiated on how to obtain satisfactory strains of mycorrhiza fungi.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0090, SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES AND IN TREE PLANTATIONS IN NIGERIA
M.O. AKAMBI, (NI.150.0029)

Objectives: (a) To establish in Ibadan a representative collection of forest insects of nurseries and plantations in Nigeria, to be used as a reference collection for research and teaching. (b) To spot outbreak of new insect pests or the spread of existing ones and devise appropriate control measures.

Approach: Collections to be made throughout the year on all indigenous and exotic tree species in Nigeria; setting, mounting and storage of insect pests collected; identification and final preservation.

Progress: Insects numbering about 6,000 dry specimens made up of about 385 species, 95 families and eight others have been collected and preserved. Some of these have been identified and others are being identified.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0091, SURVEY AND CONTROL OF INSECT PESTS ON TIMBER
M.O. AKAMBI, (NI.150.0030)

Objectives: (a) To establish in Ibadan, a representative collection of insect pests of timber in Nigeria, to be used as a reference collection. (b) To device appropriate means of control.

Approach: Collection, setting, mounting, storage of insect pests and breeding out materials from log materials collected - with particular emphasis on control.

Progress: Some insects mainly beetles, have been identified and preserved; others have been sent to United Kingdom for identification where local identification was difficult or impossible.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0092, TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE
M.O. AKAMBI, (NI.150.0031)

Objectives: (a) To determine the species of mahogany shoot borers important in Nigeria, their respective distribution, parasites and host range. (b) To explore the possibility of an economic chemical control in nurseries and plantations. (c) To study the possibility of increasing the resistance of some species of mahogany, especially Khaya, to shoot borer attack by selective breeding.

Approach: (1) Collection of shoots, stems, fruits, flowers (and the associated Hypsipyla) of Meliaceae in different parts of the country throughout the year to determine the exact taxonomic position. (2) Field and laboratory experiments.

Progress: (a) Hypsipyla known to be an important economic pest in Nigeria; more than one species known to be involved and results of the involvement of shoot, stem, wood, flower and fruit...
borders already published. (b) This insect problem is an international one involving most mahogany growing countries.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0093, STUDY OF BIOLOGY AND CONTROL OF BORERS
M.C. AKANBI, (N1.150.0032)

Objective: Study of the biology and control of Orygmosphora medio-feveta (the Opepe shoot borer), Tridesmodes remiculata (the shoot borer of Terminalia ivorensis) and Anapha venata the defoliator of Obeche.

To conduct a comprehensive survey, and study in detail the biology and ecology of these pests in order to find possible economic control methods.

Approach: Survey, collection, field and laboratory studies which provide requisite data required for defining pertinent control measures.

Progress: Preliminary investigations have shown that all the insects involved are of importance and some results have been published.

Preliminary observation has shown that Anapha venata attack may adversely influence certain physiological aspects of the host plant, namely, flowering and fruiting cycles. It is thus worthwhile to curb the activities of these insects.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0094, INSECT PESTS ON FLOWERS, SEEDS AND SEEDLING OF FOREST TREES
M.O. AKANBI, (N1.150.0033)

Objectives: To survey and study the relationships and influences of insects on seed production and germination.

Since the availability of seeds is a vital prerequisite to the current expansion programmes of a forestation as well as the introduction of exotics into Nigerian forestry, it is pertinent to give due attention to the supply of seeds. Insect activities in relation with flowers, seeds and seed viability have been known for ages to be of sizeable proportion. Thus, in order to produce and keep healthy seeds (both of indigenous and exotic species) to meet set targets in a forestation programme, the insect problems, amongst others, must be given proper attention, and desired solutions found.

Approach: (1) Survey and collection of seed insects with full attention given to detailed studies of potentially dangerous seed insects, in order to find methods for their control. (2) Quarantine activities to be continued.

Progress: A relatively new project. Report of preliminary investigation of the insects on flowers and fruits of some mahogany species has been published.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0095, STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES
S.A. GIWA, (N1.150.0034)

Objectives: (a) To examine and record on card keys, the anatomical features of the timber; to study the wood characteristics and to collate relevant data for each species. (b) To determine the mechanical and physical properties by tests on small clear specimens. (c) To assess the amenability to treatment with waterborne preservatives, and the resistance of treated and untreated wood to attack by fungi and insects. (d) To determine kiln drying schedules, air drying characteristics and related properties. (e) To evaluate machining and wood working properties.

Progress: This is a continuing project which started in 1961/62. Thirty-four species have been tested and the results of completed investigations have been published.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0096, STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS
S.A. GIWA, (N1.150.0035)

Objectives: (a) To study the anatomical features and to determine the mechanical and physical properties, the amenability to preservative treatments, the drying characteristics and wood working properties of plantation grown timbers. (b) To determine the potential of plantation grown timbers for wood-based industries.

Progress: This is a new project.

Work will start with the following species: Tectona grandis, Gmelina arborea, Terminalia ivorensis, Triplochiton scleroxylon, Nauclea diderrichii.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0097, THE PERFORMANCE OF TIMBER JOINTS AND FASTENINGS FOR INDUSTRIAL APPLICATION
A.J. COMBEN, (N1.150.0036)

Objectives: (a) To investigate the strength and suitability of timber connecting devices, with a view to encouraging the wider application in construction of the most efficient types. (b) To derive working loads in respect to species and connecting media.

The methods currently used are largely traditional and there is much scope for the introduction of more efficient and economical devices for joining wooden members together.

Approach: Tests will be carried out on joints made with nails, bolts, metal connecting devices of special types and adhesives.

Progress: Tests have been completed on joints made in Opepe using locally manufactured and imported split ring connectors; a report is being prepared. Tests are currently being undertaken on proprietary plate connector with integral teeth.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0098, FABRICATION AND TESTING OF TIMBER STRUCTURES AND COMPONENTS
A.J. COMBEN, (N1.150.0037)

Objectives: (a) To promote the more efficient and economical use of timber and plywood, and its wider application in building and construction in Nigeria. (b) To make available to engineers, architects and industrial users information relating to the use of timber in building and construction.

Approach: (1) Fabrication of timber and composite timber/plywood components and structures and glued laminated members in order to demonstrate the uses of timber and plywood in construction. (2) Mechanical testing of the various units to study the performance and to achieve improvements in design, manufacture, etc. (3) Preparation of a for a draft Code of Practice relating to the use of timber in construction.

Progress: The Timber Engineering Laboratory constructed of timber and plywood and assembled by nailing has now been completed. This is in itself, a demonstration building.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

NIGERIA
9.0099, NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES
A.J. COMBEN, (NI.150.0038)
Objectives: (a) To determine the suitability of Nigerian grown timbers for transmission poles and to promote the wider use of suitable species. (b) To provide data on which standard specification can be based.

There is a considerable and increasing demand in Nigeria for wooden poles for transmission purposes. For many years, they were imported but now suitable species are available from plantations within the country.

Approach: (1) Determination of the strength, drying and preservation properties of poles. (2) Revision and amendment of the Nigerian Standard Specification for wood poles (1965) and the inclusion of acceptable pole species.

Progress: Tests have been completed on Opepe (Nauclea diderrichii) and teak (Tectona grandis). Both species have been found suitable.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0100, CONVERSION STUDIES ON A HORIZONTAL BANDSAW
B.O. ONI, (NI.150.0039)
Objectives: (a) To assess problems associated with log conversion using a C.D.4 bandsaw, and to evaluate the quality of the sawn products. (b) To determine the most satisfactory sawing conditions and techniques.

Any improvement in lumber quality will contribute towards the more efficient and wider utilization of such abundant species.

Approach: Investigations will be carried out on local logs. The timber will be converted, using standard techniques and the effect of saw blade variables such as tooth shape and 'set' will be assessed.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0101, NIGERIAN TIMBERS FOR SPORTS GOODS
B.O. ONI, (NI.150.0040)
Objectives: To determine and demonstrate the suitability of Nigerian grown wood for the manufacture of sports goods.

Many wooden and partly wooden sports goods are imported into the country. Nigeria has several wood species which could be used as substitutes.

Progress: Billiard cues have been made to standard specification using species with the requisite properties such as Holoptelia grandis. Comments have been requested from various users to whom they were supplied. A report is to be prepared.

Work is to be carried out on the suitability of some species for the making of cricket bats.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0102, SURVEY OF WOOD DENSITY VARIATION OF SOME NIGERIAN TREE CROPS
B.A. OLAADAMS, (NI.150.0041)
Objectives: To investigate the variation in density of certain plantation species grown on different sites.

Density is an important characteristic influencing wood quality; it is frequently inheritable and susceptible to genetic improvement and therefore of importance in tree breeding for superior quality timber.

It is also directly related to pulping yields, closely correlated with strength and indicative of certain other properties.

Wood specimens will be taken at pre-determined positions from selected trees on given sites by increment core borers or by other means. Density determinations will be made; in addition, fibre characteristics will be examined, moisture contents determined and girth measurements taken.

The following species will be considered: Nauclea diderrichii, Terminalia ivorensis, Triplochiton scleroxylon, Gmelina arborea, Tectona grandis.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0103, CELLULOSE CONTENT OF NIGERIAN TIMBERS
S.A. GIWA, (NI.150.0042)
Objectives: To determine the proportion of cellulose in various Nigerian timbers.

The determination of the cellulose content of these species will provide a preliminary indication of their pulpwod quality.

Approach: Determination of the percentage of cellulose in Nigerian woods, especially plantation species.

The following species will be considered: Gmelina arborea, Triplochiton scleroxylon, Terminalia ivorensis.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0104, THE SUITABILITY OF NIGERIAN TIMBERS FOR RAILWAY SLEEPERS
S.A. GIWA, (NI.150.0043)
Objectives: (a) To determine the relative suitability of certain timbers for use as railway sleepers. (b) To compile a list of acceptable species.

Wooden railway sleepers are widely used in Nigeria and they have advantages over steel and concrete.

Approach: Treatability with preservatives and strength tests will be made on certain species which are considered likely to be suitable.

Progress: A survey of wooden sleepers in service, to determine sources and nature of deterioration has been completed. Deterioration was found to be due mainly to biological agents, drying and subsequent shrinkage, mechanical action and burning.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0105, SOLAR AND AIR DRYING OF TIMBER
E.O. ADEMILUYI, (NI.150.0044)
OBJECTIVES: To develop a simple, inexpensive but efficient method of drying sawnwood in Nigeria. Thousands of cubic metres of wood are wasted annually, because seasoning is not carried out or is inadequate. The capital expenditure involved in the construction of conventional drying kilns is beyond the reach of local sawmillers, and a relatively inexpensive means of drying timber is required.

APPROACH: (1) Determination of the efficiency of a solar kiln in drying timber in the humid forest zone. (2) Comparison of solar drying and air seasoning on the basis of drying time, running cost and quality of lumber dried.

PROGRESS: An experimental solar drying kiln has been built in the laboratory, and is now being further developed. A preliminary report is to be prepared on the following species that have been tested. Lagos mahogany, Iroko, Obeche, dry zone mahogany, Holoptelia grandis and Cola gigantea.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan
9.0106, SURVEY OF THE MOISTURE CONTENT OF WOOD IN SERVICE IN NIGERIA

E.O. ADEMILUYI, (NI.150.0045)

Objectives: (a) To investigate the periodic variations in equilibrium moisture content of wood in use under varying exposure conditions. (b) To establish the moisture content to which wood should be dried before use, in specific areas of Nigeria.

Shrinkage or swelling of timber inevitably occurs, and troubles frequently result if timber does not have appropriate moisture content when it is put into use.

It is necessary therefore to obtain data relating to the equilibrium moisture content of wood in different geographical locations and under various exposure conditions, so that timber can be dried accordingly, if such troubles are to be minimized.

Approach: A preliminary survey will be made in the Ibadan area, and extended later to other parts of the country.

The following species will be tested in the first instance: Opepe, Lagos Mahogany, Obeche.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

GAMBARI EXPERIMENTAL STATION

Ibadan

9.0107, INTRODUCTION AND ESTABLISHMENT OF COCOA GERMPLASM

J.O. SANWO, (NI.091.0001)

Objective: To introduce and establish cocoa germplasm noted for specific characteristics, such as, high yield, desirable commercial qualities, black pod resistance, CSSV tolerance or resistance, vegetative vigour, etc.

Approach: Collection and evaluation of both bud-wood and seeds and assessment under different environmental conditions at different locations.

Progress: Preliminary evaluations of internanay, interparinary, interequitos hybrids introduced from Trinidad are being made; preliminary evaluation of 10 introduced progenies from Wageningen was also made.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0108, CYTOGENETIC STUDIES IN COCOA

V.J. JACOB, (NI.091.0002)

Objective: To develop cytological techniques for studying meiotic and meiotic stages in cocoa. Detailed studies on self-incompatibility system with a view to overcoming it in cacao cultivars and interspecific specific hybridization in Theobroma in order to introduce desirable characters from wild species into cacao.

Approach: Squashing, smearing and microtome sectioning for cytological studies; controlled hand pollinations with various modifications for self incompatibility studies and interspecific hybridization.

Progress: Cytological techniques are being standardized; suitable methods were developed for producing inbred progenies from self incompatible cultivars of cacao. Interspecific hybridization is in progress. Unilateral incompatibility was observed among the species.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

NIGERIA

9.0109, DIALELLE CROSSING PROGRAMME IN CACAO

V.J. JACOB, (NI.091.0003)

Objective: To produce a large number of genotypes by combining 34 desirable selections in all possible combinations and to make preliminary evaluation of the progenies for yield, establishment ability and disease resistance.

Approach: Establishment of 15 plant progeny rows at different locations.

Progress: Preliminary evaluation of 106 crosses for compatibility, growth establishment and precocity in production has been made.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0110, BREEDING FOR ESTABLISHMENT ABILITY AND DROUGHT RESISTANCE IN CACAO

V.J. JACOB, (NI.091.0004)

Objective: To develop cacao varieties with high degree of drought resistance or establishment ability for marginal areas.

Approach: Field trials (establishment ability trials) involving many progenies in different ecological zones. Evaluation of percentage survival after the first two dry seasons, canopy score, trunk diameter, percentage journquetting and precocity in production.

Progress: Fifteen progenies which are called CRIN. The establishment of ability elite progenies were selected from these trials.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0111, BREEDING FOR BLACKPOD RESISTANCE IN CACAO

V.J. JACOB, (NI.091.0005)

Objective: Development of Cacao varieties and cultivars resistant to blackpod (Phytophthora pod rot) disease.

Approach: Field trials and screening at nursery stages for root-resistance. Screening by pod inoculation technique.

Progress: First selections include 6 clones, (2 possible resistant, 2 partial escapers and 2 escapers). Many genotypes from F2 Amazon populations are selected for blackpod resistance. Screening methods for both seedlings and pods are being developed.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0112, BREEDING COCOA FOR HIGH YIELD AND DESIRABLE COMMERCIAL QUALITIES

V.J. JACOB, (NI.091.0006)

Objective: To develop varieties with high yield potential and desirable commercial qualities.

Approach: Establishment of yield trials involving general purpose varieties and progenies and the assessment of yield components and quality factors.

Progress: Methods for the assessment of yield components and quality factors were standarized. Field trials are in progress involving CRIN elites, Trinidad (internanay, interparinary and inter-equitos) progenies, F3 Amazon and Amelonado and other promising progenies.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0113, BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO

V.J. JACOB, (NI.091.0007)

Objective: Production of varieties resistant or tolerant to C.S.S.V.
Approach: Diallel crossing and top crossing methods; screening progenies at seed, seedling and adult tree stages: both nursery and field screening techniques are to be developed.

Progress: Screening techniques (nursery and field) are being standardized. Top crossing and diallel crossing are in progress.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0115, STUDIES ON VARIOUS YIELD FACTORS IN COCOA
V.J. JACOB, (NI.091.0010)
Objective: To study the contribution of various yield factors (components) and to determine how these factors are affected by seasonal variations.

Approach: Weekly and monthly pod treatment involving major varieties and cultivars. Both wet and dry weight methods are being employed.

Progress: LD/50 values for both cacao and kola seeds and vegetative buds have been worked out.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0116, GERMINATION AND GROWTH STUDIES IN COCOA
O.A. ODEGBARO, (NI.091.0011)
Objective: To study the critical factors aiding germination and growth of cocoa.

Progress: Standard germination practice has been established. Growth analysis of Amazon and Amelonado have been compared. Results of other analysis are helping to elucidate the establishment and potentials of cocoa seedlings.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0117, INCREASING COCOA YIELDS BY PHYSIO-AGRONOMIC TECHNIQUES
G.A. ASHIRU, (NI.091.0012)
Objective: To increase the yield of cocoa beans per acre.

Approach: Prevention or reduction of cherelle wilt in cocoa. Improved methods of pruning and harvesting cocoa; development of twin stemmed in cocoa for early and better yield/acre.

Progress: Information to date showed that biological cherelle wilt can be reduced but not the physiological wilt. A 20% wilt reduction increases yield by up to 40%.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0118, STUDIES ON FIELD ESTABLISHMENT OF COCOA
O.A. ODEGBARO, (NI.091.0013)
Objective: To find best and most economic methods of planting and managing cacao trees for best yields.

Approach: Various trials on spacing, establishment and propagation techniques, best type of shade plants, light requirements of cocoa etc.

Progress: Standard techniques already exist for planting and establishing cocoa. Light requirements are still being studied.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0119, STUDIES ON TREE CROP REHABILITATION
O.A. ODEGBARO, (NI.091.0014)
Objective: To find the best ways of replacing old cacao and kola trees, diseased/insect damaged trees or old variety with improved type.

Approach: Various techniques including planting young ones under old mature trees, budding and grafting improved material on old or insect damaged coppiced trees.

Progress: The methods of planting young ones under the old trees and budding/grafting improved materials on coppiced trees have been established.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0120, WEED STUDIES IN TREE CROPS
A. KOMOLAFE, (NI.091.0015)
Objective: To identify problem weeds in tree crops and find best methods of control.

Approach: (1) Survey and identification of weeds; (2) Ecology of weeds; (3) Cultural control: slashing, ringweeding, row weeding, mulching, growing legumes. (4) Chemical control using various types of selective herbicides.

Progress: Over 160 weed species have been identified but few have been observed to constitute problems. Studies are in progress on weed ecology. Experiments are in progress on cultural and chemical weed control.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0121, COCOA FERTILIZER TRIALS
T.I. OMOTOSHO, (NI.091.0016)
Objective: To establish the fertilizer requirements for cocoa.

Approach: NPK factorial trials on mature Amelonado and Amazon cocoa.

Progress: Fertilizer recommendations already exist for Amelonado Cocoa. Cocoa responds well to N & P on most of the cocoa growing soils. Ca & K contents appear adequate.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0122, SOIL PHOSPHORUS STUDIES
T.I. OMOTOSHO, (NI.091.0017)
Objective: To investigate the fate of inorganic P added to cocoa growing soils in relation to the phosphorus nutrition of cocoa.

Approach: P analyses of samples taken from different horizons of profiles dug in plots receiving various levels of P application.

Progress: Preliminary results on the rate, form and location of P fixation in some soils have been obtained. Further work is in progress.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan
9.0123, STUDIES ON SOIL ORGANIC MATTER
T.I. OMOTOSHO, (N.I.091.0018)
Objective: To evaluate the contribution of soil organic matter to cocoa nutrition.
Approach: Estimation of soil organic P, organic C, total nitrogen and organic sulphur in several cocoa growing soils. Relationship between these components and organic P will be statistically defined.
Progress: These components have all been found to be significantly correlated with organic P. Further work in progress.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0124, MICRONUTRIENTS IN TREE CROP NUTRITION
N.E. EGBE, (N.I.091.0019)
Objective: To see whether irregular and low yields of cacao, kola and coffee can be corrected by micronutrient applications.
Approach: Identification of micronutrient deficiency symptoms; soil and leaf analyses. Soil and foliar application of various rates of micronutrients.
Progress: Deficiency symptoms of boron, zinc, and iron have been identified and corrected in cacao, kola and coffee.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0125, ROOT STUDIES ON COCOA, CASHEW AND KOLA
J.A. FALADE, (N.I.091.0020)
Objective: To study rooting patterns of cocoa, cashew and kola and show how they are affected by soil properties, environmental conditions and cultural practices.
Approach: Plants are grown in containers or in the field. Roots are estimated by either excavation, digging profile pits or using root observation. Chambers for in situ studies.
Progress: Just started.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0126, STUDIES ON THE EPIDEMIOLOGY OF PHYTOPHTHORA PALMIVORA
A.A. ADEBAYO, (N.I.091.0021)
Objective: To provide information on factors which affect the resting stages, initiation and spread of the disease with a view to attacking the pathogen at the most vulnerable period in its life cycle.
Approach: A detailed study of the role of the canopy, flower cushions, roots, unharvested pods and heaps of discarded pods in the survival of the pathogen over the dry season. Spread of the pathogen in establishing disease during the rainy season.
Progress: There are indications that bark cankers which develop from unharvested pods and cacao roots in heavily littered plantations serve as ready source of inoculum for new infections after the dry season. More results on other factors affecting the survival of the pathogen are being compiled.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0127, BIOLOGY AND PHYSIOLOGY OF PHYTOPHTHORA PALMIVORA
A.A. ADEBAYO, (N.I.091.0022)
Objective: To elucidate the factors affecting the parasitic action of Phytophthora palmivora.
Approach: The effect of carbon source, carbon/nitrogen ratios and organic amendments on the survival of propagules of P. palmivora and how the relative growth rates and net assimilation of the host affect the establishment, virulence and the evolution of strains of P. palmivora are being investigated.
Progress: Isolates of P. palmivora which differ in virulence have been found while the growth of pathogen has been found to be influenced by changes in the biochemical and physiological activities of the host tissue.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0128, FIELD CONTROL OF PHYTOPHTHORA PALMIVORA ON COCOA
G. FILANI, (N.I.091.0023)
Objective: To reduce the incidence and occurrence of Black-pod disease of cocoa by fungicidal spray.
Approach: 1) Spraying of different fungicidal formulations in the field, including Bordeaux mixture as the standard. 2) The use of wettable or oil based fungicides; or the incorporation of stickers and wetters in conventional fungicides. 3) Soil spraying with a view to controlling the phase of the life cycle of the fungus occurring in the soil. 4) A combination of spraying and sanitation practices - including shade reduction.
Progress: Standard routine spray recommendations are available; improvements are expected from work in progress.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0129, THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT
M.O. ADEGBOLA, (N.I.091.0024)
Objective: To determine the identity of the virus pathogen, host reaction to infection, the ecology of vectors and the most efficient and economical method of control.
Approach: 1) Symptomatology and effects of virus infection on host varieties; 2) relationship between isolates of virus, number of infecting strains and degree of pathogenicity; 3) sources of inoculum potential and methods of their limitation; 4) the ecology and biology of the insect vector in relation to prevention of spread.
Progress: The complex nature of the infecting virus is now recognized and the adverse effects on trees of different ages are progressively being studied as a long term project. The efficiencies of the various species of the insect vectors are being ascertained. Physical characteristics of isolates/strains of the pathogen are being established with the aids of serological techniques and electron microscopy. Efficiencies of recognized wild hosts as sources of inoculum potential are being investigated.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0130, BIO-ECOLOGY OF THE COCOA MIRID
W.E. EJIOLOU, (N.I.091.0025)
Objective: To obtain biocological information as a basis for planning control strategies.
Approach: 1) Spatial and regional distribution of mirids on cacao trees of different varieties. (2) Factors affecting fecundity of mirids. (3) Seasonal variation in sex ratio in relation to mortality and life cycle. (4) Characteristics of mirid populations in farms of different ages and cacao varieties, a comparative study.
Progress: (a) Mirids are patchily distributed in farms. (b) Mirids are locally distributed preferably at branch unions and angles between pods and trunks. (c) Fecundity varies with individuals; type of food etc. (d) No seasonal variation in sex ratio which is approximately 1:1. (e) Mirid populations in young farms tend to decrease at a faster rate during post-peak phase in early dry season.
NIGERIA

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0131, CONTROL OF MIRIDS ON COCOA
W.E. EGUAGIE, (N1.091.0026)
Objective: To select suitable insecticide(s), alternative to Gamma-BHC for control of Sahlbergella singularis Haglund (Heteroptera).
Approach: Potential miticides are tried in the field on (a) small scale, (b) large scale, and (c) for side effects and taint.
Progress: About 13, 5 and 4 insecticides were tried under categories a, b, and c above between 1969 and 1972. Three have been selected from (a) to be tested in (b). Two have been selected from (b) to be tested in (c). Two have been selected from (c) as being possible alternatives to BHC. Testing continues.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0132, BATHYCOELIA THALASSINA (HETEROPTERA) ON CACAO
W.E. EGUAGIE, (N1.091.0027)
Objective: To understand abundance of B. thalassina on cacao and its economic significance.
Approach: (1) Geographical distribution on varieties of cacao in Nigeria. (2) Population census of all stages of the insect on selected cacao plots at regular intervals. (3) Identification and assessment of importance of natural enemies of B. thalassina.
Progress: (a) B. thalassina occurred in most cacao-growing localities of Lagos, Western, Mid-Western, Kwarra and East Central States. (b) About 25 percent of Amazon and 5 percent of Amelonado farms were infested. (c) B. thalassina population shows two peaks corresponding to those of fruiting each year. (d) Nymphs and adults are parasitised by Tachinid fly.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0133, COLLECTION AND ESTABLISHMENT OF KOLA GERMPLASM
L.K. OPEKE, (N1.091.0028)
Objective: To assemble desirable Kola clones from West Africa - its home of origin - and to describe and evaluate them for future improvement programmes.
Approach: Kola groves in the West African Kola belt will be explored and selections of both Cola nitida and C. acuminata will be made on the basis of desirable tree size, male/female flower ratio, nut characteristics and yield. These selections will be further characterized and evaluated after establishing them in germplasm collections.
Progress: About 56 trees have already been selected and established. These are all C. nitida. More will be selected soon from preliminary results being obtained.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0134, CYTGENETIC STUDIES IN KOLA
V.J. JACOB, (N1.091.0029)
Objective: To study self incompatibility mechanism and genetic sterility due to interspecific hybridization.
Approach: Squashing, smearing and microtome methods for cytological studies; controlled hand-pollinations with various modifications for incompatibility studies and interspecific hybridization of C. nitida and C. acuminata. Pollen fertility of the hybrids assessed through stainability and in vitro culture.
Progress: Incompatibility mechanism has been identified; performances of interspecific hybrids is being studied.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0135, BREEDING FOR SUPERIOR GENOTYPES OF COLA NITIDA AND COLA ACUMINATA
V.J. JACOB, (N1.091.0030)
Objective: To develop general purpose varieties with high yield and desirable nut characteristics.
Approach: Variety and progeny trials at different locations involving 'Labochi white' 'Agege Red' and Moor Plantation pink varieties.
Progress: Field trials are in progress.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0136, DIALLEL CROSSING PROGRAMME IN KOLA
V.J. JACOB, (N1.091.0031)
Objective: To produce a large number of progenies involving all the available selections and to make preliminary identification and evaluation of promising genotypes.
Approach: Establishment of progeny rows in different ecological zones and assessment of vegetative growth, flowering pattern and precocity.
Progress: A number of progenies were identified as vigorous, precocious and with favorable flower ratios and nut characteristics.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0137, STUDIES ON VARIOUS YIELD AND QUALITY FACTORS IN KOLA
V.J. JACOB, (N1.091.0032)
Objective: To study the yield components, yield potential and nut characteristics of Kola selections, progenies and clones.
Approach: Both open pollinated and hand pollinated fruits are being used in the assessment. Effect of age, location and season on yield components and chemical composition of nuts, especially caffeine content, is being studied.
Progress: Production potential, in terms of numbers of nuts per tree and nut weight, of most of the selections has already been assessed.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0138, STUDIES ON GERMINATION, GROWTH AND ESTABLISHMENT OF KOLA
B. IBIKUNLE, (N1.091.0033)
Objective: (1) To study seed dormancy and factors affecting germination and growth of seedlings and clones. (2) To study various methods of kola establishment.
Approach: Field trials and nursery experiments involving vegetative growth measurements by dry weight methods. Spacing trials, use of cover crops, study of various pruning techniques.
Progress: Methods have been developed to break seed dormancy in Cola nitida and to increase the speed as well as percentage of seed germination. Establishment trials are in progress.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0139, STUDIES ON FLOWERING AND POD PRODUCTION IN KOLA (C. NITIDA)
G.A. ASHIRU, (N1.091.0034)
Objective: To study the development of floral abnormality in kola, and to correlate flower production pattern with yield.
Approach: Laboratory studies on pollen germination and growth. Application of growth chemicals to mature plants to

134
change flower production patterns as well as male to female sex ratio.

Progress: Abnormalities observed in flower germination and growth offer possible explanations for incompatibility in kola. Applications of chemicals at the right dosage and time led to simultaneous production of a desirable proportion of female to male flowers.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0140, VEGETATIVE PROPAGATION OF KOLA
G.A. ASHIRU, (N1.091.0035)
Objective: (1) To develop suitable and economic methods for the vegetative propagation of kola selection. (2) To study the periodicity in rooting, budding marcotting and grafting success.
Approach: Use of concrete rooting bins and simple improvised low cost rooting bins; hormonal treatments.
Progress: Standard techniques have been developed for the propagation of kola selections by rooting, budding and grafting. Marcotting is still in progress.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0141, KOLA NUTRITION PROJECT
N.E. EGBE, (N1.091.0036)
Objective: To study the nutritional requirements of kola.
Approach: Soil and leaf analyses from kola groves as indications of nutrient levels. Factorial fertilizer experiments to establish macro- and micro-nutrient requirements for establishment, growth and production.
Progress: No statistically significant responses to NPK fertilizer application have been obtained yet.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0142, DISEASES OF KOLA IN NIGERIA
A.A. ADEBAYO, (N1.091.0037)
Objective: To investigate the role of diseases in kola productivity and establish appropriate control measures.
Approach: Studies on the epidemiology and control of Fomes root diseases in particular and others in general.
Progress: Fomes infection was found to be least, after 5 years on the field, where seedlings are planted in clear-felled furrows made through otherwise undisturbed forest. Aldrex T has also been found to reduce pre-emergent rooting of kola nuts by about 50 percent.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0143, PESTS OF KOLA IN NIGERIA
S.A. ADEYEMI, (N1.091.0038)
Objective: To investigate the role of insect pests in kola productivity and establish appropriate control measures.
Approach: 1) Studies on the biology and control of the kola nut weevil. 2) Studies on the biology and control of the kola stem borer. 3) Studies on the role of insects in kola pollination.
Progress: Studies on bionomics of the kola weevil are in progress. Some control has been achieved by soaking nuts in BHC solution and by fumigation with Phosphine.
The present size of the kola tree makes control of the stem borer difficult. An insect, Torma Kolae, is suspected to be a kola pollinator.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0144, STUDIES ON YIELD IMPROVEMENT IN COFFEE
J. WILLIAMS, (N1.091.0039)
Objective: To study the yield characteristics and components of different species, varieties and clones of coffee, especially cultivars of Coffee arabica and C. canephora.
Approach: Variety trials of C. arabica and C. canephora throughout their range of cultivation and adaptation; clonal trials of superior selections from the variety trials. Studies of cyclic bearing patterns, flowering characteristics and pollen viability; properties of fruits (incidence of pea perry, cherry: parchment: hulled conversion ratios); correlations between individual components above and yield. These are to be followed by diallel crosses between superior selections.
Progress: Results so far show that of the main C. canephora (robusta) varieties, Quillou is much higher yielding than Java; both are of similar quality. Best clones of Quillou available are C36, C96, C105, and C111. High correlation exists between growth measurements (stem girth, height, etc.) up to 30 months and future cumulative yield.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0145, COFFEE AGRONOMY PROJECT
T. OYEBADE, (N1.091.0040)
Objective: To develop suitable techniques for maintaining high yielding plants in the best field condition for production.
Approach: Study of factors like shade requirements, mulching, spacing, pruning, transplanting, weed control, as well as the general physiology of the coffee plant.
Progress: The 'Common Agobio' method of pruning appears to give the best results so far. Studies have also shown that Ethrel accelerates the onset of fruit ripening at 100 ppm. and higher.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0146, USE OF GROWTH REGULATORS IN COFFEE HUSBANDRY
T. OYEBADE, (N1.091.0041)
Objective: To improve coffee berry germination, seedling growth and berry ripening by the use of growth regulators.
Approach: (1) Soaking seeds in thiourea, ethrel and gibberellic acid prior to sowing for quicker germination and more uniform seedlings with better vigour. (2) Pre-harvest spraying of mature berries with ethrel for uniform ripening.
Progress: Berries in 10-100 ppm ethrel, 1000 ppm thiourea and 100 ppm GA. before sowing resulted in better germination. Ethrel at 100-250 ppm had been found to induce uniform ripening in coffee, and to accelerate the onset of berry ripening.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0147, COFFEE NUTRITION STUDIES
T.I. OMOTOSHO, (N1.091.0042)
Objective: To study the nutrient status and suitability of the soils in most coffee growing areas as a basis for fertilizer recommendations.
Approach: NPK factorial trial to investigate the effect of fertilizers on yield of adult coffee. Use of radioisotope techniques to study the annual pattern of nutrient absorption by coffee seedlings - an aid to determine time of fertilizer application.
Progress: Calibration of the mature coffee plot for the fertilizer trial has just been completed.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan
9.0148, DISEASES OF COFFEE IN NIGERIA
G. FILANI, (NI.091.0043)
Objective: To survey and study the various diseases of coffee in Nigeria.
Approach: Isolation, culturing and identification of the pathogenic fungi on coffee in various parts of the country. Fungicide screening for the control of coffee leaf rust, and seed borne diseases.
Progress: The major coffee pests and diseases have been listed and their damage described.
No recommendations for routine chemical control yet, but screening fungicides for leaf rust control is in progress.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0149, INSECT PESTS OF COFFEE IN NIGERIA
O. IDOWU, (NI.091.0044)
Objective: To survey and study the various pests of coffee in Nigeria.
Approach: Ecological studies on Epicampoptera and Leucoplena, the major leaf pests, and the coffee berry borer.
Progress: The major coffee pests have been listed and their damage described. Basic information is already available on the ecology of the major coffee pests.
No recommendations for routine chemical control yet.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0150, SELECTION AND BREEDING OF CASHEW FOR HIGH YIELD AND DESIRABLE NUT CHARACTERISTICS
V.J. JACOB, (NI.091.0045)
Objective: To make selections from genotypes already available in Nigeria and to use them in cashew improvement programme.
Approach: Studies on yield and cropping pattern of cashew populations at various locations in Nigeria so as to identify superior genotypes. Combine the selections in top crosses and partial diallel crosses.
Progress: Preliminary selections were made from cashew populations at IWO, ERUWA, and Upper Ogun in the Western State of Nigeria.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0151, MINERAL NUTRITION OF CASHEW
J.A. FALADE, (NI.091.0046)
Objective: To study the essential nutrient requirements of cashew.
Approach: Grow cashew trees in sand cultures of given nutrient status and analyse various parts of the tree for mineral elements. Describe deficiency and toxicity symptoms of the elements and study their inter-relationships.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0152, INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA
W.E. EGUAGIE, (NI.091.0047)
Objective: To survey and assess the relative economic importance of insects on cashew.
Approach: (1) Collection, preservation and identification of insects associated with cashew in Nigeria. (2) Definition and recognition of damage caused on cashew by pest species.
Progress: About 150 species have been identified from a survey of Western and Kwara States conducted in July - October.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

These records represent seven orders and fifty families. Major pests at the period were Analeptes trifasciata, Helopetis sp., Selenothrips rubrocinctus, and Hyalea sp.

SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0153, ECONOMICS OF PRODUCTION IN TREE CROP AGRICULTURE
O. AJIBOBO, (NI.091.0048)
Objective: To investigate long and short term relationships between modes and level of investment, cost involved and returns realised in cocoa, kola, coffee and cashew.
Approach: (1) Design and pretest of a sampling frame and questionnaire; (2) Subsequent personal interviews based on experience gathered on (1); (3) Economic and statistical analysis and interpretation of data obtained from (2).
Progress: Planning Stage.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0154, CROP UTILIZATION PROJECT
D.B. OGUJUTA, (NI.091.0049)
Objective: To find alternative uses for cocoa, kola, cashew and their by-products.
Approach: Utilization of the fat-free cocoa powder in combination with other local foodstuffs. Utilization of cocoa sweatings, kola and cashew apple for the production of pectins, jams and wines. Use of cocoa pod husk as a constituent of livestock feed, source of ash and as compost. Development of large scale extraction procedure for caffeine and dyes from kola. Extraction of butter fat from mouldy or otherwise damaged cocoa pods for possible uses. Sample manufacture of chocolate for tropical environments.
Progress: Laboratory samples of pectins, jams, wines, ash, caffeine, dye, chocolate etc., from cocoa kola are already available, but others are newly started.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

9.0155, SEED GARDEN RESEARCH PROJECT
V.J. JACOB, (NI.091.0050)
Objective: To ensure that the seed requirements of the country are met by developing suitable techniques for the establishment and effective utilization of seed orchards.
Approach: Studies on the flushing and flowering periodicity of cocoa and kola clones in relation to cutting production and hybrid seed production potentials. Studies on the nutritional requirements, layout and spacing of cocoa and kola clones in polyclonal seed orchards. Evaluation of polyclonal cocoa and kola seed orchards raised from rooted cuttings and buddings. Establishment of robusta coffee and cashew seed gardens to study their seed production potential.
Progress: New project, but techniques for establishing cocoa hybrid seed gardens are already available.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan
9.0156, SORGHUM BREEDING
D.J. ANDREWS, (NI.060.0001)

Objective: Synthesis of adapted high yielding varieties and hybrids acceptable to the consumer for the various ecological zones in the Northern States of Nigeria.

Approach: Variety introduction and screening (including the World Collection), hybridization and pedigree selection, production of hybrid parents, composite breeding (using ms7) and research into problems of variety and hybrid seed production.

Progress: Release of improved local varieties (e.g. YG 5760-3-10 (Sudan Zone); C7-4-3 (Southern Guinea Zone) in major production areas from 1962 to 1970, giving gains up to 20 percent. Dwarf varieties released in Northern Guinea Zone (e.g. "Short Kaura") from 1966 showing up to 70 percent improvement over unimproved local varieties. Experimental hybrids based on adapted seed parents now in final tests (1972) have shown 25 percent improvement on the dwarf varieties.

SUPPORTED BY Ahmadu Bello University - Zaria, Nigeria

9.0157, AGRONOMIC FACTORS INFLUENCING SORGHUM PRODUCTION
E.F. BAKER, (NI.060.0002)

Objective: To determine the fertilizer requirements, effect of planting date, population level, rotation, weeding on current and new varieties of sorghum for the various ecological zones in the Northern States of Nigeria.

Approach: Fertilizer trials are being conducted both on compounds and NPK, and time of application, to either with minor element investigations. Effects of other crops and fallows on sorghum are being assessed. Population level is included as a variable in fertilizer trials as dwarf varieties require higher plant densities for maximum yields.

Progress: Levels of N and P required on local sorghum varieties, and response areas have been determined. Residual effects of P are known. Population levels and fertilizer requirements of dwarf varieties have been partly determined.

SUPPORTED BY Ahmadu Bello University - Zaria, Nigeria

9.0158, INTERCROPPING WITH SORGHUM
J.L. PALMER, (NI.060.0003)

Objective: Determination of the factors controlling sorghum yields in intercrops and potential for improvement of the system.

Approach: Evaluation of variety differences when intercropped; effect of relative crop densities and arrangements, including those suitable for improved farming techniques.

Light penetration and nutrient uptake are increased together with growth analysis (see sorghum physiology) to determine competitive effects.

Progress: Dwarf varieties grown in the northern Guinea zone, have proved advantageous over tall varieties in crop mixtures as they offer less competition, without losing yield. At good yield levels, intercropping is still advantageous compared to sole cropping with photosensitive sorghums, or double cropping.

SUPPORTED BY Ahmadu Bello University - Zaria, Nigeria

9.0159, SORGHUM CROP PROTECTION
S.B. KING, (NI.060.0004)

Objective: To determine the level of damage, mode of attack and control measures possible on pests and diseases of both the field and stored sorghum crop in the Northern States of Nigeria.

Approach: Screening World collection, special introductions and breeding material for genetic "resistance" to shootfly (Atherigona spp.), stemborer (Busseola fusca), sorghum midge, and witchweed (Striga hermontheca), and crossing superior lines into composites for recurrent selection. Studies on the identity and mode of infection by smuts, and seedling diseases. Mass rearing of stemborers. Testing general herbicides and herbicides specifically active against Striga and methods of their application. Research is proposed on the biochemical nature of resistance to Striga.

Progress: Identification of ametryne as effective against emerged Striga, and carbaryl giving stemborer control. Formation of resistant composites (1972).

SUPPORTED BY Ahmadu Bello University - Zaria, Nigeria

INTERNATIONAL INSTITUTE OF TROPICAL AGRICULTURE
Oyo Road, P.M.B. 5320, Ibadan

9.0160, IRRIGATION SYSTEMS INVESTIGATION - HYDROLOGIC CHARACTERIZATION OF SMALL WATERSHEDS IN THE HUMID TROPICS
E.U. NWA, (NI.810.0001)

Objectives: 1. To investigate the conditions under which a given irrigation system can be beneficially used in the Humid Tropics; and to analyze the cost-benefit ratio of each system. 2. To investigate the water requirements of various crops. 3. To study the effect of land clearing on the various components of the hydrologic cycle.

Approach: Seven irrigation systems (types) will be studied under local conditions and specifications established for their applicability. Water requirements will be investigated using lysimeter. Tropical watersheds are being instrumented to collect surface and subsurface runoff, and also soil and nutrient losses.

Progress: The experiments are being planned.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0161, PEDOLOGY PROJECT
F.R. MOORMANN, (NI.810.0002)

Objectives: 1. Study of the major soils in the forest and subhumid savanna, with emphasis on West African soils. 2. Study of actual and potential capability and limitations of major West African soils, with emphasis on S. Nigerian soils. 3. Experimental land suitability classification, through the study of production-determining land qualities on toposequences (soil and groundwater) at IITA.

Progress: All phases of the Pedology subproject are on going; first results of experimental land suitability classification are in for the 1972 growing season.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria
9.0162, PHYSIOLOGY OF ROOT, TUBER CROPS AND VEGETABLES
S. SADIK, (N1.810.0003)
Objective: The objective is to gain better understanding of the physiology of the above crops, particularly cassava, yams and sweet potatoes, in order to provide relevant information to other members of the program for increasing yields quantitatively and qualitatively. On-going research has dealt so far with plant increase by means of tissue culture, production of haploid plants from another culture, anatomy and morphology of yam flowers, growth analysis of cassava through a growth season, effect of canopy structure of yam and cassava on yield. We are also dealing with storage studies on yam and seed germination of cassava and yams.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0163, PEPPER IMPROVEMENT
G.F. WILSON, (N1.810.0004)
Objective: To select and develop a pepper suitable for production in the humid tropics. Collecting sources of resistance to the various diseases that limit production of these vegetables is being done. Efforts are being made to synthesize high yielding resistant varieties.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0164, LEAFLY AND FRUIT VEGETABLE IMPROVEMENT
G.F. WILSON, (N1.810.0005)
Objective: To select and develop vegetables suitable for production in the humid tropics. Emphasis is on tomato, okra and native tropical leaf vegetables. Collecting sources of resistance to the various diseases that limit production of these vegetables is being done. Efforts are being made to synthesize high yielding disease-resistant varieties.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0165, INCORPORATION OF LEAFLY AND FRUIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS
G.F. WILSON, (N1.810.0006)
Objective: To incorporate vegetable production into farming systems developed for humid tropical areas. Emphasis is on tomato, pepper, okra and native tropical leaf vegetables.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0166, VARIETAL IMPROVEMENT (BREEDING) OF GRAIN LEGUMES
K.O. RACHIE, (N1.810.0007)
Objective: To improve the production of high quality foods from appropriate leguminous plant sources in the low, humid tropics.
Approach: a) Establish breeding, selection and world germplasm evaluation nurseries. b) Evaluate for important botanical characters, disease and pest reaction, grain quality, nutritive value and other factors. c) Take notes on promising parental stocks and select promising single plants for further evaluation and crossing. d) Select elite lines from preliminary yield testing, and advance the promising and highest-yielding entries to advanced trials. e) Evaluate the most promising and highest yielding entries from advanced trials in uniform trials in cooperating countries. f) Make a formal release of the most promising genotype(s) for breeding and production purposes.
Progress: A germplasm of approximately 4,000 entries has been assembled and evaluation of the various factors is in progress. Uniform cooperative trials have been conducted in various countries.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0167, GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS
H.C. WIEN, (N1.810.0008)
Objective: 1. Plant growth analysis of soybean and cowpea at 3 plant spacings with 2 varieties of each species. Leaf area, total dry weight and dry weight components are harvested every two weeks through the growing season. 1 planting just completed, another planned for 1973. 2. Evaluation of physiological characteristics in cowpea germplasm collection (ongoing investigation - one growing season completed). 3. Photoperiod sensitivity of cowpea and soybean genotypes - to be started in December, 1972. 4. Drought tolerance and drought avoidance of cowpea and soybean - to be started December, 1972. 5. Photosynthesis and respiration measurements on attached leaves of cowpeas under field conditions - in cooperation with U. of Nottingham, to be started April, 1973. 6. Pollen germination of cowpea - investigations to find an artificial medium for cowpea pollen germination and growth are now underway.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0168, GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS
F.E. CAVINESS, (N1.810.0009)
Objective: The identification and control of the major diseases of cowpea and soybean.
Approach: Major emphasis on identification and utilization of host plant resistance through the use of field disease nurseries in close cooperation with plant breeders. Disease incidence/yield loss studies through disease simulation, chemical control and manipulation of epidemics.
Progress: World collection of cowpea being screened for susceptibility to eight diseases. Yield loss studies made for Anthracnose and Cercospora diseases in cowpea.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0169, INSECTICIDE EVALUATIONS ON SOYBEANS - (GLYCINE MAX)
W.K. WHITNEY, (N1.810.0010)
Objective: Field-plot testing for insect control, phytotoxicity, and effects on yield.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0170, GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS
W.K. WHITNEY, (N1.810.0011)
Field studies on the relative susceptibility of several grain legumes (e.g. Cajanus cajan, Canavalia ensiformis, Glycine max, Phaseolus lunatus, P. vulgaris, Psophocarpus tetragonolobus, Vigna aures, V. mungo, V. radiatus, V. umbellata, V. unguiculata and some wild and weedy species of Vigna) to major insect pests.
Effects of insect pests are assessed in terms of damage to plants, and yield components are evaluated relative to damage.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria
9.0171, PEST CONTROL ON COWPEAS - VIGNA UNGUICALATA
W.K. WHITNEY, (NI.810.0012)
Objective: 1. Screening world collection of germplasm for resistance to insect pests (thrips, leaf beetles, Hemiptera and pod borers). 2. Insecticide evaluations (seed dressings, soil systemics and foliar sprays). Insect control, phytotoxicity and yields assessed in field trials. 3. Damage and yield loss studies related to major insect pests. 4. Cultural control studies - e.g. effects of intercropping and of weeds of pest incidence. 5. Observations on parasites and predators of cowpea pests.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0172, HARVESTING IN RELATION TO COWPEA YIELDS
D. NANGJU, (NI.810.0013)
Objective: To determine the optimum time and number of harvests for some indeterminate types of cowpeas.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0173, COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS
D. NANGJU, (NI.810.0014)
Objective: To compare the growth and yield of soybeans under conventional tillage, minimum tillage and no tillage.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0174, COWPEA AND SOYBEAN FERTILIZATION
D. NANGJU, (NI.810.0015)
Objective: To study the response of cowpeas and soybeans to varying levels of nitrogen, phosphorus, potassium and some minor elements at different soils.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0175, PLANT DENSITY ON COWPEAS AND SOYBEANS
D. NANGJU, (NI.810.0016)
Objective: To determine optimum row-spacings and plant populations of several cowpeas and soybeans differing in their growth habits, leaf size and shape and plant height at different seasons and fertilizer levels.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0176, GRAIN LEGUME PROTECTION
D. NANGJU, (NI.810.0017)
Objective: To study the use of insecticides and fungicides as seed pelleting materials.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0177, BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES
R.A. LUSE, (NI.810.0018)
Objectives: To participate in efforts to improve the nutritional qualities of edible tropical grain legumes; and to study the biochemical sequence of events in plant growth processes in large crops.
Approaches: 1. The following constituents will be screened in genetic stocks in support of plant improvement activities: a) Oil and protein - NMR and infra-red reflectance characteristics. b) Specific amino acids like methionine and cystine (and possibly tryptophan) using quick sulfur analysis; or colorimetric tests. c) Total amino acid spectrum - auto-analyzer will be available. d) Toxic principles including trypsin inhibitor, hemaglutinins, flatus factors and other by GLC or other means. e) Other proximate principles such as carbohydrates, vitamins, fatty acids, HCN and other alkaloids by appropriate means. f) Organoleptic and cooking qualities will be tested as appropriate. 2. Investigations in collaboration with plant physiologist, agronomist, pathologist and entomologist will relate to plant growth processes, nutrient uptake, pest resistance systems and other topics of mutual interest.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0178, SOIL CHEMISTRY
A.S. JUO, (NI.810.0019)
The major objective of soil chemistry research at IITA is to investigate the basic chemical properties of tropical soils and their relation to plant nutrition and crop growth. The following approaches have been made: 1. The study of surface and charge properties of tropical soils with particular references to iron, aluminum oxides and silica, their interaction with soil organic matter and with agricultural chemicals. 2. Field and laboratory investigations to compare the changes in chemical and mineralogical properties of tropical soils under bush fallow and continuous cropping; and 3. The effect of soil chemical environment and crop root development, with particular emphasis on varietal tolerance to Al toxicity in acid on tropical soils.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0179, SOIL MICROBIOLOGY
A. AYANABA, (NI.810.0020)
Objectives: (a) To study the transformations of indigenous and amended organic materials, biological activity and nutrient (N,C,S,P) release under different farming systems (traditional, modern, intergrades). (b) Collect, identify and test cowpea and soybean rhizobia against promising legumes at IITA; will also assess nitrogenase activity (by acetylene reduction technique) of tropical legumes and non-legumes. Over 100 bacteria have been isolated from nodules of Nigerian legumes for testing. (c) To study microbial degradation of pesticides and the effect of pesticides on non-target species such as nitrogen fixers, ammonifiers and nitrifiers. Emphasis will be placed on the fungicide benlate and some of the chlorinated hydrocarbon insecticides and herbicides. (d) Fertilizer studies will be on urea and sulfur-coated urea as slow release fertilizers. Effect of soil temperature and type on nitrogen release will be tested by the soil perfusion technique and also with soil cores.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0180, AGRONOMY (SYSTEMS)
J.C. MOOMAW, (NI.810.0021)
OBJECTIVES: 1. To investigate the management factors and cultural practices associated with farming systems in the humid tropics. 2. To conduct research on agronomic factors and their food crop production consequences at selected levels of technology associated with the farming systems practised in the humid tropics. 3. To do research and assist other scientists in the systems analytic approach to food crop production on the various levels of agricultural technology.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria
NIGERIA

9.0181, IMPROVEMENT OF CEREALS PRODUCTION AND MARKETING IN THE CENTRAL AFRICAN REGION
B.M. JELLEMA, (NI.810.0022)

OBJECTIVES: To develop a proposal for a coordinated approach to the improvement of production and marketing of cereals in Cameroon, Chad, CAR and Gabon.

PREPARATORY STAGE: Economist will take up residence in Yaounde in February 1973.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0182, CASSAVA BREEDING
S.K. HAHN, (NI.810.0023)

The research objectives of cassava breeding will be to produce multiple resistance by cassava mosaic, bacterial wilt (Xanthomonas manihotis) and Cercospora spp. and to produce promising varieties with higher yield in terms of dry matter per unit time and area.

Establish breeding and evaluation nurseries, raising about 100,000 seedlings from hybridization and introduction. Evaluate these, with major emphasis on resistance to the above mentioned diseases and evaluate for HCN content, starch content and quality and yield potential.

About 12,000 plants from seed were produced and evaluated for resistance to diseases and insects. Several hundred plants having high resistance to cassava mosaic disease have been produced. About 100,000 hybrid seeds for 300 cross combinations were produced.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0183, SWEET POTATO BREEDING
S.K. HAHN, (NI.810.0024)

Major emphasis will be placed on high yield, in terms of dry matter per unit time and area, resistance to sweet potato weevil and high storability.

Establish breeding and evaluation nurseries, raising about 40,000 seedlings from hybridization and introduction. Evaluate these for root characters, dry matter percentage, resistance to weevil, storability and yield potential.

High yielding clones have been produced.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0184, MECHANIZATION OF TROPICAL AGRICULTURE
W.F. LALOR, (NI.810.0025)

OBJECTIVE: To find ways in which mechanization can be profitably used in tropical agriculture.

APPROACH: It is assumed that the mechanization technology now used or formerly used in developed nations can be adapted to fill most of the needs. Farming systems will be studied to determine how mechanization can be usefully applied. Symbolic models will be synthesized and tested on actual farms at IIT A and elsewhere. Where no technology exists, design and development and research necessary for these functions will be undertaken. Research to improve tillage and traction equipment and methods will be undertaken.

PROGRESS: Project is in initial stages. A survey was done in West Africa to identify the priority requirements and project is oriented toward these priorities.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0185, SOIL CONSERVING CROPS
L.V. CROWDER, (NI.810.0026)

OBJECTIVES: 1) To collect, evaluate, select and increase seeds of forage type grasses and legumes suitable for soil conservation and soil improvement. 2) About 75 species each of grasses and legumes were accumulated and sown in September, 1971. The more promising in terms of early rapid growth and ground cover, weed competition, tolerance to diseases and insects, flowering and seed production (or ease of vegetative propagation), drought tolerance, persistence and regeneration of growth after the dry season were chosen for additional evaluation by sowing in April and in August 1972. Seeds of some were collected during the dry season of 1972. 3) The following were selected as having the greatest potential for more detailed study in cropping sequences or for soil conservation on highly erodible land: Grasses - Pennisetum purpureum, Panicum maximum, Cynodon nlemfuensis (Cynodon IB.8), C. dactylon, Melinis minutiflora, Brachiaria ruziensis, Paspalum notatum. Legumes - Stylosanthes gracilis, Centrosema pubescens, Glycine wightii, Calopogonium mucunoides, Pueraria phaseoloides, Cajanus cajan, Leucaena leucocephala.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0186, YAM BREEDING
S.K. HAHN, (NI.810.0027)

OBJECTIVES: 1. Assemble large scale germplasm from the West African countries, with major emphasis on White Yam (D. rotundata), Yellow Yam (D. cayenensis) and (D. dumentorum). 2. Conduct preliminary trials for the selection of 500 clones and assess yield potential resistance to soil borne diseases, nematodes and insects, root characters, dry matter percentage, starch content and quality, protein content, storability and propagation characteristics. 3. Select the most promising and high yielding clones and put forward to advanced yield trials.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0187, CASSAVA ENTOMOLOGY
S.R. SINGH, (NI.810.0028)

OBJECTIVES: 1. Study of insect pests of cassava and identification of damage due to various insects. 2. Field observations on varietal resistance in cassava germplasm and breeding materials to spider mites, mealy bugs and grasshoppers. 3. In cooperation with plant pathologist, develop techniques for screening cassava mosaic under both field and laboratory conditions. 4. Cassava mosaic vector relationship and host- plants.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0188, SWEET POTATO ENTOMOLOGY
S.R. SINGH, (NI.810.0029)

OBJECTIVES: 1. Study of insect pests of sweet potato and their alternative hosts. 2. Field screening of sweet potato germplasm against sweet potato weevil and identification of resistant cultivars. 3. Chemical control of sweet potato weevil, using different insecticides - easy method of insecticide application and estimation of cost benefit ratio.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0189, YAMS ENTOMOLOGY
S.R. SINGH, (NI.810.0030)

OBJECTIVE: Identification and control of field and storage pests of yams.

SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

140
9.0190, CASSAVA PATHOLOGY
E. TERRY, (NL.810.0031)
OBJECTIVES: 1. Identification of resistance in germplasm and breeding materials to cassava mosaic, bacterial wilt and Cercospora spp. 2. Develop quick and efficient field and laboratory screening techniques for the resistance to cassava mosaic, bacterial wilt, and Cercospora spp. 3. Host pathogen relationships of cassava mosaic, bacterial wilt and Cercospora spp. The effect of environment and the stability of the reaction under different ecological conditions. 4. Assess yield loss due to cassava mosaic, bacterial wilt, and Cercospora spp. 5. Cassava mosaic, vector, and plant relationship and nature of its transmission, in cooperation with entomologist. 6. Methods and economics of control of bacterial wilt.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0191, SWEET POTATO PATHOLOGY
E. TERRY, (NL.810.0032)
OBJECTIVES: 1. Evaluate germplasm and breeding materials for the resistance to viruses. 2. Identification and control of diseases of field and storage root rot.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0192, YAMS PATHOLOGY
E. TERRY, (NL.810.0033)
OBJECTIVES: 1. Evaluate germplasm and breeding materials for resistance to, and develop methods of control for, shoe-string disease, die-back, Cercospora spp. and some soil-borne diseases and nematodes. 2. Identification and control of storage rot diseases. 3. Assess yield loss due to shoe-string, die-back, Cercospora and some soil-borne diseases and nematodes.
SUPPORTED BY Internat. Inst. of Trop. Agr. - Nigeria

9.0193, WATER USE EFFICIENCY OF MAIZE IN SOME NIGERIAN SOILS
O. BABALOLA, (NL.831.0001)
The project aims at developing improved means for controlling the dynamics of soil water in the field, as a basis for the better use of soil and water resources in agriculture. The implementation of this project would contribute to increasing maize production as a result of improved water management techniques which lead to reducing water losses and a more efficient water use. Two soil series, namely Egbeda and Apomu, which have contrasting characteristics will be investigated. The physical properties of the soil profiles will be studied with special emphasis on determining the hydraulic conductivity as a function of moisture content with the aid of tensiometers and a neutron moisture meter. Using radioactive phosphorus, as assessment will be made of the extent to which the soil properties and soil moisture distribution effect the root system development of maize. The effect of certain cultural practices on the evapotranspiration by maize under well defined climatic conditions will be investigated.

ISOTOPE LABORATORY OF THE DEPARTMENT OF AGRONOMY, UNIV. OF IBADAN
Ibadan

9.0194, FISHING GEAR TRIALS
M.A. AFINOWI, (NL.191.0001)
Objective: On gear trials our objective is to compare the efficiency of coloured and uncoloured nylon gillnets.
SUPPORTED BY Federal Dept. of Fisheries - Nigeria

9.0195, FISH POPULATION STUDIES
M.A. AFINOWI, (NL.191.0002)
Objective: Our objective is to study seasonal and long-term changes in the abundance of fish and to observe the size and specific composition of catches.
SUPPORTED BY Federal Dept. of Fisheries - Nigeria

9.0196, FISH MIGRATION STUDIES
M.A. AFINOWI, (NL.191.0003)
Objective: To study the migration pattern of Alestes baremoze and A. dentex.
SUPPORTED BY Federal Dept. of Fisheries - Nigeria

LAKE CHAD RESEARCH STATION
P.O. Box 227, Maiduguri

9.0197, COLLECTION, CHARACTERIZATION AND EVALUATION OF COFFEE GERMPLASM
J. WILLIAMS, (NL.094.0001)
Objective: To catalogue and evaluate the existing C. arabica germplasm and to widen our gene base with introductions from Ethiopia, Ivory Coast, India etc.
Approach: Characters such as adaptability to our environment, fruiting habits, yield potential, resistance to disease etc. will be scored for each introduced variety and selections will be made of the source materials for future improvement. Progress: 112 varieties of C. arabica are now well established on the Mambilla Plateau Substation. 11 of these have been outstanding but final selection will be made in 3 years' time, i.e. after 5 years of fruiting.
SUPPORTED BY Cocoa Res. Inst. of Nigeria - Ibadan

MAMBILLA SUBSTATION
North Eastern State

141
9.0203, MAIZE POPULATION STUDIES
A. WILLIAMS, (NI.131.0005)
OBJECTIVE: To study the effects of different plant populations on the growth and grain yield of recommended maize varieties.
APPROACH: Systematic spacing design using populations from 10,000 to 35,000 plants per acre, three replications and three types of plant arrangements: rectangularities 3:1, 2:1 and 1:1.
PROGRESS: Late 1970 and early season 1971 trials were failures due to drought. 1972 trials put 35,000 plants per acre possible and good as regards yield and growth. Other results are being compiled.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0204, HERBICIDE SCREENING
A. WILLIAMS, (NI.131.0006)
OBJECTIVE: To compare the effects of different post-emergent herbicides in the control of weeds in upland rice fields and growth and yield of crop.
APPROACH: A randomized block design with six replications. Observation on species of weeds not controlled and degree of control achieved, by weight (fresh and dry). The project continues.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0205, ECONOMICS OF RICE PRODUCTION IN SELECTED AREAS OF NIGERIA
A. ONASANYA, (NI.131.0007)
OBJECTIVE: To determine the cost of producing rice under different methods of cultivation in different parts of the country as to determine the most economical way of producing rice.
APPROACH: Subdivision of rice into upland and swamp rice. Location of rice producing areas of the country. Use of questionnaire to cost inputs and outputs of local rice. Farms investigation begins in rice producing areas of Western State on upland rice with the hope of extending it to other parts of the country and also to swamp rice.
PROGRESS: Questionnaire already made and in May 1973 field investigation by use of questionnaires with local rice producers begins in selected areas of Western State.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0206, EVALUATION OF NUTRITIVE VALUE OF SOME LOCAL AND INTRODUCED RICE
J.O. OMUETI, (NI.131.0008)
Some local varieties of rice could be quite rich in some desirable nutrients as can be seen from a chemical analysis and this could act as a guide to breeders in the selection of parent materials for further work.
OBJECTIVE: Determination of the total protein, different classes of proteins, the carbohydrate constituents - starch, sugars, vitamins and minerals - will be carried out - both qualitatively and quantitatively.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0207, EVALUATION OF THE NUTRITIVE QUALITY OF BEANS
J.O. OMUETI, (NI.131.0009)
The objectives of the project are: (a) The assessment of utilisable energy and (b) The assessment of protein efficiency of the recommended varieties of beans from the research station.
A determination of energy balance in rats after feeding and weight gain is taken and compared with the apparent energy content in the bean as fed.

Determination of growth rate and protein efficiency of these varieties acting as the main source of protein to the rat is made.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0208, THE EFFECT OF GRASS - LEGUME MIXTURES ON HERBAGE PRODUCTION AND CHEMICAL COMPOSITION AS COMPARED WITH APPLICATION OF NITROGEN PERT

U.I. OJI, (NI.131.0010)

It may be cheaper to obtain nitrogen from a legume than from the chemical source under our conditions. Hence efforts are being made to find which legume combines best with Cynodon 188 - one of the best grasses for the Southern Nigeria. There are five treatments with 3 replications as follows: (a) Control plot of the pure unfertilized herbage, (b) Herbage fertilized with nitrogen fertilizer (75 lb.N per acre), (c) Herbage plus Stylosanthes gracilis, (d) Herbage plus Phaseolus atropurpureus, (e) Herbage plus Stylosanthes gracilis. The herbage will be harvested at two-weekly intervals after full establishment three times and quantity noted and then the material analyzed for crude protein, ash, fibre and other extract.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0209, SEED RATE TRIAL WITH UPLAND RICE

A. WILLIAMS, (NI.131.0011)

OBJECTIVE: To compare the establishment and yield of OS 6 when drilled by machine at 6 seed rates.

APPROACH: Seed rates of 10 - 60 lb/ac.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

U.U. EBONG, (NI.131.0012)

OBJECTIVE: To select outstanding varieties from the cassava national collection for the Breeding Programme.

APPROACH: Mass selection on individual plant basis of disease tolerant and high yielding varieties.

PROGRESS: Variety 53101 recommended to farmers for cultivation and use.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0211, INVESTIGATIONS OF METHODS OF BREAKING CASSAVA SEED DORMANCY AND THE EFFECT OF AGE ON CASSAVA SEED GERMINATION

E.E. UMANAH, (NI.131.0013)

OBJECTIVE: To compare methods of breaking seed dormancy of cassava and to investigate the effect of age on seed germination.

APPROACH: Collection of outcrossed seeds of various cassava varieties and the use of scarification, and heat treatments on the seeds.

PROGRESS: Wet heat treatment of seeds at 35 degrees C for two days before planting recommended.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0212, THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES

U.U. EBONG, (NI.131.0014)

OBJECTIVE: To produce mosaic resistant, high yielding, consumer acceptable cassava varieties with wide adaptability.

APPROACH: Hand pollinations of flowers of selected varieties and species; pedigree selections and back cross methods.

PROGRESS: Varieties 60444, 60447 and 60506 recommended to farmers for cultivation and use.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0213, THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES

E.E. UMANAH, (NI.131.0015)

OBJECTIVE: To estimate starch, dry matter contents and hydrogen cyanide contents of tubers of cassava varieties selected for high yields prior to final recommendation.

APPROACH: The determination of starch by specific gravity, technique and cyanide by alkaline titration.

PROGRESS: Method standardized for routine use.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0214, A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES

S.D. AGBOOLA, (NI.131.0016)

OBJECTIVE: To determine the efficiency of different pasture legumes in fixing nitrogen and their suitability for inclusion in grass/legume mixtures.

APPROACH: Involves isolating effective strains of Rhizobium with a view to inoculating legume seeds before planting in grass/legume mixtures.

PROGRESS: Highly effective Rhizobium strains for Centrosema, Pueraria, Stylosanthes, and Calopogonium, have been obtained, which increased both the total dry matter and crude protein by more than four times in each case as compared with control plants.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0215, STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA Unguiculata (L) WALP)

S.D. AGBOOLA, (NI.131.0017)

OBJECTIVE: Biology, distribution and control of the bacterial leaf blight of cowpea caused by Xanthomonas phaseoli.

APPROACH: (a) Survey of all cowpea-growing areas of Nigeria to assess distribution, (b) pathogenicity tests, (c) epidemiological studies, (d) possible control measures.

PROGRESS: Causal organism isolated and identified. Distribution mainly in the Southern parts of the country, and more severe in early season crop than in late season crop. Infection limited to patches in a field. Disease appears transmitted by insects mainly flies.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0216, THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL

S.D. AGBOOLA, (NI.131.0018)

OBJECTIVE: To study the influence of herbicides on cowpea modulation and nitrogen fixation.

APPROACH: Laboratory and greenhouse studies involving application of herbicides at field rates and studying their effects on the cowpea/Rhizobium symbiosis.
PROGRESS: In spite of the fact that Rhizobium was quite tolerant of very high doses of Simazine, Preforan and Patoran saprophytically in petri dishes, these herbicides suppressed nodulation in potted plants to varying degrees. The basis of this suppression is under investigation.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0217, BIOLOGICAL CONTROL OF THE BROWN LEAF SPOT DISEASE OF RICE USING ORGANISMS ANTAGONISTIC TO THE PATHOGEN
S.D. AGBOOLA, (NI.131.0019)

OBJECTIVE: To study the antagonism between soil bacteria and Helminthosporium oryzae with a view to the possibility of biologically controlling the brown leaf spot disease of rice.

APPROACH: Isolation of both sets of organisms from the soil and diseased rice and testing the degree of antagonism under laboratory conditions. 2nd stage: Seed inoculation/dressing with cultures of antagonistic bacteria before planting in the field.

PROGRESS: Bacillus cereus var mycoides and two other bacteria have been isolated and shown to be highly antagonistic to H. oryzae. These are being used for the 2nd stage studies.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0218, A STUDY OF THE CONTRIBUTION OF FIXED NITROGEN TO THE NUTRITION OF COWPEA (VIGNA UNGUICULATA)
S.D. AGBOOLA, (NI.131.0020)

OBJECTIVE: To study the factors affecting the effective symbioses of Rhizobium and Cowpea (Vigna unguiculata).

APPROACH: Laboratory and greenhouse inoculation studies involving dry matter determinations, distribution of fixed nitrogen within the plant (from the vegetative to the flowering and fruiting stages), and finally the proportion of fixed nitrogen appearing in the dry beans.

PROGRESS: The nodulation characteristics of the various cowpea varieties and factors affecting them are under study. Results so far have indicated that effective symbioses between the cowpea and Rhizobium depends on external and internal factors, all of which have to be taken into account in establishing the contribution of fixed nitrogen to the nitrogen nutrition of the plant.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0219, TO STUDY THE MICROBIAL CONTRIBUTION TO THE NITROGEN ECONOMY OF FALLOWS
S.D. AGBOOLA, (NI.131.0021)

OBJECTIVE: Nitrification studies under the various systems of grassland management.

APPROACH: Soils were sampled under different fallows and nitrification rate studies of the soil perfusion technique.

PROGRESS: Nitrification is generally higher under legumes than grasses. Stylosanthes is an exception to this. The process is not always suppressed in grasslands, as is the general belief, since very high rates were recorded under Panicum maximum. This phenomenon has been tied up with the release of nitrogen to the soil by the legume partner in grass/legume mixtures.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0220, STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT UTILISSIMA)
S.D. AGBOOLA, (NI.131.0022)

OBJECTIVE: Studies on the bacterial wilt of cassava caused by Xanthomonos manihoti.

PROGRESS: This study is in conjunction with the IITA, Ibadan. These are reports of occurrence from Sierra Leon, Congo Kinazana, and Nigeria. Causal organism isolated and identified after adequate pathogenicity tests. Transmission likely by insects, and infected cuttings. First report in Nigeria and the other countries. Only other place where it had been reported was Brazil.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0221, STUDIES ON THE BACTERIAL WILTS OF SOLANACEOUS VEGETABLES
S.D. AGBOOLA, (NI.131.0023)

OBJECTIVE: Studies on the bacterial wilts of solanaceous vegetables caused by Pseudomonas solanacearum.

APPROACH: (a) National survey of occurrence and severity, (b) Pathogenicity tests including host range studies, (c) Epidemiology, (d) control measures.

PROGRESS: Newly initiated program.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0222, CLASSIFICATION OF BEAN (COWPEA) VARIETIES INTO SUB-SPECIES AND GROUPS
U.U. EBONGO, (NI.131.0024)

OBJECTIVE: To classify bean (cowpea) varieties according to the key developed for the Nigerian Grain Legume Gene Bank.

APPROACH: Morphological observations will be recorded on individual plants. The varieties will be plantted in single row plots.

PROGRESS: A field key has been published and the bean varieties are classified according to the key.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0223, SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARACTERS
U.U. EBONGO, (NI.131.0025)

OBJECTIVE: To select plants with combination of desirable characters and breed improved population for release to state breeders and to farmers.

APPROACH: Some erect growing varieties have been selected for inclusion in the hybridization program. A variety, Dinner, has been recommended for eating green. Field trials of elite varieties are in progress.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0224, ZONAL BEAN (COWPEA) VARIETY TRIAL
U.U. EBONGO, (NI.131.0026)

OBJECTIVE: To determine, with the cooperation of the extension staff of the State Ministries, the average dry bean yields of the breeders' most promising bean (cowpea) varieties in the different environmental conditions in Nigeria.

APPROACH: Randomized block design with 4 replications.

PROGRESS: Some varieties have been recommended.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria
9.0225, PRODUCTION OF BEAN (COWPEA) HYBRIDS
U.U. EBONG, (NI.131.0027)

OBJECTIVE: To produce bean (Cowpea) hybrids which combine
photoperiodic neutrality, earliness, erect and semi-erect
growth habits, white, rough or cracked and brown, rough or
cracked testa with high grain yields.

APPROACH: Artificial pollination in screened houses to be
followed by field planting of hybrids for selection of desirable
progenies.

PROGRESS: Crossed seeds have been produced. Production
of the various generations is to commence soon.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0226, OBSERVATION OF OTHER EDIBLE LEGUMES
(EXCEPT BEANS) UNDER IBADAN CONDITIONS
U.U. EBONG, (NI.131.0028)

OBJECTIVE: To record the agronomic and economic charac-
ters of all edible legumes except beans (cowpea) which are
presently maintained in the Nigerian Grain Legume Gene Bank.

APPROACH: Single row plots with replicated controls.

PROGRESS: Data on some agronomic and economic charac-
ters for some varieties of soya bean, lima beans, bambara ground-
nuts, yam beans, French beans, green and yellowgram, gurd
(cluster) beans, Dolichos lablab have been collected.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0227, GENETIC VARIATIONS IN SOYA BEANS
U.U. EBONG, (NI.131.0029)

OBJECTIVE: To determine the genetic variations in the im-
portant agronomic and economic characters of soys beans under
Ibadan conditions.

APPROACH: The varieties of soya beans will be planted in
four replications and scoring for the characters will be on 20 in-
dividual plants per replication for each variety. Heritabilities of the
characters will be assessed at the end of 3 years.

PROGRESS: Data on first year planting have been collected.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0228, HYBRIDIZATION METHOD FOR SOYA BEANS
U.U. EBONG, (NI.131.0030)

OBJECTIVE: To develop efficient hybridization method for
soya beans.

APPROACH: Attempts will be made to make artificial polli-
nation by conventional methods.

PROGRESS: Preliminary studies are nearing completion on
the technique of artificial pollination in soya beans.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0229, SWEET POTATOES (IpOMeA BATATAS)
BREEDING
V.A. AZIH, (NI.131.0031)

OBJECTIVE: To breed high yielding lines of sweet potatoes
adapted to different ecological zones and to local preferences
within Nigeria.

APPROACH: Statistical assessment of local varieties, hybrids
and introduced materials in zonal trials.

PROGRESS: The breeding program has been highly ad-
versely affected by disease, insect and other agronomic problems
associated with this crop, but an Acc. 2342 has been recommended
in the Eastern States.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0230, YAM (DISCOREA SPP.) VARIETIES ASSESS-
MENT AND SELECTION FOR NIGERIA
V.A. AZIH, (NI.131.0032)

OBJECTIVE: To select most suitable yam varieties for impor-
tant yam-producing areas within the yam ecological zones in Nige-
ria.

APPROACH: Assessment of tuber yield and other desirable
agronomic and food qualities of all collections of local and intro-
duced cultivars of yams in zonal trials within Nigeria, followed by
distribution of recommended cultivars.

PROGRESS: Large collections of cultivars have been made
and are being recommended for various zones.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0231, EVALUATION OF SELECTION METHODS FOR
MAIZE
K.R. RAGHUMATHAN, (NI.131.0033)

In the existing maize improvement programs recurrent selec-
tion methods are widely used all over the world. With the initiation
of composite populations it was thought necessary to assess and
identify the most suitable method of recurrent selection method in
producing improved synthetic varieties. Three methods are under
consideration and the progenies obtained through three years of
selection are being evaluated. Besides identifying the most effi-
cient method the progenies thus obtained showing promise would
be recommended to farmers.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0232, PRODUCTION OF WHITE FLOURY MAIZE VAR-
IETIES FOR HUMAN CONSUMPTION
K.R. RAGHUMATHAN, (NI.131.0034)

White floury maize varieties are generally preferred for hu-
man consumption by way of dry grain food preparations. Attempt
is being made to evolve high yielding maize varieties from compos-
ite breeding populations by recurrent selection methods. Over the
last three years a few cycles of improved progenies have been
obtained. These are being evaluated with a view to recommend to
the farmers any of the outstanding progenies.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0233, PRODUCTION OF SHORT STEMMED HIGH
YIELDING ACCEPTABLE MAIZE VARIETIES
K.R. RAGHUMATHAN, (NI.131.0035)

Incidence of high rate of lodging has been a bottleneck in
maximizing the grain yield in maize. An attempt is being made to
convert the recommended tall growing maize varieties into short
stemmed high yielding ones by introducing the gene responsible
for brachytic plant types.

Plant progenies have been obtained through crossing and
backcrossing between the recurrent and donor parents. These
progenies are being evaluated in comparison to their parent
materials; after which such improved versions would be distributed
to farmers in place of the existing tall and lodging maize varieties.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0234, NATIONAL ZONAL MAIZE VARIETY TRIALS
A.B. OBITLANA, (NI.131.0036)

OBJECTIVE: To determine with the cooperation of the Ex-
tension staff of the State Ministries the average grain yields of the
most promising breeders' materials in the different ecological
zones in Nigeria.
Breeders' materials entered in these trials are agreed upon at
the annual Maize Breeders' Meeting (Comprising Maize Breeders
from all Nigerian and some International Institutes, Departments
and Universities). Entries are retained in these trials for at least 2
years in comparison with several local varieties and other adapted
maize materials. After the years of tests, the best performing var-
ieties (i.e.) is then released to the State Ministries of Agriculture
and farmers. Since its inception, varieties released include: NS-I, NS-S;
H-503; H- 507; DIACOL-VIS 3 (1969); BULK-3 (1971).

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0235, STUDY AND IMPROVEMENT OF LOCAL MAIZE
VARIETIES
A.B. OBJILANA, (NL.131.0037)

OBJECTIVE: The object is to collect, observe and improve by
chosen methods, the available local maize materials from the dif-
ferent maize ecologic zones for eventual release to other breeders
and for farmers use.

APPROACH: The several local maize varieties are being col-
lected from the different zonal sites for increase (by sib-mating),
observation on their characteristics and storage in the cold store.

PROGRESS: Improvement of the best local varieties per se
has been initiated using recurrent selection procedures. The se-
lected, highly performing lines would either be bulked (by diallel
crossing method) to farm synthetics or put in crosses with other
selected introduced cultivars for further improvement.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0236, RECURRENT SELECTION IN A NIGERIAN
WHITE FLOURY COMPOSITE
A.B. OBILANA, (NL.131.0038)

The aim is to subject the Nigerian Composite C (N.C.C) to
cycles of S-1 selection toward the continuous production of re-
quired synthetics.

The original composite population (Co) was planted for sel-
ing in the early season. Yield trial of the S-1 lines follows in the
next early season.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0237, IDENTIFICATION OF RACES OF PYRICULARIA
ORYZAE
V.A. AWODERU, (NL.131.0039)

To identify races of P. Orzyae virulent to promising Nigerian
rice varieties and to select rice varieties resistant to them.

This involves the inoculations of a set of differential rice varie-
ties with conidial isolates of P. oryae in the greenhouse.

Eleven races of P. Orzyae have actually been identified. Two
of these were found to be virulent to these differential varieties.

Eleven international races were also identified in Nigeria.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0238, DIURNAL AND SEASONAL PERIODICITY
OF PYRICULARIA SPORES IN AIR
V.A. AWODERU, (NL.131.0040)

To determine the variation in the spore population of Pyricu-
laria in the air in relation to the incidence of the rice blast disease
on a rice field.

Daily sampling of the air using the Hirst Spore Trap, simul-
taneously with sequential planting of some susceptible rice variety.

Climatic factors were also recorded to be able to correlate, spore
populations in air, blast disease incidence with climatic factors.

It has been established that blast disease incidence and spore
populations in the air is favored by low temperature (20-28 de-
grees), high humidity (90-100%) and high moisture.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0239, SELECTION OF RICE VARIETIES FOR RESIST-
ANCE TO THE RICE BLAST DISEASE (PYRICULARIA
ORYZAE)
V.A. AWODERU, (NL.131.0041)

To screen all the varieties in the variety collection for resist-
ance (seedling and mature blast resistance) to the Blast Disease (P.
Orzyae). (1) Selection in the internation uniform Blast nurseries-
exposes rice varieties to natural infection, (2) Greenhouse artificial
inoculation tests.

A number of Resistant Varieties have been identified. Among
them are Tjina, Peta, Tadukos, Tetep, H-H, H-5, BPI-76, IR 20
Sigadis, etc.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0240, SURVEY AND ASSESSMENT OF THE SMUT
AND BLAST DISEASES OF SUGARCANE
V.A. AWODERU, (NL.131.0042)

A survey of the occurrence of the diseases throughout the
federation. Assessment of the damage done by each of the diseases
to the case affected.

The smut disease appears to be endemic, commonly found in
the Kwara State (Bacita - Jelba). Sugarcane varieties resistant to
this disease are being selected. Complete loss of cane plots in the
case of susceptible varieties have been encountered.

Survey of the blast disease is still in progress.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0241, IDENTIFICATION OF RACES OF PUCCINIA
POLYSORA AND HELMINTHOSPORIUM MAYDIS
THAT MAY BE VIRULENT TO NCBRB
V.A. AWODERU, (NL.131.0043)

Lallamahomed and Craig (1968) had already identified 2
races of P. polysora. Craig (1971) found a race T. for H. maydis.
Maize Composite B NCBRB has been found to be resistant to the
existing races of P. polysora and H. maydis. Any susceptible reac-
tion exhibited by this maize composite NCBRB will be as indica-
tion of a new race of the fungus concerned. It is important to know
if races of H. maydis and P. polysora, capable of causing severe
damage to NCBRB, exist before these races cause severe losses in
wide spread epiphytotics.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0242, ASSESSMENT OF THE LOSS IN YIELD AT-
TRIBUTABLE TO MAIZE RUST AND MAIZE BLIGHT
V.A. AWODERU, (NL.131.0044)

This involves planting out of 10 different maize varieties that
have economic importance in breeding. Two of these are standard
varieties 033 (susceptible) and NSI (resistant) with which the
other 8 will be compared. This is being carried out in randomized
complete block design.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0243, VIRUS DISEASES OF SOYA BEAN
B.A. OKUSANYA, (NL.131.0045)

Investigations of the virus diseases of soya bean with the aim
of screening for resistant varieties.

146
Observations of soya bean plants in the field on trial sites in the Federation and the isolation and transmission studies in the glasshouse.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0244, SELECTION OF BEAN VARIETIES RESISTANT TO BEAN VIRUSES IN THE FIELD
B.A. OKUSANYA, (NI.131.0046)

Screening of bean varieties for sources of resistance to bean viruses.

Field observations in the breeder's trial sites and mechanical inoculation in the greenhouse.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0245, REDUCTION OF SUGARCANE MOSAIC VIRUS
B.A. OKUSANYA, (NI.131.0047)

To screen the varietal collection at Moor Plantation for sugarcane mosaic in order to decrease spread of the disease.

Artificial inoculation of diseased material to an indicator host plant to verify infection in the greenhouse.

This has led to reduction in the rate of spread of the disease in the past.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0246, STUDIES ON BEAN (COWPEA) VIRUS DISEASES AND THE COLLECTION AND RE-ESTABLISHMENT OF INFECTIVE CULTURES
B.A. OKUSANYA, (NI.131.0048)

To isolate viruses attacking bean plants in order to obtain working cultures for varietal resistance trials.

Field observations on bean fields, isolation and bulking of the viruses from infected plants in the greenhouse.

Work on bean viruses has been carried out in this Department, but since my assumption of duty as the virologist, no adequate records were found. Hence these investigations may have to be re-assessed and started at a reasonable point.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0247, INVESTIGATION INTO THE CAUSES OF YAM-TUBER ROT
S.K. OGUNDANA, (NI.131.0049)

Objective and Approach: The objective was to visit local farms and government demonstration and experimental plots at harvesting and during storage to evaluate types of tuber rots, characterise the different organisms responsible for the rots to see whether different organisms are responsible for rots at harvesting and during storage. Also to find out the effect of the soil mineral status on the preharvest rot. The results might suggest a means of control.

Progress: No correlations found between the soil mineral status and rot at harvesting. Organisms responsible for rot at harvesting and storage rot were the same in many cases and different in some cases.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0248, Determination of the Mode of Fungicidal Yam Tuber Protection
S.K. OGUNDANA, (NI.131.0050)

Objective: This exercise was designed to find the means of control of yam tuber rots caused by some fungi.

Approach: The effects of some selected fungicides on the germination of the spores of the pathogens as well as their effects on the growth of the pathogens were investigated in order to select the effective fungicides for yam control in storage.

Progress: Captan was effective at 20 ppm in preventing the spore germination while Benlate and Thiabendazole at 40-60 ppm were effective in preventing the growth of the pathogens. The three fungicides were therefore selected for the control of yam storage rots.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0249, Control of Yam Storage Rots
S.K. OGUNDANA, (NI.131.0051)

Objective: Three types of yam rot have been observed both at harvesting and in storage and the exercise of this study is to see how the rots occurring at the two different stages could be controlled chemically.

Approach: Yam sets for planting were pretreated with systemic fungicides, and planted; yam tubers for storage were also treated with some fungicides, as well as other promising fungicides, before storage.

Progress: Benlate and Thiabendazole (TBZ) were effective in reducing rot at harvesting; while Captan, TBZ and Benlate were also effective in reducing storage rot.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0250, Medium Term Soil Fertility Trial - Soil Productivity Restorative Powers of Medium Duration Fallowing
B. BOSE, (NI.131.0052)

Objective: A comparison of soil fertility restorative powers of two and three years' lengths of fallows comprised of selected strains of pasture grasses and legumes as measured by a subsequent test crop of maize.

Approach: A randomized block design with three replications. The main treatments consist of two and three year lengths of fallows made up of four individual grasses, viz: Pennisetum purpureum, Cynodon plectostachys, Andropogon gayanus, Panicum maximum; two legumes viz: Centrosema pubescens, and Pueraria phaseoloides and a grass plus legume mixture (Cynodon plus Centrosema). Sub-objective includes assessment of the following parameters viz: (a) Ease of establishment and eradication of species; (b) comparative response to high and low levels of nitrogenous fertilizers applied to the fallow; (c) comparative effect of the fallow species on soil pH, soil moisture retentivity, total soil nitrogen, soil organic matter, percentage base saturation, level of cationic saturation and basic plant nutrients. Test crop of maize (Zeams NS-1) will be grown for two years.

Progress: The two and three year lengths of individual fallows were ploughed in the early season of 1972. Maize crop was grown in 1972-73 cropping season. Statistically significant yield increase of grains was obtained, in early season crop, from the fallow consisting of a mixture of Cynodon plus Centrosema. This was followed closely by Centrosema fallow. All the fallows species, singly or in a mixture, gave better yield performance than control. Late season crop was affected by acute drought resulting in poor yields.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0251, Phosphate Placement Trial
R.K. PANDEY, (NI.131.0053)

Objective: To study the effect of method, rate and time of phosphorus application on the growth, chemical composition and
yield of maize and cowpeas grown under comparatively high and low rainfall areas of the Western State.

Approach: A randomized split-plot design with four replications. The treatments consist of 3 times of application, 2 rates of application using five methods of application; Time: (1) At planting; (2) 4 weeks after planting; (3) 6 weeks after planting. Rates: (1) 10 lbs P2O5/acre; (2) 20 lbs P2O5/acre.

Methods: (1) Banded on both sides; (2) Localized placement; (3) Broadcast at planting; (4) Broadcast before ridging; (5) Below seed level at planting.

Progress: No statistical differences were obtained between various methods of phosphate application with either crop at any of the sites. P2O5 application 6 weeks after planting was statistically inferior to that at planting time, or 4 weeks after planting. No significant yield difference due to application of P2O5 at 10 or 20 lbs/acre. However, P2O5 application gave increased yield in maize and cowpea crops. The sorption capacity of these soils being very low, there is no economic justification for application of phosphorus at higher rates in these soils. Neither method nor time of application had any significant yield response.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0252, BASIC SLAG AND SINGLE SUPERPHOSPHATE AS PHOSPHATIC FERTILIZERS
B. Bose, (NL.131.0054)

Objective: To investigate the comparative efficiency of basic slag and single sources of phosphatic fertilizers for the cultivation of arable crops and permanent pastures under Nigerian conditions.

Approach: A simple randomized block design with four replications. Main treatment includes five levels each of basic slag and single superphosphate at the rates of 0, 20, 40, 60 and 80 lbs P2O5 per acre applied annually. N and K are applied as basal dressing at the rates of 40 lbs N and 40 lbs K2O per acre for maize and permanent grass (Cynodon plectostachyus) and 20 lbs N/acre and 40 lbs K2O/acre for cowpeas. Each P2O5 treated plot progressively split for 'treated' and 'untreated' treatments in the succeeding years to follow the residual effect of the previous years' applications.

Progress: P2O5 treatments in either form (slag or super) gave better crop performance and yield compared to 'no' treatment. There were no significant differences between the different rates of P2O5 applied in either form. The soils being highly sandy with low phosphate sorption capacity, there is no economic justification in using higher rates of P2O5 beyond 20 lbs/acre for annual applications. At higher rates both farms appear to have good residual value. However, two year applications of slag seems to compare favourably with three year applications and superphosphate.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0253, APPLICATION OF RADIOTRACER TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS
B. Bose, (NL.131.0055)

Objective: To study the comparative efficiencies of three methods of analysis of available phosphate viz: Standard Bray and Kurtz I, Water Extraction and Radiotracer Technique in the determination of soil available phosphorus, (A-value) of soils using maize and cowpeas as test crops.

Approach: (a) Pot culture greenhouse study using 32P labelled phosphate as a standard in a sample randomized block design with 3 replications. Soils of widely variable fertility used for growing the crops under controlled conditions. (b) Standard laboratory analysis for the uptake and distribution of P by the above three methods.

Progress: Preliminary investigations indicate the superiority of radiotracer technique over the generally accepted Bray and Kurtz I method for the determination of available phosphates. The water extraction method seems to give much lower values which could not be correlated with the uptake of P in maize crops at 30 cm. and 60 cm. growth stages. Radiotracer values appear to give a better correlation.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0254, LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FUNDAMENTALLY DIFFERENT FARMING SYSTEMS
B. Bose, (NL.131.0056)

Objective: To compare the effect on soil productivity of: (a) continuous cropping; (b) four years' cropping alternating with four years' grass fallow and (c) four years' cropping alternating with four years' grass ley. Sub treatments include four levels of nitrogen fertilizer, two levels each of phosphatic and potassic fertilizers in combination with all other treatments.

Approach: A multifactorial confined field trial using Pennisetum purpureum (Elephant grass) as fallow (F1) and ley (F2) grass. Test crop is a four year cropping consisting of a 2 year cycle viz: Cassava (Manihot utilissima 53101), cowpeas (Vigna unguiculata "Prima") in the late season and Maize (Zea mays Ns-I) in the early season. Continuous cropping (F0) follows the two year cycle of above test crop uninterrupted. Fallow grass (F1) is maintained on a cutting regime of 10 weeks ("cut and leave") and ley (F2) cuttings using the same regime are fed to livestock and dung returned to the plots ("cut and remove") in proportion to herbage production.

Fertilizer applications: Annual application of four levels of nitrogenous fertilizer, viz: 0, 30, 60 and 60 (split) lbs N/acre as sulphate of ammonia. Biennial application of two levels each (0, 40 lbs/acre) of P2O5 and K2O respectively as single superphosphate and Muriate of Potash.

Special note: There had been compost application at the rate of 2 tons/acre on a sub-plot basis up until 1967 after which the practice was discontinued. Residual effect of the compost application is appreciable even five years after the last application was made.

Progress: Although originally commenced in 1962, the present 8 year cycle of the trial is reckoned to have been started in July 1966 owing to errors in fertilizer and compost applications to some plots in the earlier years. No statistical data available as yet. However, the first four years' results very effectively demonstrate the supremacy of follow ing over continuous cropping both in terms of yield performance as well as soil properties. F1 (true fallow) is much better than F2 (ley) where the initial benefits appear to be short-lived. Most striking effect however has been the continuous residual effect of compost application.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0255, RHIZOSPHERE MICROFLORA CONTRIBUTION TO PHOSPHATE DISSOLUTION
B. Bose, (NL.131.0057)

Objective: (a) To study the interrelationship of rhizosphere microflora with growth and nutrient uptake of a crop; (b) To investigate the contribution, if any, of specific microbial isolates from rhizosphere to the dissolution of insoluble inorganic phosphates and their increased availability in a growing crop.
Approach: Microbiological examination of rhizosphere and non-rhizosphere soils from a test crop grown in pot culture isolation, and cultivation of organisms capable of dissolving insoluble inorganic phosphates. Simultaneous chemical analysis of soil and plant material for phosphorus content. Eventual use of promising organisms for soil/seed inoculation.

Progress: Considerable fluctuation in bacterial population with an initial lag period seems to be tied up with the growth stages of the crop itself. 20 to 25 percent of bacterial isolates indicated effective phosphate dissolving capability as evidenced by clearing on inoculated agar medium containing precipitated inorganic phosphate. Reintroduction into soil will be taken up later in the future.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0256, PESTS OF SWEET POTATOES
M.L. JERATH, (NI.131.0058)
To study the biology and distribution of Cylas sp. and other major leaf feeding pests of sweet potatoes. Field assessment of the pest populations and extent of damage caused are being studied along with life history studies in the laboratory.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0257, SCREENING OF MAIZE GERMPLASM FOR RESISTANCE TO INSECT PESTS
M.L. JERATH, (NI.131.0059)
To screen available maize varieties for resistance to stem borers and maize aphids in the field and greenhouse at Ibadan.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0258, PESTS OF EUPATORIUM ODORATUM
M.L. JERATH, (NI.131.0060)
To rear the imported pests of Eupatorium and assess their establishment and performance in the laboratory and field. The Commonwealth Institute for Biological Control has made available Ammallo insulata collected from Trinidad for field releases in Nigeria. The insect is being reared in the laboratory.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0259, PESTS OF CITRUS
M.L. JERATH, (NI.131.0061)
To study the biology of fruit piercing moths and scale insects attacking different varieties of citrus in Nigeria.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0260, PRODUCTION OF SILK IN NIGERIA
M.L. JERATH, (NI.131.0062)
To assess the suitability of rearing silkworms for silk production and possibilities of its adaptation by the Nigerian farmers.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0261, PESTS OF OKRA, TOMATOES AND PEPPERS
M.L. JERATH, (NI.131.0063)
To study the incidence and abundance of insect pests attacking tomatoes, okra and peppers and their control by chemicals.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0262, INSECTICIDAL CONTROL OF YAM BEETLE
M.L. JERATH, (NI.131.0064)
To compare the effectiveness of several soil insecticides in controlling yam beetle damage in the field. Several soil insecticides have been tried but Aldrin 2.5 percent dust has given the best control. The trials on time and method of application of insecticides have shown that the best results are achieved when applied to the planting hole at the time of planting.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0263, PESTS OF SUGARCANE
M.L. JERATH, (NI.131.0065)
To study the incidence and biology of lepidopterous stem borers of sugarcane. Three stem borers, Sesamia sp., Chilo sp., and Eldana sacchrina are known to occur on sugarcane but rarely cause appreciable damage.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0264, NEMATODES OF SUGARCANE
K.L. UNNY, (NI.131.0066)
To study the economic importance and extent of damage caused by nematodes to sugarcane.

To study the comparative pathogenicity of Heterodera sacchri, Tylenchorhynchus sp., Meloidogyne sp. and Pratylenchus sp. in the greenhouse.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0265, NEMATODES OF VEGETABLES
K.L. UNNY, (NI.131.0067)
To study the incidence and abundance of plant parasite nematodes attacking tomatoes, pepper and okra.

To compare the effectiveness of Nemagon and DD in controlling nematode damage on tomatoes, pepper and okra.

To screen the available okra varieties for resistance to root knot nematodes in the greenhouse.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0266, SCREENING OF GERMPLASM FOR INSECT RESISTANCE
S.O. DINA, (NI.131.0068)
To screen different lines of cowpeas in the field for resistance to insect pests.

Several varieties of cowpeas will be evaluated on the basis of leaf damage (for pests feeding on leaves), flower and pod damage and number of insects found in them (for pod borer and pea moth). In addition, a count of live insects (adults and/or immature stages) will be carried out for some other major pests.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0267, RESEARCH AND DEVELOPMENT IN GENERAL HORTICULTURE, ESPECIALLY FRUITS AND VEGETABLES
O.O. ADIGUN, (NI.131.0069)
OBJECTIVE: To increase the efficiency of the horticultural and related industries in Nigeria, and through this to improve the supplies of fruits and vegetables to the local and export markets and to the processing industry, thus to add to the prosperity and nutritional standards of the people as well as to increase national earnings of foreign currency.

APPROACH: By carrying out experiments in commercially important problems in the production and presentation of fruits...
and vegetables. Demonstrate the proper methods of growing, maintenance and handling of fruits and vegetables to technical and other interested people in the country.

PROGRESS: The project is just at its initial stage. We are evaluating the materials available in Nigeria on fruits and vegetables.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0268, THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COWPEAS BY THE LEAFHOPPER EMPOASCA DOLICHII

S.O. DINA, (NI.131.0070)

Leafhopper feeding on cowpeas causes stunting and chlorosis. The objective is to assess the loss in yield due to these symptoms. The insect complex of cowpeas is differentially controlled by suitable insecticides in such a way that leafhopper population builds up when other major pests are eliminated.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0269, SURVEY OF PARASITES AND PREDATORS OF MARUCA TESTULALIS AND LASPEYRESIA PTYCHORA

S.O. DINA, (NI.131.0071)

To find out if there are any parasites or predators which can be integrated into the control programme of these two major pests of cowpeas.

- Larvae (both living and dead) from different localities are collected and observed in the laboratory for emerging parasites (if any). Observation is carried out in the field for incidence of predation. So far only a certain ant species has been found to prey on Maruca larva.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0270, INSECTICIDAL CONTROL OF COWPEA PESTS

S.O. DINA, (NI.131.0072)

To screen several insecticides for their effectiveness in controlling pests of cowpeas and increasing the yield of the crop.

- The insecticides are sprayed on the crop during the flowering and pod maturation periods when severe losses due to Maruca testulalis and Laspeyresia ptychora occur.

- Of the insecticides tried, 3 weekly applications of Nuvacon and Gammalin at 1 lb/acre active ingredient have given good control and increased yield.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0271, SURVEY OF MAIZE NEMATODES

O.O. OLOWE, (NI.131.0073)

Objective: Survey of nematodes associated with maize.

- Approach: Survey on maize nematodes shows that 16 genera of nematodes are associated with maize. Pratylenchus species, P. scribneri, P. brachyurus and P. zeae, were the most consistent nematodes encountered suggesting that they may be of potential significance in maize yield decline.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0272, HOST STATUS OF PRATYLENCHUS SPECIES

O.O. OLOWE, (NI.131.0074)

To assess the susceptibility of various tropical cereals and legumes to three species of Pratylenchus: (P. scribneri, P. brachyurus and P. zeae).

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0273, POPULATION DYNAMICS

O.O. OLOWE, (NI.131.0075)

To examine the population trend of various nematodes under various crops in 2 rotational fields at Moor Plantation, Ibadan.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0274, CHEMICAL CONTROL

O.O. OLOWE, (NI.131.0076)

To determine the effectiveness of two nematicides (Nemagon and D D) in controlling maize nematodes.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0275, MAIZE FERTILIZER TRIAL

F.K. ADEYEFA, (NI.131.0077)

Objective: To determine the optimum rate, time and method of application of nitrogen to maize.

- Approach: Use of recommended maize varieties Didcol-V-153, Composite C and NSI. 3 X 3 X 3 compounded factorial in blocks of nine plots each with one control. Levels of N ranges: N1 equals 1 1/2 cwt/acre, N2 equals 3 cwt per acre and N3 equals 4 1/2 cwt per acre of (NH4)2 SO4. Previous results are being analysed.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0276, MAIZE HERBICIDE TRIAL

A. WILLIAMS, (NI.131.0078)

Objective: To compare the effectiveness and economics of different methods of weed control in maize.

- Approach: Randomised block design with four replications. Herbicides in use are Gesaprim and Bladex have proved very successful in weed control in maize.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0277, IDENTIFICATION OF RICE VARIETIES RESISTANT TO THE BROWN SPOT OF RICE CAUSED BY HELMINTHOSPORIUM ORYZAE

P.E. ONUORAH, (NI.131.0079)

Objective: To screen upland rice varieties for resistance to the brown spot organism and thereby locate genes for breeding purposes.

- Approach: Exposure of about 900 upland rice varieties to natural and artificial infection to determine relative sensitivity to the pathogen. Severe screening for only resistant ones.

PROGRESS: 12 varieties have not become diseased after tests in 3 consecutive years.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0278, STUDIES ON THE HOST RANGE OF HELMINTHOSPORIUM ORYZAE

P.E. ONUORAH, (NI.131.0080)

Objective: To determine wild grasses that could serve as alternative hosts to the fungus.

- Approach: a) Artificial conidial inoculation of potted grasses in the glasshouse, b) Field check on grasses growing in nature for natural infection by the fungus.
8 local wild grasses are potentially capable of hosting the fungus. Two of these do so in nature.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0279, DETERMINATION OF SAPROPHYTIC SURVIVAL OF HELMINTHOSPORIUM ORYZAE IN RICE SEEDS AND STRAW
P.E. ONUORAH, (NI.131.0081)
Objective: To determine the length of survival of the fungus in rice seeds and in straw left lying in the field with a view to determining the potential of these sources as perennation media.
Approach: a) Monthly isolation of fungus from seeds in wet dishes. b) Isolation attempts from infected rice straw in the field, some buried, others on the surface.
Progress: 1) The fungus continues to survive in rice seeds after 2 years. 2) It survives from one season to the next in infected rice straw left lying on the field, but not in those buried in the soil.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0280, FIELD CONTROL OF THE BROWN SPOT OF RICE USING FUNGICIDES
P.E. ONUORAH, (NI.131.0082)
Objective: To select fungicides effective in controlling the disease in the field and to determine dosages, frequencies of application and optimum application time for best results.
Approach: Laboratory screening of fungicides for toxicity and field applications.
Progress: Three proprietary fungicides are effective, but one is phytotoxic. The best application time is when plants are 8 - 12 weeks old. Three applications are adequate.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0281, EFFECT OF PLANT NUTRITION ON RESISTANCE AGAINST THE BROWN SPOT OF RICE CAUSED BY H. ORYZAE
P.E. ONUORAH, (NI.131.0083)
Objective: To determine the extent of disease reduction that could be achieved by use of different levels of Nitrogen, Phosphorus and Potassium fertilizers.
Approach: Application in the field of N, P and K in a factorial manner.
Progress: Indications are that N and K help reduce disease, but P does not.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0282, SURVEY OF THE DISEASES OF THE IMPORTANT VEGETABLES IN NIGERIA
P.E. ONUORAH, (NI.131.0084)
Objective: To draw up a check-list of the diseases of some important vegetables in the country.
Approach: Description of symptoms, isolation of micro-organisms, determination of etiology and identification of the pathogen.
Progress: Several fungal and bacterial pathogens have been associated with various vegetables.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0283, TO SCREEN SULPHUR-FREE FUNGICIDES FOR EFFECTIVENESS IN CONTROLLING MILDEWS IN CUCURBITS
P.E. ONUORAH, (NI.131.0085)
Objective: To locate fungicides effective against mildews without being phytotoxic to cucurbits in the tropics.
Approach: Field application of fungicides.
Progress: To be determined.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0284, STUDIES ON THE CHOANEPHORA CUCURBITARUM WET ROT OF AMARANTHUS VIRIDIS
P.E. ONUORAH, (NI.131.0086)
Objective: To determine factors that encourage infection in the field, extent of damage and possible control measures.
Approach: Relationship between plant age, meteorological factors and infection in the field. Blanket control with fungicides to determine extent of damage by fungus. Breeding for resistance.
Progress: To be determined.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0285, STUDIES ON THE HOST-PARASITE RELATIONS OF RICE AND HELMINTHOSPORIUM ORYZAE
P.E. ONUORAH, (NI.131.0087)
Objective: To determine the mode of penetration of host by parasite, parasite spread within the tissues and factors that influence it.
Approach: Tissue cultures: tissues inoculated, stained and sectioned.
Progress: To be determined.
SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

NIGERIAN INSTITUTE FOR OIL PALM RESEARCH
P.M.B. 1030, Benin City

9.0286, THE INSECT PESTS OF THE OIL PALM IN NIGERIA
S.I. AGWU, (NI.270.0001)
OBJECTIVE: Identification and assessment of pest status of insect pests of the oil palm in the country.
APPROACH: (a) Surveys, collection and identification of the palm in nursery and in field in NIFOR, and in the oil palm areas of the country. (b) Estimates of the levels of damage by, and the population patterns of, the various insect pests.
PROGRESS: The project has just started, but some lepidopterans, hemipterans and coleopterans have been collected for identification.
SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0287, IDOLATRICA CHARACTER (OIL PALM)
C.O. OBASOLA, (NI.270.0002)
OBJECTIVE: To study the mode of inheritance of the idolatraica leaf.
APPROACH: The mode of inheritance of the idolatraica leaf is not known. Evidence is conflicting and it has been thought by
different workers to be both dominant and recessive. Crosses carried out so far have confused the matter further, as no definite trend can be found in seedlings obtained from these crosses. Three types of idolatrica palms have been identified and a programme of crosses is in progress. A field planting will be carried out to see whether the mode of the inheritance of the idolatrica leaf can be worked out.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0288, DORMANCY IN SEEDS FROM DELI PALMS (OIL PALM)
C.O. OBASOLA, (NI.270.0003)

OBJECTIVE: To investigate the genetic basis for low dormancy requirement of seed from Deli palms.

APPROACH: In 1966, an investigation into seed heat requirement was started because differences in the heat requirement to break dormancy in seed of different origins was detected. In fact, two Deli palms were found to germinate during storage at 22.2 degrees C when kept moist. This indicated that population of Deli has a dormancy requirement different from the open pollinated Nigerian dura and tenera seed. Seeds from controlled pollination using as female parents the two Deli palms showing little or no dormancy have continued to give good germination with no or minimal heating in a germinator. Crosses have now been made between these palms and the progeny in the selfing of one of them and the resulting palms have been planted out in the field to test for dormancy in the back crosses.

Progress: The experiment is in the field, no report.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0289, POLLEN STORAGE (OIL PALM)
C.O. OBASOLA, (NI.270.0004)

OBJECTIVE: To study all aspects of preparation and prolonged storage of pollen.

APPROACH: Pollen grains are vacuum dried (using a high vacuum pump) in ampoules for 20 minutes and sealed, then stored in a deep freeze at -18 degrees C.

PROGRESS: This investigation was started in 1967. Pollen vacuum dried in ampoules for 20 minutes, sealed and stored in a deep freeze at -18 degrees C in 1967, still showed 80-90% viability when tested 3-4 years later. No abnormal seedlings were produced in the pre-nursery or nursery when this pollen was used in controlled pollination. This investigation continues.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0290, PISIFERA PALM SELECTION
C.O. OBASOLA, (NI.270.0005)

OBJECTIVE: To widen the range of selection criteria in the variety pisifera of the oil palm.

APPROACH: At the moment pisifera are chosen from progenies of T selfings or T x T crosses involving parents which have performed well in D x T progeny trials. As sterile pisifera are used for seed production, they can only be identified by the use of growth active substance after they have produced parthenocarpic fruits in the field thrice. In order to widen the selection criteria, the following points are being considered: (1) Sex-ratio; (2) Potential bunch size; (3) Extent of fibre-ring; (4) Systematic comparison of sib tenera and pisifera in a range of tenera x tenera progenies.

PROGRESS: The pisifera has been categorized and sex-ratio, potential bunch size, extent of fibre-ring are being examined critically.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0291, SHORT-STEMMED OIL PALM
C.O. OBASOLA, (NI.270.0006)

OBJECTIVE: To study the inheritance of the short stem character in oil palm and ultimately to produce Extension Work Seeds true breeding for short stem.

APPROACH: Five approaches are now being employed in breeding short stemmed oil palm at NIFOR. (1) Introduction of Deli dumpies from Malaya. (2) Introduction of dumpy palms from Pobe, Dahomey. (3) Selection of short, local materials in NIFOR and elsewhere in Nigeria. (4) Crosses between Corozo oleifera and Elaeis guineensis. (5) Crosses involving Elaeis guineensis, Corozo oleifera x Elaeis guineensis hybrids Pobe and Malayan dumpies.

PROGRESS: Corozo oleifera has been successfully crossed with Elaeis guineensis and short stemmed vigorous F1 hybrids have been obtained. The average yield obtained from the hybrids were comparable with that from Elaeis guineensis and superior to Corozo oleifera. Bunch quality of F1 hybrids was however inferior to that of selected Elaeis guineensis.

Furthermore, all the dumpy palms mentioned above have been crossed in all possible combinations and the field trials will soon be carried out.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0292, POTASSIUM IN THE SOILS OF THE NIGERIAN OIL PALM BELT
D.O. ATAGA, (NI.270.0007)

OBJECTIVES: Study of dynamics and mineralogical aspects of the uptake, release and fixation of potassium in the soil.

APPROACH: Study has been carried out on the status of K in soils in relation to leaf K and bunch yield of palms. More studies are being carried out on the release and fixation of K by soils and different size fractions of soils. Particular attention will be paid to the significance of amorphous aluminosilicates in the release and fixation of K in these soils.

PROGRESS: Work done already showed that basement complex soils have appreciable K reserves while the acid sand soils have only little exchangeable K. Also the acid sand soils were found to be able to fix K to a reasonable extent. More studies are now in progress to elucidate the role of the various soil components in the K release and fixing characteristics of these essentially kaolinitic soils.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0293, SOIL PHOSPHORUS AND RESPONSES OF THE OIL PALM TO PHOSPHORUS FERTILIZATION
D.O. ATAGA, (NI.270.0008)

OBJECTIVE: (1) Determination of the form and distribution of phosphorus in representative soil profiles supporting the oil palm. (2) Evaluation of the use of the phosphate potential method and some conventional extraction methods for assessing phosphorus needs of palms in the greenhouse and in the field.

APPROACH: In the case of (2), plant responses as measured by absolute yield, relative yield and P uptake of oil palm seedlings in a greenhouse experiment and in the field are related to the various chemical measurements of phosphorus.

PROGRESS: Results of work done so far show that total P in soils generally is in the range 300 ppm - 800 ppm. The phosphate occurs mainly in the iron phosphate form. Work in the greenhouse using absolute yield, relative dry matter yield and P uptake as response criteria show that phosphate potential and Bray and
Kurtz's methods gave the best results for predicting phosphate needs of palms.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

D.O. ATAGA, (N1.270.0009)

OBJECTIVES: (1) Determination of soil moisture constant and water storage capacity of Typical Soil Profiles in the Oil Palm Belt. (2) Study of moisture reserves and consumptive use and relationship of agrometeorological factors to growth and yield in field irrigation experiments. (3) Effect of drought on development, yield and fertilizer use in irrigation experiments.

APPROACH: Measurement of soil moisture in undisturbed soil profile to be carried out with neutron probe. Pressure plate and pressure membrane extractors will also be used.

PROGRESS: The neutron probe used in this project has been calibrated for use in the field and has been found that while neutron counts/minute were closely related to volume moisture content, separate calibration curve may be necessary for the more clayey and the more sandy soils. Work on moisture reserves and consumptive use is still in progress.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0295, SOIL ACIDITY AND THE GROWTH OF THE OIL PALM
D.O. ATAGA, (N1.270.0010)

OBJECTIVES: (1) Determination of liming requirement of some acid soils supporting the oil palm. (2) Study of chemical effects of liming acid sand soils. (3) Effect of liming and added fertilizers on the growth of the oil palm.

APPROACH: Lime requirement of selected soils determined by conventional method and soils limed to desired pH. After equilibration, chemical analysis is carried out. Effect of liming and different levels of fertilizer treatment (in the first instance, phosphate) on the growth of oil palm seedlings studied in the greenhouse using a complete factorial design.

PROGRESS: Liming had adverse effects on the growth of oil palm. Highest level of additional P fertilizer did not alleviate to any marked extent these bad effects. Effect of foliar applied trace elements mixture will be studied in the next series of experiments.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0296, TRACE ELEMENTS IN THE NUTRITION OF THE OIL PALM
H.C. OKOYE, (N1.270.0011)

OBJECTIVE: (1) Form and distribution of trace elements in typical soils supporting the oil palm. (2) Induction and description of visual symptoms of trace element deficiencies. (3) Effects of some trace elements on the growth and development of oil palm seedlings.

APPROACH: With regard to objective (1) soil samples from typical soil profiles supporting the oil palm will be analysed for trace elements. In the case of (2) studies carried out in sand culture, supplying all elements except the one under investigation. In the case of (3) studies also carried out in sand culture in which graded levels of trace elements are supplied in a 34 factorial combination.

PROGRESS: Results of boron deficiencies were variable and this is associated with the genetic factor. In greenhouse experiments only Cu had linear effect on dry matter yield of seedlings.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0297, CATION-ANION RELATIONSHIP IN THE OIL PALM
H.C. OKOYE, (N1.270.0012)

OBJECTIVE: To examine nutrient balances - cations (C) on the one hand and anions (A) on the other - to see if the difference between them is as constant as has been observed for some crops; and the relationship between the value C-A and bunch yield and/or growth of the palm.

APPROACH: Both the essential mineral elements commonly found in plant tissues and also the organic acid anions that account for the difference between C and A will be determined. The effect of age, fertilizer treatment, gene types, seasons of the year and soil types on the C-A value will also be examined.

PROGRESS: Programme just about being initiated.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0298, A CALIBRATION TRIAL ON OIL PALM EXPERIMENT 8-1 (PLANTED 1959-1966)
S.E. NNAEBUCHI, (N1.270.0013)

OBJECTIVE: 1. To enable an assessment to be made of the growth pattern of the oil palm under certain conditions independent of climatic variations. 2. To investigate the effect of climate on yield and other characters of the oil palm.

APPROACH: (1) Leaf and flower observation to determine sex ratio and rate of leaf production. (2) Measurements of height and girth taken once per year or preferably twice (at the beginning and at the end of the wet season). (3) Complete yield records of number and weight of bunches. (4) Fruit and bunch analyses on samples from the plots. (5) Leaf sampling. (6) Soil sampling.

PROGRESS: Mean bunch production per acre (based on number of palms for the first three harvests analysed. The variation within each harvest was pronounced showing the effect of environmental factors independent of age of palms. Results of analyses of height measurement showed differences between progenies and between planting. The work is continuing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0299, SEEDLING SELECTION EXPERIMENT 33-13 (PLANTED 1966)
S.E. NNAEBUCHI, (N1.270.0014)

OBJECTIVE: To investigate the effect of seedling growth on subsequent yield of the oil palm.

APPROACH: (1) Prenursery (1) Identity of each leaf (2) Number of leaflets on fronds 4, 10 (3) Height of longest fully opened leaf and record of each leaf monthly (4) Death or disease recorded on each seedling. (II) Nursery. As per prenursery. (III) Field (1) Identity of each leaf giving rise to information on which leaf the first inflorescence is found in (2) Leaf and flowering observations (3) Height measurement (4) Canopy measurement (5) Yields.

PROGRESS: (1) It has been observed that number of leaves produced by a tree before entry into production varies from palm to palm even within progeny and the time observed for such entry also varies. (2) Virtually all leaves that produced first inflorescence were produced in the field and not in the nursery. (3) The first inflorescence is mostly male. The work is continuing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

153
NIGERIA

S.E. NNABUCHI, (NL.270.0015)

OBJECTIVE: To investigate the effect of different sizes of oil palm seed on subsequent growth and yield.

APPROACH: 1. Prenursery: Weight of each seed. 2. Germinator: (1) Germination count (2) Sprouting count. 3. Prenursery: (1) Emergence count (2) Identity of each leaf (3) Height of highest opened leaf and record of each leaf monthly (4) Death or disease recorded on each seedling. 4. Nursery: As per prenursery. 5. Field: (1) Identity of each leaf (2) Which leaf subtends first inflorescence, number of its leaflets and height of palm when first inflorescence is observed (3) Height measurement (4) Canopy measurement (5) Girth (6) Height from ground to crown (7) Yield (8) Fruit and bunch analysis (9) Leaf Sampling (10) Leaf and flowering observations.

PROGRESS: Results of germination, sprouting and emergence of each seed size determined. Assessment of effects of nursery is in progress. The work is continuing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0301, EXPERIMENT 17-1 WEE CONTROL IN OIL PALM PLANTATIONS
F.O. AYA, (NL.270.0016)

OBJECTIVE: (1) To study the influence of the combination of different mechanical implements used for maintaining the interlines of oil palm plantations during the course of the rainy season on the bunch yields of palms. (2) To evaluate the use of herbicides for maintaining weed-free circles around the palms.

APPROACH: The experimental design was randomized into blocks with split-plots replicated 4 times. Main plots of 56 palms and sub-plots of 15 palms. The progeny used were special grade Extension Work Seeds (E.W.S.), spaced at 30 ft. triangular. The implemented combinations were: (a) Marden roller year round. (b) Marden roller in early and mid-rains (April & June respectively) with Rome discs (cultivator) at the end of the rains (November). (c) Ring roller year round. (d) Ring roller in early and mid-rains with Rome discs at the end of the rains. (e) Slasher year round. (f) Slasher in early and mid-rains with Rome discs at the end of the rains. The herbicides were (1) atrazine plus paraquat, (2) monuron plus paraquat, (3) diuron plus paraquat, all compared with hand weeding.

PROGRESS: The combination of the cultivator with the ring roller at the end of the rains has increased yields by 11.8% and sub-plots ring weeded with diuron plus paraquat have yields 2.2% higher than the hand weeded control.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0302, EXPERIMENT 17-2 MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTATIONS
F.O. AYA, (NL.270.0017)

OBJECTIVE: (1) To study the effect of different mechanical implements used throughout the year for maintaining the interlines of oil palm plantations on the ground cover and the bunch yields of the palms. (2) To evaluate the influence of various mulches on the bunch yields of oil palms.

APPROACH: The experimental design was randomized blocks with split-plots replicated 5 times. The implements investigated were: (a) Hand maintenance (b) Ring roller (c) Slasher (d) Brushcutter (set low) (e) Brushcutter (set high) (f) Holt weederbreak (g) Marden roller (h) Rome discs. The mulching treatments were: (1) None (2) Polythene mulch (3) Bush mulch.

PROGRESS: The bunch yields in the mechanically maintained plots are 7.8% higher than the hand maintained control. There has been no significant beneficial effects of the mulching treatments on bunch yields.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0303, EXPERIMENT 9-2 : TRACE ELEMENT EXPERIMENT
F.O. AYA, (NL.270.0018)

OBJECTIVE: To evaluate the effects of trace elements applied at the nursery and field stages on the growth and bunch yields of the palms.

APPROACH: The design was a 2 x 2 factorial replicated 8 times. Nursery plots were planted with 30 seedlings at a spacing of 2 1/2 ft. square and field plots were planted with 9 representative palms from the nursery plots at a spacing of 29 feet triangular. The elements which were applied as foliar sprays were (1) Boron (2) Zinc (3) Molybdenum (4) Iron (5) Manganese (6) Copper.

PROGRESS: There have been no significant treatment effects so far although copper and iron tended to depress growth and yields.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0304, EXPERIMENT 9-3 FREQUENCY AND FORM OF POTASH FERTILIZER EXPERIMENT
F.O. AYA, (NL.270.0019)

OBJECTIVE: To investigate the effects of different frequencies and form of potash fertilizer applied to palms in the field on their fruit production.

APPROACH: The experimental area was cleared and burnt from an old palm plot. The new planting material was special grade Extension Work Seeds (E.W.S.). The design was a 2 x 4 factorial replicated 6 times. Each plot was planted with 12 palms spaced at 29 ft. triangular. The frequency treatments were annual, biennial, triennial and quadrennial while the form of the potash fertilizer was either sulphate or muriate.

PROGRESS: The frequency treatments were not imposed until 1971 and yield data are not yet available. No significant effects of sulphate and chloride forms of the potash fertilizer on the growth of the palms have been observed so far.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0305, EXPERIMENT 9-4 POLYBAG NURSERY EXPERIMENT (FIELD STAGE)
F.O. AYA, (NL.270.0020)

OBJECTIVE: To compare the field performance of oil palm seedlings raised in various polythene bags during pre-nursery and nursery stages of development with that of seedlings raised by standard NIFOR technique.

APPROACH: The design was a randomised block replicated 4 times. The field plots were planted with representative seedlings from 12 pre-nursery and nursery treatment combinations. The planting material was special grade Extension Work Seeds (E.W.S.) spaced at 29 feet triangular. All seedlings were planted with balls of earth around their roots. In the case of polybag seedlings, the polythene sheets were stripped off before planting.
PROGRESS: During the first year all seedlings transplanted from polythene bags showed significantly greater height increases and produced more leaves than the control.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0306, EXPERIMENT 180-1 - FACTORIAL FERTILIZER EXPERIMENT
F.O. AYA, (NL.270.0021)

OBJECTIVE: To determine the fertilizer requirements of oil palms growing in the Agbarho area of the Midwestern State of Nigeria.

APPROACH: The experimental area was cleared and burnt from a high secondary forest. The planting material was special grade Extension Work Seeds (E.W.S.) spaced at 29 feet triangular and the design was 1/4 replicate of a $4 \times 4 \times 4 \times 4$ confounded factorial. The experiments investigated the following fertilizer elements at 4 levels and at 4 frequencies of application: (a) N as sulphate of ammonium (b) P as rock phosphate (c) K as sulphate of potash and (d) Mg as sulphate of magnesia. The frequencies of application are: (1) twice yearly (2) once yearly (3) once in two years (4) once in three years. The rates of application are 0, 4, 8 and 12 lbs. per palm over the period of 3 years.

PROGRESS: This is the first year of fertilizer application and no data are available.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0307, EXPERIMENT 508-2
F.O. AYA, (NL.270.0022)

OBJECTIVE: To determine the fertilizer requirements of oil palms growing in Abak area of the South Eastern State of Nigeria.

APPROACH: The experimental area was cleared and burnt from an old palm grove. The planting material was special grade Extension Work Seeds (E.W.S.) spaced at 29 feet triangular and the design was 1/4 replicate of a $4 \times 4 \times 4 \times 4$ confounded factorial. The experiment investigated the following fertilizer elements at 4 levels and at 4 frequencies of application: (a) N as sulphate of ammonium (b) P as rock phosphate (c) K as sulphate of potash and (d) Mg as sulphate of magnesia. The frequencies of application are: (1) twice yearly (2) once yearly (3) once in two years (4) once in three years. The rates of application are 0, 4, 8 and 12 lbs. per palm over the period of 3 years.

PROGRESS: This is the first year of fertilizer application and no data are available.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0308, EXPERIMENT 768-1 - FIELD IRRIGATION OF OIL PALMS
F.O. AYA, (NL.270.0023)

OBJECTIVE: To determine the amount of irrigation water and the type of mulching required by oil palms growing in the Bida area of the North-Western State of Nigeria.

APPROACH: The experimental area was cleared and burnt from bush fallow. The planting material was special grade Extension Work Seeds (E.W.S.) raised in the nursery by the polybag technique and spaced in the field at 29 ft. triangular. The design was in randomized blocks with split-plots. Main plots of 24 palms and split-plots of 6 palms. The irrigation treatments were: (a) No irrigation (b) 80 litres (c) 160 litres (d) 240 litres (e) 320 litres (f) 400 litres and (g) 480 litres per palm each week, applied only during the dry season (from 15th October to 15th May). The mulching treatments were: (1) None (2) Bush mulch in the dry season only (3) Bush mulch throughout the year (4) Black polythene mulch throughout the year.

PROGRESS: The irrigation treatments have not been applied and no data are available.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0309, THE INSECT PESTS OF THE COCONUT PALM IN NIGERIA
S.I. AGWU, (NL.270.0024)

OBJECTIVE: Identification and assessment of pest status of coconut insect pests.

APPROACH: (a) Surveys, collection and identification of the insect pests of the coconut in nursery and in field in NIFOR, and in the Country. (b) Estimates of the levels of damage by, and the population patterns of the various insect pests.

PROGRESS: The project has just started; but some lepidopterans, coleopterans and hemipterans have been collected for identification.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0310, THE INSECT PESTS OF THE RAPHIA PALM IN NIGERIA
S.I. AGWU, (NL.270.0025)

OBJECTIVE: To identify and assess the pest status of the insect pests of raphia in Nigeria.

APPROACH: (a) Surveys, collection and identification of the insect pests of raphia in the nursery and in the field in NIFOR, and in raphia areas of the country. (b) Estimates of the levels of damage by, and the population patterns of the various insect pests.

PROGRESS: The project has just started, but some lepidopterans and hemipterans have been collected for identification.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0311, EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM
D.O. ATAGA, (NL.270.0026)

OBJECTIVE: To study the efficiency of phosphorus and potassium fertilizer uptake by the oil palm as affected by soil type, fertilizer placement, season and age of palms.

APPROACH: A radioactive tracer technique using P32 and Rb86 (tracer for K) will be employed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0312, LEAF ANALYSIS IN THE DIAGNOSIS OF THE NUTRITIONAL REQUIREMENTS OF THE OIL PALM
H.C. OKOYE, (NI.270.0027)

OBJECTIVE: To work out reference standards or critical levels by which the nutrient requirements of palms can be diagnosed.

APPROACH: Carrying out regular leaf sampling of palms in fertilizer experiments and correlating leaf nutrient status with palm yield and growth.

PROGRESS: Reference standards and sampling techniques have been worked out for major elements and are continually being re-evaluated.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin
9.0313, IMPROVEMENT OF YIELD, FRUIT AND BUNCH QUALITY OF THE OIL PALM
C.O. OBASOLA, (NI.270.0028)

OBJECTIVE: To distribute improved oil palm seeds (combining high yield with good fruit and bunch quality) to growers.

APPROACH: Two approaches are being employed. (a) Selection of high yielding materials based upon the technique of reciprocal recurrent selection. The design is based on the first generation of progeny trials intended to assess the combining ability of dura and tenera parents which are also selfed to produce parent for extension work. Further generations of the programme follow a similar procedure. (b) Accurate analysis of fruit and bunch characteristics have to be carried out in an analysis laboratory as variability studies have shown that fruit and bunch characteristics fluctuate with time. Analysis work is organized on an annual basis.

PROGRESS: The project started in 1959 and it is at the moment being assessed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0314, RESISTANCE TO DISEASE IN THE OIL PALM
C.O. OBASOLA, (NI.270.0029)

OBJECTIVE: To develop oil palm lines that are resistant to diseases.

APPROACH: There are three main diseases in the oil palm, each of them soil borne and therefore difficult to control by methods other than plant breeding. These diseases are vascular wilt caused by Fusarium oxysporium, dry basal rot caused by Ceratocystis paradoxa and blast caused by a co-infection of a Rhizoctonia and Pythium species. This is a joint project with Plant Pathology Division. The Plant Pathology Division prepares the inoculum and works out the inoculation technique, while the Plant Breeding Division provides the progenies to be tested.

PROGRESS: A number of progenies have been screened for their resistance/susceptibility to both dry basal rot and vascular wilt. The results are still inconclusive.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0315, GENE POOL - OIL PALM
C.O. OBASOLA, (NI.270.0030)

OBJECTIVE: To maintain a collection of oil palm obtained from Nigeria and other countries for breeding and selection.

APPROACH: Since it is generally agreed among oil palm breeders that the breeding materials being exploited at present come from a very narrow genetic base, prospection in densely populated areas in Nigeria, especially with a view to selection of high oil to pulp, big kernel to fruit and highly adapted palms has been undertaken. Introductions have also been made from other oil palm growing areas of the world. Further prospection is envisaged.

PROGRESS: Materials collected during prospection in the Eastern States and Kwara State of Nigeria have been planted on the main station. The yields are now being recorded. Biometrical, leaf growth and flowering observations are being carried out on them. Materials obtained from other countries and growing on the main station are also being assessed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0316, GENE POOL (COCONUT, RAPHIA, DATE PALMS)
C.O. OBASOLA, (NI.270.0031)

OBJECTIVE: To maintain a collection of coconut, raphia and date palms obtained from Nigeria and other countries for breeding and selection.

APPROACH: Prospection in densely populated areas in Nigeria to enlarge the collection in NIFOR and to assess the types available for the purpose of classification. Introductions from other countries.

PROGRESS: Considerable prospection has been carried out on coconut and raphia in Nigeria. Some introduction has been made from other countries with respect to coconut. Breeding and selection have not yet started.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0317, MILL EFFLUENT STUDIES
P.I. EAPEN, (NI.270.0032)

OBJECTIVE: Sanitary disposal of mill effluent.

APPROACH: Suppression of development of foul odour by chemical treatment.

PROGRESS: Work was started only recently and is progressing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0318, CHEMO - TAXONOMIC STUDIES
P.I. EAPEN, (NI.270.0033)

OBJECTIVE: Identification of the type of oil palm at seedling stage.

APPROACH: Chromatographic studies of leaf extract.

PROGRESS: Work was started only recently and is progressing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0319, SUGAR CONTENT OF PALM SAP
P.I. EAPEN, (NI.270.0034)

OBJECTIVE: Study of the variation of sugar content in palm sap.

APPROACH: Work is being carried out over a period of several months covering the various seasons. The total sugars present in fresh palm wine is determined spectrophotometrically.

PROGRESS: Work still going on.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0320, FERMENTATION OF PALM WINE
P.I. EAPEN, (NI.270.0035)

OBJECTIVE: To determine the factors affecting fermentation of palm wine.

APPROACH: The effect of temperature, period of storage, of chemicals added are being looked into.

PROGRESS: Work is progressing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0321, LIQUID AND SOLID COMPONENTS OF PALM OIL
P.I. EAPEN, (NI.270.0036)

OBJECTIVE: Study of the characteristics of the liquid and solid components of palm oil.

APPROACH: Determination of the relative amounts of liquid and solid components in the oil, the temperature suitable for their separation.
9.0322, STUDIES ON THE OIL PALM PATCH YELLOWS
K. RAJAGOPALAN, (NL.270.0037)

OBJECTIVE: To determine the role of Fusarium oxysporum found in association with the disorder and to devise methods of controlling the disorder.

APPROACH: (1) Spraying spore suspension on mechanically-injured and non-injured leaves. (2) Injection of a spore suspension into the base of the spear leaf. (3) Screening progenies for resistance to the disorder.

PROGRESS: Results so far obtained indicate that certain progenies are highly susceptible while some others are highly resistant to the disorder. The experiment is being continued.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0323, THE CONTROL OF THE OIL PALM DRY BASAL ROT DISEASE
K. RAJAGOPALAN, (NL.270.0038)

OBJECTIVE: To control the oil palm dry basal rot disease (caused by Ceratocystis paradoxa) by the selection of resistant varieties.

APPROACH: Roots of the seedlings were dipped in the inoculum and planted in the nursery. The roots and leaves of the seedlings were screened visually for disease development 4 weeks after inoculation.

PROGRESS: The experiment is being continued.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0324, CONTROL OF THE OIL PALM VASCULAR WILT DISEASE
K. RAJAGOPALAN, (NL.270.0039)

OBJECTIVE: To control the vascular wilt disease (incited by Ceratocystis paradoxa) by the selection of resistant varieties of the oil palm.

APPROACH: (1) Dipping the roots in inoculum and planting in concrete trays. (2) Mixing the pathogen with oil before planting seedlings and then determining the reduction in 'leaf area product' or 'dry matter content'.

PROGRESS: The experiments are still being assessed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0325, FUNGICIDAL SPRAYING AND LEAF PRUNING TRIAL FOR THE CONTROL OF CERCOSPOREA LEAF SPOT
K. RAJAGOPALAN, (NL.270.0040)

OBJECTIVE: To determine the long-term effect of spraying to control Cercospora leaf spot in the field on the yield of the oil palm.

APPROACH: Fungicidal spraying and leaf pruning were terminated after 18 months of field planting. Yield recording for 3 years.

PROGRESS: Results are being assessed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0326, CONTROL OF CERCOSPOREA LEAF SPOT OF THE OIL PALM
K. RAJAGOPALAN, (NL.270.0041)

OBJECTIVE: To control Cercospora leaf spot (caused by Cercospora elaeidis) by using fungicides and by the selection of resistant varieties of the oil palm.

APPROACH: (1) Screening of various fungicides (using tenac as a sticker) against the disease in the nursery and field. (2) Screening of different progenies of the oil palm for resistance to the disease.

PROGRESS: Effective control of the disease is achieved by spraying seedlings fortnightly with Dithane M45. Production of conidia by C. elaeidis (required for screening different progenies of the oil palm) has been successfully induced in vitro.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0327, THE OIL PALM BLAST DISEASE AND ITS CONTROL
F.O. ODERUNGBOYE, (NL.270.0042)

Objective: To control the oil palm blast disease caused by Pythium sp. and Rhizoctonia lamellifera.

Approach: (1) Control of the blast disease by agronomic practices (watering, shading, date of planting, polythene bag planting etc.) (2) Chemical control of the blast disease (Dexon, Terraclor Super X, PCNB, Benlate, Vapam, etc.) (3) Control of the oil palm blast disease by the selection of resistant varieties.

Progress: Seedling mortality was found to be considerably reduced by shading nursery seedlings in the dry season (October - February). Control of blast disease by using chemicals and by the selection of resistant varieties is being assessed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0328, MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM
J.A. ODETOLA, (NL.270.0043)

Objective: Elucidation of the exact mechanism of the dormancy in oil palm seeds.

Approach: (a) Examination of seeds for inhibitors. (b) Testing by effect of growth promoter on seed germination. (c) Finding out any mechanical effects of seed parts on germination.

Progress: Preliminary results show that all growth-promoters tested, including the classical hormones, GA etc., as well as ethrel, and many other chemicals do not promote germination of the oil palm seed.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0329, GERMINATION PROBLEMS OF EXTENSION WORK OIL PALM SEEDS
J.A. ODETOLA, (NL.270.0044)

Objective: To improve the large-scale germination of Extension Work oil palm seeds.

Approach: (a) By seeking means of reducing the 80-day heating period required to break seed dormancy. (b) By finding ways of shortening or eliminating the 14 day seed soaking period. (c) By insuring high initial seed viability prior to treatment for germination. (d) By improving seed screening techniques.

Progress: Phase (b) of the project has been completed: seed soaking in water has now been completely eliminated; (c) has also been completed. In this case methods of seed processing and storage prior to pretreatment for germination have been improved so that initial seed viability has increased. Some progress has been made under phase (a) but investigations are still continuing. Under
NIGERIA

phase (d) seed screening by floating in water, visual observation, and chemical tests have been developed into routine procedures, but studies continue.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0330, PHYSIOLOGICAL BASIS FOR YIELD IN THE OIL PALM

T. MENENDEZ, (NI.270.0045)

Objective: Determination of the physiological basis for yield differences among oil palms.

Approach: (a) Determination of rates of dry matter accumulation in palms with different yield potentials. (b) Determination of rates of CO2 uptake by palms with different yield potentials. (c) Determination of rates of sugar and total carbohydrate accumulation in palms with different yield potentials. (d) Determination of rates of mobilization of photosynthates in palms with different yield potentials.

Progress: Phase (a) has been completed showing no correlations between yield and rate of dry matter accumulation. Phase (c) has been partially completed. No significant differences in rates of reducing sugar accumulation among palms with different yield potentials, but trend existed in which high yielders appeared to be of lower sugar status. Phase (d) is just beginning and phase (b) has not yet started.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0331, RELATION OF FLOWERING TO YIELD IN THE OIL PALM

C.O. OBASOLA, (NI.270.0046)

Objective: Determination of methods of improving the yield of the oil palm through flowering.

Approach: (a) Study of environmental factors affecting sex ratio. (b) Influence of external hormonal application on sex ratio.

Progress: (1) Preliminary studies with 2, 4, 5-TP indicated that treatment with this hormone does not appear to increase yield. (2) A large body of data on flowering observations which have accumulated over several years is being examined and summarized in order to throw more light on seasonal variations of sex ratio and yield, and the question of exact time of sex initiation and differentiation.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0332, INTERNAL MARKETING OF PALM OIL AND PALM KERNELS

P.R. HERINGTON, (NI.270.0047)

Objective: To ascertain the extent of distributive and marketing arrangements for palm produce in Nigeria.

Approach: Local market investigations against the background of marketing-board proposals including information on prices, storage, transport and consumer preference. The application of utility analysis to the marketing decision.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0333, THE MARKET FOR PALM WINE IN NIGERIA

P.R. HERINGTON, (NI.270.0048)

Objective: To determine the extent of the market for palm wine in the Eastern and Midwestern States of Nigeria.

Approach: Survey of wine bars and markets in principal urban areas to gauge size of palm wine market and draw conclusions on both demand and supply relationships, distributive systems and prices.

Progress: Continuing.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

9.0334, THE WORLD MARKET FOR PALM OIL AND PALM KERNELS

P.R. HERINGTON, (NI.270.0049)

Objective: To maintain a continuous appraisal of trends in world market supply of and demand for palm oil and kernels. Particular reference to Nigeria's market share.

Approach: (A) Historical and (future) trend estimate analyses in the light of the total world market for edible fats and oils. (B) Implications for Nigerian palm produce exports with respect to (1) Britain's proposed entry into the E.E.C. (2) Planned and implemented production programmes in other areas. (C) Simultaneous equation approach to the determination of production, supply and demand relationships for the Nigerian oil palm industry.

Progress: Under completion.

SUPPORTED BY Nigerian Inst. for Oil Palm Res. - Benin

NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE

P.M.B. 5044, Ibadan

9.0335, ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS

I.O. OYENIRAN, (NI.221.0001)

OBJECTIVE: To improve the quality of Nigerian cocoa beans. The origins of mould attachment on stored cocoa are being investigated in detail starting with fermentation and followed to drying and storage. Some records of fungi present at various stages have been produced. Suggestions on improved handling of cocoa during fermentation have been made as a result of initial work.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

9.0336, TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS

S.A. ADESUYI, (NI.221.0002)

OBJECTIVE: With object of finding ways of preventing deterioration and weight loss of yams in storage. Investigations on methods of inhibition of sprouting and rot in yams will continue. Studies of possible methods of controlled insect attack in dried yams will be investigated.

APPROACH: Some investigations relating to prestorage conditioning using temperature, humidity and irradiation techniques have been reported. Surveys of infestation levels and moisture contents of dried yam slices are in progress.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

9.0337, ORIGIN OF MOULD DESTRUCTION OF PALM KERNELS

P.O. KUKU, (NI.221.0003)

Objective: To reduce the level of mould growth on stored palm kernels. The present approach is to determine when palm kernels first become mouldy. A difference in conditions and spe-
cies of mould has been found in various parts of Southern Nigeria.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE
P.M.B. 3032, Kano

9.0338, AFLATOXIN - ASSESSMENT OF ANALYTICAL TECHNIQUES FOR USE UNDER LOCAL CONDITIONS
A.H. QURESHI, (N1.222.0001)

The techniques devised in the United Kingdom and the United States are to be compared in suitability for use under local conditions in Nigeria.

The most suitable method is to be adopted for monitoring the local groundnut crops.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE
Lagos Branch, P.M.B. 12543, Lagos

9.0339, INSECTICIDE TESTING PROGRAM
F.O. AYENI, (N1.220.0001)

Studies on fenitrothion, baythion and bromophos will be continued to determine their suitability as alternatives to iodophenphos and dichlorovinphos in terms of effectiveness and cost when used on concrete walls of warehouses against Trogoderma granarium and Tribolium castaneum.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE
P.M.B. 5063, Port Harcourt

9.0340, QUICK DETERMINATION OF FREE FATTY ACID CONTENT IN PALM KERNELS
S.O. SOWUNMI, (N1.223.0001)

A quick method of chemical assessment of free fatty acid in palm kernels in the field is required. Studies are to be made of existing visual techniques based on discoloration and visible damage and also the possibility of adopting a rapid chemical method.

SUPPORTED BY Nigerian Stored Prod. Res. Inst. - Lagos

SAVANNA FORESTRY RESEARCH STATION
P.M.B. 1039, Samaru, Zaria, North Central State

9.0341, HYBRIDIZATION IN EUCALYPTUS
G.O. OJO, (N1.151.0001)

Objectives: To study the spontaneously occurring hybrids of eucalyptus in Nigeria, and to investigate the use of artificially produced hybrids in afforestation.

Approach: (1) Comparative plantations of F1 hybrids with each of the parent species. (2) Development of controlled pollination techniques. (3) Eventually, production of hybrids by controlled pollination.

Progress: Work began in 1965. (a) Experimental graftings of the E. torelliana x E. citriodora hybrid on to root-stocks of its parents have been made, and progeny from open pollinated hybrid trees have been established in small plantation plots. (b) Plantations of widely separated mother trees of (1) E. saligna and (2) E. grandis in a matrix of E. tereticornis, with a view to obtaining F1 hybrids by natural pollination was established in 1969. (c) Similar plantation of E. torelliana in a matrix of E. citriodora was established in 1969.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0342, FOREST TREES PROVENANCE TRIALS
J.K. JACKSON, (N1.151.0002)

Objectives: To compare the survival, growth rate, stem form and wood qualities of different provenances of species of actual or potential value for plantations.

Progress: Work was begun in 1965. Through 1968 trials have been made of Eucalyptus microtheca, E. camaldulensis, E. pilul­aris, Pinus caribaeas, P. khasya, P. oocarpa and Tectona grandis. In 1969 provenance trials of E. tereticornis, E. saligna, E. grandis, E. maculata, E. citriodora, E. decaisneana, E. alba and Pinus merkusii and additional provenances of E. camaldulensis and Pinus caribaeas were planted.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0343, VEGETATIVE PROPAGATION OF PINUS SPECIES
G.O. OJO, (N1.151.0003)

Objective: If the very promising growth of some species of pines in the savanna region continues, there will come a stage when selection of elite trees for seed orchards, and experiments in controlled pollination and hybridization will be necessary. For these purposes it is necessary to graft scions of selected trees on to other stocks. Thus investigation of techniques of grafting pines under savanna conditions is needed. There are also some prospects of using vegetative propagation of pines from shoot cuttings, in the establishment of plantations.

Approach: (i) Further work on cuttings and needle fascicles will be done when the results of the preliminary work are known. (ii) Grafting techniques will be studied.

Progress: Initiated in 1967, with trials of propagating pines from needle fascicles. These failed owing to the absence of mist-spray equipment. Some preliminary experiments on grafting of pines were made in 1968 with a certain amount of success. Preliminary work on the establishment of trees from cuttings and from needle fascicles began in January 1970 in growth chambers. The use of auxins to promote root development is being investigated.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan
NIGERIA

9.0344, NATURAL REGENERATION IN SAVANNA WOODLAND
J.K. JACKSON, (NI.151.0004)

OBJECTIVES: (a) To study the effect on regeneration of Northern Guinea savanna woodland to various treatments of: early-burning, fire exclusion and cultivation after felling. (b) To study the influence of the above treatments on the productivity of the site.

Progress: Remesurcurement made in 1966 confirmed earlier evidence of the very severe effect of early-burning after clear-felling on both stocking and yield. In contrast the prevention of fire for ten years after felling resulted in basal area at the end of that period greater than that of the unfelled woodland.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0345, COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK
J.K. JACKSON, (NI.151.0005)

Objectives: To determine the best potting mixtures for raising seedlings in nurseries, and to investigate the effect of different soil fumigants.

Progress: For Eucalyptus the best results were obtained from mixtures of sand and cow-dung, with added superphosphate. Added urea was beneficial in some cases. For pines the best mixtures were of deciduous forest topsoil and sand, with added superphosphate. Cow-dung was harmful to pines, as was urea at the higher concentrations.

Experiments on the use of soil sterilants ("Nemagon" and "Dowfume") showed that the Nemagon increased mortality when germinating seed was picked out one week after fumigant treatment. When picking out was delayed three weeks after fumigation there was no difference in mortality, but height growth on the fumigated soil was significantly better. Experiments to find out the best way of inoculating pine seedlings with mycorrhiza was started in 1970.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0346, TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK
J.K. JACKSON, (NI.151.0006)

Objective: To determine the effect of containers of various sizes and types on the growth of seedlings in the pots and their subsequent establishment and growth in the field.

Progress: Work initiated in 1966 with Eucalyptus camaldulensis and continued in 1967. Results to date indicate that survival of seedlings planted out from pots 6 ins. x 2 ins. in diameter does not differ significantly from that of seedlings in pots 9 ins. high x 3 ins. diameter. Height growth however tends to be better in plants raised in larger pots. Comparison of clear and black polythene pots for raising pine seedlings showed better seedling height growth in the black pots. The clear pots also disintegrated rapidly from the effects of sunlight.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0347, SAVANNA FORESTRY RESEARCH STATION
J.K. JACKSON, (NI.151.0007)

Objectives: To investigate methods of increasing percentage germination, and reducing the time taken for seeds to germinate of different species used in afforestation.

Progress: Initiated in 1967 with teak. Best results obtained so far are from alternate soaking in water for a day, and drying in the sun for a day, repeated for fourteen days. Rotation with sharp gravel in a concrete mixer also shows some promise. Vermiculite gave better results in the pregermination of Pinus caribaea seed than did sand, but germination in partial light and in darkness was the same. Araucaria cunninghamii seed on the other hand had better germination in partial light than in darkness.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0348, EFFECT OF REMOVAL, PARTIAL REMOVAL AND NON-REMOVAL OF POLYTHENE POTS ON PLANTATION SPECIES
J.K. JACKSON, (NI.151.0008)

Objectives: To determine the effect on root development early growth and establishment of Eucalyptus camaldulensis, E. citriodora and different species of trees, of different degrees of pot removal and non-removal.

Successful establishment of Eucalyptus in plantation in Nigeria is dependent on prevention of termite attack on the young plants. This attack takes place mainly at the root-collar. Retention of part or all of the polythene pot after planting may help to prevent such attack; non-removal of the pot may considerably reduce planting costs.

Progress: Initiated in 1964 with three species of Eucalyptus at Miango. A second experiment with three species of Eucalyptus was laid down at Afaka in 1966. One on Pinus caribaea was established in 1968. So far little effect of the different treatments has been observed, but results from other parts of the world indicate that the effect of non-removal of pots may be delayed until the trees have reached a fairly large size.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0349, TREE SPECIES ELIMINATION TRIALS
G.O. OJO, (NI.151.0009)

Objectives: To select from possible plantation species those sufficiently suited to the local conditions to warrant more exact and prolonged comparative trials.

Progress: Sudan zone: work initiated in 1960. On the more favourable sites with higher groundwater levels and fertility a number of exotics have proved successful but on less favourable sites only neem and some indigenous species have succeeded so far.

Further trials will be undertaken in cooperation with local forestry services and assessments will continue.

Guinea zones: Assessment will continue on some plots which still yield useful results. One new species Pinus occidentalis will be tested.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0350, PLANTATION TRIALS
J.K. JACKSON, (NI.151.0010)

Objective: Species which may be suitable for use in afforestation are first screened by being planted in small plots of 25 trees (species elimination trials) or 100 trees (species growth trials). The next stage is to plant them under conditions more closely resembling those which will be used in practice in larger afforestation programmes, and for this purpose small plantations of about one acre each are envisaged.

Progress: The present programme began in 1967 at Afaka with plantations of five species of Eucalyptus and Acrocarpus fraxinifolius. In 1968 small plantations of Pinus caribaea, P. oocarpa, and P. khasya were established at Bida, Nimbia (2 sites), Mokwa (3), Afaka and Rafin Bauna. Work started in Dogon Daji (Sanga River Forest Reserve) with four species, Tectona grandis, Gmelina arborea, P. caribaea and P. oocarpa.
SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0351, ESTABLISHMENT OF SEED ORCHARDS
G.O. OJO, (NI.151.0011)

Objectives: To establish seed orchard plantations for the purpose of producing high quality seeds of selected and tested provenances and species of trees adapted for forestation of a variety of savanna sites.

Progress: A seed orchard of a desirable provenance of Eucalyptus camaldulensis was established in 1969. This was followed in 1970 with desirable provenances of E. camaldulensis, E. tereticornis and E. cloeziana. Large blocks (up to three acres) of P. caribaea and P. oocarpa were also planted out.

As the results of existing provenance trials become available seeds of the best provenances will be imported and orchards established. Species considered now are Pinus caribaea, P. oocarpa, P. merkusi and P. khaya and Eucalyptus maldulensis, E. tereticornis, E. saligna, E. grandis and P. citriodora would be imported for seed orchard establishment when results of the present provenance trials become available.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0352, ESTABLISHMENT OF ACACIA NILOTICA AND ACACIA SENEGAL
G.O. OJO, (NI.151.0012)

Objectives: To determine the best methods of establishing plantations of acacias.

Approach: Collate information available in Nigeria and in literature. Choose sites for experiments. This work is to be initiated as time and staff situation permit.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0353, INCREMENT RATES IN NATURAL SAVANNA WOODLAND
J.K. JACKSON, (NI.151.0013)

Objectives: To study the increment rates of the natural woodland species under a regime of annual early burning.

Knowledge of increment rates is essential for planned management of the forest estate, of which the Northern Guinea Savanna, at present managed under a regime of annual early burning, forms a major part.

Progress: Initiated in 1955. Results show growth rates to be extremely low, the mean annual girth increment of Isobertinia doka during its fastest period (11 to 12-1/2 inches girth class) being only 0.25 inches. The mean annual basal area increment per acre is also extremely low (less than 0.5 square feet) and in one 3/4 acre plot the total basal area of living trees was less at the end of the four year measurement period than at the beginning, despite recruitment of just over 100 small stems.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0354, GROWTH AND YIELD OF TEAK (TECTONA GRANDIS)
J.K. JACKSON, (NI.151.0014)

Objectives: (a) To determine site quality classes from temporary and permanent sample plots of teak in the savanna regions. (b) To prepare growth and yield tables. (c) To correlate growth with the site conditions found on each plot.

Progress: Preliminary work was begun in 1966 but because of the disturbances, military movements, and lack of personnel planned work had to be postponed. In 1968-69 a number of sample plots were measured and new ones established. In 1969-70 sample plots were remeasured and new ones established. Collection of soil samples.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0355, GROWTH AND YIELD OF GMELINA ARBOREA
J.K. JACKSON, (NI.151.0015)

Objectives: (a) To determine site quality classes from temporary and permanent plots of Gmelina in the savanna regions. (b) To prepare growth and yield tables. (c) To correlate growth with the site conditions found on each.

Progress: Available information on the growth of Gmelina in savanna areas has been collected. In 1969-70 all establishment plots were remeasured and new ones established. Soil samples and data on climate were collected.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0356, CULTIVATION AND WEEDING METHODS IN PLANTATIONS
T.G. ALLAN, (NI.151.0016)

Objectives: (a) To determine the effect on seedling establishment and growth of variations in time and frequency of weeding, and effectiveness of weed control. (b) To determine the effect of weeding and not weeding the rows. (c) To compare different kinds of mechanical cultivators in terms of effectiveness of weed control. (d) To ascertain costs involved in different weeding methods. (e) To determine if mulching seedlings after cultivation affects growth and survival.

Approach: Experiments will be made to compare the effects of different cultivation techniques, such as the use of the rotavator compared with disc-harrowing and hand weeding. Pines and Eucalyptus will be used.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0357, CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LANES
V.M. NAIR, (NI.151.0017)

Objectives: To investigate the effectiveness and costs of various weeds and chemical in the control of weeds (a) competing with trees in plantations and in nurseries and (b) in fire lanes (fire breaks) in order to keep the fire lanes from choking with grass and other annual and perennial weeds.

Progress: Preliminary trials were made in 1968 with simazine and gramoxone. In 1969 research plots have been established and treated at Afaka, Kano and Nimbia, employing five different chemicals at various dosages. Additional research plots will be established in different climatic and vegetation zones, employing a wide range of chemicals including phenoxy compounds, tris­zines, substituted ureas like diuron, and chlorinated aliphatic acids like Dalapon, etc.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0358, ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS
V.M. MAIR, (NI.151.0018)

Objectives: (a) To determine if unwanted hardwoods can be eliminated from forest stands and plantation by use of chemicals (weedicides and sylvicides). (b) To determine the efficiency of various chemicals in the killing of cult trees. (c) To determine the cost and labour involved in these operations. (d) To determine the
rates and time of application of chemicals in relation to age and species differences.

Progress: Poisoning of some unwanted low grade hardwoods have already been started in Afaka using cacadeal acid applied with an automatic hypo-hatchet.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0359, WATER STRESS IN RELATION TO GROWTH AND SURVIVAL IN SEEDLINGS OF EUCALYPTUS AND SOME INDIGENOUS SAVANNA SPECIES M.A. OGIGIRIGI, (NI.151.0019)

Objectives: To study (a) how growth of seedlings of various species are related to atmospheric and soil moisture conditions; (b) the relation between leaf water deficit, leaf diffusive resistance and plant water potential on the one hand, and growth in height, diameter, leaf area, roots and dry matter accumulation on the other; (c) the critical soil moisture and leaf water deficit beyond which the seedlings cannot survive; (d) the relative water economy of seedlings of various species.

Progress: Preliminary studies of leaf water deficits and growth have been made for E. robusta, E. propinqua and E. cloeziana. An agitated diffusion porometer has been obtained and its characteristics determined. A modified Scholander pressure chamber (bomb) is being tried also. Leaf water deficit studies made at bi-weekly intervals show how deficits vary with season and time of day.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0360, GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD M.A. OGIGIRIGI, (NI.151.0020)

Objectives: (a) To study the development and growth of shoots, roots and foliage of seedlings of different tree species showing adaptation to planting sites in the savanna. (b) To determine how growth and development are affected by variations in temperature, light intensity and photoperiod. (c) To compare growth and development under controlled environment conditions with that obtained on different natural sites varying in elevation and latitude and to define the temperature, light and photoperiod requirements of the species.

Approach: The first investigation planned is to find out the effect of temperatures corresponding to day and night temperatures at Mokwa, Afaka and Miango. Later on other environmental factors such as humidity and light intensity on growth of seedlings will be investigated as well.

Progress: The three Sherer-Gillett growth chambers were put in operating condition in 1969 but due to fluctuating electric supply could not be operated continuously. A project work plan has been developed and work will start as soon as there is adequate current.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0361, BUTT AND ROOT ROT OF TEAK (TECTONA GRANDIS) Z.O. MOMOH, (NI.151.0021)

Objectives: Control of the root and butt rot disease of teak.

Progress: The extent of the damage and some of the factors responsible have been surveyed. Efforts directed towards the control have started. Rigidoporus (Fomes) lignosus has been proved to be the causal organism.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0362, MYCORRHIZAL ASSOCIATIONS IN PINES Z.O. MOMOH, (NI.151.0022)

Objectives: To investigate the possibilities of improving mycorrhizal associations of pines with a view to enhancing the establishment and growth rates of them.

Progress: Temperature has already been found to be of great importance in mycorrhizal infection of pines. Excessive temperatures kill mycorrhizal fungi and prevent successful establishment of pine seedlings. Various experiments will be conducted with a view to ensuring successful mycorrhizal associations and improving on the existing mycorrhizal status of pines.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0363, SITE EVALUATION FOR PLANTATION DEVELOPMENT IN THE SAVANNA REGION A.B. MOMODU, (NI.151.0023)

Objectives: To carry out site evaluation in selected Forest Reserves to determine which soils will be suitable for plantation development. To determine the soil water budget under a range of vegetable covers and to relate this to plantation species and to establishment technique. To determine these chemical properties of savanna soils which can be correlated with site quality or plant requirement.

Progress: A range of soils have been examined and analysed. Soils have to be related to tree growth. A range of soil water budgets have been determined and related to tree cover and climate. Chemical analysis has indicated the need for using certain fertilizers.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0364, PLANTATION SILVICULTURE IN THE SAVANNA REGION OF NIGERIA T.G. ALLAN, (NI.151.0024)

Objectives: To provide the bases to allow the selection and afforestation of suitable areas to meet the anticipated wood requirement of the savanna zone. To determine suitable tree species for forestry plantation development and to determine cultural measures necessary for optimum growth. To determine effective and economic measures to secure maximum sustained yield from selected plantation species.

Progress: Satisfactory, a range of species have been selected as promising for particular parts of the savanna region, and work at plantation and pilot trial level continues.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

9.0365, STUDIES OF BEHAVIOUR AND GROWTH OF SELECTED PLANTATION SPECIES J.K. JACKSON, (NI.151.0025)

Objectives: To carry out mensurational studies on selected established species on a periodic basis to provide data relevant to possible large scale plantation development. To make detailed studies of growth of selected species, and to determine the growth physiology, including methods of propagation of such species.

Approach: For mensuration - a broad approach to growth studies and the establishment and recording of permanent sample

Progress: Physiology well established and some detailed work completed. Main work now on propagation and root studies. Mensuration making steady progress but still in early stages.

SUPPORTED BY Forest Res. Inst. of Nigeria - Ibadan

SOIL FERTILITY UNIT AT NIFOR
Benin City, Mid Western State

9.0366, LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOWS
V.G. KALAMKAR, (NI.133.0001)

OBJECTIVE: To compare the soil fertility restorative properties of two and three year falls of Acioa bartesi, Pueraria phaseoloides, Panicum maximum and natural bush as measured by two years' cropping cycle (early maize, cassava and late maize) and soil chemical analysis.

APPROACH: Randomized complete block design with split-plot treatments to study, the effect of supplementary NPK fertilization in combination with all other treatments (balanced for phase comparisons); 3 replications. Sub-treatments include NPK fertilizer application on split-plot basis as follows: (1) 'Nil' fertilizer to the fallow and to the test crop. (F) NPK fertilizer (20:20:20) to the fallow only one year after establishment. (FC) NPK fertilizer to the fallow one year after establishment and also to each test crop during each cropping cycle. (C) NPK fertilizer to each test crop during the cropping cycle. In addition to comparing the yield of the crops obtained after the various lengths of falls, the experiment is designed to provide information on: (a) The ability of different falls to absorb the nutrients from sub-soil and re-distribute them in the surface horizon as revealed by soil chemical analysis. (b) The percentage of organic matter contributed by Acioa bartesi as compared to grass and legume falls. The land will be prepared for cropping by mechanical cultivation between the rows of cropped Acioa bartesi.

PROGRESS: Acioa bartesi and other forms of falls seem to improve the soil fertility substantially. Soil chemical properties under Acioa falls have shown better nutrient reserves. However, the fertility appears to decline sharply within two to three years after the falls are opened. Full statistical evaluation of the data obtained so far is awaited before any interim conclusions could be drawn.

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0367, MAIZE HERBICIDE TRIAL
A. WILLIAMS, (NI.133.0002)

National Network Project, see NI.131.0078. (9.0276)

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

UMUDIKE AGRICULTURAL RESEARCH STATION
Umudike, East Central State

9.0368, MAIZE HERBICIDE TRIAL
A. WILLIAMS, (NI.135.0001)

National Network project, see NI.131.0078. (9.0276)

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

UYO AGRICULTURAL RESEARCH STATION
Uyo, South Eastern State

9.0369, MAIZE FERTILIZER TRIAL
F.K. ADEYEFA, (NI.134.0001)

National Network project, see NI.131.0077. (9.0275)

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

9.0370, MAIZE HERBICIDE TRIAL
A. WILLIAMS, (NI.134.0002)

National Network Project, see NI.131.0078. (9.0276)

SUPPORTED BY Federal Dept. of Agri. Research - Nigeria

163
PHILIPPINES

THE INTERNATIONAL RICE RESEARCH INSTITUTE
Laguna, Philippines

10.0001, AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOWLAND AND UPLAND RICE
S.K. DEDATTA, (RP.821.0001)

Promising selections from the Institute's breeding program are being evaluated under irrigated, rainfed lowland and upland conditions.

Nitrogen fertilizers and methods of application are evaluated under rainfed conditions.

Studies on soil moisture stress involve the development of techniques for screening rice varieties for tolerance. Techniques for greenhouse and field screening are being developed.

Other cultural practices under study are weed control, water management and direct seeding. All new herbicides are first tested under rainfed conditions and only when a herbicide shows enough promise under this condition is it tested under irrigated conditions. Studies on rotational irrigation are being extended to other areas with different soil and climatic conditions. Studies on direct seeding of rice are being continued because with successful control of weeds with 5 herbicides, direct seeding can replace transplanting in many areas.

2, 4-D, a cheap herbicide is becoming rapidly adopted as a pre-emergence herbicide for controlling annual weeds (sedges, grasses and broadleaved weed) in transplanted rice. BASF 3510 (Bentazon) was identified as a potentially inexpensive herbicide for the control of Scirpus maritimus, a perennial sedge.

The IR-442 line was identified as adapted to growing under upland as well as deep water (up to 60 cm) conditions.

10.0002, IDENTIFICATION AND ALLEVIATION OF OFF-FARM CONSTRAINTS TO INCREASED RICE PRODUCTION
R. BARKER, (RP.821.0002)

In the investigation of factors constraining the growth in rice yields, emphasis is placed on developing an approach for measuring and analyzing the multitude of factors influencing farm yields. The studies being conducted are changes in rice farming in selected areas of Asia; a benchmark survey of rainfed farms in Bulacan and Nueva Ecija, Philippines; technology change and rural employment; optimal resource allocation from production functions, and water management. Irrigation and water management have, from earlier studies, been identified as major constraints to the adoption of improved technology.

Studies show that inadequate weed control on many farms greatly reduce the yield response to fertilizers and the economic benefits of high yielding varieties. The level of insect control normally used at the experiment station is too costly for the farmer and knowledge of appropriate farm level insect control measures, other than use of resistant varieties, is almost completely lacking in rural areas.

Preliminary results indicate that even in the better irrigated areas of Asia there is a wide variation in the performance of the new rice technology.

10.0003, BIOLOGY, ECOLOGY AND CONTROL OF RICE INSECT PESTS
M.D. PATHAK, (RP.821.0003)

The research program is oriented towards developing a system of pest control that is easy to follow, less expensive and has minimum of toxicity and environmental pollution problems.

Varieties are evaluated for their resistance particularly to the brown planthopper, green leafhopper, white-backed planthopper and the rice whorl maggot.

Insecticides are evaluated in the laboratory and the greenhouse against the green leafhopper, the brown planthopper and the striped borer. The effective ones are tested in field experiments. Methods of insecticide application are being evaluated; e.g. root-soak treatment and the placement of the desired quantity of the insecticide in the root-zone of the rice seedling (about 2.5 cm below the soil surface).

Ecological studies on the green leafhopper and the brown planthopper include evaluation of the influences that environmental factors have on the population dynamics of the pests; survey of pest fluctuations, measurements of flight behavior and a comparison of sampling techniques.

Studies on integrated control include a test of simple integration of variety and pesticide; survey of predators in plots with insect-resistant selections; effect of insecticides on predators; effective timing of pesticide application and control through curative chemical treatment at economic injury level.

10.0004, FIELD TESTING OF NEW RICE TECHNOLOGY AND ADOPTION OF THE NEW TECHNOLOGY THROUGH A PILOT EXTENSION PROGRAM
V.E. ROSS, (RP.821.0004)

Field testing of the new technology is done in cooperation with various Philippine agencies. The studies include farmers evaluation of new selections applied research trial (FENSART); IRRI new selection applied research trial (INSART); insect control pilot study (IPCS) and granular herbicide applied research trial (GHART).
Trials are being conducted to field test new technology under rainfed conditions of growing rice. The technology being tested are promising selections and varieties; herbicides; insecticides; rates and timing of fertilizer application; methods of stand establishment and different management levels.

The pilot extension program is being undertaken to determine the effects of the new technology when applied on a whole farm basis. The program was designed to effect a widescale adoption of the package of cultural practices at a rapid pace using a minimum number of highly skilled, action-oriented farm management technicians.

10.0005, AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION

A.U. KHAN, (RP.821.0005)

The major objectives of the project are the design, development, testing and extension of agricultural machinery for use by small- and medium-scale rice producers and processors in the tropics.

An improved tiller (4-6 hp power tiller) design was released to two manufacturers in the Philippines.

10.0006, STUDIES ON THE ROLE OF SOIL MICROBES IN SOIL FERTILITY AND RICE CULTURE

T. YOSHIDA, (RP.821.0006)

The ultimate goal is to find out ways in which soil microbes can be made to contribute to improved and efficient techniques of rice production.

Studies include those on microbial nitrogen fixation in rice plants and soils; atmospheric nitrogen fixation by legumes; transformation of fertilizer nitrogen in rice soils; microbial mineral transformations; organic matter applications in paddy soils and on pesticide residues.

More nitrogen gas was found in submerged paddies planted to rice than in unplanted paddies. An association between the soil and the rice plant in the rhizosphere appears to be a key factor in nitrogen fixation.

Residue analysis showed less than 10 ppb BHC in soils, 0-350 ppb in rice plants and negligible amount in irrigation water. Analysis was done in rice soils of Iloilo province in the Philippines. The herbicide, 2, 4-D was biodegradable and did not persist in two Philippine soils.

10.0007, DEVELOPMENT OF IMPROVED RICE VARIETIES

G.S. KHUSH, (RP.821.0007)

The breeding program places emphasis on disease and insect resistance, protein content, grain quality, varying growth duration, cold tolerance and upland traits. Several modifications of breeding procedures are undertaken in line with the concept of an integrated approach towards the achievement of the objectives. The breeding program coordinates its activities with other disciplines and draws upon their expertise in formulating the complex screening procedures attendant to the development of superior varieties.

The Institute have released five varieties (IR8, IR5, IR20, IR22 and IR24). In addition, there are 20 varieties developed from IRRI lines by research institutions in 13 different countries. Selections with improved plant type and excellent grain quality which combine resistance to blast, bacterial leaf blight, tungro virus, grassy stunt virus, brown planthopper and green leafhopper are now available.

Rice germplasm is being collected, preserved and evaluated for use in the breeding program. At the end of 1972 the IRRI germplasm collection consisted of 22,830 accessions.

10.0008, STUDIES ON THE IMPROVEMENT OF FIELD PLOT AND SAMPLING TECHNIQUES FOR RICE

K.A. GOMEZ, (RP.821.0008)

The objective is to assist scientists in other disciplines of rice research in improving their research methodologies. The kinds of studies conducted include the identification of sources of additional soil heterogeneity in rice experimental fields; identification of factors affecting experimental error of important rice characters. Field plot techniques for crops used in multiple cropping; pot techniques for greenhouse experiments; and experimental techniques suitable for farmers fields are also being studied. The variability in protein content of rice and the variability in yield response to nitrogen are being investigated. The efficiency of certain experimental designs and data analyses for researches at IRRI are under evaluation.

10.0009, PHYSICO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE

B.O. JULIANO, (RP.821.0009)

The studies on grain protein are brown rice protein analysis of samples from the breeding materials; nitrogen balance studies in healthy pre-school children using three samples of milled rice; and a study of the cause of higher lysine content in two varieties (ARC 10525 and Kolamba 540). Ammonium and nitrate metabolism in rice plants and the factors affecting protein accumulation in developing grains are likewise being studied.

A number of experiments are undertaken to identify factors other than amylose content that affect cooking and eating quality of rice. Examples are the investigation on molecular properties of starch granules of five waxy rice in relation to the quality of the parboiled waxy rice flakes (pinipig) produced; study on the nature of Basmatitype elongation; and determination of factors affecting changes in grain texture during storage.

Studies on starch synthesis include the characterization of soluble starch synthetases and the effect of sucrose concentration on starch accumulation and on the enzymes involved.

An increase in the protein content of the rice grain from the usual 7 percent to 9 or 10 percent did not have any adverse effect on the eating quality of rice. An increase in percentage of utilizable protein results from an increase in protein content in milled rices up to 10 percent.

PHILIPPINES

10.0010, BIOLOGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE S.H. OU, (RP.821.0010)

Among the virus diseases the emphasis is on the tungro virus. Experiments are conducted to better understand the epidemiology of the tungro disease; e.g., studies on the acquisition of the virus, movement of the insect vector; influence of the number of insects on rate of transmission and studies on vectors at the IRRI research farm and vectors in farmer's fields. An improved method for screening varietal resistance is being developed.

The more important fungal diseases being studied are the blast disease and sheath blight. The resistance of different selections/varieties is tested in international uniform blast nurseries. Sheath blight has recently caused a great deal of concern in many rice growing countries. The disease tends to become more destructive as rice culture becomes more intensive. Studies on sheath blight include lesion formation the perfect stage of the fungus; host range; varietal resistance and chemical control.

The objective of the bacterial disease research program is to assist in the integrated program of developing varieties with resistance to bacterial diseases. To meet the objective, simultaneous research is being conducted on the pathogen's virulence, the ecology of the pathogen and disease epidemiology. The emphasis has been on bacterial leaf blight and bacterial leaf streak.

In addition, work is underway to build up higher levels of resistance; multiple sources of resistance to specific diseases, and multiple diseases resistance.

New and more efficient screening techniques were developed for bacterial leaf blight and tungro. Sheath blight is becoming increasingly important in Indonesia.

10.0011, DEVELOPMENT OF IMPROVED CROPPING PATTERNS FOR SMALL ASIAN RICE FARMS R.R. HARWOOD, (RP.821.0011)

The main objective is to achieve optimum utilization of farmer resources (rainfall, irrigation, land, labor, capital).

Studies include trials of intensive systems, relay cropping, insect control, weed control, maximum cropping studies, cropping patterns for rainfed areas, stability of cropping systems, and varietal introduction and testing. Included are economic studies on power source, labor requirements, and cost-return of cropping patterns.

There will be developed a better understanding of cropping patterns, their limiting factors and how we might improve on them. The individual components such as promising intercropping combinations and new methods of insect and weed management have real promise for immediate and effective use by farmers.

Studies revealed significant effects of crop combinations on insect and weed population. When peanuts were interplanted with corn under conditions of heavy corn borer infestation, the population of corn borer larvae was one-sixth of that in corn without interplanting of peanuts. Grain yield of an early corn variety was increased when mung bean was interplanted because the mung bean reduced weed growth without competing severely with corn.

10.0012, CHEMICAL KINETICS OF RICE SOILS AND VARIETAL RESPONSE TO ADVERSE SOIL CONDITIONS F.N. PONNAMPERUMA, (RP.821.0012)

The chemical kinetics of soils profoundly influences the growth and yield of rice and provides a better understanding of the performance of rice on problem soils. Combined with soil and plant analysis and with plant observations chemical kinetics is a valuable diagnostic tool in the study of problem rice soils. Among the problem rice soils being studied are mesic soils, acid lateritic soils, acid sulfate soils, alkali soils and saline soils.

Varieties and selections are tested for resistance to aerobic soils, alkalinity, salinity, iron toxicity, excessive soil reduction and phosphorus deficiency.

Zinc is becoming an important yield limiting factor on large areas well supplied with major plant nutrients and with water.

There are differences in varietal resistance to iron and phosphorus deficiency, manganese, aluminum and iron toxicity, alkalinity and salinity. It is now possible to launch a breeding program to combine the resistance of these varieties to adverse soil conditions with other desirable characters to produce genetic lines that may be well suited to injurious soils.

10.0013, STUDIES ON PHYSIOLOGICAL BASIS FOR FURTHER INCREASE OF GRAIN YIELD AND RESPONSE OF RICE TO SUB-NORMAL CLIMATIC ENVIRONMENT S. YOSHIDA, (RP.821.0013)

Attempts to further increase grain yield involve studies on the role of CO2 released from the soil on crop photosynthesis; the effect of climate on grain number and grain yield; the rate limiting steps in rice photosynthesis and photosynthetic differences among rice varieties. Investigations on plant-water relations include the response of stomata to moisture stress; tests on heat resistance and studies on leaf water potential.

The response of varieties and lines to photoperiod and to complete submergence are determined. Varietal resistance to low temperature at the seedling stage and the influence of potassium fertilizer on seedling resistance are also being studied.

An intensive effort to characterize varieties planted under upland conditions is being undertaken.

CO2 enrichment before flowering increased yield by 30 percent by increasing grain number and grain weight. In the search for varieties with high photosynthetic rates, it was found that net assimilation rate varied by nearly 100 percent among varieties.

166
11.0001, IMPROVEMENT OF MILK PRODUCTION BY CROSSING THE LOCAL ZEBU BREED WITH IMPORTED SIRES
J.P. DENIS, (SG.132.0002)
Objective: Improvement of milk production in Senegal.
Approach: Classical milk inspection for the females. Use as sires of bulls that are the issue of better-yielding cows. Continuous crossing of the local zebu with imported sires (Pakistani-Guzera). Progeny testing.
Results: Isolation of lines having a more plentiful milk production. Knowledge of the milk production of the 1/2, 3/4 and 7/8 bloodstock.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0002, FORAGE CROP EXPERIMENTATION
A. CZILLER, (SG.801.0001)
Detection of high-yielding forage species susceptible of adaptation to irrigated cultivation in the Senegal river valley.
Permanent species: Pennisetum sp., Panicum maximum, Echinochloa sp., Brachiaria mutica, etc.
Seasonal species: Maize, forage sorghum, Eleusine, Melinis menutiflora, Chloris gayana, etc.
Legumes: Stylosanthes sp., Mucuna, Desmodium sp., Vigna sp., Soja sp., Pueraia etc.

11.0003, RESEARCH ON VARIETIES OF VIGNA UNGIULATA WITH GOOD RESPONSE TO INTENSIVE TECHNICS (WATER, FERTILIZERS)
A. CZILLER, (SG.801.0002)
VARIETAL SELECTIONS
YIELD: 1.5 ton of grain/ha, or 25 to 40 ton of green forage.

11.0004, STUDY OF WATER REQUIREMENTS OF COTTON UNDER IRRIGATION
A. CZILLER, (SG.801.0003)
No summary has been provided to the Smithsonian Science Information Exchange.

11.0005, EXPERIMENTS WITH MAIZE AND SORGHUM
A. CZILLER, (SG.801.0004)
Varietal studies: Detection of high-yielding varieties suitable for cultivation in winter, the cold dry season, and the hot dry season, respectively. Production of grain and forage. Study of cropping techniques and irrigation methods.

11.0006, RESEARCH ON WHEAT AND BARLEY
A. CZILLER, (SG.801.0005)
Objective: Varietal study - 1) Detection of high-yielding varieties of fast-growing hard and soft wheat; 2) Cropping and irrigation methods; 3) Manuring problems; 4) Study of bakery technology in association with the Dakar Institute of Food Technology.

11.0007, IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY
A. CZILLER, (SG.801.0006)
OBJECTIVE: Definition of possible ways to establish in the Senegal river valley a high-yielding irrigated agriculture, with progressive incorporation of modern livestock raising (lower valley ecological sector).
APPROACH: Agronomic experimentation in irrigation districts with total water control: varietal selection, cropping techniques, crop diversification trials.
PROGRESS: Selection of adapted cereal varieties - detection of promising forage species.

11.0008, COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH
D.A. RIJKS, (SG.801.0007)
Measurement of rice field temperatures. Analysis of temperatures at different depths. During the cold period from December to February (in cold waves of 6 degrees C the rice field temperature falls to 12 degrees C), these relatively low temperatures arrest
the growth of the rice, whose growing time is lengthened by 45-50 days (from 110-120 to 160-170 days), which interferes with the obtaining of two crops per year.

11.0009, AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN
D.A. RIJKS, (SG.801.0008)
Analysis of the frequency and distribution of rain in a 10-day period at 13 stations in Mali, 5 in Mauritania and 2 in Senegal. Analysis of frequencies of dry and hot winds that can hinder the growth of irrigated crops in February, March, April and May. Evaluation and verification of empirical coefficients used in the different formulas for calculating evapotranspiration. Analysis of frequency of cold waves. Continuous measurements of solar radiation and net radiation. Evaluation of their relationship to the duration of insolation. Verification of values of coefficients in the Angstrom and Brunt formulas.

11.0010, WATER REQUIREMENTS OF IRRIGATED CROPS
D.A. RIJKS, (SG.801.0009)
Measurement of water consumed by crops of wheat, maize, sorghum, niebe (Vigna unguiculata) and rice in the course of their growth. Use of lysimeters and of a neutron probe.

CENTRE NATIONAL DE RECHERCHES AGRONOMIQUES DE BAMBEY IRAT
B.P., Bambe

11.0011, ANALYSIS OF FACTORS OF CROP YIELD IN A PEASANT ENVIRONMENT
C. RAMOND, (SG.151.0001)
Objective: To measure the penetration of technical subjects in a peasant environment and to calculate their effect on yields. To define on behalf of the body responsible for extension some priorities for diffusion of subjects.

Approach: Factorial analysis of technical factors of the yield on a large number of plots closely followed. Complementary analyses of groups of plots classified according to different criteria. Calculation of multiple regressions.

Results: When all the techniques are correctly applied, the yields obtained by the peasant farmers are obviously identical to those obtained on the station. But financial or technical constraint (insufficient equipment, or poor use made of that available), or shortage of labor, make this difficult to achieve.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0012, ECONOMIC ANALYSIS OF PEASANT FARMERS' HOLDINGS
C. RAMOND, (SG.151.0002)
Objective: Research on the most appropriate method of analysis aimed at leading up to a management council.

Approach: Factorial analysis of holdings, group analysis, automated budgets, function of production. Factorial analyses and group analyses utilized conjointly enable a satisfactory evaluation of the economy of the holdings. Automated budgets will eventually be used to lead up to the management council.

Results: Factorial analysis allows a great number of technical and economic but also sociological variables to be accounted for. Their regrouping as independent factors, factors of dimension, intensification, influence of the introduction of a new culture, ... allows for the separation of tendencies and for calculation of the intensity of relationships between explained variables and explanatory variables.

For a better interpretation of the phenomena, the factorial analysis is prolonged by comparative analyses and regression analyses.

These analyses, if they provide a good description of a group of holdings, do not, however, end as models for decision. To this end the method of automated budgets will be tested from 1973 onwards.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0013, STUDY OF THE MOLD DISEASES OF THE PANICLES OF SORGHUM
J.C. GIRARD, (SG.151.0003)
Objective: To aid the selector in finding early varieties of sorghum resistant to mold diseases.

Approach: To construct an inventory of mold diseases on the various lines of cultivated sorghums. To follow the development according to the relative humidity of the air and of the moisture content of the seeds. To grow them in pure culture. To carry out artificial inoculations of sorghum seeds to enable marking of the possible resistances.

Results: Inventory of the mold diseases on different lines of sorghum.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0014, STUDY OF THE MILDEW OF MILLET DUE TO SCLEROSPORA GRAMINICOLA
J.C. GIRARD, (SG.151.0004)
Objective: To acquire a good knowledge of the biology of the parasite and of its relations with the host such as to facilitate an effective control campaign against this disease.

Approach: Establishment of methods for artificial inoculation of millet with Sclerospora graminicola. Study of the biology of the parasite. Genetic study of the host-parasite relations. Study of control methods other than varietal resistance (this latter belonging to the province of the selector).

Results: Method of artificial inoculation.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0015, IMPROVEMENT OF THE PROTEIN CONTENT AND QUALITY OF THE PROTEINS OF MAIZE
J. DUROVRAY, (SG.151.0005)
Objective: While utilizing the introduced strains "opaque 2" and "Lg 2", to create varieties well adapted to the local conditions and having a high content of lysine and tryptophane.
11.0016, STUDY OF SORGHUM GALL-MIDGE - CONTAINING SORGHICOLA
B. VERCAMBRE, (SG.151.0006)

Objectives: Agronomic and economic influence according to varieties and cropping associations proposed for popularization.

Approach: Account of the varietal differences for a single flowering cycle. Association of short-cycle and long-cycle varieties. Total form of the dynamics.

Results: Commencement of the studies.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0017, STUDY OF THE HARMFUL EFFECT OF WEEDS ON GROUNDNUTS
J.P. DEUSE, (SG.151.0007)

Objectives: To determine the influence of weeds on the productivity of groundnuts at the beginning of the growth cycle. To measure the loss of yield in that case, according to the date of the first weeding.

Approach: Total evaluation in the course of this first phase of the study, sum of the influences of every nature (moisture - light - mineral elements) due to the joint action of all the species of weeds.

In the course of a second phase the entire phenomenon will be analysed as a function of each of the main species of weeds.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0018, ENEMIES OF RICE - ESTABLISHMENT OF TECHNIQUES FOR REARING
B. VERCAMBRE, (SG.151.0008)

Objectives: To establish techniques for rearing, on artificial media, the principal Lepidoptera feeding on rice, to facilitate the study and multiplication of their entomophages.

Approach: Adaptation of the method already used for Chilo suppressalis and for Chilo zacconius.

Mass rearing of the parasites Trichospilus - Tetrastichus and Itoplectis.

Results: Commencement of study.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0019, STUDY OF THE CHEMICAL WEEDING OF GROUNDNUTS
J.P. DUSE, (SG.151.0009)

Objectives: Research on herbicides which answer the specific needs of the peasant environment in West Africa and notably in the ecology of the groundnut-growing zone of Sine-Saloum.

Results: One herbicide can from now on be assayed for popular use. Treatment leaving room for improvement and, with this in view, pursuit of tests on herbicides.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0020, CHEMICAL CONTROL OF WEEDS OF THE SORGHUM CROP
J.P. DEUSE, (SG.151.0010)

Objective: Research on the most efficacious herbicides for the sorghum crop.

Approach: The method for experiments with herbicides is that of the French Commission for Biological Experiments, namely: behaviour test, test for selectivity, test for profitability and for acceptability in a rural environment.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0021, CHEMICAL CONTROL OF THE WEEDS OF THE MILLET CROP
J.P. DEUSE, (SG.151.0011)

Objective: Research on the most efficacious herbicides for the millet crop.

Approach: The method for experiments with herbicides is that of the French Commission for Biological Experiments, namely: behaviour test, test for selectivity, test for profitability and for acceptability in a rural environment.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0022, IMPROVEMENT OF THE STORAGE FACILITIES FOR AGRICULTURAL PRODUCE IN THE SAHEL-SOUDANESE ZONE
J.P. DEUSE, (SG.151.0012)

Objective: Improvement of the existing storage facilities, establishment of new techniques (chemical, physical, biological), studies of profitability.

Approach: Studies are carried out to establish new structures for storage. To this is added the establishment of new control techniques, whether chemical, physical or biological. Each study is subjected to a study of profitability, for the improvement of facilities must be such as to be easily popularizable in a rural environment.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0023, PROJECT F.E.D. 215
A.F. BILQUEZ, (SG.151.0013)

Objective: Creation of new varieties of millet of high productivity, suited to a modern agriculture and adapted to the environmental conditions of Senegal.

Approach: Transference of the dwarfism "d2" to varieties having among them a good aptitude for combination, with a view to obtaining plants corresponding to the ideal type defined by the physiologist. Selection for certain characteristics (resistance to diseases - type of plant).

Results: The obtaining of dwarf lines resistant to Sclerospora.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0024, CREATION OF HYBRID VARIETIES OF MAIZE
J. DUROVRAY, (SG.151.0014)

Objective: Research on a maximum heterosis effect between local varieties (pure or population lines) and introduced varieties (pure or population lines).

Approach: Systematic study of aptitudes for combination between introduced and local varieties.

Recurrent selection of "S1" lines in the local populations with a view to their improvement (yield, height).

Extraction of pure lines in the local populations with a view to creating double hybrids.
SENEGAL

Reciprocal recurrent selection for the specific aptitude for combination between two composites with a wide genetic base.

Results: One complex hybrid (H.D. formed from introduced pure lines x improved local population) is being popularized at the moment. Its production potential is 6.5 t/ha.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0025, IMPROVEMENT OF SORGHUMS

J.P. MARATHEE, (SG.151.0015)

Objective: The obtaining of early and late varieties of reduced height and with good quality seed.

Approach: Prospection and selection in the local material; Introductions; Hybridizations between varieties having complementary qualities and genealogical selection; Utilization of the heterosis in sorghum for the creation of industrial hybrids.

Results: Popularization of the following varieties: 51.69 Introduced late variety, 56.63 Introduced semi-late variety, SH 60 CB- Semi-late variety selected from local material, 50.59 and 63.18 Early varieties selected from local material, CE90. Early variety created by hybridization and genealogical selection, popularized from 1973 onwards.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0026, MILLET - CREATION OF A DWARF COMPOSITE

J.P. MARATHEE, (SG.151.0016)

Objective: To create a dwarf, homogeneous composite, resistant to diseases and having good agronomic qualities.

Approach: Crossing between Indian dwarf lines and Souna Millet, followed by cumulative selection for the required characters.

Results: The composite is in the process of being improved.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0027, EFFECT OF TILLAGE ON THE MINERAL NUTRITION AND THE SUPPLY OF MOISTURE TO CROPS

R. NICOU, (SG.151.0017)

Objective: Ploughing has a very important effect upon the root growth of crops; besides, this effect can be more or less opposed to that of the mineral fertilizer especially when the latter is applied as a surface dressing. This antagonistic effect may have very important repercussions on the moisture supply to the plant especially when a period of drought intervenes in the course of vegetative growth. By appropriate techniques the question is to give the plant a root system which will enable it to make the maximum use of the moisture available in the soil, at the same time assuring a good mineral nutrition.

Approach: Studies in pots, experiments in the field, study of the rooting of the plants, inspection of the moisture and mineral nutrition.

Results: First fragmentary results: positive effect of ploughing (especially at the end of the cycle) on the resistance of the plant to drought; positive effect of burying the fertilizer in conditions of drought.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0028, PHYSICAL EVOLUTION OF THE SOIL UNDER CULTIVATION

R. NICOU, (SG.151.0018)

Objective: General study of the evolution of the soil under cultivation. This subject can assume three aspects: Physical evolution in the course of the regeneration of worn-out soil; Evolution of the soil under different cropping systems planted upon recently cleared land; determination of the best cropping system on new lands; Inspection of the physical evolution in intensive cropping systems.

Approach: Measurements and samplings in the fields: apparent densities, penetrometer recordings, cultural profiles, rootings, samplings of clods, reactions of plants: groundnut, millet, sorghum, maize, rice, cotton, vigna, soys bean, forage crops.

Laboratory studies on samples taken in the fields: granulometry, permeability, porosities, laboratory penetrometer, densimetric separations, assay for organic matter.

Results: Study in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0029, STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED

R. NICOU, (SG.151.0019)

Objective: This study should afford a better knowledge of the phenomena of hardening of sandy soils, and lead to the definition of appropriate cropping techniques to stabilize the cropping profile created by tillage and to prolong the period for use of the soil by means of dressings in the course of the dry season.

Approach: Studies in the laboratory: fine granulometries, apparent densities, porosity studies on clods and textural porosity, penetrometry in the laboratory, study of the specific surface of sands and loams, densimetric separations of the organic matter, co-precipitations, extraction of clays.

Studies in the fields: penetrometries, apparent densities, moisture profiles, traction forces, cropping profiles, reactions of the different plants to the physical properties of the soil (groundnuts, millet, maize, sorghum, rice, cotton, soya beans, vigna, forage crops).

Results: The first results demonstrate or confirm: the role of the nature of the clay on the phenomenon of hardening; the influence of the speed of desiccation at end of winter season; the role of organic matter in lessening hardening.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0030, INOCULATION OF SOYA BEAN SEEDS

G. CORRIEU, (SG.151.0020)

Objective: Study of the influence of inoculation with efficient strains on the yield of soya bean crops.

Approach: The inocula are manufactured, then tested in the laboratory; they are used for treating the seeds at the moment of sowing. The nodulation, spontaneous or resulting from inoculation, is observed at the time of flowering; the yield is calculated after harvesting. The efficiency of the nodules sampled is tested in the laboratory.

Results: The inoculation of soya seeds gives rise to a correct nodule formation, but at the time of the first campaign it has not been possible to demonstrate its effect on the yield.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0031, THE MOST FAVOURABLE CROPPING TECHNIQUES FOR THE NODULATION OF GROUNDNUTS

G. CORRIEU, (SG.151.0021)

Objective: Study of the influence of several cropping techniques on the nodule formation and the yield of Arachis plantations. Choice of a treatment that will make it possible to remedy yellow dwarving disease.

170
Approach: The field experiments comprise a biennial rotation of Arachis - millet. The different treatments are working of the soil, the application of manure, the application of lime and coating of the seeds with lime. The observations are made in the period of growth or at harvest time: they concern nodule formation, the aerial portion and the root system (on the one hand), the yield, the weight of the seeds, the oil and protein content of the seeds on the other.

Results: The 1972 campaign comprises two preliminary experiments of this type. The project has been inspired by the mediocre results of a single inoculation and with the object of eliminating the causes of the yellow dwarving previously observed on these same soils.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0032, HYDROCYANIC TOXICITY OF 63-I8 (A DWARF VARIETY OF SORGHUM)
M. MBODJ, (SG.151.0022)

Objective: The dwarf varieties of sorghum provide, after harvesting of the seeds, a straw that is 75-80 percent consumed by the oxen. The exploitation of these varieties for use as fodder, and at a less advanced stage of development may be envisaged. From that moment the problem of hydrocyanic toxicity found in young sorghum will have to be faced.

Approach: Study of the influence of mineral fertilization on the material used. The experimental arrangement is the blocks method with five treatments: N, P, K, NPK, and the untreated control.

The samples taken are assayed by argentimetry.

Results: Study in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0033, UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS
M. MBODJ, (SG.151.0023)

Objective: Utilization of the by-products of crops in the feeding of farm animals for a more complete integration of rearing with agricultural production.

Approach: Distribution ad libitum of cotton-seed either crushed or whole, for study of the acceptability of the product (to animals). Comparative study of two types of concentrate, the one at 100 percent of crushed cotton-seed, the other at 25 percent of cotton-seed and 75 percent cereals, in the fattening of cattle.

Results: Study in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0034, THE FRUIT OF FAIDHERBIA ALBIDA IN THE NUTRITION OF CATTLE
M. MBODJ, (SG.151.0024)

Objective: Faidherbia albida grows in considerable density in Cayor-Baol and Serere countries (20-25 trees/ha). Its fruit is rich in proteins (70g dry nitrogenous matter/kg) and in energy (0.77 feed- units). It constitutes an important forage resource. The question is to study the level for its integration in fattening rations with the object of freeing a certain proportion of the cereals used for this purpose.

Approach: Comparative study of two types of concentrate, the one based on cereals, the other on 50 percent cereals and 50 percent Faidherbia fruit for the fattening of cattle. The animals undergo weight inspection every week.

Results: Study in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0035, EXPLOITATION OF GROUNDNUTS AS A FORAGE CROP
M. MBODJ, (SG.151.0025)

Objective: The 48.115 variety of groundnuts, in production as an industrial crop, has been shown to be a producer of dry matter at 72 days after the seeds come up.

The object of this experimental work is to study the behaviour of this variety (production of dry matter, faculty of regrowth and production of pods after mowing) when it is exploited as forage.

Approach: The experimental arrangement comprises four treatments: Mowing at 50 days; Mowing at 62 days; Mowing at 75 days; without mowing.

Each of the treatments is subdivided into 2 sub-treatments at the moment of harvesting the pods, the one harvested at maturity, the other left just as it is with the object of assessing the faculty for re-growth of this variety.

Results: Study in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0036, STUDY OF A MODEL FOR EXPLOITATION FOR ZOOТЕCHNICAL PURPOSES
M. MBODJ, (SG.151.0026)

Objective: To study the problems set by integration of agriculture with rearing, with the object of aiding the agricultural-pastoral producer to make better use of plant crops.

Approach: Utilization of the by-products of crops (millet and sorghum straw, and groundnut hulls) in such a way that the excess matter from cereals is used in the management of a paying sheep and cattle rearing establishment; the animals, purchased at the lowest market prices, are sold after fattening at the most favourable times.

Results: The integration of the animal into the agricultural business, at first without a speculative object, then after speculation, offers: intensive utilization of the soils, the use of harvest by-products in the fattening of the animals and the making of manure re-utilized in the regeneration of the soils.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0037, RESISTANCE TO TRYPANOSOMIASIS IN CATTLE ("METIS DE BAMBEY") BREED
M. MBODJ, (SG.151.0027)

Objective: To study the behaviour of the breed in the presence of trypanosomiasis, before distributing them in trypanosome-infected zones.

Approach: Experimental infection of animals of different ages by inoculating them with Trypanosoma congolense: To make blood smears each day to study the evolution of the infection. Study of the effects on weight gains of the animals by weekly weight recording. From the 10th day onwards, blood samples are taken each week for haematocrit and blood cell counts. This study is completed by the transfer of subjects to infested zones (Sine-Saloum and Casamance).

Results: Study in the course of being carried out.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal
11.0038, DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS
M. MBODJ, (SG.151.0028)
Objective: To find a technique of feeding capable of considerably reducing the depressive effect of turning out to grass, with the object of facilitating the indoor feeding of the winter season.
Approach: Study of the weight curves of groups of animals managed in the following ways: direct pasture feeding plus 2.5 kg of cereals; progressive pasture feeding for 20 days plus 2 kg of cereals plus hay; a) the hay is distributed before turning out on pasture, b) the hay is distributed after return from pasture. The loss of weight of the animals and the time needed for regaining their initial weight are measured.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0039, ADAPTATION OF MATERIAL FOR A POLYCULTIVATOR FOR ANIMAL TRACTION
J. LECRAZ, (SG.151.0029)
Objective: Adaptation of a mowing system; Adaptation of swathing system; Adaptation of water-cask, half-carried; Adaptation of towing platform, half-carried.
Approach: Creation of prototypes, testing of these prototypes.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0040, STUDY OF A SOWING-HOEING OF GREAT BREADTH, FOR ANIMAL TRACTION
J. LECRAZ, (SG.151.0030)
Objective: To try to obtain a machine at a low price, capable in team cultivation of working a breadth of 1.80 metres for a lower price than the current machines.
Approach: Completion of a first prototype. Prototype completed and is in the course of testing (on the bench, in the field).
Results: 1) Machine has advantages. 2) Mechanical behaviour presenting weaknesses.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0041, TESTS IN TRUE SIZE OF A PROTOTYPE FOR A MILLET THRESHING MACHINE
J. LECRAZ, (SG.151.0031)
Objective: Establishment of a threshing machine for millet, with a large turnover.
Approach: The prototype produced seems satisfactory at the moment. A test of long duration is necessary, however, in order to find out its real possibilities and its weaknesses.
Results: Study in progress. The present turnover is 800 kg of seed per hour for an installed 25 horse-power engine and an essential mean of 15 h.p. The losses and breakages are slight.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0042, CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING
J. LECRAZ, (SG.151.0032)
Objective: To define the best method for preparation of the seed-bed.
Approach: The experiment is constituted by a group of observation plots. Combination of periods for tilling according to humidity. Determination of the tilling implement according to the crop to be sown (arachis or millet).
Results: Study in progress. These experiments will probably be pursued for many years to obtain reliable results.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0043, IMPROVEMENT OF THE TECHNOCAL CHARACTERS OF ARACHIS FOR OIL PRODUCTION
J.C. MAUBOUSSIN, (SG.151.0033)
Objectives: To render the product in commercial use (groundnuts in their shells) the most suitable for producing the oil.
Approach: Increase of the yield on shelling by reducing the thickness of the shell by hybridization and genealogical selection. Research for varieties having a large oil content in the seed by testing the varieties created. Research on varieties with regular pods with regard to shape and maturation, by genealogical selection for this character.
Results: The obtaining of lines with 78 percent yield of seed/shell, of which one has been popularized.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0044, CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (105 DAYS)
J.C. MAUBOUSSIN, (SG.151.0034)
Objectives: For the North Central region of Senegal, varieties of this type are essential; they do not exist naturally.
Approach: Recombination of the dormancy of the late varieties with early cycles, varieties by hybridization followed by genealogical selection.
Results: 2 varieties (released) for popular use, several others promising.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0045, GROWTH AND MATURATION OF GROUNDNUTS IN SANDY SOIL
J.C. MAUBOUSSIN, (SG.151.0035)
Objectives: Study of 7 very different varieties of groundnuts with the object of acquiring a better understanding of varietal behaviour, relation to climatology.
Approach: Cropping with repetitions, samplings "staggered" in time, measurement of different variable factors in growth and maturation of the pods, evolution of the foliage, nodosity.
Results: Interpretation in progress directed towards an understanding of the relationship between plant and climate.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0046, STUDY OF VARIETIES OF TOMATO RESISTANT TO NEMATOSES
J.C. MAUBOUSSIN, (SG.151.0036)
Objectives: To study the behaviour of varieties resistant to very aggressive populations of Meloidogyne in different conditions of cultivation.
Approach: Cultivation in the fields with follow-up of the evolution of the attacks.
Results: Activity in progress.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0047, CREATION OF VARIETIES OF GROUNDNUTS RESISTANT TO DROUGHT
J. GAUTEREAU, (SG.151.0037)
Objectives: To create new varieties capable of resisting lengthy periods of drought during the vegetative cycle.
Approach: Marking of resistant varieties among the varieties introduced or created on other criteria. Laboratory testing, experiments in natural and artificial conditions of drought. Hybridization
between parents whose resistance is known and donors of other characters.

Results: Several interesting varieties detected.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0048, STUDY OF BEHAVIOUR OF VARIETIES OF POTATO
J.C. MAUBOUSSIN, (SG.151.0038)
Objective: To know the behaviour of varieties in different conditions of cultivation in the interior of Senegal.
Approach: Comparative experiments or behaviour studies.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0049, BEHAVIOUR STUDY WITH VARIETIES OF EGGPLANT
J.C. MAUBOUSSIN, (SG.151.0039)
Objective: To know the behaviour of varieties in different conditions of cultivation in the interior of Senegal.
Approach: Comparative experiments or behaviour studies.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0050, STUDY OF THE STUNTING OF GROUNDNUTS (CLUMP)
J.C. MAUBOUSSIN, (SG.151.0040)
Objective: To determine the vector that transmits the disease.
Approach: Research done in common by the "Institut de Recherches Agronomiques Tropicale" (IRAT) and 'Office de la Recherche Scientifique et Technique Outre Mer' (ORSTOM). Study of disinfection of the soil and of the mechanism of the appearance of the disease in the fields. (IRAT). Laboratory studies on the nematodes. (ORSTOM).

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0051, STRUCTURES FOR USE IN TEAM CULTIVATION
J. MONNIER, (SG.151.0041)
Objective: Study in "life-size" in the agricultural stations of Senegal, of models of farms theoretically defined. To determine means of production in voluntarily limited conditions (simulation of a production unit): 1. The actual possibilities of applying the proposed techniques, 2. The economic effect of the application of these techniques.
Approach: National network project. Determination of the standard times for tasks. Determination of the blocks and sub-blocks of tasks. Determination of the days available for the different operations of cultivation within the blocks and sub-blocks of tasks. Detailed study of the constraints of labour and of the constraints for the personnel.
Results: Standard times for tasks, blocks and sub-blocks of tasks for each crop. Definition of the days available for each category of tasks. Establishment of accounts in agricultural concerns.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0052, DETAILED SOCIO-ECONOMIC SURVEYS OF INTENSIVE PRODUCTION CONCERNS
J. MONNIER, (SG.151.0042)
Objective: Possibilities of actual application of the proposed production techniques. Economic influence of the application of these techniques. National Network Project.
Approach: These surveys are especially concerned with the detailed study of the labour factor which is of primordial importance. The study at the national level in the application environment itself enables precise measurement of the psychosocial constraints and their influence on the application of the techniques. The study at the level of the production unit enables the establishment of a true account of the concern and to separate the net profit of the undertaking or subsidiary undertakings for each individual. This profit makes it possible to determine the actual possibilities for investment.
Results: Determination of the blocks and subsidiary blocks of tasks in a farming environment. Definition of the notion of "active person": characterization of the work of men, women and children. Determination of the work available. Determination of the possibilities of investment in the production units studied.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0053, STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES (OF PLANTS)
J. MONNIER, (SG.151.0043)
Objective: to study in detail, on plots of one hectare, the work factor on new crops which require appropriate techniques and to determine the surface area which the new varieties may occupy in the plantation.
Approach: 1) National network project; 2) Definition of the appropriate techniques in team cultivation with oxygen; 3) Time-motion studies of the tasks as team cultivation with oxygen and as manual cultivation; 4) Definition of the level of mechanization of cultivation.
Results: Standard times for tasks. - Definition of the date limits for execution of the tasks for the new varieties of vigna, millet, sorghum.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0054, STUDY OF LAND TENURE AND LAND CONSOLIDATION
P. KLEENE, (SG.151.0044)
Objective: The introduction of a modern technology is linked with an evolution of the existing land tenure. An attempt is being made to foresee the terms of this evolution and to establish a methodology for attaining it.
Approach: 1) National network project under the responsibility of the Ministry of Rural Development; 2) Preliminary survey: Cadastral survey, setting of boundaries, transmission of rights, demography; 3) Consolidation in limited areas.
Results: 1) Land consolidation of 200 ha. in Woloffarea; 2) Commenced land consolidation in Manding area.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0055, CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE
J.C. MAUBOUSSIN, (SG.151.0045)
Objectives: Introduced varieties have not been a success in the ecology of Casamance; the necessary technological characters must therefore be transferred to good adapted varieties, if possible resistant to "rosette."
Approach: Hybridation and genealogical selection.
Results: Varieties at present under test in comparative experiments, correct from the technological point of view.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0056, AGRO-CLIMATIC KNOWLEDGE OF THE PRINCIPAL ZONES WHERE AGRONOMIC RESEARCH IS AP-
SENEGAL

PLIED
C. DANCETTE, (SG.151.0046)

Objective: To know the climatic factors influencing the production of plants and even of animals. To establish correlations between these factors and the agricultural phenomena studied. To contribute to the observations of the national meteorological network. To select the data useful for the determination of the moisture requirements of crops and to calculate the level of satisfaction of these requirements.

Approach: Mastering of the data of the principal IRAT agricultural meteorology stations of Bamby, Sefa, Richard-Toll and Djibelo; secondary stations at Nioro du Rip, and at Sinthiou Maleme; and of the numerous stations for recording of rainfall, administered by IRAT pre-popularization.

Result: 1) Detailed annual meteorological reports since 1964; 2) Agro-climatological descriptions of certain zones; 3) Studies concerning rainfall useful to agriculture and the determination of growth cycles to be recommended according to region; 4) Establishment of formulas for calculation of potential evaporation-transpiration.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0057, IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN
F. GANRY, (SG.151.0047)

Objective: Improvement of the fertility of soils by increasing the storage of organic nitrogen and study of the indirect effects of the organic matter of the soil on the nitrogenous nutrition of cereals.

Approach: 1) Study, over two years in bare soil in lysimeters, of the decomposition of different types of plant material from millet (green manure, straw, composted straw, roots alone). 2) Field study of the organic state of soil under continuous cultivation of millet (soil with or without burial of composted millet straw). The fertilizer applied, labelled with 15 N affords knowledge of the extent of biological storage of the nitrogenous fertilizer.

Results: 1) Lysimetric study for identical gross applications. The roots supply less nitrogen. The green manure liberates twice as much N at the beginning of the rainy season and 1.5 times as much in the second part of this season, as does straw; on the other hand, it acidifies the soil. The nitrogenous fertilizer at the rate of 200N has a depressant effect on the hydrolysable nitrogen (labile fraction) when the quantity of organic matter buried is insufficient (15 t/ha.) and a positive effect at the rate of 30 t/ha. 2) Field study: results not yet known.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0058, ANALYSIS OF SAP
A. MONTAGNE, (SG.151.0048)

Objective: The analysis of sap could enable a much more rapid and precise diagnosis of mineral nutrition than foliar diagnosis. This technique would make the analysis of plant material capable of providing information concerning the conditions in which plants utilize the ions absorbed, i.e., on the intensity of the phenomena implied in the process of nutrition. According to the published studies of W. Routchenko, the proportions of N and P, in mineral and organic form in the sap, enable a definition of the state of nutrition of the plant in these elements in proportion to its requirements. The establishment of this analytical method enters into the framework of the mineral nutrition programme and finds a direct application in the diagnosis of deficiencies, and in the fertilization of the affected zones.

Approach: The establishment of the method deals with millet cultivated on sand and flowing solutions. After extraction and fractionation of the juices, the method uses simple but sensitive analytical procedures (spectrophotometry and titrimetry) which have been developed by Delmas, Routchenko and Baudel (1959)

Results: The first experiments can be started towards the beginning of 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0059, MEASUREMENT OF THE MINERAL UPTAKE OF EACH OF THE PRINCIPAL FOOD CROPS OF SENEGAL (MILLET, MAIZE, RICE, GROUNDNUTS, SORG-HUM)
A. MONTAGNE, (SG.151.0049)

Objective: The measurement of the mineral uptake, with respect to each of the species studied, cultivated in different conditions of manuring and working of the soil, will afford knowledge of the mineral mobilizations and the amounts removed at harvesting, per unit of production. The object of this study is to obtain a better control of mineral nutrition and to calculate the maintenance fertilization needed for the different crops.

Approach: The programme covers millet, maize, rice, groundnuts and sorghum, cultivated in experimental fields, distributed over a central southern sector of Senegal. The samplings are made at maturity, immediately before harvesting, each sample is subjected to several analyses: 1) measurement of humidity; 2) assay for N, P, K, Ca, Mg, S in the parts "exported" (seeds) and in the parts restored to the soil (straws).

Results: No results yet, the study extending over several years.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0060, NITROGENOUS NUTRITION OF CEREALS
F. GANRY, (SG.151.0050)

Objective: The object of these studies is: 1) to improve the return from the nitrogenous fertilizer (is the optimum return from the fertilizer improved in the presence of organic material?); 2) to study with the aid of labelled nitrogen (N15) the efficiency of fractionation of the nitrogenous fertilizer on the yield of the cereal.

Approach: In a pluriannual field experiment, increasing quantities of nitrogen are applied in the presence or the absence of composted straw. The labelled fertilizer provides knowledge of the efficiency of fractionation and the true coefficient of utilization of the nitrogenous fertilizer.

Results: (First results 1972) - As early as the first year we can demonstrate a specific effect of the organic matter on the yield.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0061, MOISTURE BALANCE BENEATH CUT CROPS, BARE SOIL AND FALLOW
C. DANCETTE, (SG.151.0051)

Objective: To know the terms of moisture balance under different types of cover (cut crops, bare soil, fallow) in order to work out a better general policy with regard to water: by the choice of species, of varieties having a longer or shorter cycle, by a better management of fallows; by a more rational distribution of the types of cover and finally by a choice of techniques of cultivation. One part managed in natural conditions and another irrigated to the optimum will enable judgement of the influence of rainfall on production (millet, groundnuts) for different purposes: adaptation to the environment according to its recorded rainfall, forecasts of
Approach: Inspection of humidity by means of the neutron humidimeter, by measurement of the drainage, of the evaporation - transpiration, by inspection of vegetative growth and of yields in seed and dry matter.

Results obtained: Measurements of real evapotranspiration with millet, groundnuts, fallow and bare soil. Partial knowledge of the terms of moisture balance to capacity for retention, permanent withering, permeability, percolation, etc. Expected: Measurements of maximal evaporation - transpiration beneath the same types of cover and simultaneously with the measurements of real evaporation - transpiration.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0062, MOISTURE NUTRITION OF PLUVIAL RICE - RESISTANCE TO DROUGHT
C. DANCETTE, (SG.151.0052)

Objective: To know the water requirements of pluvial rice. To know its reactions in periods of drought and the influence of moisture stress on the yields. This knowledge should allow a choice of varieties taking the best advantage of the available possibilities of rainfall and an optimal adaptation of the varieties proposed, by climatic zones.

Approach: Study in pots and in a controlled environment (from the point of view of moisture applications especially). Moisture stress is provoked at different stages of cultivation. Regular observations are made concerning growth and development: Measurement of potential consumption for each of the principal climatic zones (use of evapotranspiration and of evaporation vats, class A); 2) Inspection of the actual amounts consumed in the field by means of the neutron humidimeter. Inspections under irrigation could eventually be envisaged. This study has just commenced. The first results of the 1972 winter season concern the first phase of study in a hot-house and in pots, and measurements of maximal evaporation - transpiration.

$ SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0063, LEACHING OF THE MINERAL ELEMENTS FROM SANDY SOILS CULTIVATED AS INTENSIVE SYSTEMS
C. PIERI, (SG.151.0053)

Objective: In the sandy soils of Senegal the losses by leaching of the mineral elements can be important. They are closely linked to the moisture dynamics and the moisture economy in these soils. But this dynamics is in part a function of the types of cropping systems utilized (in particular with or without fallow). Some studies of leaching had been made under traditional cultivation and in the framework of improved extensive systems. Fresh studies must be undertaken to evaluate the importance of losses by leaching in the framework of the more intensive systems, by way of application to Senegal, in such a way as to establish realistic mineral balances, and consequently a fertilization policy enabling the conservation of the fertility acquired. Approach: The study is undertaken: 1) on a laboratory model with a view to establishing a relation between the volume (V) drained by water and the quantities (Q) of elements taken out; 2) on apparatus in the field (lysimeters) with inspection of the moisture dynamics (neutron humidimeter).

Results: The project is in its implantation phase but numerous data on water dynamics are already available.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0064, DETERMINATION OF THE AVAILABILITY OF POTASSIUM IN SOME SANDY SOILS IN SENEGAL
C. PIERI, (SG.151.0054)

Objective: This project in entered in a more comprehensive programme on the 'Regulation of potassium in the cultivated soils of Senegal', which will be entered upon in its entirety in the years to come. In fact, numerous examples demonstrate the appearance of the deficiency in this element which becomes manifest particularly after 5 or 6 years of cultivation in intensive systems.

The establishment of a potassic fertilizer runs foul of certain difficulties connected in particular with disregard for the dynamics of this element in the soils of Senegal, and different problems connected with the assimilation of potassium by plants (excessive application, cationic interactions, etc). This project has as its objective the study of different forms of potassium participating in the nutrition of plants.

Approach: Two phases: 1) Methodological establishment in the laboratory of different assays: Total potassium, mobilizable K, exchangeable K, soluble K. 2) Evaluation in the laboratory and in the field of the store of potassium effectively placed at the disposal of crops.

Results: Methodological establishment in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0065, STUDY OF THE ACIDIFICATION OF CULTIVATED SOILS IN SENEGAL AND DETERMINATION OF THE REQUIREMENTS IN LIME
C. PIERI, (SG.151.0055)

Objective: Numerous signs indicate a decided tendency to acidification of the cultivated soils of Senegal. This is particularly clear in the North Centre of Senegal, where the groundnut crop is in some places affected with yellow dwarfing. The relation between the low pH values (less than 5) and this affection has been established (D. Blondel et al.). The present project has as its objective: 1) To determine the importance of this phenomenon in agricultural Senegal; 2) To define the requirements in lime of these acid soils in order to correct the acidity.

Approach: 1) An inventory of the affected zones is being undertaken, and will be systematized from 1973 onwards. Attention is drawn to quantity of exchangeable aluminum and and the level of saturation in aluminum of these acid soils; A threshold of toxicity of exchangeable aluminum for certain common varieties of groundnuts will be defined. 3) The research on the requirements in lime will be based on the study of the quantities necessary for the neutralization of the exchangeable aluminum. Experimental tests in the fields will be set up in the different affected zones.

Results: The first results obtained show that certain soils have high levels in exchangeable aluminum. A first approach to definition of the requirements in lime has been made.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0066, STUDY OF CONTINUOUS CULTIVATION
G. POCTHIER, (SG.151.0056)

Objective: As the surface areas devoted to fallows are greatly decreasing in the regions of Thies, Diourbel and in Sine-Saloum, it has seemed necessary to estimate the levels of yield in continuous cropping and with fallow and to study the problems set by continuous cropping (techniques, fertilization, evolution of weeds.) Approach: 1) Comparison of different rotations at two levels of fertilization; 2) Putting large plots under continuous crop-
SENEGAL

ping, and following these up by studies under the main research disciplines. Setting up different experiments on these plots; 3) Balance of the uptake by the crops and study of the evolution of the soils.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0067, INVESTIGATIONS OF REVENUES AND EXPENDITURE OF FARMS
P. KLEENE, (SG.151.0057)

Objective: The question is to make a qualitative and quantitative analysis of the budgets of farms or of households, considered as independent units of consumption and production. The study comprises especially: 1) the attribution of revenues per individual and then by social status; 3) revenues other than those coming from the sale of harvests, farm (rearing) products, secondary activities and crafts, hiring and usury; 4) the possibilities of investment in the farm.

Approach: Investigation on 6 farms at Thysee-Kayrour, daily visit of the investigator, measurement of the surface area of the production.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0068, MANAGEMENT COUNCIL FOR FARMS
P. KLEENE, (SG.151.0058)

Objective: Technical activities aim at rapid transformation of farming in the direction of intensification. Starting from technical norms obtained by research, the question is to study how and in what rhythm the different concerns could comply with this modernization. Finally it must lead to precise recommendations on investigations to be made and the norms to be applied for each type of concern in the usage of popularization.

Approach: Studies of cases, observations and measurements of all factors and means of production of the concerns followed. Setting down the data on forms, analyses and advice to the farmers in collaboration with the staff. Results: 20 farms have received advice and have been followed up; 120 farms will be advised and followed up in 1973/1974.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0069, STUDY OF THE BORERS OF MILLET - ACIGONA IGNEFUSALIS
B. VERCAMBRE, (SG.151.0059)

Objective: Biological and dynamic study on early, late, traditional and dwarf types of millet; Study of the parasite Syzectus sp.

Approach: Establishment of the technique of rearing on semi-artificial medium; Technique of rearing of the parasite Syzectus; Preliminary experiments on controlled infestation of strains of dwarf millet.

Results: Commencement of studies.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0070, INTRODUCTION OF CHEMICAL WEED DESTRUCTION INTO THE PRODUCTION STRUCTURE
G. POCHTIER, (SG.151.0060)

Objectives: To verify if, technically and economically, the chemical weed destruction established at the station is applicable by the farmers; To study the repercussions of this technique on the whole of a concern.

Approach: Chemical weeding of groundnuts and maize; Measurement of the time of the operations and the costs on farms on which all the variable factors are known.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0071, DETERMINATION OF THE PRODUCTIVITY (OF FISH) OF CONTINENTAL WATERS
C. REIZER, (SG.114.0001)

Objective: To know the possibilities of the various reaches of the Senegal river in order to propose a rational exploitation of fishing and to improve the techniques for catching fish without harming productivity.

Approach: Study on productivity by means of physico-chemical research on the surface and deep water, biological research on reproduction, growth and the seasonal displacements of the principal species.

Results: A programme for organization of the management of pisciculture in the Delta was proposed in 1971. The study of the halieutic possibilities of Lake Guiers will be finished in 1972.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0072, STUDIES ON THE FAUNA OF CONTINENTAL WATERS
C. REIZER, (SG.114.0002)

Objective: Establishment of faunistic data on the fresh-water species present in the Senegal river and in its tributaries. Besides its scientific interest, it will enable an approach to the fundamental notion of productivity and make it a concern for management.

Approach: The studies are being conducted in collaboration between the C.T.F.T. and the Laboratory of Zoology of the Faculty of Sciences, University of Dakar.

Results: The systematic revision of the Polypteridae, the Characiniidae and the Mormyridae is completed.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0073, DETERMINATION OF PRODUCTION OF FISH OF CONTINENTAL WATERS
C. REIZER, (SG.114.0003)

Objective: To determine the production of fishes sampled in the Senegal river and in Lake Guiers.

Approach: The surveys are being conducted in collaboration with the Forestry Service at the principal commercialization stations. They are examined and interpreted by the C.T.F.T.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal
11.0074, FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS

F. GANRY, (SG.830.0001)

The object of this project is to see how best phosphatic and nitrogen fertilizers should be applied to grain legume crops without losing the benefits of their nitrogen fixing capacity. Field experiments will be designed to obtain answers to the following questions: 1. What is the influence of method, time and source of fertilizer application on the efficiency of fertilizer utilization? 2. What is the effect of fertilizer application on symbiotic nitrogen fixation? 3. What is the influence of other cultural practices such as irrigation and the liming of acid soils on the efficiency of fertilizer utilization and on nitrogen fixation?

In 1973 an experiment will be done to study the efficiency of different methods of placing superphosphate fertilizer and how this would interact with a small dose of starter nitrogen (30 kg N/ha as urea) and nitrogen fixation.

Using N15 labelled urea and P33 labelled superphosphate, the actual amounts of N and P taken up by the crop will be measured. The total nitrogen in the crop would be derived from fertilizer, soil and symbiotic fixation. The amount of soil N in the crop will be estimated by carrying out an experiment with N15 labelled urea on a non leguminous crop. Hence the fixed N can be estimated. Field observations will also be made to study the influence of various fertilizer treatments on nodulation and N fixation.

Internat. Atomic Energy Agency - Austria

11.0075, IMPROVEMENT OF THE PRODUCTION OF BEEF - EXTERIORIZATION OF THE GENETIC POTENTIALITIES OF SENESEGAL FULANI (GOBRA) ZEBU CATTLE

J.P. DENIS, (SG.131.0001)

Objective: Determination of the possibilities of Gobra zebu cattle for beef production.

Approach: 1) Exteriorization of these possibilities by rational nutrition; 2) Weights and measurements of these animals; 3) Slaughter and inspection of the carcasses.

Results: Weight at six months, one year, two and three years largely superior: 126 - 249 - 490 - 634 (kg) respectively as against 96 - 144 - 296 - 364 for the males. Mean carcass yield of 63 percent at 2 years and 60 percent at 3 years - 54.5 percent at 11 months. Demonstration of the precocity of the Senegal Fulani (Gobra) zebu when it is given rational feeding.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0076, IMPROVEMENT OF THE PRODUCTION OF BEEF - SELECTION OF SENESEGAL FULANI (GOBRA)

ZEBU CATTLE

J.P. DENIS, (SG.131.0002)

Objective: Improvement of the production of beef cattle by selection of the Senegal Fulani (Gobra) zebu breed.

Approach: 1) Regular recording of weights and measurements of the animals from birth to adult age; 2) Establishment of criteria for selection at different levels; 3) Progeny test.

Results: Increase of weight at the different characteristic ages; improvement of precocity. Distribution to local breeding establishments of sires having superior performance.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0077, IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENESEGAL FULANI (GOBRA) ZEBU CATTLE

J.P. DENIS, (SG.131.0003)

Objective: Knowledge of the sexual cycle of Senegal Fulani (Gobra) zebu cattle for the setting up of an artificial insemination programme for a wider distribution of the performances of selected sires.

Approach: Determination of the age at first calving; of the intervals between calvings. Determination of the rhythm and duration of oestrus. Experimental synchronization of oestrus. Study of the bulls' semen.

Results: Mean duration of gestation: 292.3 plus or minus 4.9 days. Age at first calving: 1077 plus or minus 99 days in normal conditions, and 900 plus or minus 26 days in "exteriorized" (improved) individuals. Interval between calvings: 370 and 473.2 plus or minus 7.8 days according to nutritional conditions. Interoestral intervals in heifers: 21.1 plus or minus 0.5 days. Duration of oestrus between 5 and 6 hours.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0078, PRODUCTION OF MILK AND REARING OF THE CALF

H. CALVET, (SG.131.0004)

Objective: In order to free the total production of milk for the benefit of human consumption on the one hand and to abolish the malnutrition of the young on the other, it is agreed to consider an early weaning and an artificial feeding of the calf.

Approach: As a first step, suitable rations for the calf are being studied, the rearing of the calf having to be compensated economically by an extended marketing of milk. As a second step, these techniques will have to be made the object of a "popularization" in "pilot units".

Results: One partial experiment has been carried out to date; in this it has been possible to obtain some animals weighing 400 kg at 2 years, starting from a ration costing about 40 francs a day.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0079, STUDY OF NATURAL PASTURES - EVOLUTION OF THE GENETIC POTENTIALITIES OF SENESEGAL FULANI (GOBRA)

J. VALENZA, (SG.131.0005)

Objective: Evolution of natural pastures.

Approach: Evolution of the botanical composition of some types of natural pastures of the Sahelo-Soudanian zone subjected to different influences. Inventory according to the "line" method. Analysis of the results.

Results: Demonstration of the preponderant influence of the recorded rainfall on the evolution of these pastures.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

177
SENEMAL

11.0080, STUDY OF NATURAL PASTURES - CARTOGRAPHY
J. VALENZA, (SG.131.0006)

Objectives: Mapping of the natural pastures of Senegal.

Approach: Composition, value and distribution of the different types of natural pastures of Senegal. Distribution map by photo-interpretation.

Results: Completion of: Map of North Senegal; Map of Eastern Perlo; Map of South Perlo; Map of the Senegal River Delta; Map of Upper and Middle Casamance.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0081, CULTIVATION OF FORAGE CROPS
R. CADOT, (SG.131.0007)

Objective: Intensive production of forage to ameliorate the nutritional conditions of the cattle of Senegal.

Approach: Search for forage species adapted to the different ecological conditions of Senegal. Definition of the mode of working for a maximal production.

Results: Establishment of a collection of 284 species of forage plants: 200 Gramineae, 75 Leguminosae and 9 varied.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0082, STUDY OF MINERAL DEFICIENCY COMPLEXES
H. CALVET, (SG.131.0008)

Objectives: Mineral deficiencies constitute a limiting factor for the productivity of herds in a tropical zone. The objective of the programme is to determine the elements responsible for the deficiency and to study the means adapted for controlling it.

Approach: In the first place surveys were made in the rearing zone in question. The object of these was the sampling of serum, of forage, of drinking-water; assays of the mineral elements and of trace-elements were made on these. Following this, a mineral supplementation was instituted for a certain number of herds in this zone and surveillance of their evolution was maintained for two consecutive years.

Results: A deficiency in phosphorus, calcium and copper was demonstrated in the dry season in the zebu herds of Northern Senegal. At the present moment an experiment for the popularization of mineral supplements is in progress in this region.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0083, BIOCHEMICAL DETERMINATION ON HERDS OF CATTLE AT THE DIFFERENT PERIODS OF THE YEAR
H. CALVET, (SG.131.0009)

Objectives: In the course of the annual cycle the animals have to adapt themselves to radically different environmental conditions. These adaptations must have repercussions on their principles of metabolism (water, protein, mineral) and be made conspicuous by periodic series of appropriate biochemical values. The objective of this research is to obtain a better knowledge of the tropical zebu (type of cattle) and of its faculties for adaptation to the environment.

Approach: The method consists in carrying out seasonal series of biochemical determinations on as broad a sample as possible.

Results: The results are in the course of being interpreted.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0084, IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING
H. CALVET, (SG.131.0010)

Objectives: To increase the production of meat of the local breeds of cattle. To make use of the waste products of food crops and of industrial by-products. To establish efficacious and economically reasonable rations.

Approach: Experimental fattening of various categories of local zebu and Bos taurus; trial of various rations based on the main products and by-products locally available; inspection of growth.

Results: Proof of the possibilities of the gobra zebu (Senegal Fulani) breed for the production of beef. Gain of 700 to 1200 g/day with a low consumption index. Establishment of effective and economical rations based on groundnut shells or on rice straw.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0085, SEASONAL VARIATIONS OF THE PASTURES AND NUTRITION OF CATTLE
H. CALVET, (SG.131.0011)

Objectives: In intensive rearing the condition of maintenance of herds depends essentially upon two factors: The quantities of forage ingested daily, and the digestibility of these types of forage.

In Senegal these two factors are apt to vary in large proportions from one season to another.

In this research it is proposed to obtain average measurements for daily consumption and, at the same time, for the digestibility of the materials ingested in the course of each seasonal period and in each of the rearing zones.

Approach: The method employed requires indirect techniques using an external marker (Cr2O3) and an internal marker (lignin) for the forage materials.

Results: Commenced in 1972, the research work is at the stage of establishment of the methods which will be used in the field from 1973 onward.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0086, BALANCE FAVOURABLE TO THE EFFICACY OF RATIONS FOR CATTLE INTENDED FOR BEEF OR FOR MILK PRODUCTION
H. CALVET, (SG.131.0012)

The efficacy of a ration depends not only upon the substances of which it is composed but equally upon the principles (energy, nitrate and mineral) which it makes available to the animals.

Objectives: The objective of this research is to determine the proportions favourable to an optimum yield for each type of ration composed of products or by-products available in Senegal.

Approach: The research comprises two stages: Determination of the nutrients produced at the level of the rumen: The confirmation of these results by experiments on the animal.

Results: In 1971, studies have been made of rations utilizing rice straw. In 1972, formulations for rations composed essentially of groundnut haulm.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0087, BOVINE OCULAR THELAZIOSIS - TREATMENTS
S.M. TOURE, (SG.131.0013)

Objectives: Thelaziosis is a parasite infestation due to a Spirurid nematode, Thelazia rhodesi and transmitted by flies of the genus Musca (Musca sorbens). This verminosis in cattle leads to blindness.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

178
The objective is the control of this disease by the treatment of affected animals and the destruction of the vectors.

Results: Therapeutic measures applied: experimental treatments in Lower Casamance. Trials of treatment by the use of collyria based on Lugol's solution (1 per thousand), boric acid (3 percent), mercury cyanide (1 per 4000).

Tetramisole and piperazine adipate should also be tested.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0088, BOVINE OCULAR THELAZIOSIS - AETIOLOGY
S.M. TOURE, (SG.131.0014)

Objectives: Theleziosis is a parasitic infestation due to a nematode transmitted by flies of the genus Musca. This verminosis in cattle leads to ocular infections of progressive severity: conjunctivitis, keratitis, blindness. The medium-term objective is to control the disease in all the rearing regions in order to lead to eradication.

Results: Systematic classification in the genus Thelazia: Thelazia rhodesi is responsible for the disease (Nematoda, Spiruridae). Demonstration of the vector role of the flies in the cattle enclosures - 20,000 flies dissected, percentage of infestation: 4 or 5 per thousand. Systematic classification of the vector flies: flies of the Musca sorbens group. Regional frequency: Casamance, Senegal River Region, Sine-Saloum, Upper Gambia (River). The other regions of Senegal will also be studied in epidemiological surveys (Regions of Thies, Diourbel, Eastern Senegal).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0089, HELMINTHOSES OF FARM ANIMALS - TREATMENTS
S.M. TOURE, (SG.131.0015)

Objectives: Parasitic diseases caused by helminths severely affect farm animals in Senegal with very high percentages of infestation. This parasitism leads to considerable economic losses (retardations of growth, reductions in yield and mortality among calves).

The immediate objective is the control of helminthoses of cattle.

Results: Control campaign against distomatosis in Upper (Haute) Casamance. Use in the field of three modern anthelmintics lethal for flukes: 1) Nitroxynil; 2) Bitin-S; 3) Rafafoxanide. Control of bovine ocular thelaziosis.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0090, HELMINTHOSES OF FARM ANIMALS - EPIDEMIOLOGY
S.M. TOURE, (SG.131.0017)

Objectives: Parasitic diseases caused by helminths severely affect farm animals in Senegal with very high percentages of infestation. This parasitism is very frequent and leads to considerable economic losses. These facts justify permanent research on the helminths of cattle to understand means of effective control.

Results: Systematic and biological studies: inventory of species of helminths parasitic in domestic ruminants; biological cycles and vectors; ecological factors; geographical distribution and epidemiology of helminthoses; economic influence (regions studied: Casamance, Senegal River Region, Sine-Saloum, Upper Gambia (River) Region). The other regions of Senegal will also be studied in epidemiological surveys (regions of Thies, Diourbel, Eastern Senegal).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0091, TRYPANOSOMIASES - IMMUNOLOGY
S.M. TOURE, (SG.131.0018)

The study of immunological phenomena may lead to the application of diagnostic procedures that can add to the store of knowledge of epidemiology. The methods of diagnosis being tested are that by immunodiffusion and by immunofluorescence. These studies are at their outset.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0092, TRYPANOSOMIASES - CONTROL CAMPAIGN AGAINST THE VECTORS
S.M. TOURE, (SG.131.0019)

Objectives: Some residual islets, situated not far from the capital (Dakar), harbour species of Glossina. A control campaign has been carried on in one of the residual islets (Niayes of Senegal). The species being attacked is Glossina palpalis gambiensis. The control operations have lasted for three years. Preparation used: Dieldrin at 2 percent; method: terrestrial spraying.

Results: The burrows sprayed have a linear extension of 160 km. At the latest surveys, there are no tsetse flies in the whole of the treated zones. Correlatively, cases of animal trypanosomiases have become very rare. Inquiries are being pursued concerning (human) sleeping-sickness.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0093, TRYPANOSOMIASES - TREATMENT
S.M. TOURE, (SG.131.0020)

Objectives: The relative frequency of the different species of trypanosomes must be known. This condition the choice of the drug to be employed. In regions of severe endemicity, it is important to treat the animals regularly. As a preliminary to collective treatments, many experimental treatments must be carried out to specify the conditions for the use of trypanocidal drugs.

Studies completed: Relative frequency of the different species of trypanosomes. (a) Trypanosoma vivax, (b) T. congolense, (c) T. brucei, (d) T. evansi.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0094, TRYPANOSOMIASIS - ENTOMOLOGICAL STUDY OF THE VECTORS
S.M. TOURE, (SG.131.0021)

Objectives: Knowledge of the Diptera that are vectors of trypanosomes, through their systematic classification, their ecology and their biology, is the basis for projects for the control of these vectors in regions where animal trypanosomiases are endemic. The research covers the systematic classification of tsetse flies, their geographical distribution and ecology, and also that of the Diptera other than Glossina spp. capable of transmitting trypanosomiases: Stomoxynae, Tabanidae and Hippoboscidae.

Results: Glossina species occupy the southern half of Senegal, except for a few residual islets extending as far (north) as the 15th Parallel. In the south, three species are found: Glossina palpalis gambiensis, G. morsitans submorsitans and G. longipalpis. The residual islets are colonies of Glossina palpalis gambiensis.

The vectors of trypanosomiases other than Glossina are represented by some Tabanidae (the most frequent being Tabanus taeniola), by some Stomoxynae, (Stomoxys calcitrans and S. nigra), finally some Hippoboscidae (Hippobosca equina, H. variegata). Numerous other, secondary species exist, however.
SENÉGAL

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0095, RINDERPEST PROPHYLAXIS - SEROLOGICAL SURVEILLANCE OF IMMUNITY
P. BOURDIN, (SG.131.0022)

OBJECTIVE: Annual inspection of the immunity of cattle in regions where large-scale movements of cattle take place.

TECHNICAL APPROACH: Search for antibodies neutralizing the virus of rinderpest in serum samples from cattle, by the technique of kinetic seroneutralization on bovine foetal hepatocytes.

RESULTS OBTAINED: These inspection tests have been made annually since 1969.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0096, RINDERPEST PROPHYLAXIS - ESTABLISHMENT OF A THERMO-RESISTANT VACCINE
P. BOURDIN, (SG.131.0023)

TECHNICAL APPROACH: Selection of the virus by the limiting dilutions technique after autoclaving at 45 degrees C and titration.

RESULTS OBTAINED: One strain withstands 22 hours at 45 degrees C in liquid medium.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0097, PULMONARY SYNDROME IN SMALL RUMINANTS - AETIOLOGICAL STUDY
P. BOURDIN, (SG.131.0024)

OBJECTIVE: Previous research studies on rinderpest in small ruminants have shown that very frequently there was a pulmonary infection; it is desirable to verify if the only causal virus is the virus of rinderpest.

TECHNICAL APPROACH: Attempt to isolate and to identify virus from samples taken at the level of the respiratory system.

RESULTS OBTAINED: Up until now, the only virus isolated is the virus of rinderpest of small ruminants. Several times, mycoplasms have also been isolated by the Bacteriology Service.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0098, POX OF SMALL RUMINANTS - EPIDEMIOLOGICAL AND PROPHYLACTIC RESEARCH
P. BOURDIN, (SG.131.0025)

OBJECTIVE: Sheep scab or sheep pox has been spreading in Senegal since 1970. It appears to be necessary to provide for the preparation of a vaccine.

RESULTS OBTAINED: A first experiment on vaccination with the attenuated strain has been carried out in October 1972.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0099, AFRICAN HORSE SICKNESS - EPIDEMIOLOGICAL WORK
P. BOURDIN, (SG.131.0026)

OBJECTIVE: Orientation of epidemiological research in two directions: To increase our knowledge concerning the vectors (culicides and mosquitoes) and to throw light on the reservoir of the virus, still unknown up to now.

TECHNICAL APPROACH: Senegal is situated in the region where African horse sickness is endemic. Serological surveys on horses should enable localization of the zones where the disease exists in the rural form or a zone of severe endemicity. These surveys on horses are to be completed by surveys on other species and by inoculations based on samples obtained from wild animals and from blood-sucking arthropods.

RESULTS OBTAINED: The zones of severe endemicity are in the neighbourhood of the watering places in the sylvan and pastoral zone.

OBSERVATION: This project is to be sponsored by outside aid, which has been requested. At the national level only some preliminary surveys have been provided for.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0100, EQUINE ENCEPHALOMYELITIS - AETIOLOGY, EPIDEMIOLOGY
P. BOURDIN, (SG.131.0027)

OBJECTIVE: Aetiological study of an equine encephalomyelitis observed during the spring of 1971.

TECHNICAL APPROACH: Field survey, capture of potential vectors, serological survey in horses and man, attempts to isolate the virus.

RESULTS OBTAINED: A survey made in 1971-1972 on horses living in the neighbourhood of the foci, has revealed in the survivors and in a certain percentage of healthy animals, the presence of antibodies fixing the neutralizing complement and inhibiting haemagglutination, indicating a contact with an arbovirus of Group A, the Semliki Forest (Valley) virus. No trace of antibodies indicating a contact with the other viruses of the equine encephalitides (equine encephalitis group).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0101, HEARTWATER PROPHYLAXIS - ESTABLISHMENT OF A METHOD FOR PREMUNITION OF CATTLE
M. RIOCHE, (SG.131.0028)

OBJECTIVE: Establishment of a method of prophylaxis applicable in dairy herds. To complete this by research for a technique for the detection of animals with apparent infection.

TECHNICAL APPROACH: Premunition of cattle associated with an antibiotherapy. Detection of animals with apparent infection by an immunological technique on which research is to be done.

RESULTS OBTAINED: A first experiment for detection of infected animals by the immunofluorescence technique has been a failure.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0102, THE OBTAINING OF CELL LINES NECESSARY TO SUPPLY THE REQUIREMENTS FOR THE PRODUCTION OF VACCINES AND FOR DIAGNOSTIC PURPOSES
M. RIOCHE, (SG.131.0029)

OBJECTIVE: Explanations are not always available on demand. It is essential for the requirements of prophylactic and of diagnostic work to have well-established lines at one's disposal.

TECHNICAL APPROACH: Establishment of susceptible lines of cells and study of their characteristics. Study of the susceptibility of these lines to various viruses.

180
RESULTS OBTAINED: 1) The obtaining of a line of bovine foetal hepatocytes; the study of its susceptibility is in progress. 2) Establishment of a line of ovine foetal kidney cells in progress.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0103, BOVINE PLEUROPNEUMONIA - ESTABLISHMENT OF A FREEZE-DRIED, HEAT-RESISTANT VACCINE
M.P. DOUTRE, (SG.131.0030)

DESCRIPTION, OBJECTIVE: The freeze-dried vaccines that have been established in the course of the preceding years have been prepared with strain T1 and these give complete satisfaction as to the quality of the immunity conferred (single vaccine, and mixed vaccine against pleuropneumonia and rinderpest). But these vaccines remain relatively sensitive to heat and they have to be used very quickly the moment they are opened for use. It would be desirable to be able to have available a freeze-dried pleuropneumonia vaccine capable of resisting heat in the conditions that usually prevail in the bush.

APPROACH: On account of the properties of thiosulphate in the protection of certain viruses, it seemed to be of interest to ascertain if this substance is effective in the same respect with Mycoplasma organisms. Other chemical substances may play the same role.

RESULTS: The studies completed in 1971 make it possible to state that the addition of thiosulphate in M/50 solution to the vaccine before freeze-drying has no harmful effect in the vaccine on the vitality of the micro-organisms but that the thermo-protective action is very weak. The experiments are to be repeated.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0104, LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY
M.P. DOUTRE, (SG.131.0031)

OBJECTIVE: Leptospirosis is an infection common to man and to domestic animals about which little is known in black Africa. Not many serological surveys have been carried out up to the present time, and there has been infrequent isolation of strains. Serological survey in wild rodents living in contact with man and with domestic animals by the demonstration of the criteria indicating the existence of Leptospires.

APPROACH: In the first instance, the study is being directed to the Farm of Sangalkam (Annex of the Laboratory) infected with rodents belonging to various species. In the course of a second phase, the survey will be extended to the rice-growing zones of Senegal. The following techniques: microbiological (attempts to isolate the organism), serological (agglutination - lysis) and histological (staining of kidney sections from rodents with Fontana stain) will be carried out in the course of this work accomplished in collaboration with the Pasteur Institutes of Dakar and Paris.

RESULTS: 170 rodents from the Sangalkam Farm have been caught. No strain of Leptospira has been isolated and no leptospire demonstrable by staining. On the other hand, if the serology has remained negative in the rodents (16 leptospiral antigens employed), it has given positive results with the serum of horses living in contact with Rattus rattus (agglutination - lysis positive, from dilutions of 1/300 to 1/500 with L. canicola). This result indicated with certainty the existence of the infection.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0105, SALMONELLOSIS - EPIDEMIOLOGICAL SURVEY ON HEALTHY CARRIERS
M.P. DOUTRE, (SG.131.0032)

OBJECTIVE: The salmonellosis constitutes one of the most frequent zoonoses in Africa. Moreover, research on healthy carriers disseminating the organism will present a certain interest. Work involves isolation and serotyping of strains from species of domestic and wild animals which live in the neighbourhood of man.

APPROACH: Work carried out in cooperation with the Pasteur Institutes of Dakar and of Paris.

RESULTS: The following have been studied for healthy carriers: pigs, birds of prey and blood-lapping chiroptera preying on man; rodents; frugivorous and insectivorous chiroptera, and their droppings. More than 150 strains have been isolated, and either serotyped or are in the process of being serotyped (publications to appear).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0106, BOVINE PLEUROPNEUMONIA - PATHOGENESIS
M.P. DOUTRE, (SG.131.0033)

OBJECTIVE: The pathogenesis of pleuropneumonia is still not well known and deserves deeper study.

APPROACH: Recent experiments lead one to think that phenomena of an immunological order may intervene in the genesis of the lesions.

RESULTS: Data obtained: Mycoplasma mycoides is not pathogenic for laboratory animals. The evidence of a specific toxin is not conclusive. The experimental infection of cattle is, from now on, easily produced. A research protocol ought to be set up in common with the central office of the I.E.M.V.T.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0107, RESPIRATORY AND DIGESTIVE DISEASES OF SMALL RUMINANTS - AETIO-PATHOGENESIS
M.P. DOUTRE, (SG.131.0034)

OBJECTIVE: Sheep and goats present infections of the respiratory system and of the digestive system in which bacterial agents intervene, usually playing a secondary role. Viruses (respiratory system) or parasites (digestive system) constitute the primary causal agents of the infections. Better knowledge of the role played by the bacterial factors in these diseases is needed.

APPROACH: This subject is being studied in common with the Virology and Parasitology Services as a function of the disease outbreaks reported. The disease often presents a seasonal character which influences the pursuit of the research (pneumopathy of goats in winter).

RESULTS: Numerous strains of pathogens have already been isolated and their characters studied (coli bacillus, Escherichia coli, Pasteurella, Mycoplasma organisms).

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0108, VIBRIOSES - EPIDEMIOLOGICAL SURVEY
M.P. DOUTRE, (SG.131.0035)

OBJECTIVE: In herds in Senegal an insufficiency of the level of fertility is prevalent, and this is still, in part, unexplained. It is certain that the qualitative and quantitative nutritional insufficiency is responsible, more often than not, for cases of infertility. Brucellosis has been found in the endemic state in certain regions of Senegal. Another possible cause, never investigated until the present time, is Vibriosis which would very well explain certain
outbreaks of enzootic sterility. It is planned to study the possible existence of Vibrio fetus in cattle herds in Senegal.

APPROACH: Sampling of vaginal mucus in herds selected as representative examples throughout the territory, and demonstration either of specific antibodies (muco-agglutination), or of the organism itself.

RESULTS: Survey not commenced.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0109, INFECTIONS AND INTOXICATIONS ("TOXI-INFECTIONS") CAUSED BY ANEROBIC BACTERIA - BOTULISM

M.P. DOUTRE, (SG.131.0036)

OBJECTIVE: Botulism plays an important role in the aetiology of the disease-complex improperly called "forage disease", an infection prevalent in particular in the extensive rearing zone of Ferlo. Botulism from water or from forage linked with contamination of the drinking water, or of the forage by the cadaver of a small mammal, is also encountered in Senegal.

APPROACH: Diagnostic study of the infection and of the type of Clostridium botulinum causing it. Isolation of strains in the course of the appearance of fresh outbreaks. Study of the characters of the strains isolated.

RESULTS: Isolation of strains of Cl. botulinum types C and D; Study of the toxins produced; Study of the characters of the strains; culture of type C in dialysis sacs; Production of a toxoid for type C using aluminium phosphate as adjuvant. The study includes application of the immunofluorescence technique where a diagnosis of botulism is to be suspected.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0110, BRUCELLOSIS - EPIDEMIOLOGICAL SURVEY

M.P. DOUTRE, (SG.131.0037)

DESCRIPTION: Brucellosis is a zoonosis which manifests itself essentially in cattle by later and later abortions and often by inflammations of the bursae and serous membranes (hygromas-bursitis). In man manifestations are varied (fevers, adenites, orchitis, osseous or articular lesions).

OBJECTIVE: Epidemiological survey destined to demonstrate the importance of brucellosis in Senegal in cattle and small ruminants.

APPROACH: Work with the classical serological techniques (Ring test, seroagglutination test of Wright, complement fixation) and microbiological techniques (isolation of strains of Brucella) and study of their biochemical characters.

RESULTS: A sufficiently complete study has already been made on cattle; it has enabled the demonstration of the regions free from brucellosis (Ferlo) and of others having a high level of positivity (Casamance). Some strains of Brucella have been isolated from hygroma fluid, and their characters studied. The survey concerning the spread of brucellosis in small ruminants has only just commenced.

SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0111, BACTERIAL VACCINES - ESTABLISHMENT - IMPROVEMENT

M.P. DOUTRE, (SG.131.0038)

Description: Medical prophylaxis of bacterial diseases has constituted, and still constitutes in our times, one of the essential objectives pursued by the African veterinary services.
11.0114, AVIAN DISEASES - EPIDEMIOLOGY - PROPHYLAXIS AND TREATMENT
F. SAGNA, (SG.131.0041)
Objective: Epidemiological surveys of the principal diseases. Construction of epidemiological maps concerning these diseases. Eventual eradication of these diseases (plans for prophylaxis).
Approach: Conduct tours of the regions, in order to perform collection of samples or treatment for experiments within poultry rearing establishments; treatment in the laboratory of these samples for establishment of a diagnosis and for the isolation or collection of the disease agents; long-term construction of epidemiological maps for each administrative region and in the whole of the country, as a function of the diseases encountered or of the pathogenic agents identified or isolated; establishment of plans for prophylaxis at the regional or national level as the case may be.
Results: Long term work. Results will be a function of number of samples and of means employed.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0115, AVIAN DISEASES - MEDICAL PROPHYLAXIS - "TRIAVIA" COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT
F. SAGNA, (SG.131.0042)
Objective: Trivalent vaccine (against Newcastle disease, fowl pox and fowl typhoid/pullorum disease); the duration of the protection which it confers on vaccinated birds will have to be considerably increased (from 6 months to 1 year minimum).
Approach: 1) Above all, work would have to be done on the Newcastle disease component which constitutes the limiting factor of the group (immunity against Newcastle disease of about 6 months) in exalting the virulence of the vaccinal virus strain (Ban-kowski strain): either by serial passages in chick embryos (embryonated eggs); or by passages in progressively older chicks. 2) From the new exalted strain, to prepare a live monovalent vaccine against Newcastle disease which will be incorporated in the fowl pox and fowl typhoid/pullorum disease vaccine. 3) Trials of this new "TRIAVIA" (code name) vaccine over 12 to 15 consecutive months.
Results: Will not be known before 1974, at earliest.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0116, AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - VACCINE 9 R AGAINST FOWL TYPHOID AND PULLORUM DISEASE
F. SAGNA, (SG.131.0043)
Objective: To prepare and use experimentally a new vaccine (against fowl typhoid and pullorum disease), which does not elicit the appearance of agglutinating antibodies in the blood or the serum of the vaccinated birds, to enable the definite identification of subjects affected with fowl typhoid and with pullorum disease by their reactions to rapid haemagglutination or serum agglutination tests on slides with the aid of the pullorum antigen, and without the possibility of their being confused with subjects that have been vaccinated.
Approach: New strain of Salmonella gallinarum pullorum (9 R from Weybridge, whence the code name of this vaccine). Preparation of the new vaccine. Experimental work with this new vaccine: (1) Testing for sterility; (2) Innocuity tests; (3) Tests for efficacy (duration of the immunity conferred); (4) Verification of the absence of agglutinating antibodies in all the vaccinated birds.

Results: Experimental vaccine prepared and stocks built up. Experimental use on birds started in December 1972.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

11.0117, AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE
F. SAGNA, (SG.131.0044)
Objective: Simplification of vaccination campaigns (a single intervention instead of four in succession). Reduction of the cost of vaccination campaigns.
Approach: Preparation of the following monovalent components: 1) Vaccine against Newcastle disease (fowl pest) plus Virology; 2) Vaccine against fowl pox plus Virology; 3) Vaccine against fowl cholera plus Bacteriology; 4) Vaccine against fowl typhoid/pullorum disease plus Bacteriology; adequate mixing of these monovalent vaccines to obtain of the final vaccine which will be freeze-dried (live vaccine); experimental work with the new vaccine (sterility tests - innocuity tests - tests for efficacy).
Results: Will be known at the end of this experimental work, that is, in 1974.
Durability: Minimum 12 months, counting from the date of preparation of the vaccine.
SUPPORTED BY Inst. d' Elevage Med. Veterinaire - France

SOUS-STATION FORESTIERE CTFT DE BAMBEY
B.P. 2312, Dakar

11.0118, STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH
P.L. GIFFARD, (SG.112.0001)
Objective: To place at the disposal of the Forestry Service some planting material adapted to the climate and to the different types of soil, to define techniques for preparation of the ground and for plantation without watering for the realization of periurban woodlands destined to produce fuel and for the creation of windbreak to protect crops.
Approach: Experiments on the introduction and the choice of species of rapid growth: Eucalyptus (30 species - 37 origins), Dalbergia sissoo, Prosopis juliflora...experiments on mechanical preparation of the soil and on fertilization.
Results: The Eucalyptus species camaldulensis and micro-theca seem to be the best adapted to the Station. Some comparative arrangements of sources of origin have begun to be planted up. The working of the soil in depth (sub-soil working or "large planting-pits" method) is $sential, as is also the total elimination of weeds during the rainy season.
SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0119, STUDY OF THE POSSIBILITIES OF REPLANTING OF WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES
P.L. GIFFARD, (SG.112.0002)
Objective: Study of the silviculture of the principal forest species of the Soudanian zone, in the interests of the economy of
SENEGAL

Senegal (for timber, roundwood, firewood, wood for handicrafts, gun, reestablishment of soils.

Approach: Definition of techniques for nursery work, for preparation of the ground and for plantation. Experiment on introduction of, and study of growth on: Acacia albida, A. senegal, A. scorpioides var. astringens, Bombax costatum, Celtis integrifolia, Cordyla pinnata, Dalbergia melanoxylon, Poupertia birrea, Prosopis africana, Sterculia setigera, Tamarindus indica.

Results: The silviculture of Acacia albida, its growth, its role in the regeneration of soil are now known and the results of the research work can be popularized.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

Sous-station Forestiere CTFT de Djibelor
B.P. 2312, Dakar

11.0120, Study of the Growth of Teak
P.L. Giffard, (SG.113.0001)

Objective: To know the growth of Tectona grandis in Casamance to determine the rhythm of clearings to be applied in plantations completed by the Forestry Service and to establish production tables.

Approach: Setting up a CCT/Plot arrangement in a 1962 population - annual measurements. Weekly collection of teak trees.

Results: The calendar for the first two clearings is established.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0121, Experiment on the Introduction of Tropical Resinous Species
P.L. Giffard, (SG.113.0002)

Objective: Study of the possibility of utilization of tropical resinous trees for the replantation of woodland in lower Casamance.

Results: It seems that the introductions must be oriented towards the sources of Pinus caribaea.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

Station de Recherches Rizicoles de Djibelor IRAT
B.P., Ziguinchor

11.0122, Study of Seed-distributors for Rice
S.L. Traverse, (SG.156.0001)

Objective: Direct sowing is of great importance - which is the simplest seed-distributor and the best adapted for the local conditions?

Approach: Trials with the existing material on the market.

Results: The seed-distributor type for this region must be a machine with adjustable channelling and having large wheels. It must enable sowing of pregerminated seed, and be very simple. A prototype might be constructed.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0123, Comparison of Methods of Application of Fertilizers on Rice
S.L. Traverse, (SG.156.0002)

Objective: In the conditions of lower Casamance, should the fertilizers be buried or put on as a dressing?

Approach: Perennial experiment, 4 treatments, 4 repetitions.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0124, Introduction of New Varieties of Rice for the Fresh-Water Rice Fields of Casamance
C. Magne, (SG.156.0003)

Objective: Varieties of high productivity, resistant to diseases and to the acidity of the soil, fairly early (110 - 130 days), cultivable in the dry or humid season, with quality conforming to the taste of the consumer in Senegal.

Approach: Introduction of foreign varieties, collections tested, tests for piriculariosis, culinary tests, comparative experiments for yield.

Results: Varieties IR8, Taichung N1, 1 Kong Pao are suitable for non-acid rice-fields without too much water.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0125, Introduction of New Varieties of Pluvial Rice
C. Magne, (SG.156.0004)

Objective: Varieties of high productivity, resistant to piriculariosis and to drought, precocity 90 to 110 days, with quality conforming to the taste of the consumer in Senegal.

Approach: Introduction of foreign varieties, collections tested, tests for piriculariosis, culinary tests, comparative experiments for yield.

Results: Varieties 1 Kong Pao and TS 123 able to be popularized in 1969; Che Ke Ciao being popularized at present.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0126, Varietal Improvement of Rice by Hybridization for the Improved Fresh-Water Rice Fields of Casamance
C. Magne, (SG.156.0005)

Objective: Varieties of high productivity, resistant to piriculariosis and to acidity; F2 to F4: direct bulk; F5 to F7: pedigree selection; Culinary tests; Comparative experiments for yield.

Results: Lines resistant to piriculariosis and adapted to acid rice-fields - ready for propagation in one or two years.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0127, Varietal Improvement of Rice by Hybridization for the Salt-Water Rice-Fields of
LOWER CASAMANCE
C. MAGNE, (SG.156.0006)
Objective: Research for varieties of high productivity, very early (100 days), cultivable in the humid season, tolerant to salt, and having a quality conforming to the taste of consumers in Senegal.
Approach: Hybridization of early and productive varieties with local varieties tolerant to salt; F2 to F4 directed bulk; F5 to F7 pedigree selection; Culinary tests; Comparative experiments for yield.
Results: In 1972 some thirty lines are in process of selection.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0128, VARIETAL IMPROVEMENT OF PLUVIAL RICE BY HYBRIDATION
C. MAGNE, (SG.156.0007)
Objective: Varieties of high productivity, resistant to piriculariosis and to drought, precocity (90 - 110 days), and quality conforming to the test of the consumer in Senegal.
Approach: Hybridization of early and productive varieties with varieties resistant to piriculariosis and to drought: F2 to F4: directed bulk; F5 to F7: pedigree selection; Culinary tests; Comparative experiments for yield.
Results: In 1972 some lines seem to answer the objectives. Their value remains to be confirmed by multi-local experiments.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0129, STUDY OF THE DYNAMICS OF THE SOILS OF RICE-FIELDS IN LOWER CASAMANCE
B. GORA, (SG.156.0008)
Objective: To study the dynamics of the physico-chemical and chemical properties of the 4 principal rice-field soils of Casamance in the condition of submersion, and their effect on the yield of rice.
Approach: Experiment in a hot-house, in pots.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0130, ACTION OF BURIED STRAW ON THE DYNAMICS OF SOILS
B. GORA, (SG.156.0009)
Objective: To study the dynamics of the elements and the physico-chemical and chemical properties of 2 types of soils on the station (clayey and loamy-sandy) in the presence of buried straw and in the condition of submersion, with the object of understanding the effect of the straw on these properties and on the development and the yields of rice.
Approach: Two-square factorial experiment, implanted in a hot-house in plastic pots.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0131, ACTION OF LIME AND OF MANGANESE DIOXIDE ON THE DYNAMICS OF AN ACID CLAYEY SOIL
B. GORA, (SG.156.0010)
Objective: To study the action of lime and of manganese dioxide on the dynamics of the physico-chemical and chemical properties of a clayey and acid soil from the Mandouar valley, with the object of understanding the beneficial effect of lime and of manganese dioxide on the development of rice and on the yields, on this soil where toxicity in iron appears.
Approach: Two-square factorial experiment, in plastic pots, implanted in a hot-house.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

SENEGAL

11.0132, IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE
B. GORA, (SG.156.0011)
Objective: To study the effect of 3 improving treatments on the physico-chemical and chemical properties of an acid sulphatic soil in the condition of submersion and also on the development of rice.
Approach: 2 x 2 x 2 factorial experiment in pots, implanted in a hot house.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0133, FERTILIZATION OF RICE FIELDS
B. GORA, (SG.156.0012)
Objective: To establish a fertilization adapted to the types of rice-field soils in Casamance.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0134, BURIAL OF STRAW IN A RICE FIELD
B. GORA, (SG.156.0013)
Objective: To compare the effect of the burial of straw to that of potassium or nitrogen on the development of rice and on the yields.
Approach: Two-square factorial experiments for the straw x potassium and 3 x 2 for the nitrogen.
Results: The action of the straw is always highly significant and superior or equal to that of the potassium or the nitrogen. There is a specific action of the straw.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0135, CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRRIGATED RICE
P. ROUDEILLAC, (SG.156.0014)
Objective: Establishment of chemical control of harmful insects, that is effective, practical and economical in irrigated rice-fields.
Approach: 1) 12 experiments in rice-fields, with different insecticides; 2) Study of the mode of application of the insecticide; 3) Combination of application of nitrogenous fertilizer plus insecticide and economic profitability.
Results: 1) Establishment of a method of treatment that can be popularized; 2) Study of the economic profitability in progress.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0136, STUDY OF THE POSSIBILITIES OF BIOLOGICAL CONTROL OF RICE PESTS
P. ROUDEILLAC, (SG.156.0015)
Objective: Utilization of insects and micro-organisms for control of the populations of insects harmful to rice.
Approach: 1) Inventory of the useful entomofauna in Casamance, and study of their particular biological characters; 2) Study of their population dynamics; 3) Rearing of some of them in the laboratory; 4) Attempts to introduce foreign parasites; 5) Open-field experiment with a biological insecticide (Bacillus thuringiensis).
Results: 1) Successful rearing of an interesting parasite; Studies in progress.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal
SENEGAL

11.0137, STUDY OF THE VARIETAL RESISTANCE OF RICE TO HARMFUL INSECTS
P. ROUDEILLAC, (SG.156.0016)

Objective: To select varieties resistant to harmful insects (Work in connection with the Service for the Improvement of Rice).

Approach: Investigation on 400 varieties of rice in collection.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0138, STUDY OF THE INSECTS THAT ARE HARMFUL TO RICE IN CASAMANCE
P. ROUDEILLAC, (SG.156.0017)

Objectives: 1) Census of the species harmful to rice; 2) Precise details of their biological cycle; 3) Study of their population dynamics.

Approach: 1) Surveys in rice-fields; 2) Luminous traps; 3) Laboratory rearing experiments.

Results: 1) Location of the objectives attained to a large extent; 2) Points 2 and 3 in the course of being studied.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

STATION FORESTIERE CTFT DE HANN
Parc de Hann, B.P. 2312, Dakar

11.0139, STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOUM
P.L. GIFFARD, (SG.111.0001)

Objective: To try to find one or more forest species capable of being utilized for reafforestation of the more or less saline soils, all unsuitable for agriculture.

Approach: Creation in the region of Sine-Saloum of three places for experiments on different types of soil; Determination of the content in chlorides of the soil by taking samples every 30 metres in the 0/5, 30/35 and 60/65 cm. horizons; Experiments on the introduction and choice by elimination of local species (Acacia albida, A. stenocarpa, A. scopioidea var. astringens, Bauhinia reticulata, Combreum glutinosum, Sesbania sp.) and essentially exotic species (Parisonnia sculeata, Prosopis juliflora, Eucalyptus (8 species, 14 sources of origin), Casuarina equisetifolia, Melaleuca leucadendron, (4 sources of origin), C. prostrata); Experiments involving working of the soil and fertilization.

Results: The results are very variable according to the chloride contents of the soil. For the moment it seems that the work will have to be oriented towards Melaleuca leucadendron.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0140, STUDY THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER
P.L. GIFFARD, (SG.111.0002)

Objective: To get a clear idea if it is possible on the technical level and economically advantageous to undertake forestry plantations destined to provide household fuel in a zone without forest where 40,000 persons have to be installed for the cultivation of rice.

Approach: Attempt to introduce at the experimental outstation of Ross-Bethio, species of rapid growth (Eucalyptus - Prosopis juliflora - Dalbergia sissoo, etc...) Definition of techniques for preparation of the soil, for plantation and for maintenance of the saplings in such a way as not to water them in the dry season. Experiment on fertilization.

Results: The techniques for preparation of the ground and for plantation are satisfactory. Among the 17 species and the 40 sources of origin of Eucalyptus tested, it seems that 4 sources of E. camaldulensis from the north-west of Australia are suitable on the tropical ferruginous soils. On the contrary, the results are negative on the halomorphic soils.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0141, SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - SILVICULTURE OF THE LOCAL SPECIES
P.L. GIFFARD, (SG.111.0003)

Objective: To place at the disposal of the Forestry Service techniques for plantation which have been tested in a zone having a very long dry season, and planting material adapted to the climate and to the different types of soil, in order to undertake replantation of woodlands to stabilize the encroachment of desert, to improve the pastures and to increase the production of gum arabic.

Approach: Research work done at the experimental outstation of Linguere. Study of the silviculture of gum trees (Acacia senegalensis and Acacia laeta) and of Dalbergia melanoxylon.

Results: The techniques for preparation of the planting material and for plantation are established, but it seems essential to undertake genetic studies and experiments on sources of origin in order to select trees that are good producers of gum.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

11.0142, SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - EXPERIMENT ON THE INTRODUCTION OF EXOTIC SPECIES
P.L. GIFFARD, (SG.111.0004)

Objective: To introduce planting material adapted to the very long dry season, in order to be able to envisage plantations at the approaches to villages and to well-borings to provide fuel, check erosion by wind, and improve the environment.

Approach: Experimental introduction at the experimental outstation of Linguere of exotic species, in particular of Eucalyptus from the dry zones of Australia (27 species - 56 sources of origin).

Results: The results are disappointing enough. It appears that the research work should be oriented towards Eucalyptus microtheca.

SUPPORTED BY Centre Tech. For. Trop. - Dakar, Senegal

STATION IFAC DE KEUR MAMA LAMINE
Inspection de l' Agriculture A Kaolack

11.0143, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE
V. FURON, (SG.171.0001)

Objective: Definition of the species of fruit crops adapted to the climatic zone, of their performances, of the utilization of the products.

Approach: Specific experimental arrangements, situated in chosen climatic sites for the study of the adaptability of fruiting
species cultivated as homogeneous populations or as associations: banana tree, pineapples, mango tree (varietal study), avocado, citrus fruit trees, cashew tree, granadilla (Passion fruit), guava.

Results obtained: Definition of the techniques for multiplication and for cultivation of the banana and pineapple in Casamance. Varietal reversion of the mango tree by grafting. Definition of the ecological zone favourable for the avocado tree (Mexican hybrids). Base for the renovation of the citrus orchard in existence, thanks to the introduction and the multiplication at the Keur Mama Lemine Station of planting material, free from the principal known virus diseases and representing the best commercial varieties. Awaited: Definition of the suitability for fruit-growing in the different climatic zones of Senegal and of cropping techniques with a view to the creation of agro-industrial unit-types of production.

SUPPORTED BY Inst. Fr. de Rech. Fruit. - Dakar, Senegal

STATION IFAC DE SINGHER
Inspection de l’Agriculture A Ziguinchor, B.P. 242, Ziguinchor

11.0144, ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE
V. FURON, (SG.172.0001)
Network project - see SG.171.00001. (11.0143)
SUPPORTED BY Inst. Fr. de Rech. Fruit. - Dakar, Senegal

11.0145, THE RESIDUAL EFFECTS OF HERBICIDES
H. THIROUIN, (SG.154.00001)
Objective: The use of chemical preparations as weed-killers always requires careful handling, and it is necessary to know if the herbicide being used has residual effects on the next crop on the one hand, and if on the other hand there is no cumulative effect of (herbicide) preparations in the course of a rotation that can make the soils unfit for cultivation for a certain period.
Approach: Field trials of herbicides.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0146, STUDY OF HERBICIDE PREPARATIONS ON SORGHUM
H. THIROUIN, (SG.154.00002)
Objective: With the diminishing height of sorghums which ought to come up to approximately 1.5 metres, densities are tending to increase and the difficulties of weeding are growing. Indeed, the greater the density, the more difficult it is to carry out weeding. Herbicides could provide a possible remedy for this.
Approach: Experiments with different herbicides.
Results: Propachlore seems to be of interest.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0147, STUDY OF HERBICIDE PREPARATIONS ON GROUNDNUTS ON SANDY SOILS
H. THIROUIN, (SG.154.00003)
Objective: The principal restrictive bottleneck for the farmer lies at the time for the first hoeing operations. He has not yet finished with his sowing and there is a very considerable growth of weeds. The herbicide at sowing could free the farmer and thus enable him to keep all his crops in perfect order.
Approach: Various preparations are being compared.
Results: The mixture ametryne-prometryne appears to be of interest.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0148, STUDY OF THE CHEMICAL WEEDING OF GROUNDNUTS
J.P. DUESE, (SG.154.00004)
Network project - see SG.151.00009. (11.0019)
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

STATION IRAT DE RICHARD TOLL
B.P., Richard Toll

11.0149, STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE
J.P. AUBIN, (SG.153.00001)
Objective: To determine the best systems for rice cultivation that can be utilized by the rice growers of the Senegal River delta.
Approach: A) Comparison of 3 techniques for rice cultivation: 1) sowing in the dry period and coming up during rain; 2) sowing as pregerminated seed; 3) pricking-out. B) In 3 different types of management: 1) secondary; 2) improved secondary; 3) tertiary. C) Using 2 varieties of rice: 1) D 52-37 variety much used in the delta; 2) IR8 variety with a strong production potential.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0150, CONTROL CAMPAIGN AGAINST RHIZOME RICE
J.P. DEUSE, (SG.153.00002)
Objectives: To destroy rhizome rice and prevent the re-infection of rice-fields.
Approach: Experiments with herbicides; working the soil.
Results: 1) Solutions that are potentially suitable but which present some disadvantages. 2) Pursuit of experiments with herbicides.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0151, TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION
A. WANDERS, (SG.153.00003)
Objective: The object of this trial is to acquire knowledge of the mechanical behaviour and possibilities of the materials and of the time needed for the preparation of a correct seed-bed for rice.
Approach: Experimental method in rice cultivation.
Results: In progress for the Staub PP 4 B motor-tiller (Hertz motor). Trials completed for the Kubota K700.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal
11.0155, CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE
J.C. MAUBOUSSIN, (SG.152.0004)
Network project - see SG.151.0045. (11.0055)
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0156, STUDY OF THE HARMFULNESS OF WEEDS TO RICE
J.P. DEUSE, (SG.152.0005)
Objectives: To determine the influence of weeds on the productivity of rice in the beginning of the cycle; to measure the loss of yield in that case, according to the date of the first weeding.
Approach: Total evaluation in the course of this first phase of the study. Sun of the influences of all kinds (water - light - mineral elements. . .) due to the conjoint action of all the species of weeds.
In the course of a second phase the total phenomenon will be analyzed as a function of each of the principal weed species.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Senegal

11.0157, VARIETAL EXPERIMENTATION, COTTON
F. BLANGUERNON, (SG.181.0001)
Objective: Varietal test intended for choice of the variety best adapted for large-scale cultivation.
Approach: 12 experiments with 4 varieties; 3 microexperiments with 7 varieties; Fisher blocks - 3 rows/plot - 6 to 8 repetitions - standard mineral fertilization and insecticidal protection.
Results: Propagation of variety BJA 592.
SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0158, COLLECTION, QUARANTINE, AND VARIETAL EXPERIMENTATION ON COTTON
F. BLANGUERNON, (SG.181.0002)
Objective: Quarantine for the introduction of new varieties coming from foreign countries.
Approach: Isolated plot capable of receiving occasional irrigations.
Results: Propagation, in the subsequent varietal experiments, of varieties recognized as being free from cryptogamic or viral diseases. This quarantine should enable the reception and the study of varieties imported for West Africa.
SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0159, MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT
F. BLANGUERNON, (SG.181.0004)
Objective: To study the behaviour and the production of a glandless variety of cotton plant, the seeds of which could provide a flour palliating the inadequacies of protein in the human diet in Senegal.
Approach: Isolated plot in a rural environment.
SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0160, SELECTION FOR CONSERVATION OF THE POPULARIZED CULTIVAR OF THE COTTON PLANT
F. BLANGUERNON, (SG.181.0005)
Objective: To maintain at their high levels the characteristics of the cultivated variety of cotton plant - Production by the hectare; Picking yield of cotton-seed; Characteristics of the fibre.
Approach: Application each year on a small scale of the technique known as 'mass pedigree selection' to cotton plants in culture. Comparison in comparative varietal experiments of the bulk so created with the variety when it was quite new. Multiplication of the bulk which will then pass into the national multiplication system.
Result: All the characteristics of the cultivar BJA 592 (Gossypium nirutum) are integrally conserved and the fibre, thanks to its qualities and their stability, is always sold at the best price on the world market.
SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0161, STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE FIELD
F. BLANGUERNON, (SG.181.0006)
Objective: To know, as a function of environmental factors, the period during which the cotton plant is benefited by an application of nitrogen.
Approach: A) A comparative experiment doing the Fisher block method was set up using 8 component plots with 4 rows per plot each 25 meters long. Seven treatments were applied as follows: (1) Control without manure; (2) Basic SPK fertilizer; (3) Basic SPK fertilizer plus 11N applied 3 times - once weekly from day of sowing (0-20 days); (4) Basic SPK fertilizer plus 11N applied 5 times - once weekly from day of sowing (0-40 days); (5) Basic SPK fertilizer plus 11N applied 7 times - once weekly from day of sowing (0-60 days); (6) Basic SPK fertilizer plus 11N applied 9 times - once weekly from day of sowing (0-80 days); (7) Basic SPK fertilizer plus 11N applied 11 times - once weekly from day of sowing (0-120 days). (B.) Weekly examinations of the moisture profiles; (C) Regular foliar analyses (foliar diagnosis).

Result: In the conditions of the heavy rains from the 30th day, then drought from the 90th day onwards), applications of N beyond the 20th day have remained without effect on the yield by the hectare of the cotton plant.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0162, STUDY OF 2 NITROGENOUS FERTILIZERS OF SLOW MINERALIZATION, IN COTTON CULTIVATION F. BLANGUERNON, (SG.181.0007)

Objective: As part of the nitrogen runs the risk of being leached out in August, the object is to seek nitrogenous fertilizers with slower mineralization and having a good effect on the production of the cotton plant.

Approach: Eight comparative plots, each of 4-25 meter rows were treated with the following materials: (1) Control without manure; (2) Popularized formula; (3) Floranit Nitrophoska, (4) Nitrophoska. (N applied in same quantity as in BASF formulas completed in P, K, and S in both 3 and 4, as proposed by Badische Anilin (BASF), N equals 20; of which 14.5% is isobutylidene diurea; 2.5% NO3; 3.0% NH4; P2O5 equals 5; K2O equals 8; Sequals 11-14% in Floranit Nitrophoska. Nitrophoska is 15-15-6, of which 45% is N in nitric form.

Results: Still unknown.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0163, EXPERIMENTAL ATTEMPTS TO CORRECT THE POTASSIUM DEFICIENCY IN COTTON PLANTATIONS IN SINE-SALOUm F. BLANGUERNON, (SG.181.0008)

Objective: To determine the rate and the period for application of K in order to preclude manifestations of the potassium deficiency of the soils in the cotton and sorghum crops.

Approach: 1) Experiment according to the profile method to specify the N-K relationship in the presence of a severe potassium deficiency. "Profile" made in the surface for study of the N-K response: NO3- plus 3K ion 10,000 equivalents/ha. 2) Experimental curve of the activity of K; increasing doses of K are applied (50, 100 and 200 kg KCl/ha) and fractionated applications tested. Fisher block method, 6 repetitions, component plots of 4 rows of 25m, 8 test materials: 8 tests consisting of (a) Control without manure, (b) Basic fertilizer (FB) composed of 10N, 12S, 32P/ha. at sowing and 23 N/ha. at 50 days after sowing, (c) K1: FB plus 50 kg/ha KCl at sowing, (d) K1-2: FB plus 25 kg/ha KCl at sowing plus 25 kg/ha. KCl on the 50th day, (e) K2: FB plus 100 kg/ha KCl at sowing, (f) K2-2: FB plus 50 kg/ha. KCl sowing plus 50 kg/ha KCl at 50 days after sowing, (g) K3: FB plus 200 kg/ha at sowing, (h) K3-2: FB plus 100 kg/ha KCl at sowing plus 100 kg/ha. KCl on the 50th day after sowing.

Result: The first result emphasizes the advantage of an application of potassium on the 50th day of vegetative growth. However all the elements used in the experiments are not yet analysed.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0164, STUDY FORMS OF PHOSPHATE FERTILIZERS F. BLANGUERNON, (SG.181.0009)

Objective: Possible economic utilization of the natural phosphates of Taiba.

Approach: 1 experiment - 6 materials (comparison of natural phosphates with soluble phosphates), 4 rows, 25 metres/plot, 8 repetitions - Fisher blocks.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0165, WITHDRAWAL EXPERIMENTS FOR THE STUDY OF MINERAL DEFICIENCIES OF THE SOIL IN RELATION TO THE COTTON PLANT F. BLANGUERNON, (SG.181.0010)

Objective: Precise cartography of the mineral deficiencies of the soils of the cotton plantation zone. Correlation with foliar diagnosis for study of the critical levels in the nutrition of the plant.

Approach: Annual experiments; tests - 4 to 8 per year; 6 test materials; 4 rows, 25 m/plot; 8 repetitions - Fisher blocks. Study of the yields and foliar diagnosis.

Results: Regional cartography of the deficiencies.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0166, PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON F. BLANGUERNON, (SG.181.0011)

Objective: To evaluate mineral deficiencies in time and for the various crops grown in the rotation. To estimate the requirements in mineral fertilizing elements for the whole of a rotation.

Approach: 3 so-called "withdrawal" experiments are in progress with the rotation: cotton - sorghum - arachis. Fisher block method, 8 repetitions, component plots of 4 rows of 25 m, 7 test materials: - material not manured; Copious manuring 54N, 16S, 90P, 96K; Manuring in popular use 33N, 8S, 30P, 54K; Material without N - 8S, 30P, 54K; Material without S - 33N, 30P, 54K; Material without P - 33N, 8S, 54K; Material without K - 33N, 8S, 30P; 1 experiment in Sine-Saloum, 1 experiment in Eastern Senegal, 1 experiment in Haute Casamance.

Results: After two years the deficiencies are being maintained. Sorghum appears to be less susceptible than the cotton plant to the absence of K in the fertilizer.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0167, EXPERIMENTS COMPARING IN TIME THE EFFICIENCY OF DIFFERENT RECOMMENDED FORMULATIONS FOR MANURE APPLIED TO COTTON CROPS F. BLANGUERNON, (SG.181.0012)

Objective: To obtain more precise indications for the establishment of a formula for the cheapest and most efficient fertilizer.

Approach: 10 experiments distributed in 3 regions of Senegal (Sine-Saloum, Eastern Senegal and Haute Casamance): Fisher block method, 8 repetitions, component plots of 4 rows of 25m, 5 materials: Control without manuring; Formula for fertilizer recommended this year; Formula - id - plus 22.5N on the 30th day; Formula popularized this year; Formula popularized this year plus

189
SENEGAL

22.5N on the 50th day. The formulas vary with the years and with the regions within the following limits: Formulas for recommended fertilizers: 18 to 40N, 8S, 30 to 50P, 24 to 54K; Formulas for popularized fertilizers: 13 to 18N, 0 to 20S, 11 to 20P, 0 to 29K.

Result: On the average, the recommended formulas give higher yields than those of the popularized formulas. The popularized formulas are completed in N and K. The applications of N on the 30th day have a very positive effect (an additional 10 kg of cotton seed per application of 1 kg. N).

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0168, MOISTURE STUDIES OF THE COTTON-GROWING SOILS OF SINE SALOUM
F. BLANGUERNON, (SG.181.0013)

Objective: Moisture studies on light soils - correlation with nitrate nutrition of the cotton crop. Attempt to explain the moisture reserves of these soils, movements of water in the soil, inseparable from the nitrate nutrition of plants in non-irrigated cultivations.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0169, FOLIAR DIAGNOSIS ON THE COTTON PLANT
F. BLANGUERNON, (SG.181.0014)

Objective: Foliar diagnosis on different agronomic test materials. Attempt to approach and to establish curves of critical level for the nutrition of the cotton plant in mineral elements.

Approach: Sampling of leaves at fixed dates. Foliar analyses.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0170, EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION
F. BLANGUERNON, (SG.181.0015)

Objective: To preclude the development of weeds during the first 45 days which correspond to a period during which the grower is very busy with other crops. To choose a herbicide preparation that is teleotoxic, persistent, simple to apply and of moderate price, and that is not phytotoxic for the cotton plant.

Approach: 3 comparative experiments. Fisher block method, 5 repetitions, component plots of 10 rows of 50 m; 4 test materials: Control "for safety" as with the peasantries - Herbicide based on prometryne and of ametryne (19 percent and 48 percent) 1.30 kg/ha. of cotton plantation - Herbicide with 80 percent of diuron; 1 kg/ha. of cotton plantation - Herbicide based on trifluraline; 1.50 litre/ha. of cotton plantation. Application - as a spray over the entire surface (solution in 180 litres of water/ha) - or as a "sanding", for the prometryne plus ametryne mixture (mixture with 200 kg sand/ha.). Application - after sowing and before the seedlings are up - previous to sowing for trifluraline.

Result: Phytotoxicity of the prometryne plus ametryne mixture in the conditions of use. Diuron gives satisfactory results, it is easy to apply, persistent and cheap. Trifluraline must be lightly covered with soil before sowing. Some very positive demonstrations have been made to the peasantries who are asking to have the technique popularized.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0171, EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS

V. LABONNE, (SG.181.0016)

Objective: After the series of tests of preparation, the best of these, retained for their efficacy and their price, are studied with more exactitude in more restricted experiments in order to obtain confirmation of their value.

Approach: Comparative experiments. Fisher block method, 7 repetitions, component plots with 6 rows of 18 m; 4 materials applied in 5 spraying each consisting of: (a) Control: popularized dosage (Peprothion TM in 1972 was 2 l/ha); (b) Preparation 1 (Peprothion HD in 1972: 3 l/ha); (c) Preparation 2 (CRD 72-111 in 1972: 2.5 l/ha); (d) Preparation 3: (CRD 72-102 in 1972: 2.5 l/ha). Formulations of the popular insecticides in g./l. are as follows: (Endosulfan: DDT: Methyl-parathion) (a) 216:300:108; (b) 160:400:90; (c) 300:200; (d) 400:200. One experiment was conducted in each of the regions of Sine- Saloum, Eastern Senegal, and Haute Casamance.

Results: The mixture "Endrin-DDT" (150 - 450 g/l and 2.3 litres/ha), then Peprothion TM, have been found to be of value in these experiments.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0172, TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS
V. LABONNE, (SG.181.0017)

Objective: Search for the preparation that is most efficacious against one or more insect predators, and that is cheap and satisfies the following conditions to the maximum: Non-toxic for man (replacement for the organo-chlorine preparations); Non-phytotoxic; Persistent or transient, as the case may be; Specific or having an extended spectrum of activity, as the case may be.

Approach: Comparative experiments according to the Fisher-block technique, 8 repetitions, component plots with 6 rows of 18 m, X materials (variable according to the year) and for 1972 the formulation ratios (Methidathion: Endrin: Endosulfan: DDT: Methylparathion: Monocrotophos) mg./l were as follows: for Peprothion (TM) 3 l/ha. (0:0:216:300:108); for Azodrin-DDT at 3.5 l/ha. (0:0:0:150:0:300); for Endrin-DDT-TP at 3 l/ha, (0:100:0:340:100:0); for Nuvacron-DDT; (0:0:0:200:0:100); for Ultracide-DDT; (150:0:0:250:0:0). The sprayed were started (1 of 6) on the 45th day at 3-2 sites (1 per region).

Results: Endrin-DDT and Peprothion TM have been successfully popularized. The preparations based on monocrotophos are efficacious but dearer than the former two. They are persistent preparations with a wide spectrum of activity and have little or no phytotoxicity.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0173, EXPERIMENTS ON RATES OF APPLICATION FOR INSECTICIDE PREPARATIONS IN CULTIVATIONS OF COTTON
V. LABONNE, (SG.181.0018)

Objective: To determine the weakest dosage of each preparation retained for a satisfactory practical efficacy on one or several insect predators.

Approach: Factorial design experiment (dosages X years) on 18 meters long with 1-4 materials tested each year. An analysis of the growth of the cotton plants, of the yield, and of the shedding will be conducted in 1971. The formulation ratios in g./l (Endosulfan: DDT: Methyl-parathion) of Peprothion (TM) is as follows: at 2 l/ha. (432:600:216); at 3 l/ha (648:900:324).

190
Result: The weakest dosage (2 l/ha. cotton plantation) has been as active as the stronger dosage (3 l/ha. cotton plantation) in 1971 in Haute Casamance. Consequently, and subject to reserve for confirmation, there is no cause for stepping up the dosage Pestrolion TM.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0174, EXPERIMENTS WITH RHYTHMS IN INSECTICIDAL TREATMENTS
V. LABONNE, (SG.181.0019)

Objective: To make the intervals between insecticide treatments vary as a function of ecology in order to ensure the best protection.

Approach: 3 split-plot experiments. Study of shedding and of flowering.

Results: To advise an interval of 10 days between successive treatments, to shorten the intervals again towards the end of the campaign.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0175, STUDY THE PARASITIC FAUNA OF THE COTTON PLANT IN SENEGAL AND THE OPTIMAL NUMBER OF TREATMENTS
V. LABONNE, (SG.181.0020)

Objective: To determine the levels of parasitic infestation in natural conditions on treated plots. To determine the differences in parasitic specificity between the 3 main ecological zones. To determine the optimal number of treatments - by repetition of these experiments from one year to another, study of the evolution of parasitism in time.

Approach: Counting of all stages of the parasite (eggs, larvae, adults) on the plantation, in space and in time. These counts are made on untreated, treated and intensively treated plots.

Results: Evaluation of the population of the principal parasites in 1971 in three different zones. Optimal number of treatments (economy) equals 6.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

11.0176, STUDY OF CRYPTOGAMIC DISEASES AND OF ROTTING DISEASES OF COTTON PODS IN SENEGAL
R. LAGIERE, (SG.181.0021)

Approach: A systematic study, involving analysis of the causes of rotting of the pods

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
FOURAH BAY COLLEGE
Mount Aureol, Freetown

12.0001, CHROMOSOME CYTOLOGY
G.K. BERRIE, (SL.060.0001)

Objective: Investigator is working on sex chromosome mechanisms and polyploidy in Hepaticae. If research students are forthcoming, work in chromosome cytology will be extended to angiosperms, including local crop plants.

Progress: Satisfactory.

SUPPORTED BY University of Sierra Leone - Freetown

12.0002, ECOLOGICAL PARASITOLOGY
M.O. WILLIAMS, (SL.060.0002)

Objective: Very little is known of the helminth fauna of animals of Sierra Leone. The aim of the project is to make a complete catalogue of the helminth fauna of animals of economic importance. The vectors of the parasites are being identified and this biology worked out as a view of establishing methods for their control. Animals examined so far include fresh water and marine fishes, dogs, cattle, sheep, goats and poultry.

SUPPORTED BY University of Sierra Leone - Freetown

12.0003, PLANT PHYSIOLOGY
J.M. EZE, (SL.060.0003)

Objective: Investigator now working on the vitamin C content of local fruits and vegetables.

Progress - Satisfactory.

SUPPORTED BY University of Sierra Leone - Freetown

12.0004, ADSORPTIVE AND RETENTIVE PROPERTIES AND NATURE OF SOILS OF SIERRA LEONE
E.H. WRIGHT, (SL.060.0004)

Objective: Work involves study of the adsorptive and retentive properties of soil and correlation of these with the nature of surface groups, surface porosity and surface structure.

Progress - Satisfactory.

SUPPORTED BY University of Sierra Leone - Freetown

12.0005, GENERAL ECOLOGY OF ESTUARINE AND FRESH WATERS
A.I. PAYNE, (SL.060.0005)

Objective: Experimental Growth in Fishes: Experimental work on the fundamental interrelationships of growth, food intake, body-weight, and age in the fishes. Project has run for three years. The principal aim is to outline the most predictable relationships of the above features and to assess the value of these relationships in estimating growth and food intake in natural populations using the most easily measurable parameters.

Approach: Estuarine Fishes: Following the seasonal cycle of the common estuarine fish species, including two Tilapia and four mullet- species, together with seasonal changes in physical and chemical aspects of their environment. The project has been carried out for two years now and the next step, which is now being pursued, is to estimate the benthic primary productivity and amount of detritus present in estuaries, as these are the most important sources of fish nutrient.

Limnology of Rivers of Sierra Leone: The major limnological features of the larger rivers and lakes of Sierra Leone are being determined. The seasonal variation is also being followed.

Results: As there is generally a correlation between productivity and the physical environmental aspects, an idea of the order of magnitude of the productivity of the waters of Sierra Leone can be achieved.

SUPPORTED BY University of Sierra Leone - Freetown

RICE RESEARCH STATION
Rokupr

12.0006, RICE VARIETAL IMPROVEMENT
H. WILL, (SL.071.0001)

Objective: To recommend and release the most productive rice varieties adapted to various ecological regions.

Approach: Using split-plot randomized layouts in the following experiments: introduction of foreign plant material; hybridization of different plants (foreign and local); comparative yield trials. These workers hope to select and release varieties.

Progress: The crops are now being harvested. From field performance, two hybrids (Upland x Swamp) might be released next year.

SUPPORTED BY Rice Research Sta. - Rokupr, Sierra Leone

12.0007, THE EFFECT OF PHYSICAL FACTORS ON GROWTH AND YIELD OF RICE
R.A. JONES, (SL.071.0002)

Objective: To observe whether physical factors such as cold and sound treatment increase the yield of rice.

Approach: On different ecological sites, cold and sound treated seeds are being grown under different fertilizer levels.

Progress: Work still in progress.

SUPPORTED BY Rice Research Sta. - Rokupr, Sierra Leone
12.0008, THE UPTAKE AND DISTRIBUTION OF NUTRIENTS BY THE RICE PLANT
R.A. JONES, (SL.071.0003)

Objective: To observe the movement of nutrients within the rice plant (particularly applied N).

Approach: Various plant parts analyzed to determine nutrient content. Results should lead to determine efficiency of fertilizer use.

Progress: Work still in progress.

SUPPORTED BY Rice Research Sta. - Rokupr, Sierra Leone

12.0009, THE CONTROL OF WEEDS BY HERBICIDES IN RICE CROPS
H. WILL, (SL.071.0004)

Objective: To screen and select herbicides in the control of weeds.

Approach: On different ecological sites apply varied herbicides at different rates. Randomized split plots. Tolerance of rice to herbicides observed.

Progress: Work still in progress. Significantly, hand weeding is the best method of controlling weeds on upland (rain fed) soils.

SUPPORTED BY Rice Research Sta. - Rokupr, Sierra Leone

12.0010, THE MINERAL REQUIREMENTS OF RICE
H. WILL, (SL.071.0005)

Objective: To observe the effects of macro and micro-nutrients on the growth and yield of rice.

Approach: On different ecological sites, macro - and micro-nutrients are applied at different times, doses and forms.

Progress: It has been recommended that phosphorus (single superphosphate) be applied at planting - (Boli, upland) or at transplanting (inland, Mangrove Swamps); Nitrogen, 3 weeks after transplanting/planting (1st 1/2 split dose) and at panicle initiation. Rates: Boli - 40 lbs. P2O5/acre; Mangrove Swamp - 60 lbs. N and 40 lbs. P2O5/acre; Inland Swamp - 70 lbs. N and 40 lbs. P2O5/acre; Upland Swamp - 60 lbs. N and 40 lbs. P2O5/acre; work on micro-nutrients in progress.

SUPPORTED BY Rice Research Sta. - Rokupr, Sierra Leone
CENTRE EXPERIMENTAL IRAT DE DAVIE
Davie, Tsevie

13.0001, STUDY THE POTENTIAL FERTILITY OF SOILS
G. DELCASSO, (TO.021.0001)

Objective: The question is to determine the notion of potential fertility expressed by the yield, in order to calculate the difference which exists between actual fertility and potential fertility, and thus the margin of progress foreseeable by agriculture at a more or less long date.

Approach: Setting up "Response curve" experiments with the 3 elements, N, P and K. In each experiment, one element alone is applied at varied rates, the other elements being liberally supplied.

Results: A deficiency in phosphorus is noted (60 kg of P2O5/ha). No efficacy of potassium to date. Efficacy of nitrogen (on maize) at the 3rd year of cultivation.

13.0002, MANIOC (CASSAVA) - PERIOD FOR PROPAGATION BY CUTTINGS AND DATE OF HARVEST
G. DELCASSO, (TO.021.0002)

Objective: Increase of yields.

Approach: A better knowledge of the cultivation cycle of manioc in order to determine, as a function of the period of planting the cuttings, the best date for harvesting.

Results: The growth of the tubercles is accelerated in period of heavy rains. It decreases progressively in a dry season until it ceases. The evolution of the content in starches. The maxima are found in the dry season - the minima in the rainy season.

13.0003, PRODUCTION OF MAIZE AND MANIOC IN ASSOCIATED CULTIVATION
G. DELCASSO, (TO.021.0003)

Objective: Increase of yields.

Results: As a general rule when the sowing and the planting of cuttings are done at approximately the same time, a fall in the yields of the two associated plants is noted.

When the manioc cuttings are set 40 days after the sowing of the maize, a depressant effect on the maize is not noted; on the other hand, the yields of the manioc fall by about 30 percent. This fall in yield is due not only to the effect of the maize on the manioc but equally to the influence of the dates of setting cuttings on the yield of the manioc.

For all that, the total production per surface unit and per time unit is still favourable to the associated cultivation.

13.0004, FERTILIZATION OF MANIOC
G. DELCASSO, (TO.021.0004)

Objective: Increase of yield.

Results: Nitrogen: sight response to nitrogenous fertilization. Phosphate: no response to phosphate fertilization. Potassium: increase of 3,500 kg of roots for an application of 60 kg of K2O. No influence of fertilization upon richness in starches.

13.0005, STUDY OF THE TOGO NATURAL PHOSPHATE AS A BASIC FERTILIZER
G. DELCASSO, (TO.021.0005)

Objective: Is it the interest of the agriculturist to utilize as a basic fertilizer a tricalcium phosphate: "Togo phosphate"?

Approach: In the presence of a uniform fertilization (N plus K) comparison is made, within the framework of a rotation of crops, of an annual maintenance phosphate manuring applied in the form of dicalcium phosphate and of a basic phosphate manure applied on only one occasion in the form of the Togo phosphate. The quantities of P2O5 applied to the soil are equal in the two cases.

Results: The Togo phosphate had no effect in the year when it was buried, but it has brought important and regular increases in yields in the subsequent years. The soluble fertilizers give obviously superior yields, but if the cost of fertilizers and the value of the excess yields are taken into account, it is the Togo phosphate that gives the highest returns in profit.

13.0006, MODALITIES FOR USE OF THE TOGO PHOSPHATE
G. DELCASSO, (TO.021.0006)

Objective: How to improve the efficacy of Togo phosphate in the first few years.

Approach: To compare in the presence of a fertilizer (N plus K) different combinations of dicalcium phosphate and Togo phosphate - the dicalcium phosphate being progressively replaced by the Togo phosphate.

Results: In the first year of cropping, the yields obtained with the different mixtures (Bic. plus Togo) are identical; the Togo phosphate used alone gives inferior yields.

13.0007, TILLAGE AND FERTILIZATION
G. DELCASSO, (TO.021.0007)

Objective: On account of the importance of the problems of soil physics for numerous tropical soils, their study and that of the techniques of tillage have been retained.
Approach: The experimental arrangement comprises 2 modalities for tillage. The traditional method with the DABA, and ploughing with a tractor using a plough having disks, combined with 3 levels of fertility. Without fertilizer equals 0. Rate I - N(40) P(40) K(30). Rate II - N(80) P(80) K(60).

Results: In the course of the first year of cultivation no evidence was found of the superiority of the one or of the other method. An important response to the fertilizer was noted even from the first application.

Network project see TO. 002.0004.

13.0008, STUDY OF MAINTENANCE FERTILIZATIONS
G. DELCASSO, (TO.021.0008)

Objective: The object of this study is to determine, after the correction of mineral deficiencies, thus raising the level of fertility, which fertilizers to apply to the crops to maintain this fertility.

Approach: For the elements capable of being stored in the soil, at least temporarily, i.e., essentially P2O5 and K2O, the following are tested: either a maintenance fertilization after several levels of correction; or several levels of maintenance fertilization in the presence of 2 levels of correction. The experimental work is conducted on continuous cultivation of maize.

Results: Potassium: In the presence of two levels of correction K(60) and K(120) the potassic maintenance fertilizations have had no effect at all on the yields of maize. Phosphorus: After application of 4 levels of correction (P equal 0) (P equals 40) (P equals 80) (P equals 120). If the maintenance fertilization is applied to the plots corrected at "P equals 40", the yields are the same or with slight increase only.

13.0009, NITROGEN BALANCE - NITROGENOUS FERTILIZATION AND ORGANIC MANURING
G. DELCASSO, (TO.021.0009)

Objective: The object of these studies on nitrogen balance is to study the storage of nitrogen in the soil by simultaneous applications of nitrogenous fertilizer and of straw.

Approach: The protocol adopted comprises 3 levels of nitrogen in the presence (or the absence) of 10 T/ha of organic material, not moistened (dry straw).

Results: On non-degraded ferrallitic soils the increases in yields obtained by a single application of non-moistened organic material are very slight. On degraded ferrallitic soils the increase in yields obtained are important.

Network project see TO. 022.0002.

13.0010, SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS
G. DELCASSO, (TO.021.0010)

Objective: The object of this experimental work is to acquire a better knowledge of the physical and chemical role of buried organic matter, in order to determine its specific effect on yields.

Approach: The study is conducted by curves of response to nitrogen with uniform P plus K fertilization either in the presence or in the absence of two levels of organic matter, 0 and 10 T/ha of dry straw.

Results: On non-degraded, weakly ferrallitic soil the application of 10 T/ha of dry straw does not in the first two years bring any notable increase in yields; the nitrogenous fertilizer combined with P plus K improves the yields in a very clear-cut manner, and does so from the first application of N, at 40 units.

CENTRE ORSTOM DE LOME
B.P. 375, Lome

13.0011, STUDY OF THE SOILS DEVELOPED ON THE CRYSTALLOPHYLLIAN BASE OF TOGO - CARTOGRAPHY AT 1/200,000TH OF THE SOUTHERN PART
A. LEVEQUE, (TO.190.0001)

STUDY OF THE SOILS DEVELOPED ON THE CRYSTALLOPHYLLIAN BASE OF TOGO - CARTOGRAPHY AT 1/200,000TH OF THE SOUTHERN PART

13.0012, CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BASSARI DISTRICT
A. LECOCQ, (TO.190.0002)

Objective: Characterization and dynamics of the differentiations of the soils in landscapes with a long dry season.

Approach: Surveys of terrain and classical laboratory analyses, with an exceptionally high density of observations for this scale of cartography but necessary if the object is to encompass a small extent the distribution of the soils in a relatively cut up landscape.

Results: The current pedogenetic processes play on some materials altered in ancient times and very much evolved, and more or less redistributed in the countryside in the course of the middle and recent quaternary period. The present tendency is for "large-scale leaching", the more severe since the geological substratum is less permeable (difference between schists and primary sandstones).

13.0013, RURAL COMMUNITIES AND THEIR TERRITORIES SEEN THROUGH THE VILLAGE MONOGRAPHS OF AGBETIKO AND BENA (TOGO)
B. ANTHEAUME, (TO.190.0003)

Comparative study of several village communities, and of the territory they control. Study of the efficiency of the traditional agrarian systems and of their transformations under the impact of the current endeavours for experimental development. Study of territories, topographical findings, inquiries. The traditional agrarian systems that are effective and well adapted to the environment are still capable of competing on the economic plane with the modern imported systems.

13.0014, CARTOGRAPHY OF THE AGRARIAN ACTIVITIES OF TOGO
B. ANTHEAUME, (TO.190.0004)

Map of the homogeneous agrarian zones of Togo. Photo interpretation and verification on the site of some sixty tested zones of 25 square kilometres, topographical surveys, inquiries. Extreme variation between zones. Verification on the site is absolutely indispensable to preclude grave errors of analyses.
TOGO

13.0015. OCCUPATION AND DEVELOPMENT OF THE NEW COUNTRIES
E. LEBRIS, (TO.190.0005)
To demonstrate the channels of migrations from an over-populated zone towards peripheral reception zones in southeastern Togo.
Territorial monographs from inquiries, topographical surveys.

DIVISION DES ETUDES PEDOLOGIQUES ET DE L'ECOLOGIE GENERALE
B.P. 1026, Lome

13.0016. RECONNAISSANCE AND EVALUATION OF THE SOILS OF TOGO
E.H. SANTANNA, (TO.161.0001)
Objective: 1) Pedological reconnaissance work at 1/200,000 - inventory of all the soils of Togo. 2) To designate the great pedological units presented and to give the approximate contours. 3) Sectorial maps at 1/20,000th with the object of the extension of some specific plantations: manioc (cassava), cacao, oil palm etc.
Approach: The basic documents used are: topographical maps of IGN at 1/50,000th, 1/200,000th and at 1/20,000th. The geological maps of Togo: the existing pedological maps, aerial photographs, reconnaissance surveys, the small paths cut in the woods.
Results: Maps made: Maritime region of Togo at 1/50,000th; region of the Kara and of the Savannas at 1/100,000th; the soils of Togo: Plantation - several sectors of Tsevie, Palime, Akposso etc. at 1/10,000th and at 1/20,000th. Maps in course of erection: Plateaux Region - Central Region.
SUPPORTED BY Inst. Polyvalent Rech. Econ. Rurale - Togo

PROJECT FAO/UNDP DE DEVELOPPEMENT DES RESOURCES FORESTIERES
B.P. 911, Lome

13.0017. TECHNIQUES OF CLEARING IN TEAK POPULATIONS OF EQUAL AGE
J.L. NIVELLE, (TO.800.0001)
Objective: To study different clearing techniques in populations of teak of equal age: selective or systematic clearings, and numerical clearings, with regard to execution of the work, the choice of select individuals, to afford them light.
Approach: Work on 5 comparative plots of from 1 hectare to 20 acres, planted at 2 x 2 metres, 15 years old, each (plot) treated in accordance with a different clearing technique: (1) removal of 1/3 of the population in number of standing trees, and this while lopping of the finest trunks; (2) removal of 1/2 of the population in number of standing trees, while lopping the finest trunks; (3) removal of one row in every two, in diagonal; (4) choice of 150 select individuals per hectare, freeing of 8 sites around the select tree - clearing of fixed intensity; (5) choice of 150 select individuals per hectare, intensity of clearing around the select tree variable as a function of the circumference of the select.
Treatment of the stumps with 245 T, to prevent the growth of new shoots. Per plot: 1 auxiliary control plot not treated, 1 treated with a strong dose (rate of application), 1 with a weak dose.

13.0018, CARBONIZATION IN TRENCHES
L. PICARD, (TO.800.0002)
Objective: Fabrication of charcoal from the timber of different species (Savannah teak species) in large quantities and at a reduced price.
Approach: Study concerning a large trench of 30 cubic metres (5x3x2 m) and 2 small trenches of 7 cu.m (3x1.5x1.5 m) with the object of finding the best conditions for loading, draught and ventilation, system of lighting, duration of carbonization, dimensions of trenches, conditioning of the timbers used.

13.0019, EXPERIMENTS WITH FERTILIZERS IN PLANTATIONS OF EUCALYPTUS CAMALDULENSIS
J.W. JANSEN, (TO.800.0003)
Objective: 1. Influence of lopping on the growth in height; 2. Influence of fertilizer on the growth in height.
Approach: Surface: 2 hectares - cleared by hand, ploughed with a Rome-Plow, planted beginning of June 1972; spacing 3 metres x 3 metres; 1 ha. cleared with a rotavator and the second ha. with a gyro-breaker; height measurement recorded at the beginning of September. These measurements did not reveal any difference in height for these two plots treated differently; fertilizer experiment commenced in September. Treatments: 0: no fertilizer; 1: N (nitrogen); 2: NP (nitrogen plus phosphorus); 3: NPK (nitrogen plus phosphorus plus potassium). Rate of Application: N: 30 or ammonium sulphate 150 kg/ha; P: 23 or triple superphosphate 50 kg/ha; K: 15 or potassium sulphate 33 kg/ha. For each type of tillage: 2 repetitions.

13.0020, PRICKING OUT IN A NURSERY
J.F. GREGERSEN, (TO.800.0004)
Objective: To determine the optimal spacing for the prickings-out of seedlings of Cordia alliodora in a nursery.
Approach: Seedlings of Cordia alliodora have been pricked-out in nursery beds at 4 different spacings: 15x15 cm., 25x25 cm., 35x35 cm., and 45x45 cm.

13.0021, FUMIGATION OF THE SOIL IN A NURSERY
J.F. GREGERSEN, (TO.800.0005)
Objective: a) To reduce the losses on plants caused by insects. b) To eliminate the labour of weed destruction.
Approach: a) Preparation of 40 square metres of nursery bed by Rotavator. b) Application of Terabol (methyl bromide). c) Sowing with seeds of Sterculia foetida.
STATION IFCC DE TOVE
B.P. 90, Palime

13.0022, PHYTOTECHNICAL STUDIES ON METHODS OF PLANTATION OF CACAO-TREES
J. BESSÉ, (TO.061.0001)

Objective: Research on the best methods for planting new hybrid varieties under three different basic climatic conditions.

Approach: Setting up experiments in the form of randomized Fisher blocks to enable the testing of the principal methods recommended: under plantain banana plants, between hedges of Flemingia congesta, under Gliricidia, between hedges of natural regrowth (enriched with Gliricidia, or not), under managed forest.

Results: Experiments in progress.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Palime, Togo

13.0023, IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY VEGETATIVE MEANS
J. CAPOT, (TO.061.0002)

Objective: Increase of yields. Resistance to climatic and biological hazards. Research for a better commercial quality.

Results: The obtaining of clones highly productive of a good quality coffee (granulometry superior to that of the local Niaouli variety). Propagation commenced.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Palime, Togo

13.0024, GENERATIVE IMPROVEMENT OF THE CACAO-TREE (THEOBROMA CACAO L.)
J. BESSÉ, (TO.061.0003)

Objective: The obtaining of selected high-producing vigorous hybrids presenting a good tolerance to the hazards (notably the virus of Swollen-shoot), and having satisfactory commercial qualities.

Results: Experiments in progress.

SUPPORTED BY Inst. Fr. du Cafe et Cacao - Palime, Togo
TOGO

APPROACH: The experimental arrangement comprises 3 modalities for tillage: working with the "Daba" - making of ridges, ploughing with the plough drawn by oxen combined with 4 levels of manuring - (rates of application 0 - 1 - 2 - 3.)

RESULTS: Of the results of the first two years in a succession of sorghum-arachis, the following are noted: the superiority of the ridge to the other modalities for tillage, and in all cases a good response to the mineral manure applied.

Network project: see TO. 021.0007.

13.0029, STUDY THE POTENTIAL FERTILITY OF SOILS G. DELCASSO, (TO.022.0005)

OBJECTIVE: The question is to determine the notion of potential fertility expressed by the yield in order to calculate the difference which exists between the actual fertility and the potential fertility, thus the margin of progress that can be envisaged by agriculture.

APPROACH: Setting up of "curve of response" experiments to the 3 elements (N, P, K). In each experiment one element alone is applied at variable rates, the other elements being supplied liberally.

RESULTS: The possible yields in the climate under consideration and with the current varieties are: 20 q/ha (quintal (equals hundredweight) per hectare) for sorghum; 30 q/h/a for groundnuts; A deficiency in P2O5 is noted (80 kg/ha); Up to the present time the potassic fertilization has been without effect.

Network project: see TO. 021.0001.

13.0030, STUDY OF MAINTENANCE FERTILIZATIONS G. DELCASSO, (TO.022.0006)

OBJECTIVE: The object of this study is to determine, after correction of mineral deficiencies, thus raising the level of fertility, which are the manures to be applied to the crops in order to maintain this fertility.

APPROACH: For the elements capable of being stored in the soil at least temporarily, i.e., essentially P2O5 and to a lesser degree K2O, the following are tested: either a single maintenance fertilization after several levels of correction; or several levels of maintenance fertilization in the presence of two levels of correction.

RESULTS: With regard to the phosphatic fertilization, the level of the yields is examined in the second year as soon as a uniform fertilization of 40 units of P has been applied. With regard to the potassium applied at two rates (K30) and (K60) in the presence of N plus P the differences in yields are not significant in the first year of cultivation.

13.0031, BEHAVIOUR OF PLUVIAL RICE (VARIETIES X FERTILIZATIONS) G. DELCASSO, (TO.022.0007)

OBJECTIVE: Study of the behaviour of 3 varieties of pluvial rice.

APPROACH: With and without mineral fertilization, comparison is made at two different dates of sowing, of the behaviour of 3 varieties of rice. As a reference control the local rice is used.

RESULTS: The increase in yields due to fertilization are important, the yields are doubled. The early date for sowing is advised for the varieties that have a long cycle. The varieties that have a short cycle adapt themselves better to a late sowing.

13.0032, MINERAL FERTILIZATION - DETERMINATION OF DEFICIENCIES G. DELCASSO, (TO.022.0008)

OBJECTIVE: Study of the determination of mineral deficiencies - approach for the determination of a fertilization.

APPROACH: Carried out by factorial experiments of 2 x 2 x 2 x 2 type sowing done at two different times and on the same dates as for the studies on behaviour (See TO. 022. 0007).

RESULTS: Economically commended fertilization - 40 units of N from urea ; 40 units of P - triple superphosphate.

STATION IRTC D'ANIE MONO

B.P. 1, Anie

13.0033, IMPROVEMENT OF VARIETIES OF COTTON (BARBADENSE) GROWN IN ASSOCIATED CULTIVATION G. ANO, (TO.041.0001)

Objective: Selection within a population in order to improve productivity and the technological characteristics of the cotton tree grown in associated cultivation.

Approach: Mass pedigree selection with three repetitions.

Results: Propagation each year of a nucleus of seeds sown for multiplication outside the station. Propagation of the Mono varieties.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0034, VARIETAL EXPERIMENTATION WITH COTTON (ASSOCIATED CULTIVATION) G. BARBADENSE G. ANO, (TO.041.0002)

Objective: To detect among the varieties attested on the station those which are the most suited to this type of traditional cultivation.

Approach: Comparative experiments in pure and associated cultivation, 5 to 8 repetitions - associations with maize and yams.

Results: Propagation of the Mono varieties.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0035, INTRASPECIFIC HYBRIDATION OF COTTON (G. BARBADENSE) G. ANO, (TO.041.0003)

Objectives: Creation of a material with long fibre and great tensile strength, adapted ecologically.

Approach: Crossings and back crosses between local (Mono) types and sires of high quality (Sea Island). Pedigree selection followed by mass pedigree selection.

Results: Attestation of the Hyfi varieties.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0036, COTTON - PRODUCTION OF F1 HYBRIDS - GOSSYPIUM HIRSUTUM X G. BARBADENSE G. ANO, (TO.041.0004)

Objective: To profit by the heterosis due to the crossing between two species for the production of seeds.
Approach: Utilization of the male sterility found with G. hirsutum.
Results: Not to definitive - the study should be continued.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0037, COTTON - STUDY OF THE MALE STERILITY IN GOSSYPIUM HIRSUTUM
G. ANO, (TO.041.0005)

Objectives: To provide sterile male strains for a scheme of production of F1 seeds.
Approach: Conservation of the sterile-male strains. Localization of the sterility genes. Modification of the sterile-male effect.
Results: Isolation of three sterile-male strains that can be utilized for a scheme of production of F1 seeds.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0038, VARIETAL IMPROVEMENT OF COTTON (G. HIRSUTUM)
G. ANO, (TO.041.0006)

Objective: To choose the variety best adapted to intensive pure cultivation.
Approach: Introductions and collection - varietal experiments on the station - network of regional experiments (9 varieties, 9 repetitions - plots with three rows).
Results: Propagation of the Allen variety in large-scale cultivation.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0039, PRODUCTION OF COTTON HAVING SEEDS FREE FROM GOSSYPOL
G. ANO, (TO.041.0007)

Objective: To explore the possibilities of production of cotton trees having seeds free from gossypol, enabling the preparation of a flour rich in protein fit for use in human nutrition.
Approach: Introduction of varieties having seeds free from gossypol.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0040, EXPERIMENT ON INSECTICIDAL PROTECTION OF COTTON PLANTS
G. ANO, (TO.041.0008)

Objective: To evaluate the relative efficacy in Togo of several insecticidal compounds already selected in some other states.
Approach: Field of 1 ha. of the Mono variety (Gossypium barbadense), divided into 5 plots of equal surface area. 5 preparations compared: Endrin-DDT (150-450 g/ha), Peprothion TM, HOE 2960, S 137b, Ca 6900 - Dosage: 2-3 litres/ha/application. 5 sprayings.
Result: Has not yet been analysed.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0041, STUDY OF THE MINERAL DEFICIENCIES OF THE SOILS OF TOGO AND THEIR EVOLUTION
N. DOSSOU, (TO.041.0009)

Objective: I) To study the deficiencies or the development of deficiencies in all regions of Togo. II) Cartography of the mineral deficiencies of soils in Togo.
Approach: 11 withholding experiments (N S P K) distributed over the 5 large economic regions - 6 materials - 8 repetitions - Component plots with 4 rows of 30 metres - 1st cycle; continuous cultivation: maize; 2nd cycle: cotton.
Results: In 1970 a depressant effect of nitrogen was noted; this was attributed to a N/P imbalance, verified by foliar analyses. These reactions have disappeared in 1971.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

N. DOSSOU, (TO.041.0010)

Objective: Study of the development of mineral deficiencies within the framework of an appropriate rotation comprising periods of fallow.
Results: Nitrogen: Close correlation between yield and N content of the leaf. Phosphorus: Highly significant deficiency. Sulphur: Deficiency which becomes apparent in the comparison between S content of the leaf and critical level. Potassium: No agreement between analysis of the leaf and agronomic result. Boron: Contents inferior to the theoretical critical level, nevertheless without manifestation of foliar signs of deficiency.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0043, AGRONOMIC-ECONOMIC STUDY OF THE NATURAL PHOSPHATES OF TOGO
N. DOSSOU, (TO.041.0011)

Objective: In view of the presence of these beds, to demonstrate the activity of these phosphates, as a basic fertilizer, on the very deficient soils on the perimeter. Study of the cost price.
Approach: 3 sites for experiments - 6 materials - foliar analyses.
Results: The efficiency is estimated by the increase in harvest yield over two years per kg of P2O5. There would be no short-term interest in transporting large quantities of natural phosphate from Anicho into the North of the country.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0044, EXPERIMENT ON PLANTATION DENSITY
N. DOSSOU, (TO.041.0013)

Objective: To specify the data for distance apart in the row and number of plants per seed-hole.
Results: The inter-row effect is weak but significant. It will always be advantageous to sow with a distance between rows of 0.70 m. The interplant effect is very important, highly significant; it must be interpreted as a function of interactions between interplant distance, year, and date of sowing.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0045, STUDY THE PLACE OF MANURING IN A SUCCESSION OF MAIZE - COTTON
N. DOSSOU, (TO.041.0014)

Objective: To ascertain whether, to obtain better value from manure, it is suitable to apply it as a total application before the one or the other crop or to divide it between the two.
Approach: 4 materials, 8 repetitions.
Results: Better results with divided manuring.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
TOGO
13.0046, STUDY OF THE EFFECT OF NITROGENOUS FERTILIZATION ON THE COTTON PLANT
N. DOSSOU, (TO.041.0015)

Objective: a) To specify the requirements of nitrogen of the cotton plant from sowing up to the 100th day. b) To ascertain the optimum period to satisfy this requirement.

Approach: Five materials - ten repetitions - fractionated periodic applications - previous sampling of leaves for diagnosis. Results: Applications of nitrogen are very beneficial up to the 40th day with a production increment of 14 kg/ha of cotton seed per kg of nitrogen spread.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0047, STUDY OF THE MAINTENANCE OF FERTILIZATION
N. DOSSOU, (TO.041.0016)

Objective: Is it possible to maintain the fertility of a soil, observed in the first year of cultivation, with the aid of a mineral fertilization compensating the mineral uptake of the two annual crops (maize - cotton)? What assistance can be given by a natural or improved fallow?

Approach: 6 materials, 4 repetitions combining with a control left uncultivated until 1974, one cycle of natural fallow and fallow without leguminous plants, one cycle of cultivation of 1.4 - 2.2.1 - 2.3.

Results: Certain transitory periods of impoverishment were observed to be a function of the recorded rainfall.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0048, EXPERIMENT DURATION OF FALLOW
N. DOSSOU, (TO.041.0018)

Objective: To demonstrate the improving effect of a fallow, on the level of fertility of a soil supporting two annual crops and which may nevertheless receive a compensatory mineral fertilization.

Approach: 4 rotations: Yams - Arachis - Cotton - Maize - Haricot beans - Rice; 3 crops in continuous cultivation. 2 and 3 years of fallow; 2 without plants; with and without mineral fertilizer.

Results: The first soil analyses show that on sandy soils poorly provided with organic matter, there is cause for anticipating (the need for) a complete and frequent mineral fertilization.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0049, EXPERIMENT ON CHEMICAL WEEDING OF A COTTON PLANTATION WITH 3 HERBICIDE PREPARATIONS
N. DOSSOU, (TO.041.0019)

Objective: To facilitate growth of cotton plants at the outset by eliminating competition by weeds during the first 30 days.

Approach: One observation plot of 24 x 2 m per dosage rate for each preparation, plot subdivided into 8 sub-plots. Technique repeated twice. Three preparations used in the experiments and each used at three rates of application in 400 litres of water per hectare: Cotoran: 2kg/ha, 1.5 kg/ha, 3 kg/ha; NVO A: 4 kg/ha, 3.0 kg/ha, 6 kg/ha; BASF 3660: 8 kg/ha, 6.0 kg/ha, 12 kg/ha.

Spraying on the soil, 2 days after sowing. The herbicidal evaluation is made in accordance with 3 criteria: visual counting at 15, 30 and 45 days after sowing; counting with the aid of the Du Plessis grid; weighing of the weeds.

Result: Cotoran is shown to be superior to the other two preparations from the first fortnight and its persistence is longer.

The rate of application of 3 kg/ha seems to be the best and the persistence is up to 45 days.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0050, TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY
N. DOSSOU, (TO.041.0020)

Objective: Demonstration of a possible phytotoxicity for cotton plants to compounds having herbicidal activity.

Approach: One observation plot of 24 x 2 m per dosage of preparation, plot sub-divided into 8 sub-plots. Arrangement repeated twice. Four test preparations and two dosages (single and double) in 400 litres of water per hectare: 1) Alachlore: 2 kg/ha and 4 kg/ha; 2) Diuron: 2 kg/ha and 4 kg/ha; 3) Fluometuron (Cotoran): 3.2 litres/ha and 6.4 l/ha; 4) Prometryne plus Amitrole (Geasen): 1.8 kg/ha and 3.6 kg/ha. Spraying on the soil the day after sowing. The evaluation of phytotoxicity is made in accordance with criteria: 1) the number of seedlings up at 15 and 30 days; 2) the growth in height at 60 and 120 days; 3) flowering; 4) production of cotton-seed.

Result: Alachlore alone seems not to be phytotoxic when it is used at double dosage. Diuron is the most phytotoxic in this case. At single dosage, the differences are not appreciable.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0051, COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT KOUVE (MARITIME REGION)
N. DOSSOU, (TO.041.0021)

Objective: To obtain more and more precise indications for the establishment of a formula for the cheapest and most efficient fertilizer.

Result: In 1970, the production of the manured plots did not differ from each other and were little better than that of the non-manured control. In 1971, the reaction to manuring has been very noticeable (250 percent of the non-manured control but producing 978 kg/ha). The copious manuring is in the lead on account of the very severe deficiencies in P and K which have been revealed in the experiment.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0052, COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT EAST-MONO (PLATEAUX REGION)
N. DOSSOU, (TO.041.0022)

Objective: To obtain more and more precise indications for the establishment of a formula for the cheapest and most efficient fertilizer.

not manured, as preceding crop. Application as side-dressing at sowing, except for 22.5N applied at 50 days.

Result: The 3 formulas with application at sowing give almost identical results, and the best. The K of the new formula has remained without apparent effect in 1970. It is the N that scores.

Same result in 1971.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0053, COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT NIANGOUAME AND AT THE PILOT CENTRE AT KABOU
N. DOSSOU, (TO.041.0023)

Objective: To obtain more and more precise indications for the establishment of a formula for the cheapest and most efficient fertilizer.

Results: The 1970 Centre formula gives a higher production (1405 kg/ha) than the two other formulas and is identical and equal to 163 percent of the control (788 kg.). The foliar analyses show that the superiority of the 1970 formula results from its potassium. Nitrogen is the principal limiting factor. Same results in 1971. The 1970 formula therefore seems well adapted to the region. The results of the KABOU experiment are comparable to those at NIANGOUAME and the conclusions are the same.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

13.0054, COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT KADJALLA (THE KARA REGION)
N. DOSSOU, (TO.041.0024)

Objective: To obtain more and more precise indications for the establishment of a formula for the cheapest and most efficient fertilizer.

Result: The three fertilizers do not differ among themselves but are far superior to the non-manured control (238 percent of 542 kg). The foliar analyses show an insufficient compensation of the phosphorus deficiency by the applications of P.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
UPPER VOLTA

INSTITUT DE RECHERCHES AGRON, TROP., ET DES CULTURES VIVRIERES
Agence en Haute Volta, B.P. 596, Ouagadougou

14.0001, IMPROVEMENT OF EARLY SORGHUMS BY SELECTION OF THE LOCAL MATERIAL
C. ROBLEDO, (UV.020.0001)
Objective: Research for traditional varieties resistant to drought for the zone with recorded rainfall less than 700 mm, and resistant to lodging.
Approach: Experimental work on the framework of IRA T co-operative experiments.
Results: One early variety resistant to drought, productive but with poor quality grain equals BELKO. One variety in the course of being confirmed, of good quality grain equals NONGOM-SOBA.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0002, INTRODUCTION OF FOREIGN EARLY SORGHUMS
C. ROBLEDO, (UV.020.0002)
Objective: Research for varieties with short straw, resistant to drought, for the zone of recorded rainfall less than 700 mm, more productive than the traditional varieties and having glossy enough grain.
Approach: 1) Introduction of fixed material originating from Senegal, from Niger, from the U.S.A. and experimental work on this material in the framework of (IRAT STRC) co-operative experiments. 2) Introduction of material in disjunction from the same countries (in F3, F4, F5) and continuance of the genealogical selection with experimental work up to fixation. Researches going on at outstation at Tankoulounga.
Results: One early variety with medium straw, resistant to drought, with high productivity but mediocre quality of the grain: 137 - 62 x Janjare/8 (Niger). One early variety with short straw, of medium productivity and good quality grain, without anthocyanosis equals CE 90 (Senegal).
SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0003, INTRODUCTION OF FOREIGN EARLY MATERIAL - SMALL MILLET
C. ROBLEDO, (UV.020.0003)
Objective: Research for early varieties resistant to drought (zone with less than 600 mm recorded rainfall) and more productive than the local control.
Approach: Multilocal experimental work on introductions in the framework of IRAT co-operative experiments. Researches going on at outstation at Dori.
Results to date: One variety from Niger: P3 KOLO with a yield regularly superior to that of the control.
SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

SECTION CIFT DE HAUTE VOLTA
B.P. 303, Ouagadougou

14.0004, INDEX OF EROSION BY THE RAIN IN UPPER VOLTA
J.P. GALABERT, (UV.090.0001)
OBJECTIVE: Map of Index of erosion by the rain in Upper Volta.
APPROACH: Study of all the pluvigraphical records at the official and associated stations of the National Meteorological Service: 1) Calculation of the R index of the Wischmeier equation; 2) Hyetograms (rainfall maps) of the exceptional precipitations having more than 100 points (U.S.A.).
RESULTS: Publication in December 1972 of the results for the years 1966, date of the installation of pluvigraphs with a 24-hour rotation, to 1972. Provisional map of the Index of erosion by the rain (R Index). Hyetograms of the exceptional precipitations.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

14.0005, INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER
J.P. GALABERT, (UV.090.0002)
OBJECTIVE: Influence of wind-breaks in an irrigated perimeter.
APPROACH: Installation at the outstation at Dobre of 5 thermographs - 1 anemometer - 5 thermographs - aspiration psychrometer. Field balance of INRA type (accuracy 1 mg) for the study of the transpiration of plant material under cover or without shelter. Study of the factors: temperatures - air humidity - saturation deficit.
RESULTS: Apparatus in the course of installation.
SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

14.0006, TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS
J.P. GALABERT, (UV.090.0003)
OBJECTIVES: Trials of Eucalyptus from different sources; choice by elimination.

RESULTS: The first experiments have enabled the release of some ten origins. These experiments are to be confirmed. Eucalyptus camaldulensis 8298 and Eucalyptus camaldulensis 8038 are being released from the other origins.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

14.0007, INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE
J.P. GALABERT, (UV.090.0004)

OBJECTIVE: Introduction of forage shrubs and cover plants into an arid zone.

APPROACH: Experiments at the outstation at Dori on behaviour of leguminous shrubs and of Atriplex after integral protection of the experimental plot.

SUPPORTED BY Centre Tech. For. Trop. - Niamey, Niger

STATION AGRICOLE IRAT DE KAMBOINSE
Kamboinse

14.0008, NITROGENOUS FERTILIZATION FOR AQUATIC RICE
C. POISSON, (UV.024.0001)

National network project - see UV.022.0018. (14.0061)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0009, VARIETAL IMPROVEMENT OF AQUATIC RICE BY INTRODUCTION
C. POISSON, (UV.024.0002)

National network project - see UV.022.0019. (14.0062)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

STATION AGRICOLE IRHO DE NIANGOLOKO
Niangoloko par Banfora

14.0010, CULTIVATION OF GROUNDNUTS IN ANACARDIUM (CASHEW NUT) PLANTATION DURING THE FIRST FEW YEARS OF DEVELOPMENT OF THE TREE
P. GILLIER, (UV.061.0001)

Objective: To obtain a return from the land while awaiting the first crops of nuts, either from groundnuts or from sesame.

Approach: Comparative experiments and behaviour studies, research on the portions to leave free around the plantation holes.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0011, UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS
P. GILLIER, (UV.061.0002)

Objective: The crop successions rice - tomato or late rice - late rice, set problems as to ground preparation. Early rice - tomato, or early rice - late rice leave a period in which the soils are not in use. The oleaginous plants should make it possible to arrange that this "empty" period occurs in a dry season or in winter time.

Approach: Behaviour experiments with early varieties of groundnuts, of soya and of sesame.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0012, IMPROVEMENT OF SESAME HYBRIDATION
P. GILLIER, (UV.061.0003)

Objective: To increase the productivity, the quality of the seed and the oil contents in sesame.

Approach: The following are inter-crossed: 1st/ the most adapted varieties found in collection. 2nd/ varieties that are far removed in both origin and characteristics.

Results: The first selections are compared in trial. Identical to the best of the present-day varieties from the point of view of yields, they have seeds of better quality.

The experiments of second crossings are still at the stage of progeny study.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0013, VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS
P. GILLIER, (UV.061.0004)

Objective: To demonstrate by example the authenticity of the popularized methods and to promote while studying it a pilot improvement of land in the form of team cultivation.

Approach: Creation of a community farm in 1961, which has since become the property of a single individual, the others creating their own improvement scheme. Traditional agriculture of the region. Working with oxen. Rotation of three years of crops, 3 years of fallow. 2 hectares of maize, 1 ha. of groundnuts, ha. 1/2 of sesame, ha. 1/2 of Cajanus. Garden with aubergine.

Results: Repayment of advances for installation over 6 years at least. Raising of the level assured. Necessity for the first 3 years of a very closely knit and qualified team of workers (skeleton staff).

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0014, CONTINUOUS CROP ROTATION WITH MANURE
P. GILLIER, (UV.061.0005)

Objective: To judge the advantage of using fallow in relation to continuous rotation with moderate application of manure.

Results: The yields are maintained at a satisfactory level without decreasing from year to year. A slight advantage in the use of the fallow. The most varied rotations are the best. Continuous cultivation of groundnuts is to be discouraged on account of parasitism (chlorosis and cerospora).

SUPPORTED BY Inst. de Rech. Cot. et Text. - France
UPPER VOLTA

14.0015, CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS
G. GERMANI, (UV.061.0006)

Objective: To look for the agent of a chlorosis that has appeared on leguminous plants, and for the means of control.

Approach: Nemotological sampling - Attempts at treatment with Nemagon. Research of plant hosts in collaboration with the O.R.S.T.O.M.

Results: The preparation Nemagon (50 litres/hectare) prevents the disease from appearing. The agent is a nematode (Aphasmhythmewuus straturatus germani).

The disease appears after a certain time of vegetation (50 days in the case of the late groundnut varieties), and disappears during the end of the cycle. Other host plants: Cajanus indicus, Glycine max. Tephrosia. The disease appears to affect only leguminous plants. Causes loss of 25 percent to 60 percent of yields.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0016, RESEARCH FOR LATE VARIETIES OF GROUNDNUTS RESISTANT TO "ROSETTE"
P. GILLIER, (UV.061.0007)

Objective: To improve the productivity of groundnuts with a long cycle and resistant to "Rosette".

Approach: Prospecting - Studies on progeny - Hybirdation - Comparative varietal experiments both at the Station and Multiloc.

Results: Groundnut cultivars of high productivity and resistant to "Rosette". Cycle of 150 days.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0017, CREATION OF "EATING" VARIETIES OF GROUNDNUTS
P. GILLIER, (UV.061.0008)

Objective: To develop in the South zone (of Upper-Volta) a population of groundnuts that can be marketed as "eating" quality groundnuts, more remunerative for production.

Approach: Crossing between new resistant early varieties and "eating" variety (Valencia early) and destined to be classified as shelled.

Results: Research in progress. Studies of progeny.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

STATION AGRICOLE IRHO DE SARIA
B.P. 21, Koudougou

14.0018, COMPARISON OF THE DEVELOPMENT OF THE STANDARD VARIETIES OF GROUNDNUTS AND OF EARLY HYBRID VARIETIES
P. GILLIER, (UV.062.0001)

Objective: To obtain better knowledge of the biological differences due to hybridation and their influence on nutrition and yield.

Approach: Uprooting and daily study of 10 plants chosen at random in two plots, the one in KH 149 A, the other in Saria 90.

Results: In progress. Some differences exist in the rhythm of growth, the range of the flowering season, reactions to precipitation and to drought.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0019, BEHAVIOUR OF GROUNDNUTS ROTATED WITH SOYA AND SESAME ON THE VIRGIN SOILS OF THE VALLEY OF THE VOLTA
P. GILLIER, (UV.062.0002)

Objective: A vast zone of vertisols which is shortly to be improved by bringing in foreign populations; to assess the possibilities of adaptation and of production of oleaginos plants, the cultivation of which is envisaged. To adapt fertilizer formulations to these new soils.

Approach: Comparative experiments and studies of behaviour in three envisaged perimeter localities. (Bases at Manga, Bitou and Diebougou).

Results: Experiments in progress.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0020, ADAPTATION TO THE NORTH OF UPPER-VOLTA OF VARIETIES OF GROUNDNUTS THAT CAN BE SUITABLE FOR SALE AS SHELLED - DELIMITED WEIGHT
P. GILLIER, (UV.062.0003)

Objective: To develop in this region a production of groundnuts fit for sale as "eating quality", more remunerative for the producer.

Approach: Comparative experiments with I.R.H.O. selected varieties originating from Congo-Brazzaville.

Results: The yields obtained with these varieties during the last two years are obviously equivalent to those with the popularized variety, at the present moment the best red seed of good quality.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0021, CULTIVATION TECHNIQUES FOR SESAME
P. GILLIER, (UV.062.0004)

Objective: To reduce the number of working days on sesame by simplification on the tasks and eliminating thinning of the seedlings.

Approach: Mixture of the seeds and fertilizer, sowing the mixture in rows. No thinning - sowing on a large scale with the manure distributer in the same conditions - various other methods.

Results: Reduction of the working days by 30 to 50 days. Yields equivalent or superior to those obtained with the customary techniques. Favourable activity of a fertilizer immediately available to the plant, which is not the case with side-dressing.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0022, CONTROL OF STUNTING OF THE GROUNDNUT PLANT - CLUMP
G. GERMANI, (UV.062.0005)

Objective: To verify that a nematocidal preparation prevents the appearance of clump.

Approach: Treatment with Nemagon (50 to 60 litres/ha.) of each 40 square cm. in comparison with a non-treated control.

Results: Very positive, no affected plant on treated plots. Influence on the yield.

SUPPORTED BY Inst. de Rech. Huiles et Olea. - France
14.0023, GROUNDNUTS ADAPTED TO THE ALTITUDE ZONE OF 900 - 1100 MM OF ANNUAL RAINFALL
P. GILLIER, (UV.062.0006)

Objective: To determine the cycle that is the best adapted as a function of the climatic conditions and of the working calendar.

Approach: Comparison of early and of semi-late groundnuts sown at different times.

Results: It appears, subject to reserve for verification, that the short cycle may be the best adapted, the semi-late (varieties) having to be sown early, and running the risk of being ready for harvesting at the same time as the sorghums.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0024, IMPROVEMENT OF THE PRODUCTIVITY OF EARLY GROUNDNUTS
P. GILLIER, (UV.062.0007)

Objective: To obtain varieties with a short cycle, well adapted to the North of Upper-Volta and of high productivity.

Approach: Inter-crossing of 8 varieties of groundnuts of different origins adapted to Upper-Volta.

Results: Research in progress - Studies of progeny.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0025, RESEARCH ON EARLY VARIETIES OF GROUNDNUTS RESISTANT TO ROSETTE
P. GILLIER, (UV.062.0008)

Objective: "Rosette" severely reduces the propagation of non-resistant groundnut varieties having a short cycle, which are the best adapted to the North zone. Resistant varieties will enable this propagation, which is decidedly in the interests of the zone.

Approach: Crossing of susceptible early varieties with resistant late ones. Comparative testing of varieties - Multilocal experiments.

Results: Resistant early cultivars having high productivity and a plentiful oil content.

SUPPORTED BY Inst. de Rech. Cot. et Text. - France

14.0026, STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE
C. POISSON, (UV.023.0001)

National network project - see UV.022.0017. (14.0060)

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0027, EXPERIMENT WITH TRIAZINE HERBICIDES ON SORGHUM
UNKNOWN, (UV.021.0001)

Objective: The future mechanization of sorghum in connection with a programme for shortening the stems necessitates the displacement of the equilibrium of the flora in favour of this new cultivated plant, which will then no longer possess advantages of natural selection. Experiments are being carried out at the Station at Saria to determine preparations for "pre-sowing" or "at-sowing" application which will ensure the maximum destruction of weeds without harming the plant.

Approach: The preparations tested since 1971 are Chlorothiazines, Methylythiotriazines, alone or as a mixture, either with or without addition of Paraquat or Alachlor. In 1972, the residual effect of these preparations was observed, on four crops: cotton, vigna, arachis, millet. Taking the 1971 results into account, the most interesting preparations were tested in a Fisher block arrangement to determine the minimal dosage ensuring a sufficient destruction of weeds without affecting the yield of the crop.

Results: The Chlorotriazines have a better herbicidal efficacy than the Methylythiotriazines in almost every case. The mixture Atrazine 1 kg plus Alachlor 0.9 kg gives the best answer to the problem. Field trials remain to be carried out on a large plot.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0028, RESEARCH FOR SHORT-CYCLE VARIETIES OF RICE ADAPTED TO CULTIVATION ON MARSHY LAND AND RESISTANT TO PIRCULARIOSIS
C. POISSON, (UV.021.0002)

Objective: To recommend a range of varieties for marginal marshy lands according to the duration of their inundation.

Approach: Collection of introduced varieties. Test of varietal behaviour in numerous low-lying marginal soils with piezometers for study of the fluctuation of the water level.

Results: Varieties to be recommended: 1) for low-lying land with only slight inundation or premature drying out: Sintane Diofor; 2) for longer inundation: C74 (with end-of-cycle nutrition by the groundwater table); 3) for very long duration of inundation: Gambiaka.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0029, IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES
C. ROBLEDO, (UV.021.0003)

Objective: To increase the productivity of the local material by utilizing the heterosis contained in a synthetic variety without making new sowings of it each year. Research on resistance to Sclerospora and to lodging.

Method: Genealogical selection in various ecotypes obtained from survey material. Starting from the S5, the best lines are tested for general aptitude for combination (2 years of testing); the lines with the best aptitude for combination are recomposed as synthetic varieties.

Current Results: "SARIA synthetic variety 70". Tolerant to Sclerospora. Twenty-five percent improvement on the control.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta
UPPER VOLTA

14.0030, IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDATION BETWEEN LOCAL MATERIAL AND FOREIGN MATERIAL

C. ROBLEDO, (UV.021.0004)

Objective: Research for semi-late varieties for the zone with an annual rainfall of 700 to 900 mm. Facultative photosensitiveness - Improvement of the straw/seed ratio by reduction of the height of the stems: 1.5 metres to 2.5 m. Productivity superior to that of the local varieties and grain fairly translucent.

Approach: Crossing between an American stock with short straw and high productivity (CK 60) and various local parents with giant straw of "guineensis" type with glassy grain; back-cross on the F2, then genealogical selection, experimental work and fixation of the best semi- or three-quarter local lines.

Results: A) Three semi-local lines, H34 - H37 - 182-3; Height - 1.70 m; Productivity equal to that of the local material, seed translucent enough. B) Two three-quarter local lines, 135-2 and 135-3; Heights - 2.50 and 2 m. Productivity equal to that of the local material, seed glassy enough.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0031, PRODUCTION OF A SORGHUM COMPOSITE WITH WIDE VARIABILITY BY UTILIZING THE GENETIC MALE STERILITY

C. ROBLEDO, (UV.021.0005)

Objective: To broaden the genetic base of a material and provoke recombinations before commencing selection.

Method: Recombination of 40 varieties of very diverse origins and types on a genetic sterile-male strain originating from Nigeria, in an isolated plot and harvesting sterile males individually only.

Results: 2nd recombination cycle in dry season - 1972-73.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0032, SHORTENING THE STRAW OF A LOCAL VARIETY OF SORGHUM BY PROVOKING MUTATIONS

C. ROBLEDO, (UV.021.0006)

Objective: Improvement of the straw/grain ratio of the S.29 variety.

Method: First irradiation of S.29 in 1964 (X-rays 20,000 R). In T2, marking of the shortest plants and continuation of genealogical selection; in T6, bulk of the five best lines. Second irradiation of the bulk in 1970 (Co60 - 20,000 R) same process.

Results: Shortening of 0.80 m in the spring of the 1st irradiation. Productivity unchanged. T4 of the second irradiation in 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0033, SHORTENING OF THE STRAW OF THE LOCAL MATERIAL - SMALL MILLET

C. ROBLEDO, (UV.021.0007)

Objective: To improve the grain/straw ratio by reducing the height of the stems.

Methods: Crossing of the local material in the form of lines tolerant to Sclerospora, by a foreign sire possessing the d2 gene (strain provided by Burton) then back-crossing by the local material, because the semi-local descendants are poorly adapted.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0034, IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION

C. ROBLEDO, (UV.021.0008)

Objective: Research for genes of resistance to Sclerospora and lodging on the traditional local varieties - Elimination of "chibras" on the early varieties.

Approach: Cumulative selection with test on S1.

Results to date: 1st cycle of selection on varieties Dori Millet, Zalla, Sirakoro Millet, M.9. Test on S1 generation in winter season 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0035, IMPORTATION OF FOREIGN LATE AND SEMI-LATE SMALL MILLETS

C. ROBLEDO, (UV.021.0009)

Objective: Research for varieties whose cycle may be adapted to the zones of 600 to 800 mm and of 900 to 1,300 mm of annual rainfall and which may be more productive than the local varieties.

Verifications of the photosensitiveness on the late material.

Approach: Multilocal experimental work on introductions in the framework of I.R.A.T. co-operative experiments.

Results to date: 2 varieties from Mali. M9 semi-late, Sirakoro Millet, late.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0036, IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION

C. ROBLEDO, (UV.021.0010)

Objective: Project for improvement by hybridation between lines selected from local and foreign material.

Approach: Introduction of material in disjunction or on the way to fixation (F2 to F5) supplied from Senegal or from Niger. Continuance of the selection up to fixation and experimental work on the best lines.

Results: Selection in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0037, FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM

C. ROBLEDO, (UV.021.0011)

Objective: To increase the productivity of the semi and three-quarter local lines with short straw by making use of heterosis.

Approach: Creation or introduction of cygogenetic sterile-male lines. Test of these lines in form B (maintainers of the sterility). Crossing of the best lines in form A by materials of different origins which restore the fertility. Experimental work on the hybrids obtained (test of specific aptitude for combination).

Results: Two semi-local sterile-male lines suitable for seed production. First tests for aptitude in 1973.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0038, IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL

C. ROBLEDO, (UV.021.0012)

Objective: Research for semi-late and late varieties that are imperatively photosensitive (ripening at the same period irrespective of the date of sowing, to avoid either the scalding or mouldiness of the grain), for the zones of 700 to 900 mm (Saria) and 900 to 1300 mm of annual rainfall (Farako'Ba). Improvement of the
grain/straw ratio - Height of stem: 1.50 m to 2 m for the semi-late; 2 m to 2.5 m for the late varieties. Research on the tolerance to diseases of the leaves (Ramulispora, scald) and of the productivity while conserving a good quality of grain.

Approach: Crossings between semi- and three-quarter local lines and foreign late stock of different botanical types (durra, Caffra, etc.), with large grain and large panicle. Selection (genalogical) and repartition of lines into semi-late and late. Experimental work and fixation of the best lines.

Results: Cultivation of the F2 generation of these crossings in the 1973 rain-season.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta STATION FORESTIERE DE DINDERESSO CTF

14.0039, EXPERIMENT FOR (SELECTION BY) ELIMINATION OF SPECIES OF EUCALYPTUS
J.P. GALABERT, (UV.092.0001)

OBJECTIVE: To select species of Eucalyptus in the Sondano-Guinean zone.

RESULTS: Eucalyptus citriodora is the species giving the best forms.

SUPPORTED BY Centre Tech. For. Trop. - Upper Volta

14.0040, EXPERIMENT ON SOURCES OF TEAK
J.P. GALABERT, (UV.092.0002)

OBJECTIVE: To test teak of various origins in the south-western region of Upper Volta.

RESULTS: In the first two years, superiority of the African origins, principally the 3 of Ivory Coast origin. Average height of the Teak trees at end of December, 1972: 7 metres.

SUPPORTED BY Centre Tech. For. Trop. - Upper Volta

STATION FORESTIERE DE LINOGHIN CTF

B.P. 30, Ouagadougou

14.0041, STUDY OF RIVULET FORMATION AND OF EROSION ON VERTIC SOIL
J.P. GALABERT, (UV.091.0001)

OBJECTIVE: Study of rivulet formation and of erosion as a function of the modes of cultivation - quantitative and qualitative study.

APPROACH: A complete DRS Station with a pluviograph - pluviometer (rain gauge) - erosion vats - limnigraphs: 1) 3 plots to be installed, each having a minimum surface area of 1/2 hectare - of which one is a control plot - 2 plots to be managed; 2) 1 Wischmeier plot for the study of the phenomena of rivulet formation and of erosion of bare soil; 3) Control plot cultivated manually in the traditional manner; 4) Managed plots worked with an agricultural tractor.

RESULTS: Station in the course of installation.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

STATION IEMVT DE BOBO-DIOULASSO

B.P. 286, Bobo - Dioulasso

14.0042, INTRODUCTION OF SPECIES OF RAPID GROWTH ON BROWN VERTIC SOIL
J.P. GALABERT, (UV.091.0002)

OBJECTIVE: Introduction of species of rapid growth on brown vertic soil.

RESULTS: Station in the course of installation.

SUPPORTED BY Centre Tech. For. Trop. - Upper Volta

STATION IRAT DE FARAKO BA

B.P. 32, Bobo - Dioulasso

14.0043, BIOLOGICAL CONTROL OF GLOSSINA SPECIES
C. MICHEL, (UV.201.0001)

Objective: To establish methods for release, in nature, of male tsetse flies previously sterilized by gamma rays emitted by a cesium "bomb".

Result: Just starting researches.

SUPPORTED BY Inst. d' Eievage Med. Veterinaire - France

STATION MAPS OF SUITABLE CROPPING SITES FOR PLUVIAL RICE CULTIVATION

C. POISSON, (UV.022.0001)

Objectives: Definition of the possible sites for pluvial rice-fields and cultivation calendars.

Approach: Frequential analysis of the rains, utilization of pedological maps, regular study of the ground water-table.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0044, IMPROVEMENT OF AQUATIC RICE BY MUTATION
C. POISSON, (UV.022.0002)

Objectives: Resistance to diseases, notably to piriculariosis and to parasites (stem borers and nematodes).

Approach: Slow irradiation with cobalt-60 Gamma rays at a dose of 35 R (equals kilo Rontgen) (station for the improvement
UPPER VOLTA

of plants at Montpellier - France). Screening in the field (Kou valley).

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0046, IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY PRODUCTION OF SYNTHETIC VARIETIES

C. ROBLEDO, (UV.022.0003)

Objectives: To increase the productivity of the local material by taking advantage of the heterosis contained in a synthetic variety, from which benefit may be obtained several years in succession without having to make fresh sowings.

Approach: Genealogical selection on the vigorous growth in various ecotypes descended from survey material and some introductions from South America. Starting from the S6 generation, the best lines are tested for general aptitude for combination (2 years in succession). The lines showing the best aptitude are recombined as synthetic varieties.

Results: One yellow synthetic variety, one white synthetic variety in the course of being tested.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0047, IMPROVEMENT OF THE LOCAL MATERIAL BY CUMULATIVE SELECTION - MAIZE

C. ROBLEDO, (UV.022.0004)

Objectives: Research for the resistance to rust, to lodging, to leaf-scall on the local Massayomba variety.

Approach: Recurrent selection with test on S1 generation.

Results: 1st cycle of selection completed.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0048, IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY HYBRIDATION WITH FOREIGN MATERIAL

C. ROBLEDO, (UV.022.0005)

Objectives: To increase the productivity of the local material.

Approach: Tests of specific aptitude for combination between the local white-seed variety (Massayomba) and different varieties originating from Mexico and from Kenya.

Results: Tests in progress.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0049, PRODUCTION OF A LOCAL COMPOSITE OF MAIZE WITH BROADENED GENETIC VARIABILITY

C. ROBLEDO, (UV.022.0006)

Objectives: To broaden the genetic basis of the local material and to provoke favourable recombinations before commencing any selection and thus to create a working material which can be of value in different operations of selection.

Approach: Recombination of 8 varieties from the south of Mali and 8 varieties from the southwest of Upper Volta in 2 or 3 cycles. This composite will afterwards be improved by selection and recombination of lines that are vigorous and resistant to diseases (rust, scald) and to lodging. It will then be tested for its aptitude for combination with different foreign strains.

Results: First cycle of recombination in dry season 1972-73.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0050, INTRODUCTION OF FOREIGN VARIETIES OF MAIZE

C. ROBLEDO, (UV.022.0007)

Objectives: Research for varieties with a long cycle (110 days), resistant to rust and to being beaten down.

Approach: Introduction and experimental work on material originating from various countries in West Africa and from Central America in the framework of co-operative work (IRAT - STRC).

Results: Composite NCB, (Nigeria); composite CDB, (Ivory Coast); hybrid x B 101, (Mexico).

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0051, THE OBTAINING OF A PRODUCTIVE HERD FOR BREEDING DRAUGHT OXEN

M. MALCOIFFE, (UV.022.0008)

Objectives: To increase the productivity of the local material.

Approach: The first part of the experiment consisted in obtaining a group of 30 cows descended from a single bull for each of the two IRAT Stations. Tuberculosis which manifested itself at Saria, has led to the elimination of this herd in 1970. The Farako' Ba group after the successive introduction of two Azaouak bulls should provide three-fourth Azaouak x one-fourth local cattle.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0052, INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE ROTATION SYSTEM

M. DARONDELDEHAES, (UV.022.0009)

Objectives: There is no integration of agriculture and animal breeding. In a first project entitled "improvement of draught oxen", I.R.A.T. is attempting to introduce one or two pairs of oxen for each concern to carry out the tillage.

This second project seeks to integrate forage crops into the cultivation system. They will provide a sufficient nutrition for these improved animals and in the same way they will share in the regeneration of the soils.

Approach: Two forage plants are being studied: Brachiaria ruizienziensis and Stylosanthes gracilis. Since 1966 they have been included in a series of comparative rotation experiments, and in another series to demonstrate the effect of the regeneration of soils. Cotton, arachis and sorghum figure in the rotation. Finally in 1972 Brachiaria has been placed in comparative experiments on precedents of cropping.
Results: Brachiaria is an exacting plant which takes much from the soil but which yields a good forage. Stylosanthes is a leguminous plant which has set an excellent cropping precedent, while in addition to its rampant growth, limits erosion by good soil coverage. The exploitation of this plant presents some problems difficult to solve with the implements presently available to the grower (mowing, ploughing of the residues). A rational exploitation is difficult under these conditions.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0053. CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES
M. DARONDELDEHAYES, (UV.022.0010)

Objective: To establish lines resistant to Ps. solanacearum of fresh eating tomatoes, starting from the study of the genealogical descendants of different crossings.

Approach: Crossings are made between lines of tomatoes resistant to Ps. solanacearum, but of insufficient productivity or of mediocre quality, and conventional varieties having good commercial qualities but susceptible to the bacterium. 4 crossings have been under study since the 1967 - 68 dry season: 199 x Floralou; one hybrid Vilmoria; and 2 hybrids produced at Farako 'Ba between no. F8 of the local population, and the Piernita variety.

Results: The best results are obtained with 199 x Floralou of which 6 lines are at present the object of a study in the F5 generation. The crossings of population no. 8 with Piernita are encouraging. The hybrid Vilmorin seems to be more susceptible. Necessity for pushing ahead with the selection, and particularly producing resistant lines as industrial tomatoes.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0054. CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES (2)
M. DARONDELDEHAYES, (UV.022.0011)

Objective: To search for lines resistant to Ps. solanacearum in a local material and an introduction from Ceylon.

Approach: The population cultivated locally, most frequently in marshy lands, is resistant to drought and relatively tolerant to Ps. solanacearum but it produces deformed, necrosed and acid fruits unsuitable for the market. A study of the descendants of this material has been undertaken in the course of the 1968-69 dry season.

An introduction from Ceylon, "State College 8" has been confirmed to be resistant to Pseudomonas in the Soudanian zone, but it is not very productive, having small cracked fruits. The selfed progeny of this introduction has been followed since the 1967-68 dry season.

Results: 10 lines from no. 78 of the local population, 5 with elongated fruits, 5 with round fruits, now in the S5 generation, have only a slight susceptibility to Pseudomonas solanacearum.

7 lines from the "State College 8", perfectly free from Ps. solanacearum, as shown in the S4 generation of their continued selection; the best will serve as sires for resistance to Pseudomonas for new crossings. In these lines an appreciable improvement in the quality of the fruits and in productivity is noted.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0055. IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION
C. ROBLEDO, (UV.022.0012)

National network project - see UV.021.0008. (14.0034)
UPPER VOLTA

National Network Project - See UV.024.0002.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0063, RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PIRICULARIOSIS, BY INTRODUCTION C. POISSON. (UV.022.0020)

Objective: Adaptation of the cycle to the rainy-season.

Approach: Collection of introduced varieties and lines in disjunction.

Results: The introduction of Brazilian varieties has enabled the selection of 2 varieties that can be popularized: Dourado Early, IAC 25/64.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0064, INTRODUCTION OF PLUVIAL RICE INTO THE CROPPING SYSTEM C. POISSON. (UV.022.0021)

Objectives: To define the place of pluvial rice in the rotation.

Approach: Study of the preceding crops, residual effect of manurings, study of the time taken for jobs.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

14.0065, DETERMINATION OF THE APPROPRIATE TECHNIQUES FOR CULTIVATION OF PLUVIAL RICE C. POISSON. (UV.022.0022)

Objectives: To study the advantage of the preparation of the soil, form of plough and date for ploughing, preparation of the seed bed.

SUPPORTED BY Inst. de Rech. Agron. Trop. - Upper Volta

STATION IRTC DE BOBO-DIOULASSO

B.P. 237, Bobo - Dioulasso

14.0066, VARIETAL EXPERIMENTS WITH COTTON H.H. CORRE. (UV.041.0001)

Objective: Varietal test with the object of choosing the variety best adapted for large-scale cultivation.

Approach: 6 experiments with 4 varieties - 3 experiments with 5 varieties - 1 experiment with 6 varieties - Fisher blocks - 3 rows per plot - 4 with 8 varieties - mineral manuring - insecticide protection.

Results: Propagation of varieties BJA 592 and 444-2.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0067, RESEARCH ON MINERAL DEFICIENCY IN COTTON H.H. CORRE. (UV.041.0002)

Objective: To provide guidance on mineral fertilization.

Approach: 7 withholding experiments (N S P K) on cotton - Fisher blocks, component plots with 4 rows.

Results: Nitrogen and phosphorus are still the two principal deficiencies. Deficiency in sulphur is easily corrected. There is the risk of potassium becoming a limiting element.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0068, EXPERIMENTS ON SYSTEMS OF CULTIVATION AND FERTILIZATION H.H. CORRE. (UV.041.0003)

Objective: To determine the best systems of cultivation based on cotton and on food crops. To follow the evolution of fertility.

Approach: 1 experiment on septennial rotation at Farako Ba - 3 experiments on triennial rotation - evolution of the yields of cotton and of food crops - influence of fallow.

Results: On leached ferralic soils, a potassic fertilizer as a complement to the N-P fertilizer would appear to be of interest.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0069, TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON H.H. CORRE. (UV.041.0004)

Objective: To test the formulations of fertilizers indicated by the mineral deficiencies project in order to advise planters on the use of fertilizers.

Approach: 4 experiments comprising the popularized fertilizer (70 kg of ammonium phosphate and 30 kg of ammonium sulphate) in 3 more elaborate formulations- Fisher blocks - component plot with 4 rows.

Results: The more complete and the more elaborate formulations lead to the most beneficial effects and are the most profitable.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0070, COMBINED EXPERIMENT - METHOD OF PLoughing - Fertilization H.H. CORRE. (UV.041.0005)

Objective: To study on a rotation of maize - cotton - sorghum - arachis - the influence of three working methods (manual, team, mechanical) and of two fertilizations.

Approach: An experiment on one hectare (9 plots) per year. Foliar analyses at the level of the component plot.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0071, STUDY OF NITROGENOUS NUTRITION ON COTTON H.H. CORRE. (UV.041.0006)

Objective: To define the critical period for nitrogenous nutrition in the course of the development of the cotton plant.

Approach: 1 experiment with basic S,P,K (sulphur, phosphorus, potassium) fertilization and fractionated application of nitrogen.

Results: No exact conclusion after one year of experiment.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0072, FOLIAR ANALYSES ON THE COTTON PLANT H.H. CORRE. (UV.041.0007)

Objective: To adjust the methods of sampling, then to examine whether the results of the foliar analyses can be used for the detection of deficiencies.

Approach: Comparison of results drawn from field experiments (withholding experiments) with results drawn from foliar analyses.

210
Results: Very encouraging - they show that N and P are the two limiting factors - that sulphur should be applied in limited quantity - that potassium and boron are to be incorporated in the fertilizer.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0073, STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS
H.H. CORRE, (UV.041.0008)
Objective: To test the residual activity of the mineral fertilizer applied to cotton, on the crops following in the rotation.
Approach: Comparative experiments on food plants (maize, arachis, sorghum) following the experiments on mineral fertilizers for cotton.
Results: Variable according to the experiments.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0074, LEVEL OF PHYTOSANITARY PROTECTION ON COTTON
H.H. CORRE, (UV.041.0010)
Objective: To determine the profitability of phytosanitary protection. To ascertain the efficacy of the standard treatment in relation to an enhanced treatment.
Approach: Comparative experiments with 3 levels of protection: control (very light protection) - standard protection (5-7 treatments) - enhanced treatment (11-12 treatments).
Results: The standard treatment appears to be the most profitable.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0075, TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT
H.H. CORRE, (UV.041.0011)
Objective: To study the efficiency of new preparations in relation to the classical preparations.
Approach: 1 comparative trial - 4 preparations.
Results: The popularized mixture endrin-DDT is very suitable but it could be replaced by a mixture of DDT-endosulfan-methylparathion. Monocrotophos might be used as an additional preparation against Argyrople (UV.041.0008)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0076, VARIETAL EXPERIMENTS ON HIBISCUS
H.H. CORRE, (UV.041.0013)
Objective: To determine the varieties best adapted to cultivation.
Approach: Comparative experiment with repetitions, 4 varieties.
Results: Require confirmation.
Network Project: See project UV.042.0013.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0077, VIRESCE (A DISEASE) OF THE COTTON PLANT
H.H. CORRE, (UV.041.0014)
Objective: To determine the economic importance of the disease, to find the vector, the nature of the disease, the control methods.
Approach: Observations in all the experimental fields, collection of insects suspected of being vectors, transmission of the disease, regional inquiries.

Results: Determination of at least one of the vectors (Orosius). Identification of the Mycoplasma organism (causing the disease).

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

STATION IRT DE OUAGADOUGOU
B.P. 574, Ouagadougou

14.0078, VARIETAL EXPERIMENTS WITH COTTON
B. HAU, (UV.042.0001)
Network project - see UV. 041.0001. (14.0066)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0079, RESEARCH ON MINERAL DEFICIENCY IN COTTON
B. HAU, (UV.042.0002)
Objective: To provide guidance on mineral fertilization.
Approach: 5 withholding experiments (N,S,P,K) on cotton - Fisher blocks, component plots with 4 rows.
Results: Very favourable efforts of nitrogen and phosphorus - potassium can be a limiting element.
Network Project: See project UV.041.0002.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0080, EXPERIMENTS - SYSTEMS OF CULTIVATION AND FERTILIZATION
B. HAU, (UV.042.0003)
Objective: To determine the best systems of cultivation based on cotton and on food crops. To follow the evolution of fertility.
Approach: 1 experiment on septennial rotation at Saria station; 4 experiments on triennial rotation; evolution of the yields of cotton and of food crops.
Results: To apply phosphorus every other year is sufficient but not minimal - the fractioning of nitrogenous fertilization is important.
Network Project: See project UV.041.0003.

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0081, TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON
B. HAU, (UV.042.0004)
Network project - see UV. 041.0004. (14.0069)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0082, COMBINED EXPERIMENT - METHOD OF PLOUGHING-FERTILIZATION
B. HAU, (UV.042.0005)
Network project - see UV 041.0005. (14.0070)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0083, STUDY OF NITROGENOUS NUTRITION ON COTTON
B. HAU, (UV.042.0006)
Network project - see UV. 041.0006. (14.0071)

SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta
UPPER VOLTA

14.0084, FOLIAR ANALYSIS ON THE COTTON PLANT
B. HAU, (UV.042.0007)
Network project - see UV.041.0007. (14.0072)
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0085, STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS
B. HAU, (UV.042.0008)
Objective: To test the residual activity of the mineral fertilizer applied to cotton, on the crops following in the rotation.
Approach: Comparative experiments on food plants (arachis, sorghum) following the experiments on cotton.
Results: To apply phosphorus every other year is sufficient.
Network Project: See UV.041.0008.
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0086, COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS
B. HAU, (UV.042.0009)
Objective: To overcome in good conditions the critical period of the first month of cotton cultivation without the intervention of the farmer who is largely busy with his food crops.
Approach: 3 comparative experiments, Fisher block method, component plots of 3 rows of 25 m, 8 repetitions, test materials: Prometryne plus Ametryne - 2 kg/ha cotton plantation; Diuron - 2 kg/ha cotton plantation; Benzomarck - 2 kg/ha cotton plantation; Control, weeded (hoed); Herbicides, in solution; sprayed on between sowing and germination. The control, alone, has been hoed on the 30th day. The treated subjects have not been (hoed) until late in the second month. Evaluation is made by the production of xxxx cotton.
Result: In 2 experiments out of 3 the differences in production between the test materials are not significant at P equals 0.05. In the third experiment the production of the (plot treated with) "Prometryne plus Ametryne" and that (treated with) "Penzomarck" are superior to that of the control at P equals 0.05. Therefore, in all cases, the herbicide has fulfilled the function for which it was used. It may be considered for release for popular use if those results are confirmed.
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0087, LEVEL OF PHYTOSANITARY PROECTION ON COTTON
B. HAU, (UV.042.0010)
Network project - see UV.041.0010. (14.0074)
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0088, TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT
B. HAU, (UV.042.0011)
Network project - See UV.041.0011. (14.0075)
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0089, EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP
B. HAU, (UV.042.0012)
Objective: To determine the best frequency, bearing in mind the efficacy and the net cost.
Approach: Comparative experiment. Fisher block method; component plot with 8 rows of 25 m, 8 repetitions; 4 materials: 1 spraying every 5 days (14 sprayings); 1 spraying every 10 days (8 sprayings); 1 spraying every 15 days (5 sprayings); Control, untreated (0 sprayings). Insecticide preparation: Endrin-DDT (140 - 900 g. of material applied/ha/treatment.
Result: The best protection is assured by the 14 sprayings but, from the economic point of view, the best result is given by one treatment every 12 days as shown by the curve integrating the production of all the plots.
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta

14.0090, VARIETAL EXPERIMENTS ON HIBISCUS
B. HAU, (UV.042.0013)
Network project - see UV.041.0013. (14.0076)
SUPPORTED BY Inst. de Rech. Cot. et Text. - Upper Volta
SUBJECT INDEX

Abortion
 See Animal Pathology
 See Veterinary Medicine

Absorption
 See Plant Physiology

Absorption, Fixation, Exchange
 See Soil Chemical Properties

Acacia
 See Plants - Dicots
 Leguminosae

Acarina
 See Arachnida

Acid Phosphatase
 See Enzymes

Acrididae
 See Insecta
 Orthoptera

Acrisols
 See Soil Unit Classification

Actinomycetes

Dermatophilus
 STREPTOTHRICOSIS - EXPERIMENTS IN TREATMENT . . . Chlorhexidine; Immunity; Skin or Special Derivatives; Streptothricosis; Veterinary Medicine;11.0113

Mycobacterium Tuberculosis
 BACTERIOLOGICAL INQUIRY ON SLAUGHTERED ANIMALS . . . Bacteria; Carcass Evaluation; Melioidosis; Tuberculosis; Veterinary Medicine;8.0005

Adaptation
 See Animal Characteristics

Aerial (Any Type of Aircraft)
 See Application Methods

Aerial Photography
 See Photography

Aflatoxins
 See Toxic Substances

African Horse Sickness
 See Animal Pathology

Ag Industries & Agribusiness

Ag Machinery & Equipment
 BALANCE AND PROSPECTS ON THE USE OF TRACTORS IN AGRICULTURE IN THE IVORY COAST . . . Equipment and Machinery; Management; Tenant Farmers; Tractors and Accessories;4.0078

Farm Enterprises - general
 ECONOMIC AND SOCIOLOGICAL SURVEY OF THE VOLTA BASIN . . . Regional Economics; Social Sciences;3.0238
 IMPROVEMENT OF THE CROPPING TECHNIQUES IN TRADITIONAL AGRICULTURE . . . Humid 4 Months; Management; Production and Processing; Rain; Vegetables - other;6.0035
 THE IMMIGRANT FARMERS OF YORUBALAND - A STUDY IN FOREST-SAVAANA RELATIONSHIPS . . . Management; Migrant Farm Workers; Mobility; Production and Processing; Science - Social Aspects;9.0035
 STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES . . . Costs; Management; Peanut Shells; Production and Processing; Sorghum Vulgare (Grain); Straw;11.0036
 STRUCTURES FOR USE IN TEAM CULTIVATION . . . Job Analysis; Labor Input; Production - other; Time & Motion Studies;11.0051

Food Distribution Research
 THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS . . . Bran; Consumption; Food Science and Technology; In Vivo--see Also Feed Rations; Management; Molasses; Service Industries;9.0033
 STUDY OF MARKET STRUCTURE AND ORGANIZATION WITH SPECIAL REFERENCE TO THE BUYING ARRANGEMENTS OF FOOD CONTRACTORS FOR INSTITUTIONS . . . Consumption; Food Science and Technology; Institutional Management; Market Structure; Service Industries;9.0034
 THE MARKET FOR PALM WINE IN NIGERIA . . . Consumer Pref. & Consumption; Marketing; Palmae - other; Wine;9.0333

Forest Industry
 SCALE OF PRICES OF CUBAGE WITH DOUBLE ENTRY FOR TEAK - TABLE OF TEAK PRODUCTION IN THE IVORY COAST . . . Fiscal Studies; Policy & Business Methods; Production and Processing; Tectona;4.0346
 CONVERSION STUDIES ON A HORIZONTAL BANDSAW . . . Instrumentation, Equipment; Lumbering; Machining; Wood; Xylem;9.0100

Grain Industries
 INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA
Ag Industries & Agribusiness

Cereal Crops; Moisture Content -plants; Price and Value; 3.0210
FACTORs AND PROCESS OF CHANGE IN THE 'BETE' COUNTRY Management; Modernization; Production and Processing; 4.0080
SELECTED ECONOMIC ASPECTS OF EXPANDING RICE PRODUCTION IN LIBERIA, MAINLY IN UPPER LOFA AND BONG COUNTIES . . . Social Class; Supply; 3.0024
IMPROVEMENT OF CEREALS PRODUCTION AND MARKETING IN THE CENTRAL AFRICAN REGION . . . Continuous Humid 7 Months;Plus; Ferralic Cambisols; Ferric Luvisols; Market Structure; Marketing; 9.0181
ECOnoMICS OF RICE PRODUCTION IN SELECTED AREAS OF NIGERIA . . . Costs; Management; 9.0205

Marketing Organizations
INTERNAL MARKETING OF PALM OIL AND PALM KERNELS . . . Harvest and Storage; Marketing; Plant Industries - other; Transportation; 9.0332

Plant Industries -other
INDUSTRIAL PROCESSING OF COFFEE Beverage Crops; Coffee; Food Engineering & Technology; Processing of Food; 4.0011
ECOnoMICS OF PRODUCTION IN TREE CROP AGRICULTURE . . . Capital & Financial Management; Cola; Costs; Management; Savings and Investment; 9.0153
INCOuRPAciOn OF LEAFLY AND FRuIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS . . . Capicum; Continuous Humid 7 Months;Plus; Ferralic Cambisols; Ferric Luvisols; Lycopersicum; Management; 9.0165
INTERNAL MARKETING OF PALM OIL AND PALM KERNELS . . . Harvest and Storage; Marketing; Marketing Organizations; Transportation; 9.0332
THE WORLD MARKET FOR PALM OIL AND PALM KERNELS . . . Pasta - Lipids & Oils; International Trade; Trends and Cycles; 9.0334

Swine Industry
AN ECONOMIC ANALYSIS OF PRIVATE COMMERCIAL PIG FARMING IN THE ACCRA URBAN AREA . . . Costs; Production and Processing; 3.0038

Ag Machinery & Equipment
See Ag Industries & Agribusiness

Aging
See Plant Physiology

Agricultural Extension
SOIL ANALYSIS AND CLASSIFICATION C/N Ratio; Soil Analysis; 5.0023
IMPROVEMENT OF THE CROPPING TECHNIQUES IN TRADITIONAL AGRICULTURE . . . Farm Enterprises - general; Humid 4 Months; Management; Production and Processing; Rain; Vegetables - other; 6.0005
SOCIO-AGRO-ECONOMIC SURVEY OF SOME SELECTED VILLAGES IN IFE DIVISION . . . Income; Production and Processing; 9.0046
THE USE OF MASS MEDIA AS A MEANS OF COMMUNICATION BY EXTENSION WORKERS WITH THE FARMERS OF THE WESTERN STATE OF NIGERIA . . . Education and Training; Management; Mass Communication; Rural Sociology; 9.0053
AGRONOMY (SYSTEMS) . . . Continuous Humid 7 Months;Plus; Ferralic Cambisols; Ferric Luvisols; Production and Processing; 9.0180
THE COLLECTION OF INDIGENOUS AND THE INTRODUCTION OF EXOTIC CASSAVA VARIETIES FOR THE BREEDING OF CASSAVA . . . Breeding & Genetics; Continuous Humid 7 Months;Plus; Disease Resistance; Manihot; 9.0210
THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES . . . Breeding & Genetics; Manihot; Pedigree; Virus Resistance; 9.0212
SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARAC-
TERS . . . Breeder Stock; Breeding & Genetics; Continuous Humid 7 Months;Plus; Hybrid Breeding -nonspecific; 9.0223
SWEET POTATOES (IPOMEA BATATAS) BREEDING . . . Breeding & Genetics; Hybrid Breeding -nonspecific; Ipomoea; 9.0225
YAM (DISCOREA SPP) VARIETIES ASSESSMENT AND SELECTION FOR NIGERIA . . . Breeding & Genetics; 9.0230
EVALUATION OF SELECTION METHODS FOR MAIZE . . . Breeding & Genetics; Continuous Humid 7 Months;Plus; Recurrent Selection; Synthetic Varieties & Blends; 9.0231
NATIONAL ZONAL MAIZE VARIETY TRIALS . . . Management; 9.0234
RESEARCH AND DEVELOPMENT IN GENERAL HORTICULTURE, ESPECIALLY FRUITS AND VEGETABLES . . . Fruits and Berries; Vegetables - other; Vine, Shrub, Bramble Fruit Crop; 9.0267
ANALYSIS OF FACTORS OF CROP YIELD IN A PEASANT ENVIRONMENT . . . Mathematical Models; Supply; 11.0011
ECOnoMICS ANALYSIS OF PEASANT FARMERS' HOLDINGS . . . Capital & Financial Management; Management; Mathematical Models; 11.0012
MANAGEMENT COUNCIL FOR FARMS . . . Management; Production and Processing; Technological Development; 11.0068
EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION . . . Dicron; Ferric Luvisols; Humid 3 Months; Preemerge Application; Surface - soil; 11.0170
INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE RAINFORAGE SYSTEM . . . Ferric Luvisols; Management; Pasture -other; Production and Processing; Sorghum Vulgare (Grain); 14.0052

Agricultural Projections
THE WORLD MARKET FOR PALM OIL AND PALM KERNELS . . . Fats - Lipids & Oils; International Trade; Plant Industries - other; Trends and Cycles; 9.0334

Agricultural Runoff
See Water Movement
Water Runoff

Agronomic Pests on
See Entomology, Applied

Agronomy
AGRICULTURE RESEARCH IN DRAWDOWN AREAS . . . Floods; Lakes & Reservoirs; Soil Types; 3.0027
AGRONOMY (SYSTEMS) . . . Continuous Humid 7 Months;Plus; Ferralic Cambisols; Ferric Luvisols; Production and Processing; 9.0180

Beverage Crops
INDUSTRIAL PROCESSING OF COFFEE . . . Coffee; Food Engineering & Technology; Plant Industries - other; Processing of Food; 4.0031
ECOPHYsiological RESEARCH ON THE COFFEE-SHRUB . . . Evaporation; Phenology; Life Cycle; Rain; Temperature -air; 4.0130
ECOPHYsiological RESEARCH ON THE COCOA-SHRUB . . . Evaporation; Rain; Temperature -air; Transpiration & Evaporation; 4.0131
CROP UTILIZATION PROJECT . . . By-products- Plant (Vegetable); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly; 9.0184

Breeding & Genetics, SpicedBev
GENERATIVE IMPROVEMENT OF THE CACAO-TREE . . . Continuous Humid; Ferric Acrisols; Intraspecific Cross; Intraspecific Genetic Relations; Management; Plant Resistance; 4.0004
IMPROVEMENT OF THE COFFEE-SHRUB (C. CAREPHORA) BY VEGETATIVE MEANS . . . Management; 4.0005
IMPROVEMENT OF THE COCA TREE - COLA NITIDA . . . Cola; Ferralic Cambisols; Ferric Acrisols; Intraspecific Genetic Relations; Nursery Observational Plots; Two Humid Seasons-7 Month;Plus; 4.0008

214
SUBJECT INDEX

Agronomy

GENERATIVE IMPROVEMENT OF THE CACAO TREE...Fertile Acacias; Intraspec. Genetic Relations; Plant Resistance;...4.0009

IMPROVEMENT OF THE COFFEE-SHRUB (C.CANEPHORA) BY VEGETATIVE MEANS...Fertile Cambios; Fertile Acacias; Management; Two Humid Seasons-7 Month, Plus;...4.0011

IMPROVEMENT OF THE COFFEE-SHRUB (C. CAME-PHORA) BY VEGETATIVE MEANS...Fertile Cambios; Fertile Acacias; Genetics; Management; Two Humid Seasons-7 Month, Plus;...4.0012

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION...Elevational Levels, Altitude; Fertile Cambios; Fertile Acacias; Genetics; Management; Two Humid Seasons-7 Month, Plus;...4.0017

IMPROVEMENT OF THE COFFEE-SHRUB (C.CAME-PHORA) BY VEGETATIVE MEANS...Fertile Acacias; Management; Two Humid Seasons-7 Month, Plus;...4.0013

VEGETATIVE IMPROVEMENT OF THE CACAO TREE...Fertile Acacias; Intraspec. Genetic Relations; Management; Two Humid Seasons-7 Month, Plus;...4.0017

IMPROVEMENT OF THE COFFEE-SHRUB (C.CAME-PHORA) BY VEGETATIVE MEANS...Fertile Acacias; Genetics; Management; Seed Production; Two Humid Seasons-7 Month, Plus;...4.0018

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION...Elevational Levels, Altitude; Fertile Acacias; Genetics; Intraspec. Genetic Relations; Intraspecific Cross; Two Humid Seasons-7 Month, Plus;...4.0019

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APTITUDE FOR ESTABLISHMENT AND A HIGH DEGREE OF DROUGHT TOLERANCE. ... Drought Resistance; Fertile Acacias; Two Humid Seasons-7 Month, Plus;...4.0029

TECHNICAL STUDIES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF CACAO TREES UTILIZED IN THE SELECTION PROGRAMME...Fats; Lipids & Oils; Fertile Acacias; Intraspec. Genetic Relations; Two Humid Seasons-7 Month, Plus;...4.0097

RESEARCH ON CACAO CLONES OR INTERSPECIFIC HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA. ... Black Pod; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations; Phytophathology;...4.0108

STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHTHORA PALMIVORA. ... Black Pod; Env. Plant Dis. Relation; Interaction with Environment; Phytophthora; Shade;...4.0113

IMPROVEMENT OF THE COLA TREE - COLA NITIDA...Cola; Fertile Aresosols; Intraspec. Genetic Relations; Nursery Observational Plots; Two Humid Seasons...4.0114

HAPLOIDY IN THEOBROMA CACAO...Fertile Arenosols; Two Humid Seasons...4.0114

IMPROVEMENT OF THE CACAO TREE...Fertile Acacias; Two Humid Seasons-7 Month, Plus;...4.0334

IMPROVEMENT OF THE COFFEE-SHRUB (C.CAME-PHORA) BY VEGETATIVE MEANS...Fertile Acacias; Two Humid Seasons-7 Month, Plus;...4.0337

IMPROVEMENT OF THE COFFEE-SHRUB (C.CAME-PHORA) BY VEGETATIVE MEANS...Fertile Acacias; Genetics; Two Humid Seasons-7 Month, Plus;...4.0340

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APTITUDE FOR ESTABLISHMENT AND A HIGH DEGREE OF DROUGHT TOLERANCE...Drought Resistance; Fertile Acacias; Two Humid Seasons-7 Month, Plus;...4.0345

IMPROVEMENT OF THE COLA TREE...Cola; Intraspec. Genetic Relations; Nursery Observational Plots;...4.0347

RESEARCH ON CACAO CLONES OR INTERSPECIFIC HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA. ... Black Pod; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations; Phytophathology;...4.0354

IMPROVEMENT OF THE COLA TREE - COLA NITIDA...Cola; Fertile Aresosols; Intraspec. Genetic Relations; Nursery Observational Plots; Two Humid Seasons...4.0114

INTRODUCTION AND ESTABLISHMENT OF COCOA GERMPLASM...Black Pod; Fungal Resistance; Phytophathology; Phytophthora; Swollen Shoot Virus; Virus Resistance;...9.0107

CYTOGENETIC STUDIES IN CACOA...Histology and Cytology; Intraspec. Cross; Meciosia; Mitsuio; Wild Type Genotype;...9.0108

DIALLEL CROSSING PROGRAMME IN CACAO...Disease Resistance; Hybrid Breeding -non-specific;...9.0109

BREEDING FOR ESTABLISHMENT, ABILITY AND DROUGHT RESISTANCE IN COCOA...Drought Resistance; Management;...9.0110

BREEDING FOR BLACKPOD RESISTANCE IN CACAO...Black Pod; Fungal Resistance; Inoculation; Intraspec. Genetic Relations; Phytophathology; Phytophthora;...9.0111

BREEDING COCOA FOR HIGH YIELD AND DESIRABLE COMMERCIAL QUALITIES...Hybrid Breeding -non-specific;...9.0112

BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO...Swollen Shoot Virus; Top Cross; Virus Resistance;...9.0113

MUTATION BREEDING IN CACAO AND KOLA...Black Pod; Cola; Fungal Resistance; Mutation; Phytophthora;...9.0114

CYTOGENETIC STUDIES IN KOLA...Cola; Intraspec. Cross;...9.0114

BREEDING FOR SUPERIOR GENOTYPES OF COLA NITIDA AND COLA ACUMINATA...Cola;...9.0135

DIALLEL CROSSING PROGRAMME IN KOLA...Cola;...9.0136

COLLECTION, CHARACTERIZATION AND EVALUATION OF COFFEE GERMPLASM...Disease Resistance; Seed Bank;...9.0197

BREEDING FOR THE CACAO-TREE (THEOBROMA CACAO L.)...Hybrid Breeding -non-specific; Intraspec. Genetic Relations; Swollen Shoot Virus; Virus Resistance;...13.0024

215
MINERAL FERTILIZATION ON COFFEE... Ferric Acetates; Geo­logy; Growth Stage of Plant; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month, Plus;... 4.0331

STUDY THE TRAINING (PRUNING) OF THE COFFEE-SHRUB ROBUSTA... Ferric Acetates; Two Humid Seasons-7 Month, Plus;... 4.0332

STUDY OF DENSITIES AND ARRANGEMENTS FOR PLANTATION OF THE CACAO-TREES... Ferric Acetates; Space Competition; Two Humid Seasons-7 Month, Plus;... 4.0333

MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Growth Stage of Plant; Soil Analysis -other;... 4.0335

STUDIES OF DENSITIES AND ARRANGEMENTS FOR PLANTATION OF THE COFFEE-SHRUB ROBUSTA... Ferric Acetates; Space Competition; Two Humid Seasons-7 Month, Plus;... 4.0339

STUDY THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION... Ferric Acetates; Solar Light; Two Humid Seasons-7 Month, Plus;... 4.0344

THE IMMIGRANT FARMERS OF YORUBALAND - A STUDY IN FOREST-SAVAANA RELATIONSHIPS... Farm Enterprises -general; Migrant Farm Workers; Mobility; Production and Processing; Science - Social Aspects;... 9.0035

BREEDING FOR ESTABLISHMENT ABILITY AND DROUGHT RESISTANCE IN COCOA... Breeding & Genetics; Spic&Bev; Drought Resistance;... 9.0039

GERMINATION AND GROWTH STUDIES IN COCOA... Germination; Nursery Observational Plots;... 9.0116

INCREASING COCOA YIELDS BY PHYSIO-AGRONOMIC TECHNIQUES... Cherelle Wilt; Phytopathology;... 9.0117

STUDIES ON FIELD ESTABLISHMENT OF COCOA... Shade;... 9.0118

STUDIES ON TREE CROP REHABILITATION... Cola; Insecta; Phytopathology; Planting Methods -other;... 9.0119

WEED STUDIES IN TREE CROPS... Cover Crops; Field Crops -nonspecific; Leguminosae; Mulches; Soil Tillage Sequence / Method;... 9.0120

COCOA FERTILIZER TRIALS... Calcium - Other Than Lime;... 9.0121

SOIL PHOSPHORUS STUDIES... Movement; Availability; Soil Profile Studies; Soil Testing;... 9.0122

STUDIES ON SOIL ORGANIC MATTER... Deficiencies; Organic Fertility; Sulfur;... 9.0123

MICRONUTRIENTS IN TREE CROP NUTRITION... Boron; Cola; Foliar Application; Iron; Soil Testing; Zinc;... 9.0124

ROOT STUDIES ON COCOA... Cashew and Kola... Cola; Soil Environment -other;... 9.0125

COLLECTION AND ESTABLISHMENT OF KOLA GERM­PLASM... Cola; Intraspec. Genetic Relations; Plant Parts Bank; Sex Ratio; Taxonomy; Plant;... 9.0133

STUDIES ON VARIOUS YIELD AND QUALITY FACTORS IN KOLA... Caffeine; Cola; Intraspec. Genetic Relations;... 9.0137

STUDIES ON GERMINATION, GROWTH AND ESTABLISH­MENT OF KOLA... Cola; Cover Crops; Dormancy; Germination; Space Competition;... 9.0138

STUDIES ON FLOWERING AND POD PRODUCTION IN KOLA (C. NITIDCA)... Cola; Plant Growth Regulators; Timing of Application;... 9.0139

VEGETATIVE PROPAGATION OF KOLA... Bims; Cola; Hormones;... 9.0140

KOLA NUTRITION PROJECT... Cola; Soil Analysis;... 9.0141

COFFEE AGRONOMY PROJECT... Beverage Crops; Ethanol; Fruti-set or Fruit thinning; Mulches; Shade; Space Competition;... 9.0145

USE OF GROWTH REGULATORS IN COFFEE HUSBANDRY... Ethanol; Germination; Preharvest Application; Thi­ourea;... 9.0146

COFFEE NUTRITION STUDIES... Isopotes; Removal of Nutrients from Soil; Timing of Application -other;... 9.0147

ECONOMICS OF PRODUCTION IN TREE CROP AGRICUL­TURE... Capital & Financial Management; Cola; Costs; Plant Industries -other; Savings and Investment;... 9.0153

SEED GARDEN RESEARCH PROJECT... Cola; Intraspec. Genetic Relations; Space Competition;... 9.0155

PHYTO­TECHNICAL STUDIES ON METHODS OF PLANTATION OF CACAO-TREES... Companion Cropping; Leguminosae -other; Musa; Planting Methods -other; Shade;... 13.0022

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY VEGETATIVE MEANS... Disease Resistance; Insect Resistance; Intraspec. Genetic Relations; Weathering Resistance;... 13.0023

Phytopathology

STUDIES ON PLANT PARASITIC NEMATODE AS­OCIATED WITH ECONOMIC CROPS IN GHANA... Cocoa; Mangifera; Nicotiana; Saccharum;... 3.0127

DETERMINATION OF THE TRIBES OF ORANGE RUST OF THE COFFEE-SHRUB IN THE IVORY COAST... Characterization of the Resistance of Coffee-Shrubs... Env. Plant Dis. Relation; Humidity; Light Quantity or Intensity; Rusts;... 4.0104

RESEARCH ON CACAO CLONES OR INTERCLONAL HY­BRIDS PRESENTING A “DISTINCT” TOLERANCE TO PHYTOPHTHORA PALMIVORA... Black Pod; F Generation (F1, F2, F3, Etc); Fungal Resistance;... 4.0109

RESEARCH ON CACAO CLONES OR INTERCLONAL HY­BRIDS PRESENTING A DISTINCT TOLERANCE TO PHY­TOPHTHORA PALMIVORA... Black Pod; Breeding & Genetics, Spic&Bev; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations;... 4.0139

ECOLOGICAL STUDY OF THE CACAO-TREE IN RELA­TION TO BLACK-POD... Black Pod; Env. Plant Dis. Relation; Humidity;... 4.0136

STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD... Black Pod; Deficiencies; Moisture Content -plants; Nutritional Regulation (Host); Potassium;... 4.0137

STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHTHORA PAL­MIVORA... Black Pod; Env. Plant Dis. Relation; Interaction with Environment; Phytophthora; Shade;... 4.0139

RESEARCH ON CACAO CLONES OR INTERCLONAL HY­BRIDS PRESENTING A DISTINCT TOLERANCE TO PHY­TOPHTHORA PALMIVORA... Black Pod; Breeding & Genetics, Spic&Bev; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations;... 4.0143

IMPROVEMENT OF PEPPERS (PIPER NIGRUM)... Breeding & Genetics, Spic&Bev; Piperaceae; Plant Virus -general; Virus Resistance;... 9.0038

INTRODUCTION AND ESTABLISHMENT OF COCOA GERMPLASM... Black Pod; Breeding & Genetics, Spic&Bev; Fungal Resistance; Phytophthora; Swollen Shoot Virus; Virus Resistance;... 9.0107

BREEDING FOR BLACKPOD RESISTANCE IN CACAO... Black Pod; Breeding & Genetics, Spic&Bev; Fungal Resistance; Inoculation; Intraspec. Genetic Relations; Phytophthora;... 9.0111

BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO... Breeding & Genet­ics, Spic&Bev; Double Cross; Swollen Shoot Virus; Top Cross; Virus Resistance;... 9.0113

INCREASING COCOA YIELDS BY PHYSIO-AGRONOMIC TECHNIQUES... Cherelle Wilt; Management;... 9.0117

STUDIES ON TREE CROP REHABILITATION... Cola; Insecta; Phytopathology; Planting Methods -other;... 9.0119

STUDIES ON THE EPIDEMIOLOGY OF PHYTOPHTHORA PALMIVORA... Black Pod; Cankers; Phytology; Life Cycle; Phytophthora;... 9.0126

BIOLOGY AND PHYSIOLOGY OF PHYTOPHTHORA PALMIVORA... Black Pod; Carbon; Nutrition in Disease; Sterculiaceae -other;... 9.0127

FIELD CONTROL OF PHYTOPHTHORA PALMIVORA ON COCOA... Black Pod; Fungicides -nonspecific; Petroleum Cds. -nonspecific; Phytophthora;... 9.0128

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insecta; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity;... 9.0129

DISEASES OF KOLA IN NIGERIA... Cola; Fomes; Preminge Application;... 9.0142

DISEASES OF COFFEE IN NIGERIA... Culturing Techniques; Fungicides -nonspecific; Rusts; Screening Potential Pesticides; Seed-burne; Surveys;... 9.0148

Cereal Crops

TECHNIQUES FOR PRODUCTION OF RICE SEEDS OF GOOD GERMINATIVE QUALITY... Continuous Humid; Dryness; Inter­crops; General; Management;... 4.0170

DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT... Continuous Humid; Drought; Drought Re­sistance; Epidemias; Hydrolitic Enzymes -general; Transpiration & Evaporation;... 4.0171

SUBJECT INDEX
Agronomy

SUBJECT INDEX

SPECIFIC EFFECTS OF THE FACTORS OF RESISTANCE TO DROUGHT IN RICE... Continuous Humid; Drought; Drought Resistance; Moisture Deficiency; . . . 4.0173

MALT PRODUCTION FROM LOCAL GRAINS... Beer; Enzyme Kinetics; Hordeum Vulgare; Malting Food; Sorghum Vulgare (Grain); . . . 9.0057

TO DETERMINE THE CRUDE PROTEIN LYSINE AND TRYPTOPHAN CONTENT OF THE RECOMMENDED MAIZE VARIETIES... Lysine; Proteins; Tryptophane; . . . 9.0201

STUDY OF SORGHUM GALL-MIDGE - CONTARINIA SORGHICOLA... Insect Resistance; Insects; other; Phenology; Life Cycle; Sorghum Vulgare (Grain); . . . 11.0016

HYDROCYANIC TOXICITY OF 63-18 (A DWARF VARIETY OF SORGHUM)... Sorghum Vulgare (Grain); Straw; . . . 11.0032

BREEDING & GENETICS

SELECTION OF A WHITE MAIZE ADAPTED TO NORTH DAHOMEY... Ferric Luvisols; Heterosis; . . . 1.0060

OBTAINMENT OF SORGHUM HYBRIDS OF AMERICANO-DAHOMEY TYPE WITH SHORT STRAW... Ferric Luvisols; Humid 5 Months; Lodging; Selfing; Sorghum Vulgare (Grain); . . . 1.0061

CONSTITUTION OF A COMPOSITE OF WHITE MAIZE WITH IMPROVED VARIETIES ORIGINATING IN DAHOMEY... F Generation (F1, F2, F3, etc); Ferric Luvisols; Humid 5 Months; Seed Bank; . . . 1.0062

CREATION OF A VARIETAL HYBRID OF YELLOW MAIZE ADAPTED TO THE NORTH OF DAHOMEY... Ferric Luvisols; Humid 5 Months, Plant Virus -general; Streaks; Virus Resistance; . . . 1.0063

PRODUCTION OF DOUBLE CRYPTO-HYBRIDS BETWEEN LOCAL IMPROVED WHITE MAIZE AND AN INTRODUCED MEXICAN VARIETY FROM TUXPENO STOCK... Dystric Nitosols; F Generation (F1, F2, F3, etc); Selfing; Two Humid Seasons; . . . 1.0065

THE OBTAINING OF PURE LINES FROM FOUR LOCAL POPULATIONS OF WHITE MAIZE... Disease Resistance; Dystric Nitosols; Polyocross Test; Two Humid Seasons; . . . 1.0065

FABRICATION OF STERILE-MALE STRAINS OF MAIZE ADAPTED TO DAHOMEY... Dystric Nitosols; Male Sterility; Two Humid Seasons; . . . 1.0066

INTRODUCTIONS AND TESTED COLLECTIONS OF FOREIGN VARIETIES OF MAIZE... Disease Resistance; Dystric Nitosols; Lodging; Two Humid Seasons; . . . 1.0067

PRODUCTION OF A COMPOSITE OF YELLOW MAIZE FROM INTRODUCED FOREIGN VARIETIES... Dystric Nitosols; Reciprocal Recurrent Selection; Two Humid Seasons; . . . 1.0068

MAIZE IMPROVEMENT THROUGH BREEDING... Back Cross; Lodging; Lysine; Proteins; Recurrent Selection; Tryptophane; . . . 3.0161

VARIELT IMPROVEMENT OF UPLAND RICE... Soil Moisture; . . . 3.0170

DEVELOPMENT OF MEDIUM MATURING, SHORT STATURE, HIGH YIELDING SORGHUM VARIETIES OF ACCEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE... Cecidomyiidae; Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Smuts; Sorghum Vulgare (Grain); . . . 3.0179

THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING; PALATABLE VARIETIES OF PENNESIUM MILLET RESISTANT TO DISEASES, PESTS AND LODGING... Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Lodging; Recurrent Selection; . . . 3.0180

THE DEVELOPMENT OF LATE MATURING, HIGH YIELDING, PALATABLE VARIETIES OF MILLET (PENNESIUM) RESISTANT TO DISEASES, PESTS AND LODGING... Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Lodging; Recurrent Selection; . . . 3.0183

THE DEVELOPMENT OF LATE MATURING, SHORT VARIETIES OF ACCEPTABLE PALATABILITY & RESISTANT TO PESTS & DISEASE... Cecidomyiidae; Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Smuts; Sorghum Vulgare (Grain); . . . 3.0184

IMPROVEMENT OF GRAIN... STRAW WEIGHT RATIOS OF UPLAND RICE... Dry Monsoon 5 Months; Plus; . . . 3.0189

IMPROVEMENT OF RICE (INDICA GROUP)... Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piricula; Piriclarious; . . . 4.0159

COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS... Breeder Stock; Cereal Crops; Graminibidae; Insect Resistance; Piricula; Seed Bank; . . . 4.0160

HYBRIDIZATIONS BETWEEN VARIETIES OF RICE (INDICA AND JAPONICA)... Continuous Humid; Pedigree; . . . 4.0161

MUTATIONS INDUCED IN RICE (INDICA VARIETY) FOR THE REDUCTION IN THE HEIGHT OF THE PLANTS... Continuous Humid; . . . 4.0162

TESTS OF LINES OF PLUVIAL RICE FOR THEIR ECOLOGICAL ADAPTABILITY... Continuous Humid; . . . 4.0163

SELECTION FOR A STRONG INITIAL GROWTH OF PLUVIAL RICE NOT LINKED WITH A STRONG TENDENCY FOR TILLERING... Continuous Humid; Drought Resistance; . . . 4.0164

MAINTENANCE OF A WORKING COLLECTION FOR INUNDATED RICE-FIELDS... Continuous Humid; Plant Morphology; Plant Parts Bank; . . . 4.0165

MAINTENANCE OF A WORKING COLLECTION FOR IRRIGATED RICE... Continuous Humid; Plant Morphology; Plant Parts Bank; . . . 4.0166

VARIELT EXPERIMENTAL WORK FOR PLUVIAL RICE... Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piricula; Piriclarious; . . . 4.0167

VARIELT EXPERIMENTAL WORK FOR IRRIGATED RICE... Continuous Humid; Drought Resistance; Fungal Resistance; Irrigation -general; Phytopathology; Piricula; Piriclarious; . . . 4.0168

VARIELT EXPERIMENTAL WORK FOR INUNDATED RICE... Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piricula; Piriclarious; . . . 4.0169

FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO DROUGHT IN THE GENUS ORYZA... Continuous Humid; Drought Resistance; Humidity; Oryza other; Plant Parts Bank; . . . 4.0172

VARIELT IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY UTILIZING HYBRID FORMULAS... Continuous Humid; . . . 4.0174

VARIELT COLLECTION OF MAIZE... Continuous Humid; Plant Parts Bank; . . . 4.0175

VARIELT IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY RECOURSE TO COMPOSITES... Continuous Humid; Heterosis; Recurrent Selection; . . . 4.0176

MULTILOCAL TRIALS OF MAIZE... Continuous Humid; . . . 4.0177

STUDY OF THE GENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PIRICULARIA ORYZAE... Continuous Humid; Fungal Resistance; Phytopathology; Piricula; Piriclarious; . . . 4.0191

RESEARCH IN CULTIVATED RICE FOR SRIES HAVING HORIZONTAL RESISTANCE TO PIRICULARIO... Continuous Humid; Fungal Resistance; Inoculation; Phytopathology; Piricula; Piriclarious; . . . 4.0192

CREATION OF A DIFFERENTIAL SCALE OF STRAINS OF PIRICULARIA ORYZAE... Continuous Humid; Fungal Resistance; Phytopathology; Piricula; Piriclarious; . . . 4.0194

VARIENTIAL TRIALS ON IRRIGATED RICE... Blast; Disease Resistance; Phytopathology; . . . 4.0195

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED... Back Cross; Ferric Luvisols; Humid 4 Months; Latric Arenosols; . . . 6.0016

INTRODUCTIONS AND BEHAVIOUR TESTS OF PLUVIAL RICE... Ferric Luvisols; Humid 4 Months; Management; Piricula; . . . 6.0032

SELECTION OF THE BEST ECOTYPES OF LOCAL SORGHUM... Ecotypes; Humid 3 Months; Sorghum Vulgare (Grain); . . . 6.0038

CEREAL BREEDING - PEARL MILLET... Ergot; Humid 3 Months; Phytopathology; Smuts; . . . 6.0040

CEREAL BREEDING - MAIZE... Ecotypes; Excessive Moisture; Humid 3 Months; Wetlands; . . . 6.0041

CEREAL BREEDING - RICE... Humid 3 Months; . . . 6.0042

CREATION OF MAIZE HYBRIDS WITH WHITE SEEDS AND WITH YELLOW SEEDS... Back Cross; Ferric Luvisols; Humid 4 Months; . . . 6.0047

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY... Elevational Levels, Altitude; Humid 1 Month; Sorghum Vulgare (Grain); . . . 6.0049

STUDY OF THE CROSSINGS WITH SOME IRRI VARIETIES FROM VARIETIES OF IRRIGATED RICE WITH LONG
STRAW . . . Humid 1 Month; Insect Resistance; Pedigree; . . . 6.0052
SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION . . . Harvest and Storage; Management; Moisture Deficiency; Mutation; Non-dry 3 Months, Plus; . . . 6.0057
STUDY OF CROSSINGS BETWEEN FLOATING RICE AND EARLY RICE . . . Non-dry 3 Months, Plus; Pedigree; . . . 6.0059
COLLECTION OF THE FLOATING VARIETIES OF RICE GLOMERULAR AND SATIVA . . . Drought Resistance; Insect Resistance; Non-dry 3 Months, Plus; Seed Bank; . . . 6.0060
CREATION OF VARIETIES OF SORGHUM WITH SHORT-ENED STRAW . . . Ferrie Luvisols; Humid 4 Months; Sorghum Vulgare (Grain); . . . 6.0066
CREATION OF SYNTHETIC, HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES . . . Ferrie Luvisols; Humid 4 Months; Sorghum Vulgare (Grain); . . . 6.0067
CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED . . . Back Cross; Ferrie Luvisols; Humid 4 Months; . . . 6.0069
SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOSYSTEM . . . Elevated Levels, Altitude; Ferrie Luvisols; Humid 4 Months; Sorghum Vulgare (Grain); . . . 6.0071
VIARTEIL EXPERIMENTS WITH RICE . . . Eutric Fluvisols; Humid 2 Months; Irrigation -general; Multiple Copping; . . . 8.0027
IMPROVEMENT OF SORGHUM GROWN ON SAND DUNES . . . Back Cross; Humid 3 Months; Male Sterility; Sand, Sorghum Vulgare (Grain); . . . 8.0028
IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION) . . . Back Cross; Clay; Humid 3 Months; Irrigation -general; Male Sterility; Sorghum Vulgare (Grain); . . . 8.0033
THE OBTAINING OF VARIETIES OF MILLET WITH SHORT STRAW . . . Back Cross; Humid 3 Months; . . . 8.0034
IMPROVEMENT OF THE LOCAL EARLY MILLET . . . Humid 3 Months; Recurrent Selection; Synthetic Varieties & Blends; . . . 8.0037
VIARTEIL RESISTANCE OF RICE TO THE MAJOR PESTS . . . Insect Resistance; Insecta; . . . 9.0106
SORGHUM BREEDING . . . Hybrid Breeding -nonspecific; Pedigree; Sorghum Vulgare (Grain); . . . 9.0156
EVALUATION OF NUTRITIVE VALUE OF SOME LOCAL AND INTRODUCED RICE . . . Nutritive Values -plant; Proteins; Starch; Sugar -nonspecific; Vitamins; . . . 9.0206
EVALUATION OF SELECTION METHODS FOR MAIZE . . . Continuous Humid 7 Months, Plus; Recurrent Selection; Synthetic Varieties & Blends; . . . 9.0301
PRODUCTION OF WHITE FLOURY MAIZE VARIETIES FOR HUMAN CONSUMPTION . . . Cereal Product Development; Cereal Products; Continuous Humid 7 Months, Plus; Metabolic Expression; Organoleptic Studies of Food; Recurrent Selection; . . . 9.0322
PRODUCTION OF SHORT STEMMED HIGH YIELDING ACCEPTABLE MAIZE VARIETIES . . . Back Cross; Continuous Humid 7 Months, Plus; Lodging; Recurrent Selection; . . . 9.0333
STUDY AND IMPROVEMENT OF LOCAL MAIZE VARIETIES . . . Breeder Stock; Recurrent Selection; Synthetic Varieties & Blends; . . . 9.0355
RECURRENT SELECTION IN A NIGERIAN WHITE FLOURY COMPOSITE . . . Continuous Humid 7 Months, Plus; Metabolic Expression; Recurrent Selection; Selfing; Synthetic Varieties & Blends; . . . 9.0362
SCREENING OF MAIZE GERMPLASM FOR RESISTANCE TO INSECT PESTS . . . Cereal Crops; Crandibaeae; Insect Resistance; . . . 9.0367
IDENTIFICATION OF RICE VARIETIES RESISTANT TO THE BROWN SPOT OF RICE CAUSED BY HELMINTHOSPORIUM ORYZAE . . . Brown Spot; Continuous Humid 7 Months, Plus; Fungal Resistance; Helminthosporium; Phytopathology; . . . 9.0277
DEVELOPMENT OF IMPROVED RICE VARIETIES . . . Blast; Cold Resistance; Homoepra -other; Phytopathology; Seed Bank; . . . 10.0007
CHEMICAL KINETICS OF RICE SOILS AND VARIETAL RESPONSE TO ADVERSE SOIL CONDITIONS . . . Deficiencies; Management; Saline Soils; Soil pH; Soil Types; . . . 10.0012
STUDY OF THE MILDEW OF MILLET DUE TO SCLEROSPORA GRAMINICOLA . . . Mildew Diseases; Phenology; Life Cycle; Phytopathology; Sclerospora; . . . 11.0014
IMPROVEMENT OF THE PROTEIN CONTENT AND QUALITY OF THE PROTEINS OF MAIZE . . . Back Cross; Lysine; Nutritive Values -plant; Proteins; Trypsinogen; . . . 11.0015
PROJECT F.E.D. 215 . . . Disease Resistance; Intraspecific Cross; Phytopathology; Sclerospora; Synthetic Varieties & Blends; . . . 11.0023
CREATION OF HYBRID VARIETIES OF MAIZE . . . Heterosis; Intraspecific Cross; Sorghum Vulgare (Grain); Synthetic Varieties & Blends; . . . 11.0024
IMPROVEMENT OF SORGHUMS . . . Heterosis; Intraspecific Cross; Sorghum Vulgare (Grain); Synthetic Varieties & Blends; . . . 11.0025
MILLET - CREATION OF A DWARP COMPOSITE . . . Disease Resistance; . . . 11.0036
VIARTEIL IMPROVEMENT OF RICE BY HYBRIDIZATION FOR THE IMPROVED FRESH-WATER RICE FIELDS OF CASEAMANCE . . . Disease Resistance; Phytopathology; Piricularia; Soil Resistance; . . . 11.0127
VIARTEIL IMPROVEMENT OF RICE BY HYBRIDIZATION FOR THE SALT-WATER RICE-FIELDS OF LOWER CASAMANCE . . . Cereal Products; Humid 2 Months; Saline Soils; Soil Resistance; . . . 11.0128
VIARTEIL IMPROVEMENT OF FLUVIAL RICE BY HYBRIDATION . . . Disease Resistance; Humid 2 Months; Piricularia; . . . 11.0128
STUDY OF THE VIARTEIL RESISTANCE OF RICE TO HARMFUL INSECTS . . . Cereal Crops; Humid 2 Months; Insect Resistance; Insecta; Seed Bank; . . . 11.0137
RICE VIARTEIL IMPROVEMENT . . . Intraspecific Cross; . . . 12.0006
IMPROVEMENT OF EARLY SORGHUMS BY SELECTION OF THE LOCAL MATERIAL . . . Drought Resistance; Eutric Cambisols; Humid 3 Months; Lodging; Management; Sorghum Vulgare (Grain); . . . 14.0001
INTRODUCTION OF FOREIGN EARLY SORGHUMS . . . Drought Resistance; Eutric Cambisols; Humid 3 Months; Sorghum Vulgare (Grain); . . . 14.0002
INTRODUCTION OF FOREIGN EARLY MATERIAL . . . SMALL MILLET . . . Drought Resistance; Humid 1 Month; Luvic Arenosols; . . . 14.0003
IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES . . . Fungal Resistance; Lodging; Setaria; . . . 14.0029
IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDIZATION BETWEEN LOCAL MATERIAL AND FOREIGN MATERIAL . . . Back Cross; Ferrie Luvisols; Humid 3 Months; Light Quantity or Intensity; Rain; Sorghum Vulgare (Grain); . . . 14.0030
PRODUCTION OF A SORGHUM COMPOSITE WITH WIDE VARIABILITY BY UTILIZING THE GENETIC MALE STERILITY . . . Ferrie Luvisols; Humid 3 Months; Male Sterility; Sorghum Vulgare (Grain); Synthetic Varieties & Blends; . . . 14.0031
SHORTENING THE STRAW OF A LOCAL VARIETY OF SORGHUM BY PROVOKING MUTATIONS . . . Ferrie Luvisols; Humid 3 Months; Mutation; Sorghum Vulgare (Grain); . . . 14.0032
SHORTENING OF THE STRAW OF THE LOCAL MATERIAL - SMALL MILLET . . . Back Cross; Ferrie Luvisols; Fungal Resistance; Humid 3 Months; Lodging; Recurrent Selection; Sclerospora; . . . 14.0034
IMPORTATION OF FOREIGN EARLY AND SEMI-LATE SMALL MILLETS . . . Ferrie Luvisols; Humid 3 Months; Light Quantity or Intensity; . . . 14.0035
IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION . . . Ferrie Luvisols; Humid 3 Months; Hybrid Breeding -nonspecific; Sorghum Vulgare (Grain); . . . 14.0036
FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM . . . Ferrie Luvisols; Heterosis; Male Sterility; . . . 14.0037
IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Fungal Resistance; Humid 3 Months; Molis; Sorghum Vulgare (Grain); . . . 14.0038

219
Agronomy

SUBJECT INDEX

IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS . . . Estrac. Glyciosols; Humid 4 Months; Mutation; Pirciriarosis; . . . 14.0045

IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY PRODUCTION OF SYNTHETIC VARIETIES . . . Ferric Luvisols; Heterosis; Humid 4 Months; Pedigree; Synthetic Varieties & Blends; . . . 14.0046

IMPROVEMENT OF THE LOCAL MATERIAL BY CUMULATIVE SELECTION - MAIZE . . . Fungal Resistance; Lodging; Recurrent Selection; Scald; . . . 14.0047

IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY HYBRIDATION WITH FOREIGN MATERIAL . . . Ferric Luvisols; Humid 4 Months; Hybrid Breeding - nonspecific; . . . 14.0048

PRODUCTION OF A LOCAL COMPOSITE OF MAIZE WITH BROADENED GENETIC VARIABILITY . . . Fungal Resistance; Lodging; Recombination; Scald; . . . 14.0049

IMPORTATION OF LOCAL SMALL MILLET BY RECURRENT SELECTION . . . Ferric Luvisols; Fungal Resistance; Humid 4 Months; Lodging; Recurrent Selection; Sclerospora; . . . 14.0055

IMPORTATION OF FOREIGN LATE AND SEMI-LATE SMALL MILLETS . . . Ferric Luvisols; Humid 4 Months; . . . 14.0056

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION . . . Ferric Luvisols; Humid 4 Months; Hybrid Breeding - nonspecific; Sorghum Vulgare (Grain); . . . 14.0057

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM . . . Ferric Luvisols; Heterosis; Male Sterility; Sorghum Vulgare (Grain); . . . 14.0058

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Fungal Resistance; Humid 4 Months; Molds; Sorghum Vulgare (Grain); . . . 14.0059

RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PIRICULARIOSIS, BY INTRODUCTION . . . Blast; Chromic Vertisols; Fungal Resistance; Phytopathology; Pirciriarosis; . . . 14.0063

Harvest and Storage

SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION . . . Breeding & Genetics; Management; Moisture Deficiency; Mutation; Non-dry 3 Months; Plus; . . . 6.0057

TESTS IN TRUE SIZE OF A PROTOTYPE FOR A MILLET THRESHING MACHINE . . . Design, Modify, Develop of Equip.; . . . 11.0041

Management

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY . . . Continuous Humid; Humic Glyciosols; Humid 4 Months; Marsh; Organic Fertility; Timing of Application; . . . 1.0001

NITROGEN BALANCE IN TROPICAL SOILS . . . C/N Ratio; Sorghum Vulgare (Grain); . . . 1.0008

EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO) . . . Dystric Nicosols; Source of Fertilizer; Two humid Seasons; . . . 1.0015

TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER . . . Dystric Nicosols; Organic Soils; Soil Fertility; . . . 1.0029

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY . . . Ferric Luvisols; Humid 5 Months; Marsh; Organic Fertility; . . . 1.0033

ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY . . . Ferric Luvisols; Humid 5 Months; Management Effects on Soils; Soil Tillage; . . . 1.0035

NITROGEN BALANCE IN TROPICAL SOILS . . . C/N Ratio; Ferric Luvisols; Humid 5 Months; Sorghum Vulgare (Grain); . . . 1.0040

STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW . . . Fallowing; Ferric Luvisols; Humid 6 Months; . . . 1.0052

IMPROVEMENT OF SORGHUM, MILLET AND MAIZE PRODUCTION . . . Manure; Sorghum Vulgare (Grain); Space Competition; . . . 2.0001

INTRODUCTION OF NEW VARIETIES AND SELECTION OF NEW RICE VARIETIES . . . Irrigation - general; Moisture Deficiency; . . . 3.0002

FERTILIZER REQUIREMENTS OF IRRIGATED RICE ON THE BLACK SOILS, ACCRA PLAINS . . . Formulation, Fertilizer; Iron, Sulfur; . . . 3.0003

CONTROL OF WEEDS IN RICE . . . Cereal Crops; Irrigation - general; Moisture Deficiency; Postemerge Application; Propag; . . . 3.0004

TRIALS WITH NEW CROPS . . . Glycine Max; Sesamum; Sorghum Vulgare (Grain); Triticum; . . . 3.0009

COMPOSTING OF SAWDUST . . . C/N Ratio; Compost; Lyco­persicum; Organic Soils; Sawdust Utilization; . . . 3.0010

POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS . . . Continuous Humid 7 Months, Plus; Insect Resistance; Sorghum Vulgare (Grain); Timing of Planting Procedures; . . . 3.0106

TO DETERMINE WHETHER WHEAT COULD BE SUCCESSFULLY CULTIVATED IN GHANA . . . Disease Resistance; Lodging; Shattering Resistance; Space Competition; Timing of Planting Procedures; Triticum; . . . 3.0107

COMPARISON OF COW MANURE, Poultry MANURE AND CHEMICAL FERTILIZER ON MAIZE YIELD . . . Formulation, Fertilizer; Manure; . . . 3.0107

INVESTIGATION INTO FERTILIZER LEVELS FOR UP­LAND RICE . . . Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); . . . 3.0108

TIME OF NITROGEN TOP DRESSING OF UPLAND RICE . . . Dry Monsoon 5 Months, Plus; Growth Stage of Plant; Top Dress Application; . . . 3.0108

WEED CONTROL OF UPLAND RICE . . . CP 53169; Timing - other; . . . 3.0118

POPULATION AND FERTILIZER STUDIES ON CEREALS . . . Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); Space Competition; . . . 3.0119

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS . . . Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); Timing of Planting Procedures; . . . 3.0119

INVESTIGATION INTO FERTILIZER LEVELS FOR UP­LAND RICE . . . Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); . . . 3.0118

TIME OF NITROGEN TOP DRESSING OF UPLAND RICE . . . Dry Monsoon 5 Months, Plus; Growth Stage of Plant; Top Dress Application; . . . 3.0118

INTRODUCTION OF EXOTIC PLANTS . . . Coco; Disease Resistance; Insect Resistance; Phenology, Life Cycle; Plant Parts Bank; Triticum; . . . 3.0120

EFFECT OF SPACING, VARIETY AND FERTILIZER RATE ON MAIZE YIELD IN GHANA . . . Space Competition; . . . 3.0124

EFFECT OF PLOUGHING AND FERTILIZER APPLICATION ON THE YIELD OF CROPS (MAIZE, CASSAVA AND COWPEAS) . . . Deep Plowing; Long-term Effects on Soils; Manihot; Plowing; Soil Depth; . . . 3.0226

THE EFFECTS OF PLANTING DATE ON THE EFFICIENCY OF FERTILIZER NITROGEN AND PHOSPHORUS IN MAIZE PRODUCTION IN SELECTED AREAS IN GHANA . . . Timing of Planting Procedures; . . . 3.0127

CORRELATION OF SOIL TEST METHODS WITH CROP YIELDS (MILLET AND GUINEA CORN) . . . Extract Composition; Panicum; Soil Analysis; Soil Testing; . . . 3.0128

FACTORS AND PROCESS OF CHANGE IN THE 'BETE' COUNTRY . . . Grain Industries; Modernization; Production and Processing; . . . 4.0080

REQUIREMENTS IN WATER OF IRRIGATED CROPS . . . Bromeliaceae; Consumptive Use; Irrigation - general; Nuclear Moisture Meters; Two Humid Seasons; . . . 4.0091

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR­RIGATED RICE-FIELDS . . . Cereal Crops; Irrigation - general; Phenology, Life Cycle; Physical Control; Two Humid Seasons; . . . 4.0093

WEEDING OF PLUVIAL RICE. COMBINING CULTIVA­TION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS . . . Cereal Crops; Herbicides - nonspecific; Placement; . . . 4.0185

STUDY OF THE BIOLOGICAL CYCLES OF WEEDS . . . Cereal Crops; Experiment; Continuous Humid; Phenology, Life Cycle; Soil Tillage Sequence / Method; . . . 4.0186

220
Agronomy

SUBJECT INDEX

Ferric Luvisols; Humid 4 Months; Rain; Sorghum Vulgare (Grain); Source of Fertilizer; ... 9.0207
MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS ... Ferric Luvisols; Humid 4 Months; Removal of Nutrients from Soil; ... 6.0072
STUDY OF THE SYSTEMS OF WORKING OF SOILS ... Fallowing; Management Effects on Soils; Organic Fertility; Sorghum Vulgare (Grain); ... 6.0076
COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH ... Humid 1 Month; Low Temp. Above 0 C; ... 9.0203
CROPPING TECHNIQUES FOR IRRIGATED RICE ... Drill Application; Hot Equatorial or Hot Tropical; Planting Methods -other; Picking Out; ... 8.0001
IMPROVEMENT OF TILLAGE IN IRRIGATED RICE -FIELDS ... Humid 3 Months; Irrigation -general; Soil Tillage; ... 8.0025
FERTILIZATION OF IRRIGATED RICE ... Humid 2 Months; Irrigation -general; Soil Fertility; ... 8.0006
STUDY OF THE NITROGENOUS FERTILIZATION OF CEREALS ... C/N Ratio; Humid 3 Months; Sand; ... 8.0009
STUDY THE RESIDUAL ACTION ON SOIL OF THE FERTILIZER APPLIED TO COTTON ON TROPICAL FER­RUGINOUS SOILS ... Fertilizer Accumulation; Sorghum Vulgare (Grain); ... 8.0027
MANAGEMENT PRACTICES OF TWO RECOMMENDED RICE VARIETIES ... Cereal Crops; Hand Tillage; Humid 6 Months; Insecticides -nonspecific; ... 9.0003
WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE ... Evapotranspiration; Moisture Levels; Plant Responses; ... 9.0006
NURSERY TECHNIQUES TRIAL FOR RICE ... Broadcast Application; Humid 6 Months; Nursery Observational Plots; Placement; Pregeneration of Seeds; Transplanting Methods; ... 9.0007
POST-PLANTING HERBICIDE TRIAL FOR RICE ... Cereal Crops; Humid 6 Months; Marsh; Preemergence Application; Timing -other; ... 9.0008
FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE ... Eutric Fluvisols; Fertilizer Technology; Soil Morphology, Profiles; ... 9.0012
EFFECTS OF TIME OF APPLICATION OF NITROGEN ON FIELD & OTHER GROWTH CHARACTERISTICS OF UPLAND RICE & RESPONSE OF UPLAND RICE TO PHOSPHORUS ... Elevational Levels, Altitude; Growth Stage of Plant; Timing of Application -other; ... 9.0044
SOIL CHEMICAL AND PHYSICAL CHANGES UNDER CONTINUOUS CULTIVATION ... Infiltration; Manihot; Sand; Trace Metals; ... 9.0048
THE SULPHUR AND ZINC STATUS OF SOILS OF THE WESTERN STATE OF NIGERIA ... Association & Clay; Movement, Availability; Organic Fertility; Soil pH; Sulfur; Zinc; ... 9.0051
AGRONOMIC FACTORS INFLUENCING SORGHUM PRODUCTION ... Fallowing; Sorghum Vulgare (Grain); Timing of Application -other; Timing of Planting Procedures; ... 9.0057
INTERCROPPING WITH SORGHUM ... Competition; Intercropping; Light Quantity or Intensity; Multiple Cropping; Sorghum Vulgare (Grain); ... 9.0058
WATER USE EFFICIENCY OF MAIZE IN SOME NIGERIAN SOILS ... Evapotranspiration; Nuclear Moisture Meters; Radiosotope Tracers; Soil Profile Studies; Soil-water-plant Relationships; ... 9.0019
MAIZE POPULATION STUDIES ... Continuous Humid 7 Months,Plus; Placement; Space Competition; ... 9.0023
ECONOMICS OF RICE PRODUCTION IN SELECTED AREAS OF NIGERIA ... Costs; Grain Industries; ... 9.0025
SEED RATE TRIAL WITH UPLAND RICE ... Continuous Humid 7 Months,Plus; Crop Production, Harvesting; Drill Application; Seeding or Planting; ... 9.0029
MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUC­TIVITY RESTORATIVE POWERS OF MEDIUM DURATION FALLING ... Centrosema; Cyanodon; Ferric Acrosols; Legume-grass Mixture; Organic Fertility; Pueraria; ... 9.0020
PHOSPHATE PLACEMENT TRIAL ... Broadcast Application; Ferric Acrosols; Rain; ... 9.0034
BASIC SLAG AND SINGLE SUPERPHOSPHATE AS PHOSPHATIC FERTILIZERS ... Continuous Humid 7 Months,Plus; Ferric Acrosols; Soil pH; ... 9.0032
APPLICATION OF RADIONUCLIDE TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS ... Continuous Humid 7 Months,Plus; Ferric Acrosols; Ferric Luvisols; Movement, Availability; Phosphorus; ... 9.0033
MAIZE FERTILIZER TRIAL ... Timing of Application -other; ... 9.0275
MAIZE HERBICIDE TRIAL ... Bladex; Cereal Crops; Economics of Chemical Control; Simazine; ... 9.0276
MAIZE HERBICIDE TRIAL FOR CEREAL CROPS ... Cereal Crops; Economics of Chemical Control; ... 9.0276
MAIZE HERBICIDE TRIAL ... Bladex; Cereal Crops; Continuous Humid 7 Months,Plus; Economics of Chemical Control; Simazine; ... 9.0356
AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW­LAND AND UPLAND RICE ... Bentazon; D, 2,4-; Drought Resistance; Grass -nonspecific; Insecticides -general; Pesticides -other; Rain; ... 9.0006
IDENTIFICATION AND ALLEVIATION OF ON-FARM CONSTRAINTS TO INCREASED RICE PRODUCTION ... Cereal Crops; Irrigation -general; Rain; Technological Development; ... 10.0002
FIELD TESTING OF NEW RICE TECHNOLOGY AND ADOPTION OF THE NEW TECHNOLOGY THROUGH A PILOT EXTENSION PROGRAM ... Cereal Crops; Herbicides -nonspecific; Insecticides -nonspecific; Rain; Timing of Application -other; ... 10.0004
STUDIES ON THE ROLE OF SOIL MICROBES IN SOIL FERTILITY AND RICE CULTURE ... BHC; Nitrogen Fixation; Organic Fertility; Soil Microbiology; ... 10.0006
CHEMICAL KINETICS OF RICE SOILS AND VARIETAL RE­SPONSE TO ADVERSE SOIL CONDITIONS ... Deficien­cies; Saline Soils; Soil pH; Soil Types; ... 10.0012
EXPERIMENTS WITH MAIZE AND SORGHUM ... Hot Equatorial or Hot Tropical; Irrigation; Irrigation -general; Sorghum Vulgare (Grain); ... 11.0005
RESEARCH ON WHEAT AND BARLEY ... Baking Food; Hordeum Vulgare; Irrigation; Triticum; ... 11.0006
IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY ... Hot Equatorial or Hot Tropical; Irrigation; Irrigation -general; ... 11.0007
COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH ... Hot Equatorial or Hot Tropical; Low Temp. Above 0 C; ... 11.0008
WATER REQUIREMENTS OF IRRIGATED CROPS ... Irrigation; Irrigation -general; Lysimeters; Nuclear Moisture Meters; Soil Moisture; Sorghum Vulgare (Grain); ... 11.0011
EFFECT OF TILLAGE ON THE MINERAL NUTRITION AND THE SUPPLY OF MOISTURE TO CROPS ... Drought Resistance; Moisture Deficiency; Plowing; Subsoiling; Surface Soil; ... 11.0027
CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING ... Humidity; Sand; Seedbed Prepara­tion; Soil Preparing; Soil Production; Soil-water-plant Relationships; Surface Irrigation -general; ... 11.0042
STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES (OF PLANTS) ... Labor Input; Soil Tillage Methods -other; Sorghum Vulgare (Grain); Time & Motion Studies; ... 11.0053
IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN ... C/N Ratio; Lysimeters; Manure; Plant Residues -other; Soil pH; ... 11.0057
ANALYSIS OF SAP ... Deficiencies; Nitrogen; Phosphorus; Sand; ... 11.0058
MEASUREMENT OF THE MINERAL UPTAKE OF EACH OF THE PRINCIPAL FOOD CROPS OF SENEGAL (MILLET, MAIZE, RICE, GROUNDNUTS, SORGHUM) ... Calcium; Magnesium; Nitrogen; Potassium; Sorghum Vulgare (Grain); ... 11.0059
NITROGENOUS NUTRITION OF CEREALS ... C/N Ratio; Humid 3 Months; Nitrogen; ... 11.0060
MOISTURE BALANCE BELOW NUT CROPS, BARE SOIL AND FALLOW ... Cover Crops; Fallowing; Humidity; Soil - Bare; Soil-water-plant Relationships; ... 11.0061
MOISTURE NUTRITION OF PLUVIAL RICE - RESISTANCE TO DROUGHT ... Evapotranspiration; Irrigation; Moisture Deficiency; ... 11.0062
STUDY OF SEED-DISTRIBUTORS FOR RICE ... Design ... Modify,Develop, of Equipment; Fertilizing, Planting & Cult; Pregeneration of Seeds; ... 11.0112
COMPARISON OF METHODS OF APPLICATION OF FERTILIZERS ON RICE ... Humid 3 Months; Placement; Side Dressing; Subsoil Application; ... 11.0163

222
SUBJECT INDEX

AGRONOMY

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE... Disease Resistance; Insect Resistance; Photoperiod; Seed Bank... 3.6072

STUDY OF QUANTITATIVE HEREDITY IN A TRIPLE-HYBRID MATERIAL BETWEEN CULTIVATED SPECIES AND WILD SPECIES OF COTTON... Genetic Dup. & Transmission; Interspecific Cross... 4.0260

INTERSPECIFIC HYBRIDIZATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES... Back Cross; Chromosomes; Interspecific Cross; Selfing... 4.0263

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE... Dry Monsoon 5 Months; Plus; Insect Resistance; Photoperiod; Seed Bank... 3.6074

BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT... Drought Resistance; Moisture Deficiency... 4.0055

VARIETAL IMPROVEMENT OF COTTON... Interspecific Cross; Irrigation -general; Plant Parts; Tensile Strength... 4.0260

STUDY OF ANTHRACNOSIS OF KENAF - HIBISCUS CANNABINUS... Colletotrichum; Fungal Resistance; Phytopathology... 4.0273

EXPERIMENTAL WORK WITH VARIETIES OF THE COTTON PLANT GOSSYPIUM BARBADENSE... Disease Resistance; Insect Resistance; Irrigation -general; Timing of Planting Procedures... 6.0001

EXPERIMENTAL CULTIVATION OF COTTON-PLANTS WITHOUT GOS... Cereal Products; Gossypol; Insect Resistance; Seed Bank... 6.0002

FIBRE CROP BREEDING - COTTON... Humid 3 Months... 6.0044

IMPROVEMENT OF VARIETIES OF THE COTTON PLANT FOR DRY CULTIVATION... Insect Resistance; Moisture Deficiency... 6.0073

IMPROVEMENT OF VARIETIES OF HIBISCUS CANNABINUS... Disease Resistance; Inoculation; Phytopathology... 6.0084

SELECTION OF SPECIES OF HESSIAN FIBRES OTHER THAN DH (HIBISCUS CANNABINUS)... Corchorus; Urena; 6.0085

VARIETAL EXPERIMENTATION, COTTON... Fiber Crops; Insecticides -non-specific; 6.0109

COLLECTION, QUARANTINE, AND VARIETAL EXPERIMENTATION ON COTTON... Quarantine &/or Inspection; 11.0158

MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT... Cereal Product Development; Cereal Products; Enrichment; Food Proteins; 11.0159

SELECTION FOR CONSERVATION OF THE POPULARIZED CULTIVAR OF THE COTTON PLANT... Dystic Gleysols; Ferric Luvisols; Humid 3 Months; Luvic Arenosols; Pedigree; 11.0160

IMPROVEMENT OF VARIETIES OF COTTON (BARBADENSE) GROWN IN ASSOCIATED CULTIVATION... Breeder Stock; Pedigree; 13.0033

INTRASPECIFIC HYBRIDIZATION OF COTTON (G. BARBADENSE X G. HIRSUTUM)... Back Cross; Fiber; Intraspecific Cross; Pedigree; 13.0035

COTTON - PRODUCTION OF FI HYBRIDS - GOSSYPIUM HIRSUTUM X G. BARBADENSE... Heterosis; Interspecific Cross; Male Sterility; 13.0036

COTTON - STUDY OF THE MALE STERILITY IN GOSSYPIUM HIRSUTUM... Fertility Restorer Genes; Male Sterility; Segregants... 13.0037

PRODUCTION OF COTTON HAVING SEEDS FREE FROM GOSSYPOL... Cereal Products; Food Proteins; Gossypol; Metabolic Expression; Proteins; 13.0039

Harvest and Storage

EXPERIMENT ON TECHNIQUES OF RETTING FOR HIBISCUS SARDARIPPA... Ferric Luvisols; Humid 6 Months; Retting; 1.0057

EFFECTS OF AGE AT HARVEST ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS, L. ... Continuous Humid 7 Months; Plus; Retting; 3.0141

STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST... Cellulosic Fiber; Crop Production; Harvesting; Fiber Cleaning; Humidity; 4.0283

ADAPTABILITY TO MECHANICAL HARVESTING OF CERTAIN VARIETIES OF COTTON PLANTS IN THE IVORY COAST... Crop Production; Harvesting; 4.0285

CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES FOR SACKING... Insecticides -non-specific; Retting; Soil Tillage; 6.0086

TECHNOLOGICAL PREPARATION OF NATURAL TEXTILE FIBRES FOR SACKING... Crop Production, Harvesting; Retting; 6.0087

MANAGEMENT

HERBICIDE EXPERIMENTATION ON COTTON... Continuous Humid; ER 5461; GS 16068; MSMA; Postemergence Application; 1.0012

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT... Continuous Humid; Eutric Planosols; Sulfur; 1.0013

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON... Dryd 5-Nitrosols; Two Humid Seasons; 1.0014

EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO)... Dryd Nitrosols; Source of Fertilizer; Two Humid Seasons; 1.0015

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON... Continuous Humid; Eutric Planosols; Fiber Crops; Gleyic Luvisols; Insecticides -non-specific; 1.0016

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT... Continuous Humid; Eutric Planosols, Growth Stage of Plant; 1.0017

EXPERIMENTATION WITH VARIETIES OF COTTON... Climate-Continental Sav.Trop.; Dryd Nitrosols; Fiber Crops; Gleyic Luvisols; Insecticides -non-specific; Plinthic Luvisols; 1.0018

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT... Eutric Cambisols; Ferric Luvisols, Growth Stage of Plant; Moist Monsoon; 1.0019

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT... Dryd Monsoon 5 Months; Plus; Eutric Cambisols; Ferric Luvisols; Moist Monsoon; Sulfur; 1.0020

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON... Ferric Luvisols; Humid 4 Months; 1.0021

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON... Ferric Luvisols; Insecticides -non-specific; Manure; Moist Monsoon; 1.0023

INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS... Ferric Luvisols; Fertility Losses; Humid 6 Months; Mineralogy; Soil Testing; Timing of Planting Procedures; 1.0024

EXPERIMENTATION WITH VARIETIES OF COTTON... Dryd Monsoon 5 Months; Plus; Eutric Cambisols; Ferric Luvisols; Fiber Crops; Insecticides -non-specific; Moist Monsoon; 1.0025

HERBICIDE EXPERIMENTATION ON COTTON... Dystic Nitrosols; Ferric Luvisols; Humid 4 Months; Pesticides -other; Pre-emergence Application; 1.0026

STUDY OF THE MINERAL DEFICIENCIES OF COTTON PLANTS... Boron; Ferric Luvisols; 1.0027

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON... Dystic Nitrosols; Two Humid Seasons; 1.0028

TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER... Dystic Nitrosols; Organic Soils; Soil Fertility; 1.0029

EXPERIMENTATION WITH VARIETIES OF COTTON... Ferric Crops; Insecticides -non-specific; 1.0030

CORRECTION OF DEFICIENCIES IN K2O... Ferric Luvisols; Humid 5 Months; 1.0038

STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW... Fallowing; Ferric Luvisols; Humid 6 Months; 1.0052

EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORCJ'ORUS AND URENA... Corchorus; Environments; Plant; Humid 6 M.or Less; Two Humid Seasons; 1.0053

EXPERIMENTS ON MINERAL FERTILIZATION OF HIBISCUS SARDARIPPA... Boron; Deficiencies; Ferric Luvisols; Humid 6 Months; Sulfur; 1.0054

225
Agronomy

EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Moist Monsoon 0 to 3 Months; ... 3.0201

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Moist Monsoon 0 to 3 Months; ... 3.0202

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Eutric Nitosols; Fibers; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0206

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Eutric Nitosols; Fibers; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0207

REQUIREMENTS IN WATER OF IRRIGATED CROPS ... Bromeliaceae; Consumptive Use; Irrigation -general; Nuclear Moisture Meters; Two Humid Seasons; ... 4.0091

VARIETAL EXPERIMENTS WITH IRRIGATED COTTON ... Lodging; Space Competition; Surface irrigation -general; Timing of Planting Procedures; ... 4.0258

AGRONOMIC-VARIETAL EXPERIMENTS WITH COTTON (RAINFED CULTIVATION) ... Rain; ... 4.0259

VARIETAL EXPERIMENTATION WITH COTTON (RAINFED CULTIVATION) ... Rain; ... 4.0261

EVOLUTION OF POTTASSIUM IN THE COTTON-GROWING REGIONS OF THE IVORY COAST ... Fallowing; Mineralogy; ... 4.0266

STUDY OF THE ACTION OF HERBICIDES IN THE CULTIVATION OF COTTON ... Fiber Crops; Herbicides -non-specific; Phytotoxicity; ... 4.0267

STUDY OF THE ACTION OF TRACE ELEMENTS ON THE COTTON PLANT ... Fibers; Hydroponic Studies; ... 4.0268

ROLE OF NITROGENOUS FEEDING FOR THE COTTON PLANT ... Growth Stage of Plant; ... 4.0269

ROLE OF ORGANIC MATTER IN RELATION TO MINERAL FERTILIZATION IN THE PRODUCTION OF CROPS ... MAIZE-COTTON ... Fallow; Mineralogy; Soil Analysis; ... 4.0270

EVOLUTION OF THE FERTILITY OF SOILS IN CROP ROTATIONS WITH OR WITHOUT FALLOW PERIODS ... Fallowing; Stylosanthes; ... 4.0272

STUDY THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION ... Fungal Resistance; Klen­dosity; Phytopathology; Planting Sequence or Method; Rots; Timing of Planting Procedures; ... 4.0275

ACTION OF GROWTH-REGULATORS ON THE COTTON PLANT - SUBSTANCES WHICH INHIBIT GIBBERELLINS ... Growth Retardation of Plants; Irrigation -general; Mode of Action; Parasite -other; Plant Growth Regulators; ... 4.0276

INTER-RELATION BETWEEN SOIL PREPARATION AND LEVEL OF FERTILIZATION ... Fertilizer Accumulation; Humid 3 Months; Management Effects on Soils; Soil Preparation & Renovation; ... 6.0046

MINERAL FERTILIZATION OF THE COTTON PLANT ... Deficiencies; Hydroponic Studies; Soil Analysis -other; Sulfur; ... 6.0074

NITROGENOUS MINERAL NUTRITION OF THE COTTON PLANT ... Growth Stage of Plant; Moisture Deficiency; ... 6.0075

STUDY OF THE SYSTEMS OF WORKING OF SOILS ... Fallowing; Management Effects on Soils; Organic Fertility; Sorghum Vulgar (Grain); ... 6.0076

UTILIZATION AS A MINERAL FERTILIZER OF THE NATURAL PHOSPHATES OF MALI ... Plant Residues -other; ... 6.0077

CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES FOR SACKING ... Harvest and Storage; Insecticides -non-specific; Retting, Soil Tilth ... 8.0086

VARIETAL EXPERIMENTS OF COTTON FOR FLOOD RECESSION CULTIVATION ... Flood Irrigation; ... 8.0040

VARIETAL EXPERIMENTS ON COTTON IN IRRIGATED CULTIVATION ... Eutric Flavils; Humid I Month; Irrigation -general; Luciv Arenosols; ... 8.0041
VARIETAL EXPERIMENTS ON COTTON UNDER POORER CONDITIONS OF CULTIVATION ... Ferric Luvisols; Humid 1 Month; Luvic Arenosols; ... 8.0042
STUDY OF THE PROFITABILITY OF AN APPLICATION OF MINERAL FERTILIZER TO TROPICAL FERRUGINOUS SOILS ... Boron; Fertilizer Accumulation; Manure; Rain; Sorg­hum Vulgare (Grain). ... 8.0045
STUDY OF THE RESIDUAL ACTION ON SORGHUM OF THE FERTILIZER APPLIED TO COTTON ON TROPICAL FERR­uginous SOILS ... Fertilizer Accumulation; Sorghum Vulgare (Grain); ... 8.0047
STUDY OF WATER REQUIREMENTS OF COTTON UNDER IRRIGATION ... Hot Equatorial or Hot Tropical; Irrigation; Irrigation -general; ... 11.0064
STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE FIELD ... Dystric Gleysols; Humid 3 Months; Soil Moisture; ... 11.0161
STUDY OF 2 NITROGENOUS FERTILIZERS OF SLOW MINERALIZATION, IN COTTON CULTIVATION ... Dystric Gleysols; Ferric Luvisols; Humid 3 Months; Luvic Arenosols; Time-release Capsules; ... 11.0162
EXPERIMENTAL ATTEMPTS TO CORRECT THE POTASSIUM DEFICIENCY IN COTTON PLANTATIONS IN SINE-SALOMO ... Dystric Ferralsols; Ferric Luvisols; Humid 3 Months; Luvic Arenosols; ... 11.0163
PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED 'WITHDRAWAL' EXPERIMENTS, IN A CROP ROTATION WITH COTTON ... Dystric Gleysols; Humid 3 Months; Luvisols; Sorg­hum Vulgare (Grain); ... 11.0166
EXPERIMENTS COMPARING IN TIME THE EFFICIENCY OF DIFFERENT RECOMMENDED FORMULATIONS FOR MANURE APPLIED TO COTTON CROPS ... Sulfur; ... 11.0167
MOISTURE STUDIES OF THE COTTON-GROWING SOILS OF SINE-SALOMO ... Nitrates, Soil Moisture; Soil-water-plant Relationships; ... 11.0168
FOLIAR DIAGNOSIS ON THE COTTON PLANT ... Fertilizer Technology; ... 11.0169
VARIETAL EXPERIMENTATION WITH COTTON (ASSOCIATED CULTIVATION) G. BARBADENSE ... Companion Cropping; ... 13.0034
STUDY OF THE MINERAL DEFICIENCIES OF THE SOILS OF TOGO AND THEIR EVOLUTION - Deficiencies; Geology; Movement, Availability; Sulfur; ... 13.0041
EXPERIMENT ON PLANTATION DENSITY ... Placement; Seeding or Planting Rate; Space Competition; Timing of Planting Procedures; ... 13.0044
STUDY THE PLACE OF MANURING IN A SUCCESSION OF MAIZE - COTTON ... Timing of Application -other; ... 13.0045
STUDY OF THE EFFECT OF NITROGENOUS FERTILIZA­TION ON THE COTTON PLANT ... Growth Stage of Plant; ... 13.0046
STUDY OF THE MAINTENANCE OF FERTILIZATION ... Fallowing; Removal of Nutrients from Soil; ... 13.0047
COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT KOUVE (MARITIME REGION) ... Costs; Sulfur; ... 13.0051
COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT EAST-MONO (PLATEAUX REGION) ... Costs; Side Dressing; Sulfur; ... 13.0052
COMPARISON OF FORMULAS FOR FERTILIZERS IN COT­TON ROTATION, AT THE OUTSTATION AT NIAN­GOUAME AND AT THE PILOT CENTRE AT KABOU ... Boron; Costs; Side Dressing; Sulfur; ... 13.0053
COMPARISON OF FORMULAS FOR FERTILIZERS IN COT­TON ROTATION AT THE OUTSTATION AT KADJALLA (THE KARA REGION) ... Boron; Costs, Side Dressing; Sulfur; ... 13.0054
COMPARISON OF FORMULAS FOR FERTILIZERS IN COT­TON ROTATION AT THE OUTSTATION AT DAPANGO (SAVANNAH REGION) ... Boron; Costs; Sulfur; ... 13.0055
VARIETAL EXPERIMENTS WITH COTTON ... Fiber Crops; Insects; Insecticides-non-specific; ... 14.0066
RESEARCH ON MINERAL DEFICIENCY IN COTTON ... Sulfur; ... 14.0067
EXPERIMENTS ON SYSTEMS OF CULTIVATION AND FERTILIZATION ... Fallowing; ... 14.0068
TESTS OF FORMULATIONS OF FERTILIZERS ON COT­TON ... Formulation, Fertilizer; Sulfur; ... 14.0069
STUDY OF NITROGENOUS NUTRITION ON COTTON ... Sulfur; ... 14.0071
FOLIAR ANALYSES ON THE COTTON PLANT ... Boron; Sulfur; ... 14.0072
STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS ... Plant Residues-other; Sorghum Vulgare (Grain); ... 14.0073
VARIETAL EXPERIMENTS WITH COTTON ... Ferric Luvi­sols; Fiber Crops; Humid 6 Months; Insecta; Insecticides-non-specific; Plinthic Luvisols; ... 14.0078
EXPERIMENTS - SYSTEMS OF CULTIVATION AND FERTILIZATION ... Humid 6 Months; ... 14.0080
TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON ... Ferric Luvisols; Formulation, Fertilizer; Humid 6 Months; Plinthic Luvisols; Sulfur; ... 14.0081
STUDY OF NITROGENOUS NUTRITION ON COTTON ... Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; ... 14.0083
FOLIAR ANALYSIS ON THE COTTON PLANT ... Boron; Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; Sulfur; ... 14.0084
STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS ... Ferric Luvisols; Humid 6 Months; Plinthic Luvi­sols; Sorg­hum Vulgare (Grain); Timing of Application -other; ... 14.0085
VARIETAL EXPERIMENTS ON HIBISCUS ... Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; ... 14.0090
PHYTOPATHOLOGY
STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA ... Coccon; Mangifera; Nicotiana; Sacccharum; ... 3.0127
INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS ... Continuous Humid 7 Months; Planting Techniques; DD; Nema­gon; Nicotiana; Population Dynamics; ... 3.0128
NEMATOLOGICAL STUDIES ON COTTON PLANTS AND DIFFERENT FIBRE PLANTS IN DAHOMEY ... Corchorus; Pankou Virus; Surveys; Tylenceidiaceae; Vectors; ... 4.0072
THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA ... Electron Microscopy; Mosaic Viruses; Vectors; Viral Transmission; Virus Resistance; ... 4.0075
STUDY OF ANTHRACOSIS OF KENAF - HIBISCUS CAN­NABINUS ... Breeding & Genetics; Colletotrichum; Fungal Res­istance; ... 4.0273
STUDY THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION ... Fungal Resistance; Klen­duity; Management; Planting Sequence or Method; Retts; Timing of Planting Procedures; ... 4.0275
IMPROVEMENT OF VARIETIES OF HIBISCUS CAN­NABINUS ... Breeding & Genetics; Disease Resistance; Incu­lation; ... 6.0084
EXPERIMENTS ON PHYTOSANITARY TREATMENTS ON COTTON AT THREE LEVELS ... Economics of Chemical Control; Fungicides -non-specific; ... 8.0050
STUDY OF CRYPTOGRAMA DISEASES AND OF ROTTING DISEASES OF COTTON PODS IN SENEGAL ... Pod Rot; Surveys; ... 11.0176
LEVEL OF PHYTOSANITARY PROTECTION ON COTTON ... Pest Control Measures; Plant Diseases; ... 14.0074
VIRESCENCE (A DISEASE) OF THE COTTON PLANT ... Fiber Crops; Insecta -other; Pleurotropomonius Group; Tax­onomy, Animal; Vectors; Vireness; ... 14.0077
LEVEL OF PHYTOSANITARY PROJECTION ON COTTON ... Ferric Luvisols; Humid 6 Months; Pest Control Measures; Plant Diseases; Plinthic Luvisols; ... 14.0087
FORAGE GRASSES
NUTRITIVE VALUE OF DIGITARIA DECUMBENS AND CYDONIA PLECTOSTACHYUS IN ADMIXTURE WITH CENTROSEMA PUBESCENS ... Centrosema; Digitaria; Forage Legumes; In Vitro Feed Studies; ... 3.0023
PRODUCTIVITY OF GRASS/LEGUM E PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES ... Centrosema; Digitaria; Forage, Pasture or Range; In Vitro Feed Studies; Legume-grass Mixtures; ... 3.0025
DRY MATTER YIELD ASSESSMENT OF LOCAL AND EX­OTIC GRASS SPECIES ... Forage, Pasture or Range; Grass -non-specific; In Vitro Feed Studies; ... 3.0026
SOIL CONSERVING CROPS ... Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferraria; Cambisols. Forage Gras­ses, Pasture, Range, Insect Resistance; Punicaceae-other, Puer­aria; ... 9.0115

SUBJECT INDEX
Agronomy

227
Agronomy

SUBJECT INDEX

PHYSICAL EVOLUTION OF THE SOIL UNDER CULTIVATION... Corn Sand; Glycine Max; Soil Genesis; Soil Permeability; Sorghum Vulgare (Grain);... 11.0028

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED... Clay; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain);... 11.0029

STUDY OF NATURAL PASTURES - CARTOGRAPHY... Mapping; Remote Sensing; River Basins;... 11.0080

CULTIVATION OF FORAGE CROPS... Forage, Pasture or Range; Grass - nonspecific; Leguminosae;... 11.0081

BREEDING & GENETICS

GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION... Centrosema; Foundation Seed; Panicum; Setaria;... 3.0022

STUDY OF THE ESTABLISHMENT OF PASTURES OF PANICUM MAXIMUM... Carrying Capacity - pasture; Ecotypes; Irrigation - general; Panicum;... 4.0029

BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM... Interspecific Cross; Metabolic Expression; Parthenocarpy;... 4.0054

FOOD CROP IMPROVEMENT... Dittaria; Forage, Pasture or Range; Management; Paspalum;... 6.0045

MANAGEMENT

NITROGEN BALANCE IN TROPICAL SOILS... C/N Ratio; Sorghum Vulgare (Grain);... 1.0008

NITROGEN BALANCE IN TROPICAL SOILS... C/N Ratio; Ferru Luvioisit; Humid 5 Months; Sorghum Vulgare (Grain);... 1.0040

REGENERATION OF THE SOILS AND FERTILIZATION IN REPLANTATION... Panicace - other; Soil Structure; Two Humid Seasons;... 1.0076

THE PRODUCTIVITY OF IRRIGATED PASTURES... Dry Monsoon 4 to 5 Months; Grass - nonspecific; Irrigation -general;... 3.0016

IMPROVEMENT OF FORAGE PRODUCTION BY ASSOCIATED CULTIVATION OF GRAMINEAE AND OF LEGUMINOUS CROPS... Centrosema; Continuous Humid; Legume-grass Mixtures; Melinidse; Pueraria; Stylosanthes;... 4.0023

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION... Continuous Humid; Irrigation; Pueraria; Tripsacum;... 4.0024

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND... Brachari; Depth - Water Level Fluctuation; Excessive Moisture; Marsh; Panicum; Stylosanthes;... 4.0026

IMPROVEMENT OF FORAGE PRODUCTION IN SAVANNAH ZONE BY MODIFICATION OF THE TRADITIONAL SYSTEM... Broadcast Application; Costs; Dry Monsoon 4 M. or less; Moist Monsoon; Stylosanthes;... 4.0027

MECHANISMS OF CLIMATIC ACTION ON PRODUCTION AND CONSUMPTION OF WATER BY A FORAGE CROP IN A HUMID TROPICAL CLIMATE... Energy Budgets; Moisture Budgets; Moisture Deficiency; Water Application Methods;... 4.0051

STUDY OF THE INTERACTIONS BETWEEN THE SOIL AND FORAGE PLANTS IN A HUMID TROPICAL ENVIRONMENT... Removal of Nutrients from Soil; Soil Testing;... 4.0052

REQUIREMENTS IN WATER OF IRRIGATED CROPS... Bromelaceae; Consumptive Use; Irrigation - general; Nuclear Moisture Meters; Two Humid Seasons;... 4.0091

EVOLUTION OF SOILS UNDER CULTIVATION... Continuous Humid; Ferric Acrisols; Management Effects on Soils; Rhodic Ferralsols; Soil Fertility;... 4.0201

EVOLUTION OF THE FERTILITY OF SOILS IN CROP ROTATIONS WITH OR WITHOUT FALLOW PERIODS... Fallow; Stylosanthes;... 4.0272

CULTIVATION OF FORAGE CROPS... Echinocloa; Irrigation - general; Sorghum Vulgare (Grain);... 4.0046

THE EFFECT OF GRASS - LEGUME MIXTURES ON HERBAGE NUTRITION OF HERBAGE GRASSES IN NIGERIA... Grassland Associations; Nitrogen; Placement;... 9.0005

THE EFFECT OF GRASS - LEGUME MIXTURES ON HERBAGE PRODUCTION AND CHEMICAL COMPOSITION AS COMPARED WITH APPLICATION OF NITROGEN FERT... Cyonodon; In Vitro Feed Studies; Proteins;... 9.0200

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES... Centrosema; Legume-grass Mixtures; Proteins; Rhizobium;... 9.0214

TO STUDY THE MICROBIAL CONTRIBUTION TO THE NITROGEN ECONOMY OF FALLOW... Fallowing; Nitrification;... 9.0219

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION... Fallowing... 9.0250

BASIC SLAG AND SINGLE SUPERPHOSPHATE AS PHOSPHATIC FERTILIZERS... Continuous Humid 7 Months; Plus; Ferric Acrisols; Soil pH;... 9.0252

LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FUNDAMENTALLY DIFFERENT FARMING SYSTEMS... Compost; Continuous Humid 7 Months; Plus; Ferric Acrisols; Manure;... 9.0254

FORAGE CROP EXPERIMENTATION... Chloridace - other; Hot Equatorial or Hot Tropical; Mucuna; Panicum; Sorghum Vulgare (Forage);... 11.0002

IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY... Hot Equatorial or Hot Tropical; Irrigation; Irrigation - general;... 11.0004

DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS... Forage, Pasture or Range; Grains; Hay;... 11.0080

STUDY OF NATURAL PASTURES - EVOLUTION... Productivity; Rain;... 11.0079

INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE ROTATION SYSTEM... Ferric Luvioisit; Panicace - other; Production and Processing; Sorghum Vulgare (Grain);... 14.0052

PHYTOPATHOLOGY

STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST... Doryliniinae; Interspecific Relationship; Panicum; Plant Virus - general; Vectors;... 6.0071

IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM... Panicum; Plant Virus - general; Soil-borne; Vectors; Viral Transmission;... 4.0074

FORAGE LEGUMES

NUTRITIVE VALUE OF DIGITARIA DECUMBENS AND CYNODON PLECTOSTACHYUS IN ADMIXTURE WITH CENTROSEMA PUBESCENS... Centrosema; Digitaria; In Vitro Feed Studies;... 3.0023

SOIL CONSERVING CROPS... Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses, Pasture, Range; Insect Resistance; Panicace - other; Pueraria;... 9.0185

BREEDING & GENETICS

FODDER CROP IMPROVEMENT... Dittaria; Forage, Pasture or Range; Management; Paspalum;... 6.0045

LEGUME-GRASS MIXTURES

PRODUCTIVITY OF GRASS/LEGUME PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES... Centrosema; Digitaria; Forage Grasses; Forage, Pasture or Range; In Vitro Feed Studies;... 3.0025

IMPROVEMENT OF FORAGE PRODUCTION BY ASSOCIATED CULTIVATION OF GRAMINEAE AND OF LEGUMINOUS CROPS... Centrosema; Continuous Humid; Management; Melinidse; Pueraria; Stylosanthes;... 4.0023

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION... Continuous Humid; Irrigation; Management; Pueraria; Tripsacum;... 4.0024

THE EFFECT OF GRASS - LEGUME MIXTURES ON HERBAGE PRODUCTION AND CHEMICAL COMPOSITION AS COMPARED WITH APPLICATION OF NITROGEN PERT... Cyonodon; In Vitro Feed Studies; Management; Proteins;... 9.0200

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES... Centrosema; Management; Proteins; Rhizobium;... 9.0214

TO STUDY THE MICROBIAL CONTRIBUTION TO THE NITROGEN ECONOMY OF FALLOW... Fallowing; Management; Nitrification; Soil Microbiology;... 9.0219

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURA-
VEGETATIVE IMPROVEMENT OF HEVEA - REDUCTION OF THE INTERCLONAL VARIABILITY... Graffing; Two Humid Seasons; ... 4.0029

IMPROVEMENT OF HEVEA BRASILIENSIS - EARLY FLOWERING... Growth and Differentiation; Management; Two Humid Seasons; ... 4.0027

IMPROVEMENT OF HEVEA BRASILIENSIS - CONTROLLED CROSSINGS OF OLD EXISTING ORIGINS... Intraspec. Genetic Relations; Two Humid Seasons; ... 4.0023

IMPROVEMENT OF HEVEA - THE OBTAINING OF CROSSINGS STARTING FROM THE NEW ORIGINS... Intraspec. Genetic Relations; Pedigree; Two Humid Seasons; ... 4.0023

IMPROVEMENT OF HEVEA BRASILIENSIS - THE OBTAINING OF POLYPLOIDS... Mutation; Two Humid Seasons; ... 4.0024

PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES... Growth and Differentiation; Growth Substances; Hormones; IBA; Management; Two Humid Seasons; ... 4.0027

BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS... Disease Resistance; Latex; Open Pollination; Tectona; Wind; Wind or Air Movement; ... 5.0003

VARIETAL IMPROVEMENT (BREEDING) OF GRAIN LEGUMES... Continuous Humid; Leguminosae; Nutritive Values -plant; Seed Bank; ... 9.0166

Harvest and Storage

REGENERATION OF THE LATEX OF THE RUBBER TREE AFTER TAPPING... Breeding & Genetics; Deficiencies; Monosaccharides -nonspecific; Translocation; ... 4.0024

TAPPING OF THE RUBBER TREE - STUDY OF THE FLOW OF THE LATEX... Breeding & Genetics; Latex; Osmotic and Turgor Pressure; Soil Moisture; Solar Light; Two Humid Seasons; ... 4.0025

TAPPING OF THE RUBBER TREE - STUDY OF NEW PREPARATIONS FOR STIMULATION OF PRODUCTION... Latex; Two Humid Seasons; ... 4.0026

DETERMINATION OF THE OPTIMUM PLANTATION DENSITIES AND ARRANGEMENTS FOR RUBBER TREES... Management; Phytopathology; Placement; Space Competition; Two Humid Seasons; ... 4.0025

EARLINESS OF TAPPING OF RUBBER TREES... Two Humid Seasons; ... 4.0022

STIMULATION OF RUBBER TREES FOR EARLY PRODUCTION... Growth Retardation of Plants; Management; Plant Growth Regulators; Sequential, Daily, Weekly, Etc; Two Humid Seasons; ... 4.0023

TAPPING OF RUBBER TREES - RESEARCH ON PRODUCTION - GROWTH EQUILIBRIUM... Two Humid Seasons; ... 4.0024

TAPPING OF RUBBER TREES - RESEARCH ON THE EQUILIBRIUM BETWEEN YIELD BY THE HECTARE AND YIELD BY WORKER... Costs; Management; Plant Growth Regulators; Supply; Time & Motion Studies; Two Humid Seasons; ... 4.0025

INFLUENCE OF THE PERIOD OF ARREST OF TAPPING RUBBER TREES UPON GROWTH, PRODUCTION AND TAPPING CUT DISEASES... Env. Plant Dis. Relation; Management; Phytopathology; Plant Diseases; Two Humid Seasons; ... 4.0026

CUMULATIVE TAPPING OF RUBBER TREES... Costs; Latex; Management; Time & Motion Studies; Two Humid Seasons; ... 4.0027

TAPPING OF RUBBER TREES - ANTI-RAIN BANDS... Costs; Management; Rain; Two Humid Seasons; ... 4.0024

TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING... Chemical Materials; Intraspec. Genetic Relations; Mechanical Properties; Processing -general; Two Humid Seasons; ... 4.0025

TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM... Drying, Forms -other; Instrumentation, Equipment; Latex; Rubber -natural; Two Humid Seasons; ... 4.0025

Management

RUBBER NP (KMO) FACTORIAL TRIAL... Continuous Humid; Magnesium; ... 3.0046

RUBBER CLONE MUSEUM... Continuous Humid; Latex; ... 3.0047

RUBBER STOCK/SCION RELATIONSHIP TRIAL... Continuous Humid; ... 3.0048
Agronomy SUBJECT INDEX

Rubber Clone Trial 1965 A and 1965 B...Continuous Humid; Disease Resistance; Latex; Wind; Wind or Air Movement;... 4.0247

Rubber Intercropping Experiment...Continuous Humid; Fomes; Green Manure; Intercropping; Manihot;... 3.0050

Rubber Clonal Seedling Family Trial...Continuous Humid;... 3.0051

Preparation of Planting Material for Hevea...Planting Methods; Topographical Parameters; Two Humid Seasons;... 4.0236

Improvement of Hevea Brasiliensis - Early Flowering...Breeding & Genetics; Growth and Differentiation; Two Humid Seasons;... 4.0231

Determination of the Optimum Plantation Densities and Arrangements for Rubber Trees...Harvest and Storage; Phytopathology; Placement; Space Competition; Two Humid Seasons;... 4.0235

Methods of Preparing the Ground for Plantation of Rubber Trees...Hand Tillage; Phytopathology; Sand; Seedbed Preparation; Two Humid Seasons; 4.0226

Preparation of Plant Material from Hevea for Propagation - Utilization of Growth Substances...Breeding & Genetics; Growth and Differentiation; Growth Substances; Hormones; IBA; Two Humid Seasons;... 4.0237

Mineral Nutrition and Fertilization of Young Plantations of Rubber Trees...Pueraria; Sand; Soil Fertility; Two Humid Seasons;... 4.0239

Mineral Nutrition and Fertilization of Rubber Trees on Plantations in Production...Sand; Soil Fertility; Two Humid Seasons;... 4.0240

Mineral Nutrition of Hevea - Improvement of the Techniques for Inspection of Mineral Nutrition...Pueraria; Soil Analysis; Two Humid Seasons;... 4.0241

Stimulation of Rubber Trees for Early Production...Growth Retardation of Plants; Harvest and Storage; Plant Growth Regulators; Sequential; Daily, Weekly, Etc; Two Humid Seasons;... 4.0243

Tapping of Rubber Trees - Research on the Equilibrium Between Yield of the Hectare and Yield by Worker...Costs; Harvest and Storage; Plant Growth Regulators; Supply; Time & Motion Studies; Two Humid Seasons;... 4.0240

Influence of the Period of Arrest of Tapping Rubber Trees Upon Growth, Production and Tapping Cut Diseases...Env. Plant Dis. Relation; Harvest and Storage; Phytopathology; Plant Diseases; Two Humid Seasons;... 4.0246

Cumulative Tapping of Rubber Trees...Costs; Harvest and Storage; Latex; Time & Motion Studies; Two Humid Seasons;... 4.0247

Tapping of Rubber Trees - Anti-Rain Bands...Costs; Harvest and Storage; Rain; Two Humid Seasons;... 4.0248

Control of Diseases of the Tapping Panel of Hevea...Env. Plant Dis. Relation; Fungicides - nonspecific; Phytopathology; Phytophthora; Plant Growth Regulators; Two Humid Seasons;... 4.0252

Ethrel Stimulation of Hevea Varieties...D, 2, 4; Ethrel;... 5.0006

Fertilization of Hevea Brasiliensis and Its Effect on Growth...Calcium; Growth Stage of Plant; Magnesium; Nitrogen; Phosphorus; Potassium;... 5.0004

Fertilization of Hevea Brasiliensis and Its Effect on Yield...Calcium; Magnesium; Nitrogen; Phosphorus; Potassium;... 5.0005

Phytopathology

Phytopathology

Studies on Plant Parasitic Nematodes Associated with Economic Crops in Ghana...Cocoa; Mangifera; Nicotiana; Sacccharum;... 3.0127

Determination of the Optimum Plantation Densities and Arrangements for Rubber Trees...Harvest and Storage; Management; Plots; Space Competition; Two Humid Seasons;... 4.0235

Methods of Preparing the Ground for Plantation of Rubber Trees...Hand Tillage; Management; Sand; Seedbed Preparation; Two Humid Seasons;... 4.0236

Influence of the Period of Arrest of Tapping Rubber Trees upon Growth, Production and Tapping Cut Diseases...Env. Plant Dis. Relation; Harvest and Storage; Management; Plant Diseases; Two Humid Seasons;... 4.0246

Diseases of the Roots of Rubber Trees - Control Measures Against Fomes Lignosus...Biocontrol; Fomes; Humidity; Soil Moisture;... 4.0249

Biological Control of Diseases of the Roots...Cover Crops; Fomes; Ganoderma; Two Humid Seasons;... 4.0250

Diseases of Leaves of Hevea in Nursery...Foliage Diseases; Fungicides - nonspecific; Giseoecporum; Helminthosporium; Nursery Observational Flats; Two Humid Seasons;... 4.0251

Control of Diseases of the Tapping Panel of Hevea...Env. Plant Dis. Relation; Fungicides - nonspecific; Management; Phytophthora; Plant Growth Regulators; Two Humid Seasons;... 4.0252

South American Leaf Blight Resistance Screening...Blight Diseases; Chromatography; Fungal Resistance; Microcyclus; Plant Pathogenic Fungi;... 5.0006

Pink Disease Control in Hevea Brasiliensis...Corticium; Fungicides - nonspecific; Latex; Time-release Capsules;... 5.0007

Computerization of Routine Disease Control Work Records - Hevea Plantation...Computer Usage; Surveys;... 5.0008

Black Thread Control with Difolatan and Ethrel...Black Thread; Difolatan; Ethrel; Latex; Phytophthora;... 5.0009

Collar Canker Control in Hevea Brasiliensis...Cankers; Fungicides - nonspecific; Pythium;... 5.0010

Quality and Utilization

Study of the Adaptation of Citrus Fruit Trees in the Different Climatic Zones of the Ivory Coast...Breeding & Genetics; Climate - Continental Savanna; Tropics; Fats & Oils; Fruits and Berries;... 4.0156

Study the Lutoids of the Latex of the Rubber Tree - Hevea...Breeding & Genetics; Latex; Laticifers; Membrane, Cellular; Two Humid Seasons;... 4.0223

Regeneration of the Latex of the Rubber Tree After Tapping...Breeding & Genetics; Deficiencies; Harvest and Storage; Monosaccharides - nonspecific; Translocation;... 4.0224

Technology of Natural Rubber - Rubbers Stretched by Oil...Costs; Latex; Physical Properties; Rubber - natural;... 4.0225

Technology of Natural Rubber - Master-Mixtures Based on Local Products...Casein; Fillers; Extenders; Latex; Rubber - natural;... 4.0226

Oilseed Crops

Dormancy in Seeds from Deli Palms (Oil Palm)...Back Cross; Dormancy; Temperature;... 9.0288

Cation-ANion Relationship in the Oil Palm...Deficiencies; Movement, Availability; Organic Acids; Soil Analysis; Soil Types;... 9.0297

A Calibration Trial on Oil Palms Experiment 8-1 (Planted 1959-1966)...Seed Ratio; Soil Analysis;... 9.0298

Seedling Selection Experiment 33-13 (Planted 1966)...Growth and Differentiation; Seed Ratio;... 9.0299

Chemo-Taxonomic Studies...Chromatography; Extract Composition; Remote Sensing; Sugar - nonspecific; Taxonomy; Plant;... 9.0318

Liquid and Solid Components of Palm Oils...Fats & Oils; Fats - Lipids; Food Quality; Fruits; Temperature Control;... 9.0321

Physiological Basis for Yield in the Oil Palm...Carbon Dioxide; Sugar - nonspecific;... 9.0330

Relation of Flowering to Yield in the Oil Palm...Growth and Differentiation; Reproductive Physiology; Sex Ratio; Silves;... 9.0331

Quick Determination of Free Fatty Acid Content in Palm Kernels...Fats - Lipids & Oils; Food Quality; Fruits; Temperature Control;... 9.0340

Breeding & Genetics

Fodder Crop Improvement...Continuous Humid 7 Months; Plus F Generation (F1, F2, F3, Etc); Recurrent Selection; Seed Production;... 3.0119

The Introduction and Selection of High Yielding Varieties of Groundnuts Processing High Oil Content for Northern Ghana...Ciceropora;... 230
Lipids

Lipids

CREATION OF VARIETIES OF GROUNDNUTS RESISTANT TO DISEASE

INTRODUCTION OF ELAEIS MELANOCOCCA - STUDY OF ITS INTERSPECIFIC HYBRID WITH E. GUINEENSIS

BACK CROSS; DISEASE RESISTANCE; Fats - Lipids & Oils; Inter-specific Cross; Marsh.; 4.0290

STUDY THE ROOT SYSTEM OF THE OIL PALM... Cell Wall; Extract Composition; Management; Plant Resistance; Tannin.; 4.0297

PROSPECTION AND INTRODUCTION OF OIL PALMS OF AFRICAN ORIGIN... Disease Resistance; Fats - Lipids & Oils; Fusarium; Management.; 4.0298

IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM... Cocos; Copra; Fats - Lipids & Oils; Management; Reciprocal Recurrent Selection.; 4.0310

PROSPECTING FOR AND INTRODUCTION OF COCONUT PALM... Cocos; Plant Parks Bank.; 4.0311

IMPROVEMENT OF TECHNIQUES FOR PRODUCTION OF HYBRIDS OF COCONUT PALM... Cocos; Pollination by Bees; Seed Production.; 4.0312

FLORAL BIOLOGY OF THE COCONUT PALM... Cocos; Freeze-dry Techniques; Pollination & Fertilization.; 4.0315

STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOSIS... Fungal Resistance; Inoculation; Physiopathology; Selling.; 4.0328

VARIETAL EXPERIMENTAL WORK ON GROUNDNUTS... Ferric Luvisols; Humid 3 Months; Humid 4 Months.; 6.0012

OILSEED PLANT BREEDING - GROUNDNUTS... Humid 3 Months.; 6.0043

IMPROVEMENT OF GROUNDNUTS... Environments; Plant; Fats - Lipids & Oils; Humid 3 Months.; 8.0030

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS... Glycine Max; Management; Seed Bank.; 9.0167

GENETIC VARIATIONS IN SOYA BEANS... Continuous Humid 7 Months; Glycine Max.; 9.0227

HYBRIDIZATION METHOD FOR SOYA BEANS... Continuous Humid 7 Months; Plus; Glycine Max; Hybrid Breeding - nonspecific; Pollination & Fertilization.; 9.0228

SELECTION OF BEAN VARIETIES RESISTANT TO BEAN VIRUSES IN THE FIELD... Glycine Max; Inoculation; Plant Virus -general; Virus Resistance.; 9.0244

IDOLATRICA CHARACTER (OIL PALM)... Hybrid Breeding - nonspecific; Phenotypes; Plant Morphology.; 9.0287

POLLEN STORAGE (OIL PALM)... Deep Freeze Storage; Dry- ing; Pollen; Pollination & Fertilization.; 9.0289

PISIFERA PALM SELECTION... Selling; Sex Ratio.; 9.0290

SHORT-STEMMED OIL PALM... Intergeneric Cross; Palmae other; Phenotypes.; 9.0291

IMPROVEMENT OF YIELD, FRUIT AND BUNCH QUALITY OF THE OIL PALM... Recent Selection.; 9.0313

RESISTANCE TO DISEASE IN THE OIL PALM... Basal Rot; Disease Resistance; Fusarium; Physiopathology; Rhizoconia; Vascular Wilt.; 9.0314

GENE POOL - OIL PALM... Fats - Lipids & Oils.; 9.0315

GENE POOL (COCONUT; RAPHIA, DATE PALMS)... Cocos; Management; Palmae -other; Phoenix; Plant Parts Bank; Taxonomy; Plant.; 9.0316

CONTROL OF CERCOSPORA LEAF SPOT OF THE OIL PALM... Cercospora; Fore; Fungal Resistance; Leaf Spot; Physiopathology.; 9.0326

THE OIL PALM BLAST DISEASE AND ITS CONTROL... Benlate; Fungal Resistance; Irrigation -general; Rhizoconia; Terrachlor; Vapam.; 9.0327

IMPROVEMENT OF THE TECHNOLOGICAL CHARACTERS OF ARACHIS FOR OIL PRODUCTION... Fats - Lipids & Oils; Harvest and Storage; Synthetic Varieties & Blends.; 11.0043

CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (105 DAYS)... Hot Equatorial or Hot Tropical; Intraspecific Crosses.; 11.0044

CREATION OF VARIETIES OF GROUNDNUTS RESISTANT TO DROUGHT... Drought Resistance.; 11.0047

CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE... Disease Resistance; Rosette Disease.; 11.0055

IMPROVEMENT OF SESAME BY HYBRIDATION... Fats - Lipids & Oils; Hybrid Breeding - nonspecific; Sesamum.; 14.0012

CREATION OF "EATING" VARIETIES OF GROUNDNUTS... Nuts & Nutmeats.; 14.0017

COMPARISON OF THE DEVELOPMENT OF THE STANDARD VARIETIES OF GROUNDNUTS AND OF EARLY HYBRID VARIETIES... Drought Resistance; Hybrid Breeding - nonspecific; Precipitation.; 14.0018

ADAPTATION TO THE NORTH OF UPPER-VOLTA OF VARIETIES OF GROUNDNUTS THAT CAN BE SUITABLE FOR SALE AS SHELLED - DELIMITED WEIGHT... Nuts & Nutmeats.; 14.0020

IMPROVEMENT OF THE PRODUCTIVITY OF EARLY GROUNDNUTS... Management.; 14.0024

RESEARCH ON EARLY VARIETIES OF GROUNDNUTS RESISTANT TO ROSETTE... Disease Resistance; Fats - Lipids & Oils; Phytopathology; Rosette Disease.; 14.0025

Harvest and Storage

REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS... Continuous Humid 7 Months;Plus; Crop Production; Harvesting; Management.; 3.0040

GERMINATION PROBLEMS OF EXTENSION WORK OIL PALM SEEDS... Germination; Management.; 9.0329

INTERNAL MARKETING OF PALM OIL AND PALM KERNELS... Marketing; Marketing Organizations; Plant Industries -other; Transportation.; 11.0032

THE WORLD MARKET FOR PALM OIL AND PALM KERNELS... Fats - Lipids & Oils; International Trade; Plant Industries -other; Trends and Cycles.; 11.0034

IMPROVEMENT OF THE TECHNOLOGICAL CHARACTERS OF ARACHIS FOR OIL PRODUCTION... Breeding & Genetics; Fats - Lipids & Oils; Synthetic Varieties & Blends.; 11.0035

GROUNDNUTS ADAPTED TO THE ALTITUDE ZONE OF 900 - 1100 MM OF ANNUAL RAINFALL... Elevational Levels; Altitude; Management; Timing of Planting Procedures.; 14.0093

Management

MINERAL NUTRITION OF HYBRID COCONUT PALMS... Cocos; Humid 6 M.or Less; Magnesium.; 1.0072

INFLUENCE OF IRRIGATION ON THE PRODUCTION OF THE HYBRID DWARF CROSSED WITH LARGE COCONUT PALMS... Cocos; Humid 6 M.or Less; Irrigation; Irrigation -general.; 1.0073

STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM... Cover Crops; Leguminosae; Moisture Deficiency; Panicaceae -other; Two Humid Seasons.; 1.0075

FERTILIZATION OF THE OIL PALM IN FERRALYITIC SOILS ON 'CONTINENTAL TERMINAL' SOILS (TERRES DE BARRE).... Deficiencies; Dystric Nitosols; Light Quantity or Intensity; Rain; Soil Types; Two Humid Seasons.; 1.0078

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM... Catalase; Drought Resistance; Plant Physiology; Two Humid Seasons.; 1.0079

GROUNDNUT IMPROVEMENT PROGRAMME... Disease Resistance; Fats - Lipids & Oils; Russetting; Seed Production; Seed Treatment.; 2.0005

TRIALS WITH NEW CROPS... Glycine Max; Sesamum; Sorghum Vulgare (Grain); Tribicum.; 3.0009

FIELD TRIALS OF SOYA BEAN PRODUCTION... Dry Monsoon 4 to 5 Months; Glycine Max.; 3.0020

COCONUT FERTILIZER TRIAL (NPK MG)... Cocos; Continuous Humid; Magnesium.; 3.0040

COCONUT FERTILIZER TRIAL NP (KGM)... Cocos; Continuous Humid.; 3.0041

COCONUT SPACING TRIAL... Cocos; Continuous Humid; Placement; Space Competition.; 3.0042

COCONUT DEPTH OF PLANTING TRIAL... Cocos; Continuous Humid; Placement; Soil Depth.; 3.0043

COCONUT INTERCROSSING TRIAL... Cocos. Continuous Humid; Intercrossing; Manihot, Oileed Crops.; 3.0044

COCONUT AGE OF SEEDLING TRIAL... Cocos; Continuous Humid.; 3.0045

INTERCROSSING OF SHEEP UNDER PLANTATION CROPS... Citrus; Intercrossing; Mangifera; Persea.; 3.0059

231
Agronomy

SUBJECT INDEX

RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERIES AND NURSERIES... Blast Contagious; Continuous Humid 7 Months; Plus; Nursery Observational Plots; Planting Methods - other; 3.0118

OIL PALM FERTILIZER REQUIREMENTS IN GHANA ... Calcium - Other Than Lime; Continuous Humid 7 Months, Plus; Magnesium; Sand; 3.0120

IMPROVEMENT OF OIL PALM SEED GERMINATION ... Continuous Humid 7 Months, Plus; Dip Application; Germination; Moisture Content; Plants; 3.0121

ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM ... Continuous Humid 7 Months, Plus; Drought Resistance; Epidermis; Moisture Deficiency; Photoperiod; Soil Depth; 3.0122

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES ... Continuous Humid 7 Months, Plus; Drought Resistance; Evapotranspiration; Oilseed Crops; Soil - water-plant Relationships; 3.0123

REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS ... Continuous Humid 7 Months, Plus; Crop Production; Harvesting; Harvest and Storage; 3.0124

OIL PALM SPACING AND DENSITY TRIALS ... Intercropping; Space Competition; 3.0126

POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS ... Continuous Humid 7 Months, Plus; Fertilizer Losses; Multiple Cropping; Production and Processing; Soil and Rock Leaching; Sorghum Vulgare (Grain); 3.0146

THE EFFECT OF LOCAL FARMER'S PRACTICE OF STEPPING ON GROUNDNUTS ... Management Effects on Soils; Seedbed Preparation; Soil Compaction or Density; 3.0165

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS ... Dry Monsoon 5 Months; Plus; Sorghum Vulgare (Grain); Timing of Planting Procedures; 3.0192

THE INTRODUCTION AND SELECTION OF HIGH YIELDING VARIETIES OF GROUNDNUTS PROCESSING HIGH OIL CONTENT FOR SOUTHERN GHANA ... Breeding & Genetics; Cercospora; Dry Monsoon 5 Months, Plus; Fats - Lipids & Oils; Leaf Spot; Rosette Disease; 3.0185

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS ... Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); Timing of Planting Procedures; 3.0192

INTRODUCTION OF EXOTIC PLANTS ... Cocos; Disease Resistance; Insects; Resistance; Phenology; Life Cycle; Plant Parts Bank; Triticeae; 3.0200

USE OF ISOTOPES IN STUDIES ON THE NUTRITION OF GROUNDNUTS ... Broadcast Application; Nitrogen Fixation; Sulfur; 3.0219

STUDIES ON THE NUTRITION OF GROUNDNUTS (ARACHIS HYPOGAEA L.) ... Deficiencies; Nitrogen; Placement; 3.0225

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid; Glycine Max; 3.0412

STUDY OF INOCULATIONS OF RHIZOBium ON SOYA ... Continuous Humid; Inoculation; Nitrogen Fixation; Rhizobium; Soil Microbiology; 3.0198

VARIETAL EXPERIMENT WORK ON SOYA ... Glycine Max; Humid 5 Months; Multiple Cropping; 3.0211

VARIETAL EXPERIMENT WORK ON SOYA ... Ferralic Cambisol; Glycine Max; Multiple Cropping; Two Humid Seasons 7 Months, Plus; 3.0218

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid 7 Months, Plus; Glycine Max; Multiple Cropping; 3.0222

IMPROVEMENT OF THE MASCUJLINITY OF ELAEIS PISIFERA ... Hormones; Moisture Deficiency; Mulches; Parthenocarpic; Space Competition; 3.0260

FERTILIZATION OF OIL PALM ON TERTIARY FERRALICYT SANDS ... Ferralsols; Fertilizer; Magnesium; Sand; 3.0291

FERTILIZATION OF OIL PALM ON FERRALICYT SOILS THAT HAVE COME FROM GRANITE ... Ferralsols; Soil Types; 3.0292

STUDY THE INFLUENCE OF THE ANIONS SO4 AND CL IN THE FERTILIZATION OF THE OIL PALM ... Chlorine; Magnesium; Sulfates; Sulfur; 3.0293

STUDY THE BEST TIME FOR APPLICATION AND FOR FRACTIONATED MANURING OF THE OIL PALM ... Seasonal Application; 3.0294

OIL PALM - STUDY OF MINERAL BALANCES ... Greenhouses; Minerals; Plants; 3.0303

OIL PALM - STUDY OF THE ROOT SYSTEM OF THE OIL PALM ... Breeding & Genetics; Cell Wall; Extract Composition; Plant Resistance; Tannin; 3.0307

STUDY THE NUTRITION OF THE OIL PALM IN WATER ... Irrigation; Irrigation - general; Moisture Deficiency; 3.0308

STUDY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL ... Calcium; Deficiencies; Phosphorus; Sulfur; 3.0309

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS ... Blast; Interaction with Environment; Nutritional Regulation (Host); Pricking Out; Temperature - air; 3.0300

REGENERATION OF SOILS AND FERTILIZATION IN THE PLANTATION OF OIL PALMS ... Cover Crops; Organic Fertility; Trifolium - other; 3.0301

STUDY OF CASTRATION OF THE OIL PALM ... Extract Composition; Fats - Lipids & Oils; 3.0303

STUDY OF THE CHARACTERISTICS OF THE RACEME AND OF THE FRUIT OF THE OIL PALM TREE ... Harvest and Storage; 3.0308

PROSPECTION AND INTRODUCTION OF OIL PALMS OF AFRICAN ORIGIN ... Breeding & Genetics; Disease Resistance; Fats - Lipids & Oils; Fusarium; 3.0309

IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM ... Breeding & Genetics; Cocos; Copra; Fats - Lipids & Oils; Reciprocal Selection; 3.0310

FERTILIZATION OF THE COCONUT PALM - FERRALICYT SOILS ON TERTIARY SANDS ... Chlorine; Deficiencies; Growth Stage of Plants; 3.0313

FERTILIZATION OF THE COCONUT PALM ON LITTORAL FERRALICYT SOILS ... Calcium - Other Than Lime; Chlorine; Cocos; Ferralsols; Magnesium; Sand; 3.0314

STUDY OF K/MG BALANCE IN THE MANURING OF THE COCONUT PALM ... Cocos; Fertilizer Toxicity; Magnesium; 3.0316

STUDY OF CALCIUM IN THE FERTILIZATION OF THE COCONUT PALM ... Calcium - Other Than Lime; Cocos; Magnesium; 3.0318

STUDY OF THE ROLE OF THE ANIONS SO4 AND CL IN THE FERTILIZATION OF THE COCONUT PALM ... Chlorine; Deficiencies; Nitrates; Sulfates; 3.0319

STUDY FORMS OF NITROGENOUS FERTILIZERS FOR THE COCONUT PALM ... Cocos; Nursery Observational Plots; 3.0320

STUDY FORMS OF PHOSPHATE FERTILIZERS FOR THE COCONUT PALM ... Calcium; Cocos; Fertilizer Toxicity; Fluorine; Formulation; Fertilizer; Phosphates; 3.0321

STUDY THE TIME OF APPLICATION AND FRACTIONATION OF MANURINGS FOR THE COCONUT PALM ... Chlorine; Magnesium; Movement; Availability; Sulfur; 3.0322

STUDY THE ROLE OF TRACE ELEMENTS IN THE NUTRITION OF THE COCONUT PALM ... Boron; Copper; Manganese; Sand; 3.0323

STUDY THE ROOT SYSTEM OF THE COCONUT PALM ... Cocos; Growth Stage of Plants; 3.0324

STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM ... Cocos; Germination; Humidity; Storage; Temperature - air; 3.0325

STUDY OF DENSITY AND PLANTATION ARRANGEMENT FOR COCONUT PALM ... Cocos; Placement; Space Competition; 3.0326

FERTILIZATION ON GROUNDNUTS AND ITS RESIDUAL EFFECTS ... Ferric Luvic; Fertilizer Accumulation; Humid 3 Months; Humid 4 Months; Sorghum Vulgare (Grain); 6.0018

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO K ... Ferric Luvic; Humid 4 Months; Luvic Arenosols; Plant Residues - other; Sorghum Vulgare (Grain); 6.0018

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS ... Ferric Luvic; Humid 4 Months; Luvic Arenosols; Removal of Nutrients from Soil; 6.0020

RESEARCH ON FERTILIZATION OF GROUNDNUTS ... Ferric Luvic; Humid 4 Months; Luvic Arenosols; Plant Residues - other; Sorghum Vulgare (Grain); 6.0021

POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE ... Ferric Luvic; Humid 4 Months; Luvic Arenosols; 6.0022

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESMA (MALI) ON ANNUAL CROPS ... Calcic Regosols; Fallowing; Sorghum Vulgare (Grain); 6.0023
SUBJECT INDEX

Agriculture

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMS (MALI) ON ANNUAL CROPS . . . Fallowing; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Sorghum Vulgare (Grain); . . . 6.0029

STUDY OF THE EFFECTS OF TILLAGE . . . Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Management Effects on Soils; Soil Tillage; . . . 6.0030

INTER-RELATION BETWEEN SOIL PREPARATION AND LEVEL OF FERTILIZATION . . . Fertilizer Accumulation; Humid 3 Months; Management Effects on Soils; Soil Preparation & Renovation; . . . 6.0146

RESEARCH ON FERTILIZATION OF GROUNDNUTS . . . Humid 4 Months; Plant Residues -other; Sorghum Vulgare (Grain); . . . 6.0048

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN . . . Humid 1 Month; Setaria; . . . 6.0053

POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE . . . Humid 1 Month; . . . 6.0055

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMS (MALI) ON ANNUAL CROPS . . . Fallowing; Ferric Luvisols; Humid 4 Months; Rain; Sorghum Vulgare (Grain) of Fertilizer; . . . 6.0070

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS . . . Ferric Luvisols; Humid 4 Months; Removal of Nutrients from Soil; . . . 6.0072

STUDY OF THE SYSTEMS OF WORKING OF SOILS . . . Fallowing; Management Effects on Soils; Organic Fertility; Sorghum Vulgare (Grain); . . . 6.0076

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS . . . Breeding & Genetics; Glycine Max; Seed Bank; . . . 9.0167

COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS . . . Chemical Tillage or No-tillage; Continuous Humid 7 Months; Plus; Ferralic Cambisols; Ferric Luvisols; Glycine Max; Minimum Tillage; . . . 9.0173

COWPEA AND SOYBEAN FERTILIZATION . . . Continuous Humid 7 Months,Plus; Ferralic Cambisols; Ferric Luvisols; Glycine Max; . . . 9.0174

PLANT DENSITY ON COWPEAS AND SOYBEANS . . . Continuous Humid 7 Months,Plus; Ferralic Cambisols; Ferric Luvisols; Glycine Max; Space Competition; . . . 9.0175

SOIL MICROBIOLOGY . . . Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides -non-specific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; . . . 9.0179

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT BEANS) UNDER IBADAN CONDITIONS . . . Continuous Humid 7 Months,Plus; Dolicchio; Glycine Max; Leguminosae -other; Phaseolus; Seed Bank; . . . 9.0226

POTASSIUM IN THE SOILS OF THE NIGERIAN OIL PALM BELT . . . Clay; Movement, Availability; Sand; . . . 9.0232

SOIL MOISTURE AND THE GROWTH OF THE OIL PALM IN THE ACID SAND SOILS OF SOUTHERN NIGERIA . . . Clay; Paasm; Sand; . . . 9.0294

SOIL ACIDITY AND THE GROWTH OF THE OIL PALM . . . Foliar Application; Lime; Sand; Soil pH; Trace Metals; . . . 9.0295

TRACE ELEMENTS IN THE NUTRITION OF THE OIL PALM . . . Boron; Copper; Movement, Availability; Sand; Trace Metals; . . . 9.0296

EXPERIMENT 9-2 - TRACE ELEMENT EXPERIMENT . . . Boron; Foliar Application; Molybdenum; Zinc; . . . 9.0303

EXPERIMENT 9-3 - FREQUENCY AND FORM OF POTASH FERTILIZER EXPERIMENT . . . Formulation, Fertilizer; . . . 9.0304

EXPERIMENT 9-4 - POLYBAG NURSEY EXPERIMENT (FIELD STAGE) . . . Nursery Observational Plots; Planting Methods -other; . . . 9.0305

EXPERIMENT 180-1 - FACTORIAL FERTILIZER EXPERIMENT . . . Magnesium; Seasonal Application; . . . 9.0306

EXPERIMENT 508-2 - Magnesium; Seasonal Application; . . . 9.0307

EXPERIMENT 768-1 - FIELD IRRIGATION OF OIL PALMS . . . Irrigation; Irrigation -general; Moisture Levels, Mulches; . . . 9.0308

EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM . . . Phosphorus; Placement; Rubidium; Soil Types; . . . 9.0311

LEAF ANALYSIS IN THE DIAGNOSIS OF THE NUTRITIONAL REQUIREMENTS OF THE OIL PALM . . . Fertilizer Technology; . . . 9.0312

GENE POOL (COCONUT, RAPHIA, DATE PALMS) . . . Breeding & Genetics; Cocos; Palmae -other; Phoenix; Plant Parks Bank; Taxonomy, Plants; . . . 9.0316

MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM . . . Dormancy; Germination; Growth Substances; Plant Growth Regulators; Sorghum Vulgare (Grain); . . . 9.0328

GERMINATION PROBLEMS OF EXTENSION WORK OIL PALM SEEDS . . . Germination; Harvest and Storage; . . . 9.0329

INOCULATION OF SOYA BEAN SEEDS . . . Glycine Max; Inoculation; Rhizobium; . . . 11.0030

THE MOST FAVOURABLE CROPPING TECHNIQUES FOR THE NODULATION OF GROUNDNUTS . . . Fats - Lipids & Oils; Inoculation; Lime; Proteins; Yellow Dwarfing; . . . 11.0031

EXPLOITATION OF GROUNDNUTS AS A FORAGE CROP . . . Forage, Pasture or Range; Humid 2 Months; . . . 11.0035

CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING . . . Humidity; Sand; Seedbed Preparation; Soil Preparation & Renovation; Surface Irrigation -general; . . . 11.0042

GROWTH AND MATURATION OF GROUNDNUTS IN SANDY SOIL . . . Phenology, Life Cycle; Sand; . . . 11.0045

MEASUREMENT OF THE MINERAL UPTAKE OF EACH OF THE PRINCIPAL FOOD CROPS OF SENEGAL (MILLET, MAIZE, RICE, GROUNDNUTS, SORGHUM) . . . Calcium; Magnesium; Nitrogen; Potassium; Sorghum Vulgare (Grain); . . . 11.0049

MOISTURE BALANCE Beneath Cut Crops, Bare Soil and Fallow . . . Cover Crops; Fallowing; Humidity; Soil - Bare; Soil-water-plant Relationships; . . . 11.0066

STUDY OF THE ACCIDIFICATION OF CULTIVATED SOILS IN SENE­ GAL AND DETERMINATION OF THE REQUIREMENTS IN LIME . . . Cambic Arenosols; Lime; Soil pH; . . . 11.0067

FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS . . . Glycine Max; Irrigation -general; Lime; Nitrogen; Nitrogen Fixation; Phosphorus; . . . 11.0074

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED 'WITHDRAWAL' EXPERIMENTS, IN A CROP ROTATION WITH COTTON . . . Dystic Gleysols; Humid 3 Months; Luvisols; Sorghum Vulgare (Grain); . . . 11.0166

THE TOGO PHOSPHATE AS AN ANNUAL FERTILIZATION . . . Costs; Dry Monsoon 5 Months, Plus; Ferric Luvisols; Sorghum Vulgare (Grain); . . . 11.0168

TILLAGE AND FERTILIZATION . . . Dry Monsoon 5 Months, Plus; Ferric Luvisols; Plowing; Sorghum Vulgare (Grain); . . . 13.0028

STUDY OF THE POTENTIALITY OF SOILS . . . Dry Monsoon 5 Months, Plus; Ferric Luvisols; Movement, Availability; Sorghum Vulgare (Grain); . . . 13.0029

EXPERIMENT DURATION OF FALLOW . . . Fallowing; Phaseolus; Sand; . . . 13.0048

CULTIVATION OF GROUNDNUTS IN ANACARDIUM (CASHEW NUT) PLANTATION DURING THE FIRST FEW YEARS OF DEVELOPMENT OF THE TREE . . . Costs; Inter-cropping; Sesamum; . . . 14.0013

UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS . . . Glycine Max; Irrigation -general; Lycopersicum; Multiple Cropping; Sesamum; . . . 14.0011

VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS . . . Cajanus; Fallowing; Sesamum; Solanum; . . . 14.0013

CONTINUOUS CROP Rotation WITH MANURE . . . Cercopora; Chlorosis; Fallowing; Leaf Spot, Manure; Phytopathology; . . . 14.0014

BEHAVIOUR OF GROUNDNUTS ROTATED WITH SOYA AND SESAME ON THE VIRGIN SOILS OF THE VALLEY OF THE VOLTAS . . . Glycine Max; Sesamum; Soil Types; . . . 14.0019

CULTIVATION TECHNIQUES FOR SESAME . . . Planting Methods -other; Row Application, Sesamum; Side Dressing; . . . 14.0021

GROUNDNUTS ADAPTED TO THE ALTITUDE ZONE OF 900-1100 MM OF ANNUAL RAINFALL . . . Elevational Levels, Altitude; Harvest and Storage; Timing of Planting Procedures; . . . 14.0023

IMPROVEMENT OF THE PRODUCTIVITY OF EARLY GROUNDNUTS . . . Breeding & Genetics; . . . 14.0024

Phytopathology

FUNICIDE SPRaying TRIALS IN NURSERY AND FIELD . . . Cercopora; Economics of Chemical Control; Forturf; Mode of Action; . . . 3.0115

233
Agronomy

NUTRIENT DETERMINATION IN THE MATURE SEEDS OF DIFFERENT VARIETIES OF BEANS... Extract Composition; Globulins; Phaseolus;... 9.0200

THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL... Continuous Humid 7 Months,Plus; Nitrogen Fixation; Pesticidal Interaction;... Simazine; Toxicity to Microorganisms;... 9.0216

A STUDY OF THE CONTRIBUTION OF FIXED NITROGEN TO THE NUTRITION OF COWPEA (VIGNA UNGUICULATA)... Continuous Humid 7 Months,Plus; Inoculation; Nitrogen Fixation; Rhizobium;... 9.0218

CLASSIFICATION OF BEAN (COWPEA) VARIETIES INTO SUB-SPECIES AND GROUPS... Seed Bank; Taxonomy, Plant;... 9.0222

Breeding & Genetics

VARIETAL IMPROVEMENT OF COWPEA... Disease Resistance; Plant Parts Bank;... 3.0007

GENETICS OF COWPEA - VIGNA UNGUICULATA... Electrophoresis; Mutation;... 9.0203

IMPROVEMENT OF VIGNA UNGUICULATA UNSUSCEPTIBLE TO PHOTOPERIODICITY... Drought Resistance; Humid 3 Months;... 3.0029

INHERITANCE STUDIES IN COWPEA (VIGNA UNGUICULATA)... Colletotrichum; Fungal Resistance; Metabolic Expression; Resistant Trait;... 9.0039

VARIETAL IMPROVEMENT (BREEDING) OF GRAIN LEGUMES...continuous Humid 7 Months,Plus; Leguminosae; Nutritive Values -plant; Seed Bank;... 9.0166

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS... Glycine Max; Management; Seed Bank;... 9.0225

SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARACTERS... Breeder Stock;Continuous Humid 7 Months, Plus; Hybrid Breeding -nonspecific;... 9.0223

PRODUCTION OF BEAN (COWPEA) HYBRIDS... Continuous Humid 7 Months,Plus; Hybrid Breeding -nonspecific; In-determinate;... 9.0225

SCREENING OF GERMLASM FOR INSECT RESISTANCE... Insect Resistance; Olethreutidae; Phycitidae; Pulse Crops;... 9.0266

CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE... Humid 4 Months; Rosette Disease;... 11.0155

CREATION OF 'EATING' VARIETIES OF GROUNDNUTS... Nuts & Nutmeats;... 14.0017

ADAPTATION TO THE NORTH OF UPPER-VOLTA OF VARIETIES OF GROUNDNUTS THAT CAN BE SUITABLE FOR SALE AS SHHELLED - DELIMITED WEIGHT... Nuts & Nutmeats;... 14.0020

Harvest and Storage

HARVESTING IN RELATION TO COWPEA YIELDS... Continuous Humid 7 Months,Plus; Ferralic Cambisols; Ferric Luvisols;... 9.0172

Management

WEED CONTROL IN COWPEA... Phytotoxicity; Preoran; Pulse Crops; RP 17623; Trifluralin;... 3.0008

POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS... Continuous Humid 7 Months,Plus; Fertilizer Losses; Multiple Cropping; Production and Processing; Soil and Rock Leaching; Sorghum Vulgare (Grain);... 3.0016

TOMATO - COWPEA Rotation... Continuous Humid 7 Months,Plus; Crop Rotation; Cropping System; Lycopersicum; Plant Nematodes -nonspecific;... 3.0151

COWPEA INVESTIGATION... Continuous Humid 7 Months,Plus; Disease Resistance; Insect Resistance; Ornith Acrits; Timing of Planting Procedures;... 3.0153

SPACING ON 4 COWPEA VARIETIES... Space Competition;... 3.0166

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS... Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); Timing of Planting Procedures;... 3.0181

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS... Dry Monsoon 5 Months, Plus; Sorghum Vulgare (Grain); Timing of Planting Procedures;... 3.0192

CROPS SEQUENCE TRIAL... Disease Resistance; Fallowing; Moist Monsoon 0 to 3 Months;... 3.0200

FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA... Irrigation -general; Ni-
troges Fixation; Phosphorus; Soil pH; Timing of Application -other; . . . 3.0218

EFFECT OF PLOUGHING AND FERTILIZER APPLICATION ON THE YIELD OF CROPS (MAIZE, CASSAVA AND COWPEAS) . . . Deep Plowing; Management Effects on Soils; Manihot; Plowing; Soil Depth; . . 3.0226

WATER REQUIREMENTS OF IRRIGATED CROPS . . . Humid 1 Month; Irrigation -general; Soil Moisture; . . 7.0002

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS . . . Breeding & Genetics; Glycine Max; Seed Bank; . . 9.0167

PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA . . . Chrysomelidae; Ferri Lusivols; Insect Resistance; Pesta; Seed Bank; Systemic Application; . . 9.0171

COWPEA AND SOYBEAN FERTILIZATION . . . Continuous Humid 7 Months, Plus; Ferralic Cambisols; Ferriv Luvivols; Glycine Max; . . 9.0174

PLANT DENSITY ON COWPEAS AND SOYBEANS . . . Continuous Humid 7 Months, Plus; Ferralic Cambisols; Ferriv Luvivols; Glycine Max; Space Competition; . . 9.0175

SOIL MICROBIOLOGY . . . Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides -nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; . . 9.0179

EVALUATION OF THE NUTRITIVE QUALITY OF BEANS . . . Feed Proteins & Amino Acids; Nutritive Value of Food; Phaseolus; Vegetable & Vegetable Products; . . 9.0207

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT BEANS) UNDER IBADAN CONDITIONS . . . Continuous Humid 7 Months, Plus; Dolichos; Glycine Max; Legumineae -other; Phaseolus; Seed Bank; . . 9.0226

PHOSPHATE PLACEMENT TRIAL . . . Broadcast Application; Ferric Acrosols; Rain; . . 9.0251

APPLICATION OF RADIOTRACER TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS . . . Continuous Humid 7 Months, Plus; Ferric Acrosols; Ferriv Luvivols; Movement, Availability; Phosphorus; . . 9.0253

LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FUNDAMENTALLY DIFFERENT FARMING SYSTEMS . . . Compost; Continuous Humid 7 Months, Plus; Ferric Acrosols; Manure; . . 9.0254

FORAGE CROP EXPERIMENTATION . . . Chlorideae -other; Hot Equatorial or Hot Tropical; Mucuna; Panicum; Sorghum Variag (Forage); . . 11.0002

RESEARCH ON VARIETIES OF VIGNA UNGUICULATA WITH GOOD RESPONSE TO INTENSIVE TECHNICS (WATER, FERTILIZERS) . . . Hot Equatorial or Hot Tropical; Soil Moisture; . . 11.0003

WATER REQUIREMENTS OF IRRIGATED CROPS . . . Irrigation - general; Lysimeters; Nuclear Moisture Meters; Soil Moisture; Sorghum Variag (Grain); . . 11.0004

STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES OF PLANTS (EXCEPT BEANS) . . . Labor Input; Soil Tillage Methods -other; Sorghum Variag (Grain); Time & Motion Studies; . . 11.0053

EXPERIMENT DURATION OF FALLOW . . . Fallowing; Phaseolus; Sand; . . 13.0048

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM . . . Breeding & Genetics; Ferriv Luvivols; Heterosis; Male Sterility; Sorghum Variag (Grain); . . 14.0058

Phytopathology

NEMATOLOGICAL STUDY OF CHLOROSIS OF LEGUMINOUS PLANTS AND OF STUNTING ("CLUMP") OF GROUNDNUTS IN UPPER VOLTA . . . Cajanus; Chlorosis; Leguminosae -other; Stunt Diseases; Tylenuchoidea; . . 4.0073

GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS . . . Cercospora; Disease Resistance; Diseases; Fungicides -nonspecific; Plant Nematodes -nonspecific; . . 9.0168

STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L WALT)) . . . Blight Diseases; Dippers; Pulse Crops; Vectors; Xanthomonas; . . 9.0215

STUDIES ON BEAN (COWPEA) VIRUS DISEASES AND THE COLLECTION AND RE-ESTABLISHMENT OF INFECTIVE CULTURES . . . Isolation of Viruses; Plant Virus -general; Virus Resistance; . . 9.0246

CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS . . . Cajanus; Chlorosis; Glycine Max; Nemagon; Tephrosia; Tylenuchoidea; . . 14.0015

Subject Index

Range Management

Forest Grazing

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE . . . Cover Crops; Humid 1 Month; Luvic Arenosols; Orthic Solonetze; Vertic Cambisols; . . 14.0007

Management

BASED SLAG AND SINGLE SUPERSPHOSPHATE AS PHOSPHATIC FERTILIZERS . . . Continuous Humid 7 Months, Plus; Ferric Acrosols; Soil pH; . . 9.0252

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE . . . Cover Crops; Humid 1 Month; Luvic Arenosols; Orthic Solonetze; Vertic Cambisols; . . 14.0007

Seed Production

GROUNDNUT IMPROVEMENT PROGRAMME . . . Disease Resistance; Fats - Lipids & Oils; Management; Russetting; Seed Treatment; . . 2.0005

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. . . Fibers; Humid 7 Months; Management; Surface-soil; . . 3.0068

SELECTION OF PROVISONAL PLUS TREES . . . Cedrela; Terminalia; Tree Breeding; Triplochiton; Variation and Selection; . . 3.0082

ESTABLISHMENT OF CLONAL SEED ORCHARDS . . . Cedrela; Silviculture; Terminalia; Triplochiton; Variation and Selection; . . 3.0084

PODDER CROP IMPROVEMENT . . . Breeding & Genetics; Continuous Humid 7 Months, Plus; F Generation (F1, F2, F3, F4); Recurrent Selection; . . 3.0119

EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS CANNABINUS L. . . Continuous Humid 7 Months, Plus; Germination; Low Temp; Above 0 C; Storage; . . 3.0142

BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM . . . Breeding & Genetics; Interspecific Cross; Metabolic Expression; Parthenocarpy; . . 4.0054

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEAS OR) BY GENERATIVE MEANS . . . Breeding & Genetics; C PAGE & Bev; Ferric Acrosols; Genetics; Management; Two Humid Season-7 Month, Plus; Weathering Resistance; . . 4.0104

IMPROVEMENT OF THE COFFEE-SHRUB (C.CANEA) OR) BY GENERATIVE MEANS . . . Breeding & Genetics; C PAGE & Bev; Management; Weathering Resistance; . . 4.0123

IMPROVEMENT OF TECHNOLOGIES FOR PRODUCTION OF HYBRIDS OF COCONUT PALM . . . Breeding & Genetics; Coco; Pollination by Bees; . . 4.0312

SOIL CONSERVING CROPS . . . Cajanus; Continuous Humid 7 Months, Plus; Disease Resistance; Ferric Cambisols; Forag Grasses; Pasteur, Range; Insect Resistance; Panicaceae -other; Pueraria; . . 9.0185

Breeders Stock

COLLECTION OF VARIETIES FOR THE PLUVIAL RICE FIELDS . . . Cereal Crops; Gramicieae; Insect Resistance; Piri­ lucaria; Seed Bank; . . 4.0160

SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARACTERS . . . Breeding & Genetics; Continuous Humid 7 Months, Plus; Hybrid Breeding -nonspecific; . . 9.0223

STUDY AND IMPROVEMENT OF LOCAL MAIZE VARIETIES . . . Breeding & Genetics; Recurrent Selection; Synthetic Varieties & Blends; . . 9.0235

IMPROVEMENT OF VARIETIES OF COTTON (BARBADENSE) GROWN IN ASSOCIATED CULTIVATION . . . Breeding & Genetics; Pedigree; . . 13.0033

Foundation Seed

GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION . . . Centrosena; Panicum; Seratia; . . 3.0022

Management

TECHNIQUES FOR PRODUCTION OF RICE SEEDS OF GOOD GERMINATIVE QUALITY . . . Cereal Crops; Continuous Humid; Humidity; Irrigation -general; . . 4.0170

CHEMICAL CONTROL MEASURES AGAINST PIRICLARIA ORYZAEE . . . Continuous Humid; Inoculation; Phytopathology; Pirciarolirous; . . 4.0190

235
Agronomy SUBJECT INDEX

Sugar Crops

Breeding & Genetics

<table>
<thead>
<tr>
<th>Variety</th>
<th>Experiments</th>
<th>Location</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibiscus</td>
<td>On sugar-cane</td>
<td>Eutric Cambisols</td>
<td>Humid 4 Months, Plus; Saccharum; Vertic Cambisols</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
<th>Material</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugarcane agronomy on the black soils of the Accra Plains</td>
<td>Blends; Growth rate of plants</td>
<td>Saccharum; Simazine; Space competition; Sulfates</td>
<td>...3.0006</td>
</tr>
<tr>
<td>NPK factorials - Fertilizer trial in sugarcane</td>
<td>Formulation, Fertilizer; Irrigation; Irrigation -general</td>
<td>Saccharum; Two Humid Seasons-7 Month, Plus</td>
<td>...3.0112</td>
</tr>
<tr>
<td>Treatment of sugarcane planting method</td>
<td>Dip application; Pesticides; Other</td>
<td>Saccharum; Two Humid Seasons-7 Month, Plus; Water</td>
<td>...3.0113</td>
</tr>
<tr>
<td>Sugarcane variety studies</td>
<td>Excessive moisture; Saccharum</td>
<td>Two Humid Seasons-7 Month, Plus</td>
<td>...3.0114</td>
</tr>
<tr>
<td>Type of planting material and spacing trials in sugarcane</td>
<td>Chemical weed control</td>
<td>Saccharum; Space competition; Two Humid Seasons-7 Month, Plus</td>
<td>...3.0115</td>
</tr>
<tr>
<td>Chemical weed control in sugarcane</td>
<td>Fenc; Grasses or Sedges; Pesticides; Other</td>
<td>Saccharum; Sugar crops</td>
<td>...3.0116</td>
</tr>
<tr>
<td>Sugarcane agronomic investigations</td>
<td>Continuous Humid 7 Months, Plus; Insect resistance; Saccharum</td>
<td>...3.0114</td>
<td></td>
</tr>
<tr>
<td>Choice of the best imported varieties of sorghum</td>
<td>Humid 3 Months; Sorghum Vulgare (Syrup)</td>
<td>...6.0039</td>
<td></td>
</tr>
<tr>
<td>Experimental agronomic work on sugar-cane (Canna)</td>
<td>Eutric Cambisols; Humid 1 Month; Saccharum; Vertic Cambisols</td>
<td>...8.0022</td>
<td></td>
</tr>
<tr>
<td>Sugarcane nitrogen fertilizer trial</td>
<td>Saccharum; Sulfaes</td>
<td>...9.0001</td>
<td></td>
</tr>
<tr>
<td>Sugarcane herbicide trial</td>
<td>D, 2, 4-; Diuron; Pre-emerge application; Preplant application; Sugar crops</td>
<td>...9.0002</td>
<td></td>
</tr>
</tbody>
</table>

Phytopathology

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Material</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies on plant parasitic nematodes associated with economic crops in Ghana</td>
<td>Cocoa; Mangifera; Nicotiana; Saccharum</td>
<td>...3.0127</td>
<td></td>
</tr>
<tr>
<td>Investigations into the control of sugarcane nematodes</td>
<td>Burning or flaming; Molasses</td>
<td>Saccharum; Sugar derivatives</td>
<td>...3.0129</td>
</tr>
<tr>
<td>Survey and assessment of the smut and blast diseases of sugarcane</td>
<td>Blast; Fungal resistance; Saccharum; Smuts; Surveys; Ustilaginales</td>
<td>...9.0240</td>
<td></td>
</tr>
<tr>
<td>Reduction of sugarcane mosaic virus</td>
<td>Detection & diagnostic; Indicator organisms; Mosaic viruses</td>
<td>...9.0245</td>
<td></td>
</tr>
</tbody>
</table>

Tobacco Crops

Management

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
<th>Material</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer trials on flue, fire and air cured tobacco</td>
<td>Continuous Humid 7 Months, Plus; Curing technique; Nicotiana</td>
<td>...3.0143</td>
<td></td>
</tr>
<tr>
<td>Air cured tobacco variety trial</td>
<td>Continuous Humid 7 Months, Plus; Curing technique; Nicotiana</td>
<td>...3.0144</td>
<td></td>
</tr>
<tr>
<td>Effect of time of land preparation and planting on yield quality of flue cured tobacco</td>
<td>Continuous Humid 7 Months, Plus; Nicotiana</td>
<td>...3.0145</td>
<td></td>
</tr>
<tr>
<td>Possible second season cash crop for flue cured tobacco farmers</td>
<td>Continuous Humid 7 Months, Plus; Fertilizer losses; Multiple cropping; Production and processing; Soil and Rock Leaching; Sorghum Vulgare (Grain)</td>
<td>...3.0146</td>
<td></td>
</tr>
<tr>
<td>Fire cured tobacco variety trial</td>
<td>Continuous Humid 7 Months, Plus; Nicotiana</td>
<td>...3.0147</td>
<td></td>
</tr>
<tr>
<td>Tobacco sucker control with chemicals</td>
<td>Continuous Humid 7 Months, Plus; Growth retardation of plants; Maleic hydrazide; Nicotiana; Off-shoot T</td>
<td>...3.0148</td>
<td></td>
</tr>
<tr>
<td>Crops sequence trial</td>
<td>Disease resistance; Fallowing; Moist Monsoon 0 to 3 Months</td>
<td>...3.0200</td>
<td></td>
</tr>
</tbody>
</table>

Phytopathology

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Material</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies on plant parasitic nematodes associated with economic crops in Ghana</td>
<td>Cocoa; Mangifera; Nicotiana; Saccharum</td>
<td>...3.0127</td>
<td></td>
</tr>
<tr>
<td>Investigation into the biology and control of root-knot nematodes on some crops</td>
<td>Continuous Humid 7 Months, Plus; Culturing techniques; DD; Nematode; Nicotiana; Population dynamics</td>
<td>...3.0128</td>
<td></td>
</tr>
</tbody>
</table>

Air - Water - Plant Relations

See Soil Physical Properties

Soil Structure

See Alachlor

See Amusan

See Herbicides

Albumin

See Proteins

Alcoholic Beverages

See Food Science and Technology

Aldrex

See Pesticides

Aldrin

See Pesticides

Aleyrodidae

See Insects

Alternaria

See Fungi

236
SUBJECT INDEX

Animal Pathology

Bacteriology
- Studied into skin diseases of farm animals...
 (Bacteriology, Mycosis, Skin or Special Derivatives, Streptothricosis; Veterinary Medicine; . . . 3.0055

Blindness
- nonspecific
 Bovine Ocular Thelaziosis - Treatments...
 Bovine Ocular Thelaziosis; Cyansides; Muscidae; Tetramisole; Veterinary Medicine; . . . 11.0087
 Bovine Ocular Thelaziosis - Aetiology...
 Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscidae; Veterinary Medicine; . . . 11.0088

Botulism
- Infections and Intoxications ("Toxi-infections") caused by anaerobic bacteria - Botulism...
 Bacterial Toxins; Clostridia; Etiology; Pathology - mammal; Toxoid Vaccine; Water Environment; . . . 11.0109

Bovine Foetal Hepatocytes
- The obtaining of cell lines necessary to supply the requirements for the production of vaccines and for diagnostic purposes...
 Diagnosis; Fetus; Urogenital System; Viral Vaccines; . . . 11.0102

Bovine Keratitis
- Bovine Ocular Thelaziosis - Treatments...
 Blindness - nonspecific; Bovine Ocular Thelaziosis; Cyansides; Muscidae; Tetramisole; Veterinary Medicine; . . . 11.0087
 Bovine Ocular Thelaziosis - Aetiology...
 Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscidae; Veterinary Medicine; . . . 11.0088

Bovine Ocular Thelaziosis
- Bovine Ocular Thelaziosis - Treatments...
 Blindness - nonspecific; Bovine Ocular Thelaziosis; Cyansides; Muscidae; Tetramisole; Veterinary Medicine; . . . 11.0087
 Bovine Ocular Thelaziosis - Aetiology...
 Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscidae; Veterinary Medicine; . . . 11.0088

Bovine Pleuropneumonia
- Bovine Pleuropneumonia - Establishment of a freeze-dried, heat-resistant vaccine...
 Bacterial Vaccine; Freeze-dry Techniques; Immunity; Pneumonia; Thiosulfates; Veterinary Medicine; . . . 11.0103
 Bovine Pleuropneumonia - Pathogenesis...
 Bacterial Toxins; Immunity; Pleuropneumonia Group; Veterinary Medicine; . . . 11.0106
 Bacterial Vaccines - Establishment - Improvement...
 Bacterial Vaccine; Haemorrhagic Septicaemia; Hemorrhagic; Pleuropneumonia Group; . . . 11.0111

Brucellosis
- Vibriosis - Epidemiological Survey...
 Epidemiology of Disease; Globulins; Vagina; Veterinary Medicine; Vibrio Fetus; Vibrio; . . . 11.0109
- Brucellosis - Epidemiological Survey...
 Brucella; Epidemiology of Disease; Hygromas Bursitis; . . . 11.0110

Coccidiosis
- Gastro-intestinal parasitism in the red goat...
 Coccidia; Digestive Diseases - animal; Feces; Malnutrition; Strongyloids; Treatment; . . . 8.0006
 Disease Resistance of Local Chickens...
 Breeding & Genetics; Coccidiodes; Disease Resistance; Leucosis; Veterinary Medicine; . . . 9.0029

Conjunctivitis
- Bovine Ocular Thelaziosis - Treatments...
 Blindness - nonspecific; Bovine Ocular Thelaziosis; Cyansides; Muscidae; Tetramisole; Veterinary Medicine; . . . 11.0087
 Bovine Ocular Thelaziosis - Aetiology...
 Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscidae; Veterinary Medicine; . . . 11.0088

Demodicosis
- Studies into skin diseases of farm animals...
 Demodicosis, Mycosis, Skin or Special Derivatives, Streptothricosis; Veterinary Medicine; . . . 3.0055

Digestive Diseases
- other
 Respiratory and digestive diseases of small ruminants - Aetio-pathogenesis...
 Etiology; Pasteurella; Pneumonia; Respiratory System; . . . 11.0107

Equine Encephalomyelitis
- Equine Encephalomyelitis - Aetiology, Epidemiology, Pathology...
 Etiology; Horses; Picornaviruses; Veterinary Entomology; . . . 11.0100

Forage Disease
- Infections and Intoxications ("Toxi-infections") caused by anaerobic bacteria - Botulism...
 Bacterial Toxins; Clostridia; Etiology; Pathology - mammal; Toxoid Vaccine; Water Environment; . . . 11.0109

Fowl Cholera
- Avian Pathology - Medical prophylaxis - Establishment of a quadrivalent mixed vaccine...
 Fowl Typhoid Pullorum Disease; Myxoviruses; True; Poultry - nonspecific; Salmonella; Veterinary Medicine; . . . 11.0117

Fowl Pox
- Avian diseases - Medical prophylaxis - "Triavia" combined vaccines - Establishment - Improvement...
 Immunity; Newcastle Disease; Salmonella; Veterinary Medicine; . . . 11.0115
- Avian Pathology - Medical prophylaxis - Establishment of a quadrivalent mixed vaccine...
 Fowl Cholera; Fowl Typhoid Pullorum Disease; Myxoviruses; True; Poultry - nonspecific; Salmonella; Veterinary Medicine; . . . 11.0117

Fowl Typhoid Pullorum Disease
- Avian diseases - Medical prophylaxis - "Triavia" combined vaccines - Establishment - Improvement...
 Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine; . . . 11.0115
- Avian Pathology - Medical prophylaxis - Establishment of a quadrivalent mixed vaccine...
 Fowl Cholera; Myxoviruses; True; Poultry - nonspecific; Salmonella; Veterinary Medicine; . . . 11.0117

Haemorrhagic Septicaemia
- Bacterial vaccines - Establishment - Improvement...
 Bacterial Vaccine; Bovine Pleuropneumonia; Hemorrhagic; Pleuropneumonia Group; . . . 11.0111
- Pasteurellosis - Epidemiological Survey...
 Epidemiology of Disease; Hemorrhagic; Pasteurella; Pasteurellosis; Peta; . . . 11.0112

Hygromas Bursitis
- Brucellosis - Epidemiological Survey...
 Brucella; Brucellosis; Epidemiology of Disease; . . . 11.0110

Leptospirosis
- Leptospirosis - Epidemiological Survey...
 Epidemiology of Disease; Histology and Cytology; Pathology - mammal; Veterinary Medicine; . . . 11.0104

Leucosis
- Disease resistance of local chickens...
 Breeding & Genetics; Coccidiodes; Coccidiosis; Disease Resistance; Veterinary Medicine; . . . 9.0029

Melioidosis
- Bacteriological inquiry on slaughtered animals...
 Bacteria; Carcass Evaluation; Mycobacterium Tuberculosis; Tuberculosis; Veterinary Medicine; . . . 8.0005

241
<table>
<thead>
<tr>
<th>Animal Pathology</th>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosis</td>
<td>Sheep Scab or Sheep Pox</td>
</tr>
<tr>
<td>Studies into Skin Diseases of Farm Animals</td>
<td>Pox of Small Ruminants · Epidemiological and Prophylactic Research</td>
</tr>
<tr>
<td>Salmonelloses</td>
<td>Skin Diseases - other</td>
</tr>
<tr>
<td>Pasteurelloses</td>
<td>Control of Skin Diseases of Farm Animals · Dry Monsoon 4 to 5 Months, Skin or Special Derivatives, Veterinary Medicine</td>
</tr>
<tr>
<td>Newcastle Disease</td>
<td>Streptothricosis</td>
</tr>
<tr>
<td>Immune Response to Newcastle Disease Vaccines</td>
<td>Studies into Skin Diseases of Farm Animals · Bacterioleosis; Demodicosis; Mycotic or Special Derivatives, Veterinary Medicine</td>
</tr>
<tr>
<td>Pasteurelloses</td>
<td>Strongylosis</td>
</tr>
<tr>
<td>Pasteurellosis</td>
<td>Gastro-Intestinal Parasitism in the Red Goat</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Trypanosomiasis</td>
</tr>
<tr>
<td>Control of Pneumonia-Enteritis Complex in Goats by Use of “PEC” Tissue Vaccine</td>
<td>Crossbreeding for Beef · Breeding & Genetics; Disease Resistance; Maturity & Growth Stages</td>
</tr>
<tr>
<td>Bovine Pleuropneumonia · Establishment of a Quadrivalent Mixed Vaccine</td>
<td>Immunological Studies into Animal Trypanosomiasis · Muridae, Veterinary Medicine</td>
</tr>
<tr>
<td>Respiratory Diseases - other</td>
<td>Trypanosomiasis - Control Campaign against Tsetse Flies and Animal Trypanosomiasis · Barriers & Weirs; DDT; Muscidae, Veterinary Entomology; Veterinary Medicine</td>
</tr>
<tr>
<td>Pulmonary Syndrome</td>
<td>Nubian Goats · Berenil; Goat Husbandry; Muscidae; Veterinary Entomology, Veterinary Medicine</td>
</tr>
<tr>
<td>Rinderpest</td>
<td>Resistance to Trypanosomiasis in Cattle ("Metis de Bambe") Breed · Beef Husbandry; Parasite Resistance, Trypanosomiasa; Veterinary Medicine</td>
</tr>
<tr>
<td>Salmonelloses</td>
<td>Trypanosomiasis - Immunology · Diagnosis, Epidemiology of Disease, Immunology, Trypanosoma; Veterinary Medicine</td>
</tr>
</tbody>
</table>

NOTES:
- The table above contains a partial list of the index entries from the document. The complete contents can be found in the document itself. The index entries are categorized under different subjects, including Animal Pathology, Mycosis, Myocardial Edema, Newcastle Disease, Pasteurelloses, Pneumonia, Pulmonary Syndrome, Respiratory Diseases - other, Rinderpest, Salmonelloses, and Trypanosomiasis. The entries are further classified under specific terms such as Salmonellosis, Pasteurellosis, Pulmonary Pneumonia, and Mycosis. The document also includes references to various studies and classifications, such as Salmonella, Mycoplasma, and Pasteurella. The final entry indicates the total number of entries, which is 242.
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Application Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>Antigen See Proteins</td>
</tr>
<tr>
<td>Anti-transpirants</td>
<td>Antihelminth See Pesticides</td>
</tr>
<tr>
<td>Anthropology</td>
<td>Antiprotozoal See Pesticides</td>
</tr>
<tr>
<td>Animal Tillage</td>
<td>Aphidae See Insects Homoptera</td>
</tr>
<tr>
<td>Animal Powered Equipment</td>
<td>Apocynaceae See Plants Hymenoptera</td>
</tr>
<tr>
<td>Animal Rations</td>
<td>Application Methods: Insecticidal control of Yam Beetle Coleoptera -other; Timing of Application; Vegetables; . . . 9.0262</td>
</tr>
<tr>
<td>Animal Resistance</td>
<td>Aerial (Any Type of Aircraft) Investigations into the Bionomics and Control of Insect Pests on Sugar Cane; Crambidae; Dip Application; Isoptera; Saccharum; Toxaphene; . . . 3.0135</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Control Campaign against Tsetse Flies and Animal Trypanosomiasis Barriers & Weirs; DDT; Muscidae; Trypanosomiasis; Veterinary Entomology; Veterinary Medicine; . . . 9.0.021</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Band Application Effects of Fertilizer Placement on the Growth and Fibre Yield of Kenaf, Hibiscus, CannaL. . . Continuous Humid 7 Months,Plus; Management; Subsoil Application; . . . 3.0137</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>DDT; Use of Isotopes in Studies on the Nutrition of Groundnuts; Broadcast Application; Management; Nitrogen Fixation; Sulfur; . . . 3.0219</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Nitrogen Fertilization in Flooded Fields Methods and Timing of Nitrogen Application; Broadcast Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; . . . 9.0011</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Phosphate Placement Trial; Broadcast Application; Ferric Acrisols; Management; Rain; . . . 9.0251</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Broad Application Effects of Fertilizer Placement on the Growth and Fibre Yield of Kenaf, Hibiscus, CannaL. . . Band Application; Continuous Humid 7 Months,Plus; Management; Subsoil Application; . . . 3.0137</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Use of Isotopes in Studies on the Nutrition of Groundnuts; Management; Nitrogen Fixation; Sulfur; . . . 3.0219</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Improvement of Forage Production in Savanna Zone by Modification of the Traditional System; Costs; Dry Monsoon 4 M. or Less; Moist Monsoon; Stylosanthes; . . . 4.0027</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Nursery Techniques Trial for Rice; Humid 6 Months; Management; Nursery Observational Plots; Placement; Pregeneration of Seeds; Transplanting Methods; . . . 9.0007</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Nitrogen Fertilization in Flooded Fields Methods and Timing of Nitrogen Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; . . . 9.0011</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Phosphate Placement Trial; Ferric Acrisols; Management; Rain; . . . 9.0251</td>
</tr>
<tr>
<td>Disease Resistance</td>
<td>Dip Application Treatment of Sugarcane Planting Method; Management; Pesticides -other; Saccharum; Two Humid Seasons-7 Month,Plus; Water; . . . 3.0113</td>
</tr>
</tbody>
</table>

243
Application Methods

SUBJECT INDEX

IMOEVEMENT OF OIL PALM SEED GERMINATION.. Continuous Humid 7 Months;Plus; Germination; Management; Moisture Content -plants;.. 3.0121

INVESTIGATIONS INTO THE BIOMICROSCOPIC AND CONTROL OF INSECT PESTS ON SUGAR CANE... Crambidae; Isoperta; Saccharum; Toxaphene;.. 3.0115

Drill Application

IMPROVEMENT OF FORAGE PRODUCTION IN SAVAN­NAH ZONE BY MODIFICATION OF THE TRADITIONAL SYSTEM... Broadcast Application; Costs; Dry Monsoon 4 M.; or Less; Moist Monsoon; Stylosanthes;.. 4.0027

STUDY OF THE PREPARATION OF THE SEED BED AND OF TEAM-CULTIVATION IMPLEMENTS FOR THE CUL­TIVATION OF FLOATING RICE... Management; Non-dry 3 Months; Plus; Rotary Tillage, Rotary Hoe; Soil Preparation & Renovation;.. 6.0062

CROPPING TECHNIQUES FOR IRRIGATED RICE... Hot Equatorial or Hot Tropical; Management; Planting Methods -other; Pricking Out;.. 8.0001

SRED RATE TRIAL WITH UPLAND RICE... Continuous Humid 7 Months;Plus; Crop Production, Harvesting; Management; Seeding or Planting Rate;.. 9.0209

Foliar Application

FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS... Beverage Crops; Ferralic Arenosols; Management; Miticides; Thiodan; Two Humid Seasons;.. 4.0144

APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELEA-NEMENDOERA ELAEIDIS FOR OIL PALM PROTECTION... Maturity & Growth Stages; Oiled Crops; Parasites -biocontrol; Predators -biocontrol;.. 4.0305

MICRONUTRIENTS IN TREE CROP NUTRITION... Boron; Cola; Iron; Management; Soil Testing; Zinc;.. 9.0124

Pest CONTROL ON COWPEAS - VIGNA UNGUICULATA... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application;.. 9.0171

SOIL ACIDITY AND THE GROWTH OF THE OIL PALM... Lime; Management; Sand; Soil pH; Trace Metals;.. 9.0295

EXPERIMENT 9-2 - TRANZISCYCLIC EXPERIMENT... Boron; Management; Molybdenum; Zinc;.. 9.0363

Injection

ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTA­TIONS... Forests; Selectivity of Pesticides; Time & Motion Studies;.. 9.0358

Postemergence Application

HERBICIDE EXPERIMENTATION ON COTTON... Continuous Humid; ER 5461; GS 16068; MSMA;.. 1.0012

HERBICIDE EXPERIMENTATION ON COTTON... Destryst; Nitosols; Fiber Crops; Humid 4 Months; Management; Pesticides -other; Preemergence Application;.. 1.0026

CONTROL OF WEEDS IN RICE... Cereal Crops; Irrigation -general; Herbicide Deficiency; Propasalin;.. 3.0004

HERBICIDE EXPERIMENT WITH COTTON ON ALLUVIAL DISTRIBUTED SOILS... Cyperus Rotundus; Grass -nonspecific; Herbicides -nonspecific;.. 8.0048

HERBICIDE SCREENING... Cereal Crops, Continuous Humid 7 Months;Plus; Herbicides -nonspecific;.. 9.0204

Preemerge Application

HERBICIDE EXPERIMENTATION ON COTTON... Continuous Humid; ER 5461; GS 16068; MSMA; Postemergence Application;.. 1.0012

HERBICIDE EXPERIMENTATION ON COTTON... Destryst; Nitosols; Fiber Crops; Humid 4 Months; Management; Pesticides -other;.. 1.0026

CHEMICAL WEED CONTROL IN SUGARCANE... Fencos; Grasses or Sedges; Pesticides -other; Saccharum; Sugar Crops;.. 3.0116

CHEMICAL DESTRUCTION OF WEEDS ON A PLOT OF YAMS (DIOISCORDA)... Continuous Humid; Diuron; Horticultural Crops; Management; Parazine; Selectivity of Pesticides;.. 4.0183

SUGAR CANE HERBICIDE TRIAL... D, 2.4-D; Diuron; Management; Preplant Application; Sugar Crops;.. 9.0002

POST-PLANTING HERBICIDE TRIAL FOR CEREAL CROPS... Cereal Crops; Humid 6 Months; Marsh; Timing -other;.. 9.0008

DISEASES OF KOLA IN NIGERIA... Cola; Fomes; Phytopa­thology;.. 9.0142

AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE... Bentazon; D, 2,4-D; Drought Resistance; Grass -nonspecific; Irrigation -general; Pesticides -other; Rain;.. 10.0001

STUDY OF HERBICIDE PREPARATIONS ON GROUND­NUTS ON SANDY SOILS... Ferric Luvisols; Humid 3 Months; Oilseed Crops; Prometryn; Sand;.. 11.0147

EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION... Diuron; Ferric Luvisols; Humid 3 Months; Surface -soil;.. 11.0170

EXPERIMENT ON CHEMICAL WEERING OF A COTTON PLANTATION WITH 3 HERBICIDE PREPARATIONS... Coton; Fiber Crops; Persistence of Residues; Pesticides -other; Surface -soil;.. 13.0049

TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY... Coton; Fiber Crops;.. 13.0050

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORG­HUM... Cereal Crops; Fiber Crops; Oilseed Crops; Pulse Crops; Sorgum Vulgare (Grain);.. 14.0027

Preharvest Application

USE OF GROWTH REGULATORS IN COFFEE HUS­BANDRY... Ethrel; Germination; Management; Thiourea;.. 9.0146

Preplant Application

SUGAR CANE HERBICIDE TRIAL... D, 2,4-D; Diuron; Management; Preemergence Application; Sugar Crops;.. 9.0002

PRE-PLANTING HERBICIDE TRIAL ON RICE... Dalapon; Grass -nonspecific; Humid 6 Months; Planavon;.. 9.0004

CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES... Cucumis; Management; Plant Pathogenetic Fungi; Root Rot; Space Competition; Terminalia;.. 9.0086

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORC­HUM... Cereal Crops; Fiber Crops; Oilseed Crops; Preemergence Application; Pulse Crops; Sorgum Vulgare (Grain);.. 14.0027

Row Application

CULTIVATION TECHNIQUES FOR SESAME... Management; Planting Methods -other; Sesamum; Side Dressing;.. 14.0021

Seed Treatment

GROUNDNUT IMPROVEMENT PROGRAMME... Disease Resistance; Fats - Lipids & Oils; Management; Russetting; Seed Production;.. 2.0005

SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS... Rice; Growth Stage of Plant; Saccharum; Simazine; Space Competition; Sulfates;.. 3.0006

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... Damping Off; Fungicides -nonspecific; Humid 7 Months; Phytopathology; Soil-borne;.. 3.0071

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... BHC; Damping Off; Pesticides -other;.. 3.0176

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... Damping Off; Dry Monsoon 5 Months; Plus; Fungicides -nonspecific; Phytopathology; Soil-borne;.. 3.0197

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... BHC; Eutric Nitosols; Moist Monsoon 0 to 3 Months; Phytopathology; Soil-borne;.. 3.0205

CHEMICAL CONTROL MEASURES AGAINST PIRICULARIA GRYZAE... Continuous Humid; Inoculation; Phytopathology; Piriculispora;.. 4.0190

STUDY THE DISINFECTION OF SEEDS... Benlate; Mercury; Phytoxicity; Vitavax;.. 4.0274

Pest CONTROL ON COWPEAS - VIGNA UNGUICULATA... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application;.. 9.0171

Side Dressing

COMPARISON OF METHODS OF APPLICATION OF FER­TILIZERS ON RICE... Humid 2 Months; Management; Placement; Subsoil Application;.. 11.0121

COMPARISON OF FORMULAS FOR FERTILIZERS IN COT­TON ROTATION AT THE OUTSTATION AT EAST-MONO (PLATEAU REGION)... Costs; Management; Sulfur;.. 13.0052
SUBJECT INDEX
COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT NIANGOULAME AND AT THE PILOT CENTRE AT KABOU ...
Boron; Costs; Management; Sulfur; ... 13.0053
COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUTSTATION AT KADJALLA
(THE KARA REGION) ... Boron; Costs; Management; Sulfur;
... 13.0054
CULTIVATION TECHNIQUES FOR SESAME ... Management; Planting Methods -other; Row Application; Sesamum; ...
14.0021

Arachnida

Aquaculture
See Fish & Wildlife Biology

Aquatic Ecology
See Ecology, Animal

Aquatic Plants
See Weeds
Control of Plants

Subsoil Application
EFFECTS OF FERTILIZER PLACEMENT ON THE GROWfH
AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS L. ... Band Application; Continuous Humid 7
Months.Plus; Manaaement; ... 3.0137
BIOLOGY, ECOLOGY AND CONTROL OF RICE INSECT
PESTS ... Behavioral Ecology; Crambidae; Habitat Studies; Insect Resistance; Predators -biocontrol; Surveys; ... 10.0003
COMPARISON OF METHODS OF APPLICATION OF FERTILIZERS ON RICE ... Humid 2 Months; Management; Placement; Side Dressing; ... 11.0123

Aquatic Soils
AGRICULTURE RESEARCH IN DRAWDOWN AREAS ...
Floods; Lakes & Reservoirs; Soil Types; ... 3.0237
INTRODUCTION AND TESTS OF BEHAVIOUR OF RICE ON
LOW LYING INUNDATED LAND - STUDY OF THE
TECHNIQUES OF CULTIVATION FOR THE SIKASSO REGION ... Excessive Moisture; Humid 4 Months; Management;
... 6.0033
CEREAL BREEDING - MAIZE ... Breeding & Genetics; Ecotypes; Excessive Moisture; Humid 3 Months; Wetlands; ...
6.0041
POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE ... Humid I Month; Management; ... 6.0055
STUDY OF DIFFERENT TYPES OF PLOUGHING FOR THE
CULTIVATION OF FLOATING RICE ... Deep Plowing;
Management; Non-dry 3 Months, Plus; Plowing; Soil Depth; ...
6.0061
NITROGEN FERTILIZATION IN FLOODED FIELDS METHODS AND TIMING OF NITROGEN APPLICATION
... Broadcast Application; Eutric Gleysols; Humid 6 Months;
Sodium; Timing of Application -other; ... 9.0011
STUDY OF THE DYNAMICS OF THE SOILS OF RICEFIELDS IN LOWER CASAMANCE ... Excessive Moisture;
Humid 2 Months; Soil Chemical Properties; Soil Types; ...
11.0129
ACTION OF BURIED STRAW ON THE DYNAMICS OF
SOILS ... Clay; Humid 2 Months; Loam - Sand Soil; Management; Organic Fertility; Soil Amendments; ... 11.0130
ACTION OF LIME AND OF MANGANESE DIOXIDE ON
THE DYNAMICS OF AN ACID CLAYEY SOIL ... Deficiencies; Iron; Management; Soil pH; ... 11.0131
IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE
CULTIVATION OF RICE ... Management; Soil Amendments;
Sulfur; ... 11.0132
FERTILIZATION OF RICE FIELDS ... Humid 2 Months; Management; ... 11.0133
BURIAL OF STRAW IN A RICE FIELD ... C/N Ratio; Humid
2 Months; Management; Soil A~ndments; ... 11.0134
NITROGENOUS FERTILIZATION fOR AQUATIC RICE ...
Eutric Gleysols; Growth Stage of Plan\; Humid 3 Months; Management; ... 14.0008
STUDY OF THE TOXICITIES OF THE SOILS USED FOR
CONTINUOUS AQUATIC CULTIVATION OF RICE ... Eutric Gleysols; Flood Irrigation; Management; ... 14.0026
RESEARCH FOR SHORT-CYCLE VARIETIES OF RICE
ADAPTED TO CULTIVATION ON MARSHY LAND AND
RESISTANT TO PIRICULARIOSIS ... Humid 3 Months;
Phytopathology; Soil Moisture; ... 14.0028
STUDY OF THE TOXICITIES OF THE SOILS USED FOR
CONTINUOUS AQUATIC CULTIVATION OF RICE ... Eutric Gleysols; Flood Irrigation; Management; ... 14.0060
NITROGENOUS FERTILIZATION FOR AQUATIC RICE ...
Eutric Gleysols; Growth Stage of Plant; Humid 4 Months; Management; ... 14.0061

Surface -soil
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE
GROWTH, FIBRE AND SEED YIELD OF KEN AF, HIBISCUS CANNABINUS L. ... Fibers; Humid 7 Months; Management; Seed Production; ... 3.0068
EFFECTS OF FERTILIZER PLACEMENT ON THE GROWfH
AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS L. . . . Band Application; Continuous Humid 7
Months,Plus; Management; Subsoil Application; ... 3.0137
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE
GROWfH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Continuous Humid 7 Months.Plus;
Fibers; Retting; ... 3.0173
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE
GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Dry Monsoon 5 Months, Plus; Fibers; Management; ... 3.0194
EFFECT OF TILLAGE ON THE MINERAL NUTRITION
AND THE SUPPLY OF MOISTURE TO CROPS ... Drought
Resistance; Management; Moisture Deficiency; Plowing; Subsoiling; ... 11.0027
EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A
COTTON PLANTATION ... Diuron; Ferric Luvisols; Humid
3 Months; Preemerge Application; ... 11.0170
EXPERIMENT ON CHEMICAL WEEDING OF A COTTON
PLANTATION WITH 3 HERBICIDE PREPARATIONS ...
Cotoran; Fiber Crops; Persistance of Residues; Pesticides -other;
Preemerge Application; ... 13.0049

Systemic Application
CERCOSPORIOSIS OF THE OIL PALM TREE ... Cercospora;
Fungicides -nonspecific; Inoculation; Phytopathology; ... 4.0097
PEST CONTROL ON COWPEAS - VIGNA UNGUICALATA
... Chrysomelideae; Ferric Luvisols; Insect Resistance; Pests;
Seed Bank; ... 9.0171

Time-release Capsules
PINK DISEASE CONTROL IN HEVEA BRASILIENSIS
Corticium; Fungicides -nonspecific; Latex; Phytopathology; ...
5.0007
SOIL MICROBIOLOGY ... Chlorinated Hydrocarbons; Ferralic
Cambisols; Herbicides -nonspecific; Nitrogen Fixation; Sulfur;
Toxicity to Microorganisms; ... 9.0179
STUDY OF 2 NITROGENOUS FERTILIZERS OF SLOW MINERALIZATION, IN COTTON CULTIVATION ... Dystric
Gleysols; Ferric Luvisols; Humid 3 Months; Luvic Arenosols;
Management; ... 11.0162

Arachnida

Top Dress Application
TIME OF NITROGEN TOP DRESSING OF UPLAND RICE ...
Dry Monsoon 5 Months, Plus; Growth Stage of Plant; Management; ... 3.0187
NITROGEN FERTILIZATION IN FLOODED FIELDS METHODS AND TIMING OF NITROGEN APPLICATION
... Broadcast Application; Eutric Gleysols; Humid 6 Months;
Sodium; Timing of Application -other; ... 9.0011

Acarina
Eriophyidae
EXPERIMENT ON CHEMICAL CONTROL OF ACERIA
GUERRERONIS KEIFER (PARASITE OF THE COCONUT
PALM) ... Copra; Humid 6 M.or Less; Oxthioquinox; ... 1.0074

245


SUBJECT INDEX

Arachnida
- **Ixodidae**
 - Humidity Studies on Hard Ticks ... Hatchability; High Temp. 30 C or Above; Humidity; Rearing of Insects; Veterinary Entomology;3.0027
 - Tick Survey on Selected Areas on the Accra Plains ... Dry Monsoon 4 to 5 Months; Maturity & Growth Stages; Surveys;3.0028

Tetanychidae
- Project on Adapted Control Measures Against the Insect and Acarid Pests of Fruit Crops ... Cambic Arenosols; Diaspididae; Insecticides -nonspecific; Population Dynamics; Rearing of Insects; Win. Tp Monsoon Desert;7.0001

Arenosols
- Cassava Entomology ... Continuous Humid 7 Months, Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudococcidae; Vectors;9.0187

Arboviruses
- See Viruses, Animal RNA Viruses, Enveloped

Arctiidae
- See Insecta Lepidoptera

Arenosols
- See Soil Unit Classification

Armillaria
- See Fungi

Arsenic
- Herbicide Experiments with Cotton on Alluvially Distributed Soils ... Cyperus Rotundus; Grass -nonspecific; Herbicides -nonspecific;8.0048

Arsenicals -nonspecific
- See Pesticides

Art Work, Illustrations, Etc.
- See Publications

Artificial Insemination
- See Reproductive Physiology

Ascaroidea
- See Aschelminthes Nematoda

Aschelminthes
- Nematoda
 - Helminthoses of Farm Animals - Epidemiology ... Epidemiology of Disease; Pest Control Measures; Population Dynamics; Veterinary Medicine;11.0090

Plant Nematodes -nonspecific
- Development of Disease and Pest Resistant Kenaf Varieties with a High Yield of Good Quality Fibre ... Breeding & Genetics; Fibers; Insect Resistance; Photoperiod; Seed Bank;3.0070
- Studies on Plant Parasitic Nematodes Associated with Economic Crops in Ghana ... Cocos; Mangifera; Nicotiana; Saccharum;3.0127
- Investigations into the Control of Sugar Cane Nematodes ... Burning or Flaming; Fumigation; Phytopathology; Saccharum; Sugar Derivatives;3.0129
- Tomato - Cowpea Rotation ... Continuous Humid 7 Months, Plus; Crop Rotation, Cropping System; Lycopersicum; Management;3.0151
- Development of Disease and Pest Resistant Kenaf Varieties with a High Yield of Good Quality Fibre ... Breeding & Genetics; Disease Resistance; Insect Resistance; Photoperiod; Seed Bank;3.0175

Allergy Index
- Plant Nematodes -other
 - Helminth Parasites of Pigs in Ghana ... Management; Population Dynamics; Taenia;3.0029

Strongylidae
- Helminth parasites of Pigs in Ghana ... Management; Population Dynamics; Taenia;3.0029
- Gastro-intestinal Pathology of Zebu Cattle ... Feces; Veterinary Medicine;8.0002
- Gastro-intestinal Parasitism in the Red Goat ... Coccidia; Digestive Diseases -animal; Feces; Malnutrition; Treatment;8.0006

Tylenehidae
- Investigation into the Biology and Control of Root-Knot Nematodes on Some Crops ... Continuous Humid 7 Months, Plus; Culturing Techniques; DD: Nema-gon, Nicotiana; Population Dynamics;3.0128
- Study of the Nematode and Phytopathology ... Plant Dis. Relation; Hostability; Phytopathology;4.0069
- Nematological Studies on the Parasites of Yams, Notably Scutellonema Bradys ... Crop Rotation, Cropping System; Phycontrol -other; Phytopathology; Surveys;4.0070
<table>
<thead>
<tr>
<th>Subject INDEX</th>
<th>Beverages -other</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIETAL IMPROVEMENT OF COTTON ... Breeding & Genetics; Improving Varieties with Improved Characteristics</td>
<td>STUDY OF THE VARIETAL RESISTANCE OF RICE TO HARMFUL INSECTS ... Breeding & Genetics; Cereal Crops, Humid 2 Months; Insect Resistance; Insecta; 11.0137</td>
</tr>
<tr>
<td>PROSPECTING FOR AND INTRODUCTION OF COCONUT PALM ... Breeding & Genetics; Cocos</td>
<td>Barriers & Weirs</td>
</tr>
<tr>
<td>SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES ... Gmelina; Nauclea; Tectona; Variation and Selection</td>
<td>See Pest Control Measures</td>
</tr>
<tr>
<td>BREEDING FOR RESISTANCE TO VARIOUS PESTS AND DISEASES ... Chlorohora; Insect Resistance; Nauclea; Terminalia</td>
<td>Physical Control</td>
</tr>
<tr>
<td>COLLECTION AND ESTABLISHMENT OF KOLA GERMPLASM ... Cola; Intraspecific Genetic Relations; Management; Sex Ratio; Taxonomy, Plant;</td>
<td>Basal Rot</td>
</tr>
<tr>
<td>SWEET POTATO ENTOLOGY ... Curculionidae; Economics of Chemical Control; Ferric Luvisols; Ipomoea; Vectors; Storage Rots;</td>
<td>See Plant Diseases</td>
</tr>
<tr>
<td>SWEET POTATO PATHOLOGY ... Breeding & Genetics; Ferric Luvisols; Root Rot;</td>
<td>Rots</td>
</tr>
<tr>
<td>YAMS PATHOLOGY ... Breeding & Genetics; Continuous Humid 7 Months, Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes -nonspecific; Shoe String; Storage Rot;</td>
<td>Basidiomycetes</td>
</tr>
<tr>
<td>GENE POOL (COCONUT, RAPHIA, DATE PALMS) ... Breeding & Genetics; Cocos; Management; Palmae -other; Phoenix; Taxonomy, Plant;</td>
<td>See Fungi</td>
</tr>
<tr>
<td>Beef Husbandry</td>
<td>Baytex</td>
</tr>
<tr>
<td>See Animal Husbandry</td>
<td>See Pesticides</td>
</tr>
<tr>
<td>See Beverages</td>
<td>Insecticide - Acaricide</td>
</tr>
<tr>
<td>Seed Bank</td>
<td>Benlate</td>
</tr>
<tr>
<td>CONSTITUTION OF A COMPOSITE OF WHITE MAIZE WITH IMPROVED VARIETIES ORIGINATING IN DAGHOMEY ... Breeding & Genetics; F Generation (F1, F2, F3, Etc); Ferric Luvisols; Humid 5 Months;</td>
<td>See Pesticides</td>
</tr>
<tr>
<td>DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Fibers; Insect Resistance; Photoperiod</td>
<td>Herbicides</td>
</tr>
<tr>
<td>DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Disease Resistance;</td>
<td>Bentazon</td>
</tr>
<tr>
<td>DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Dry Monsoon 5 Months, Plus; Insect Resistance; Photoperiod</td>
<td>See Pesticides</td>
</tr>
<tr>
<td>DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Insect Resistance; Photoperiod</td>
<td>Herbicides</td>
</tr>
<tr>
<td>COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS ... Breeder Stock; Cereal Crops; Gramineae; Insect Resistance; Pteridaceae;</td>
<td>Benthic Fauna</td>
</tr>
<tr>
<td>COLLECTION OF THE FLOATING VARIETIES OF RICE GLACEREA AND SATIVA ... Breeding & Genetics; Drought Resistance; Insect Resistance; Non-dry 3 Months, Plus</td>
<td>HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN ... Behavioral Ecology, Fish Food Supply, Plankton, Water Environment</td>
</tr>
<tr>
<td>SORGHUM CROP PROTECTION ... Cereal Crops; Rearing of Insects; Scrophulariaceae; Seedling Diseases -nonspecific; Smuts; Tetragonid;</td>
<td>Berenil</td>
</tr>
<tr>
<td>VARIETAL IMPROVEMENT (BREEDING) OF GRAIN LEGUMES ... Breeding & Genetics; Continuous Humid 7 Months, Plus; Leguminosae; Nutritive Values -plant;</td>
<td>See Pesticides</td>
</tr>
<tr>
<td>GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS ... Breeding & Genetics; Glycine Max; Management;</td>
<td>Antiprotozoal</td>
</tr>
<tr>
<td>PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA ... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Systemic Application</td>
<td>Besnoitiosis</td>
</tr>
<tr>
<td>COLLECTION, CHARACTERIZATION AND EVALUATION OF COFFEE GERMPLASM ... Breeding & Genetics, Spices & Bev; Disease Resistance;</td>
<td>See Animal Pathology</td>
</tr>
<tr>
<td>CLASSIFICATION OF BEAN (COWPEA) VARIETIES INTO SUB-SPECIES AND GROUPS ... Pulse Crops, Taxonomy, Plant;</td>
<td>Beverage Crops</td>
</tr>
<tr>
<td>OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT BEANS) UNDER IBADAN CONDITIONS ... Continuous Humid 7 Months, Plus; Dolichos; Glycine Max; Leguminosae -other; Management; Phaseolus</td>
<td>See Agronomy</td>
</tr>
<tr>
<td>DEVELOPMENT OF IMPROVED RICE VARIETIES ... Blatt; Breeding & Genetics; Cold Resistance; Homoptera -other; Phytophathology</td>
<td>See Entomology, Applied</td>
</tr>
<tr>
<td>Beverages -other</td>
<td>Agronomic Pests on</td>
</tr>
<tr>
<td>See Food Science and Technology</td>
<td>See Weeds</td>
</tr>
<tr>
<td>Control of Weeds in</td>
<td>Beverages -other</td>
</tr>
<tr>
<td>See Beverages</td>
<td>See Food Science and Technology</td>
</tr>
</tbody>
</table>

249
SUBJECT INDEX

BHC
See Pesticides
Insecticides

Bins
See Packing & Container Types

Bioassay
See Pest Control Measures
Residue Analysis - pesticides

Biological Control
See Pest Control Measures

Biological Rhythms
See Plant Physiology

Birds
STUDY OF RICE PESTS . . . Barriers & Weirs; Cereal Crops; Insects; Management; Rodentia - other; . . . 5.0014
SALMONELLOSIS - EPIDEMIOLOGICAL SURVEY ON HEALTHY CARRIERS . . . Feces; Rodentia; Salmonelloses; . . . 11.0105
AVIAN DISEASES - EPIDEMIOLOGY - PROPHYLAXIS AND TREATMENT . . . Diagnosis; Epidemiology of Disease; Treatment; Veterinary Medicine; . . . 11.0114

Chicken, Domestic
IMMUNE RESPONSE TO NEWCASTLE DISEASE VACCINES . . . Evaluation, Efficacy; Globulins; Hemagglutination Inhibition; Immunity; Newcastle Disease; Viral Vaccines; . . . 3.0024
LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR . . . Egg Production; Eggs; Management; Medicago; Processing Feeds; . . . 3.0033
LOCAL FEED INGREDIENTS IN POULTRY RATIONS . . . Concentrates; Corn; Growth Rate; Management; Poultry Rations; . . . 3.0034
PROTEIN REQUIREMENT OF CHICKENS IN TROPICAL ENVIRONMENT - PROTEIN LEVEL FOR CHICKS . . . Feed Proteins & Amino Acids; Management; Poultry Rations; . . . 3.0037
THE CALCIUM AND PHOSPHORUS REQUIREMENTS OF THE LAYING HEN . . . Calcium; Egg Production; Inorganic Elements in Feeds; Management; Phosphorus; Poultry Rations; . . . 9.0021
GENETIC VALUE OF LOCAL CHICKENS AS MATERIAL FOR IMPROVEMENT OF POULTRY PRODUCTION . . . Breeding & Genetics; Hatchability; . . . 9.0022
NUTRITIVE VALUE OF OPACUE-2 MAIZE FOR THE CHICK AND RAT IN THE TROPICS . . . In Vitro Feed Studies; Muridae; Poultry Rations; Supplements; Feed Additives; . . . 9.0023
EFFECTS OF MANAGEMENT AND ENVIRONMENT ON GROWTH AND LAYING ABILITY OF IMPORTED COMMERCIAL STRAINS OF CHICKENS . . . Farm Buildings & Shelters; Growth Rate; Litter or Bedding; Management; . . . 9.0027
AVIAN DISEASES - MEDICAL PROPHYLAXIS - TRIAVIA* COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT . . . Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine; . . . 11.0115

Mallard
STUDY OF SYSTEMS OF MANAGEMENT OF POULTRY INCLUDING DUCKS AND TURKEYS . . . Continuous Humid 7 Months,Plus; Mallard; Poultry - nonspecific; . . . 3.0013

Melliagris
STUDY OF SYSTEMS OF MANAGEMENT OF POULTRY INCLUDING DUCKS AND TURKEYS . . . Continuous Humid 7 Months,Plus; Melliagris; Poultry - nonspecific; . . . 3.0013

Numidia
STUDIES OF THE GUINEA FOWL (NUMIDIA MELEAGRIS)
. . . Poultry Husbandry; Sexing Methods; Vertebrate Nutrition; . . . 3.0058

Poultry - nonspecific
POULTRY DISEASE INVESTIGATION . . . Histology and Cytology; Nutrition in Disease; Poultry Husbandry; . . . 3.0001
STUDY OF SYSTEMS OF MANAGEMENT OF POULTRY INCLUDING DUCKS AND TURKEYS . . . Continuous Humid 7 Months,Plus; Mallard; Melliagris; . . . 3.0013
AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - VACCINE 9 R AGAINST FOWL TYPHOID AND PULLORUM DISEASE . . . Globulins; Vaccines; . . . 11.0116
AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE . . . Fowl Cholera; Fowl Typhoid Pullorum Disease; Myxoviruses, True; Salmonella; Veterinary Medicine; . . . 11.0117
ECOLOGICAL PARASITOLOGY . . . Fish; Marine Animals; Population Dynamics; Taxonomy, Animal; . . . 12.0002

Birds - Wildlife Studies
See Fish & Wildlife Biology

Black Pod
See Plant Diseases

Black Thread
See Plant Diseases

Bladex
See Pesticides
Herbicides

Blast
See Plant Diseases

Blight Diseases
See Plant Diseases

Blindness - nonspecific
See Animal Pathology

Blood and Lymph System
See Vertebrate Physiology

Bombacaceae
See Plants - Dicots

Boraginaceae
See Plants - Dicots

Borax
See Pesticides
Fungicides

Bordeaux Mixture
See Pesticides
Fungicides

Boric Acid
See Pesticides
Insecticide - Fungicide

250
SUBJECT INDEX

Boron
See Also Soil Nutrients/Fertilizers
DIFFUSION-IMPREGNATION OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS . . . Wood; Wood Preservation & Seasoning; Wood Preservatives, . . . 3.0096

Botulism
See Animal Pathology

Bovidae
See Mammals

Bovine Foetal Hepatocytes
See Animal Pathology

Bovine Keratitis
See Animal Pathology

Bovine Ocular Thelaziosis
See Animal Pathology

Bovine Pleuropneumonia
See Animal Pathology

Brachiaria
See Plants - Monocots
Gramineae

Brackish Water
SHRIMP CULTURE . . . Hippolyte; Shellfish Farming; . . . 9.0017
SELECTION OF FISH SPECIES FOR CULTURE IN BRACKISH WATER . . . Fish; Fish Farming; . . . 9.0018

Bran
See Feed Science and Technology
By-products; Plant(Vegetative)

Brassica Oleracea
See Plants - Dicots
Cruciferae

Breeder Stock
See Agronomy
Seed Production

Breeding & Genetics
See Agronomy
Cereal Crops
Fiber Crops
Forage Grasses
Forage Legumes
Industrial & New Crops
Oilseed Crops
Pulse Crops
Sugar Crops
See Animal Husbandry
Beef Husbandry
Dairy Husbandry
Poultry Husbandry
Sheep Husbandry
Swine Husbandry

Wildlife
See Forestry

See Horticulture
Fruits and Berries
Leafy & Fruit-type Vegetables
Nut Crops
Root Crops

Breeding & Genetics, Spice&Bev
See Agronomy
Beverage Crops

Broadcast Application
See Application Methods

Bromeliaceae
See Plants - Monocots

Bromophos
See Pesticides
Insecticide - Acaricide

Bronzing
See Plant Diseases

Brown Spot
See Plant Diseases
Spots

Browse
See Feed Science and Technology

Brucella
See Bacteria

Brucelloses
See Animal Pathology

Bruchidae
See Insecta
Coleoptera

Bryophyta

Hepaticae
CHROMOSOME CYTOLOGY . . . Chromosomes; Histology and Cytology; . . . 12.0001

Buildings & Land Development

DEVELOPMENT OF A LOW COST INCUBATOR FOR LOCAL USE . . . Construction, Farm; Costs; Heat and Cooling Devices; Poultry Equipment; . . . 9.0047

Codes and Standards

FABRICATION AND TESTING OF TIMBER STRUCTURES AND COMPONENTS . . . Construction Materials; Construction, Farm; Laminate; Mechanical Properties; Processing Forest Products; Wood; . . . 9.0098

Low Cost Housing
WOOD WOOL LOW COST HOUSES . . . Buildings, Farm; Construction, Farm; Sheet; . . . 3.0106
SUBJECT INDEX

Buildings, Farm
See Farm Structures & Design

Burning or Flaming
See Pest Control Measures
Physical Control

Burning Effect
See Environments, Animal

Butt Rot
See Plant Diseases
Rots

By-products- Animal
See Feed Science and Technology

By-products- Industrial
See Feed Science and Technology

By-products- Plant(Vegetative)
See Feed Science and Technology

B9
See Pesticides
Plant Growth Regulators

C 9491
See Pesticides
Insecticides

Caffeine
STUDIES ON VARIOUS YIELD AND QUALITY FACTORS IN KOLA . . . Caffeine; Intraspec. Genetic Relations; Management; . . . 9.0137
CROP UTILIZATION PROJECT . . By-products- Plant(Vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly; . . 9.0154

Cajanus
See Plants - Dicots
Leguminosae

Calcaric Fluvisols
See Soil Unit Classification
Fluvisol

Calcaric Regosols
See Soil Unit Classification
Regosols

Calcium
EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO) . . Phosphates; Seasonal Application; Source of Fertilizer; . . . 1.0021
GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTHORA PALMIVORA . . Chlorides; Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates; . . . 3.0064
STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD . . Black Pod; Deficiencies; Moisture Content - plants; Nutritional Regulation (Host); Phytopathology; Potassium; . . . 4.0137
STUDY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL . . Deficiencies; Management; Phosphorus; Sulfur; . . . 4.0299

Calcium - Other Than Lime
See Soil Nutrients/Fertilizers

Calf Rations, Starter Rations
See Feed Science and Technology
Animal Rations

Cambic Arenosols
See Soil Unit Classification
Arenosols

Cambisols
See Soil Unit Classification

Canavalia
See Plants - Dicots
Leguminosae

Candida
See Fungi

Canidae
See Mammals
Carnivora

Cankers
See Plant Diseases

Capital & Financial Management
See Economics
Production and Processing

Capsicum
See Plants - Dicots
Solanaceae

Captan
See Pesticides
Fungicides

Carbohydrates
See Also Plant Physiology
Metabolism

STUDY FORMS OF PHOSPHATE FERTILIZERS FOR THE COCONUT PALM . . Cocos; Fertilizer Toxicity; Fluorine; Formulation, Fertilizer; Management; Phosphates; . . . 4.0321
FERTILIZATION OF HEVEA BRASILIENSIS AND ITS EFFECT ON GROWTH . . Growth Stage of Plant; Magnesium; Management; Nitrogen; Phosphorus; Potassium; . . . 5.0004
FERTILIZATION OF HEVEA BRASILIENSIS AND ITS EFFECT ON YIELD . . Magnesium; Management; Nitrogen; Phosphorus; Potassium; . . . 5.0005
THE CALCIUM AND PHOSPHORUS REQUIREMENTS OF THE LAYING HEN . . . Chicken, Domestic; Egg Production; Inorganic Elements in Feeds; Management; Phosphorus; Poultry Rations; . . . 9.0021
MEASUREMENT OF THE MINERAL UPTAKE OF EACH OF THE PRINCIPAL FOOD CROPS OF SENEGAL (MILLET, MAIZE, RICE, GROUNDNUTS, SORGHUM) . . Magnesium; Nitrogen; Potassium; Sorghum Vulgare (Grain); . . 11.0059
STUDY OF MINERAL DEFICIENCY COMPLEXES . . Forage, Pasture or Range; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilization - animal; . . . 11.0082

252
Carbon

Carbon Dioxide
See Carbon

Carcass Evaluation
See Animal Characteristics

Carica
See Plants - Dicots
Caricaceae

Carnivora
See Mammals

Carrying Capacity -pasture
See Feed Science and Technology

Casein
See Proteins

Cassia
See Plants - Dicots
Leguminosae

Catalase
See Enzymes

Catalogs, Tables, Compilations
See Publications

Cattle Rations
See Feed Science and Technology
Animal Rations

Cecidomyiidae
See Insecta
Diptera

Cedrela
See Plants - Dicots
Meliaceae

Ceiba
See Plants - Dicots
Bombacaceae

Cell Wall
See Cellular Physiology

Cellular Physiology

Germination and survival of sporangia and behaviour of zoospores of Phytophthora palmivora... Chlorides; extract composition; glutamic acid; low temp. above 0 C; Phytophthora; Sulfates;... 3.0061
Morphogenesis of fungi with rhizomorphs and with sclerotia... Corticium; Leptoporus; Pricking out; Sclerotium; Soil microbiology;... 4.0065
Studies on the host-parasite relations of rice and Helminthosporium oryzae... Culturing techniques; Helminthosporium; Inoculation; Phytopathology;... 9.0285

Centrosema
See Plants - Dicots
Leguminosae

Ceratocystis
See Fungi

Cercospora
See Fungi

Cereal Crops
See Agronomy
See Entomology, Applied
Agronomic pests on
See Weeds
Control of Weeds in...
Chlorine
See Also Soil Nutrients/Fertilizers
STUDY THE INFLUENCE OF THE ANIONS SO4 AND Cl IN THE FERTILIZATION OF THE OIL PALM ... Magnesium; Management; Sulfates; Sulfur;4.0293
STUDY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL ... Calcium; Deficiencies; Management; Phosphorus; Sulfur;4.0299
STUDY OF THE ROLE OF THE ANIONS SO4 AND Cl IN THE FERTILIZATION OF THE COCONUT PALM ... Deficiencies; Nitrates; Sulfates;4.6319

Chlorides
GERMINATION AND SURVIVAL OF SPOРАNGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTORA PALMIVORA ... Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates;3.0061
STUDY FORMS OF NONGENUS NITRITIZER FOR THE COCONUT PALM ... Cocos; Management; Nursery Observational Plots;4.0320

Chloroneb
See Pesticides
Chromatography

Chlorophyll
STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM ... Catalase; Drought Resistance; Management; Plant Physiology; Two Humid Seasons; ... 1.0007
THE ADAPTABILITY OF THEOBROMA CACAO SEEDLINGS TO HIGH LIGHT INTENSITY ... Enzymes; High Intensity Light; Management; Photosynthesis; Shade;3.0064

Chlorosis
See Plant Diseases
Cholarophora
See Plants - Dicots
Moraceae
Chlorophyll

Clay
See Environments, Plant
Soil Composition
Climate- Continental Sav.Trop.
EXPERIMENTATION WITH VARIETIES OF COTTON ... Dystric Nitosols; Fiber Crops; Gleyic Luvisols; Insecticides - nonspecific; Management; Plinthic Luvisols;1.0018
TYPOLOGY AND CLASSIFICATION OF FERRALYTIC SOILS IN AN EQUATORIAL TO TROPICAL CLIMATE ... Climate- Humid Equatorial; Soil Genesis; Soil Morphology; Profiles; Soil Types;4.0037
EVOLUTION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING ... Climate-Humid Equatorial; Geology; Soil Analysis; Soil Crusts; Tertiary Period;4.0038
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENSES IN AN EQUATORIAL AND TROPICAL CLIMATE ... Climate- Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey;4.0039
STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Fats & Oils; Fruits and Berries; Quality and Utilization;4.0156

Chlorine
See Also Soil Nutrients/Fertilizers
STUDY THE INFLUENCE OF THE ANIONS SO4 AND Cl IN THE FERTILIZATION OF THE OIL PALM ... Magnesium; Management; Sulfates; Sulfur;4.0293
STUDY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL ... Calcium; Deficiencies; Management; Phosphorus; Sulfur;4.0299
STUDY OF THE ROLE OF THE ANIONS SO4 AND Cl IN THE FERTILIZATION OF THE COCONUT PALM ... Deficiencies; Nitrates; Sulfates;4.6319

Chlorides
GERMINATION AND SURVIVAL OF SPOРАNGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTORA PALMIVORA ... Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates;3.0061
STUDY FORMS OF NONGENUS NITRITIZER FOR THE COCONUT PALM ... Cocos; Management; Nursery Observational Plots;4.0320

Chloroneb
See Pesticides
Chromatography

Chlorophyll
STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM ... Catalase; Drought Resistance; Management; Plant Physiology; Two Humid Seasons; ... 1.0007
THE ADAPTABILITY OF THEOBROMA CACAO SEEDLINGS TO HIGH LIGHT INTENSITY ... Enzymes; High Intensity Light; Management; Photosynthesis; Shade;3.0064

Chlorosis
See Plant Diseases
Cholarophora
See Plants - Dicots
Moraceae
Chlorophyll

Clay
See Environments, Plant
Soil Composition
Climate- Continental Sav.Trop.
Climate- Continental Sav.Trop.

SUBJECT INDEX

STUDY OF THE DORMANCY OF WEED SEEDS... Dormancy; Physiology of Weeds; Scarification; . . . 4.0186

DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES... Handbook; Phytology, Life Cycle; Photography; Taxonomy, Plant; . . . 4.0187

STUDY OF THE BIOLOGICAL CYCLES OF WEEDS... Cereal Crops; Competition; Management; Phytology, Life Cycle; Soil Tillage Sequence / Method; . . . 4.0188

STUDY THE INFLUENCE OF THE DROUGHT FACTOR ON THE RESISTANCE OF RICE TO PIRICULARIOSIS... Env. Plant Dis. Relation; Management; Phytopathology; Piriculariosis; . . . 4.0189

CHEMICAL CONTROL MEASURES AGAINST PIRICULARIA ORYZAE... Inoculation; Phytopathology; Piriculariosis; . . . 4.0190

STUDY OF THE GENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PIRICULARIA ORYZAE... Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Piriculariosis; . . . 4.0191

RESEARCH IN CULTIVATED RICE FOR SORRIS HAVING HORIZONTAL RESISTANCE TO PIRICULARIOSIS... Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Piriculariosis; . . . 4.0192

ANALYSIS OF THE RELATIVE INCIDENCE OF STRAINS OF PIRICULARIA ORYZAE IN RICE-FIELDS... Env. Plant Dis. Relation; Inoculation; Phytopathology; Piriculariosis; . . . 4.0193

CREATION OF A DIFFERENTIAL SCALE OF STRAINS OF PIRICULARIA ORYZAE... Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Piriculariosis; . . . 4.0194

EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING... Chemical Tillage or No-till; Deep Plowing; Ferralic Cambisols; Minimum Tillage; Plowing; Soil Types; . . . 4.0195

ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE-MAIZE) ... C/N Ratio; Deficiencies; Irrigation -general; Nitrogen Metabolism; Proteins; . . . 4.0196

EQUILATION OF NITROGEN IN CULTIVATED SOILS... Nitrogen; Plant Residues; . . . 4.0197

STUDY OF INOCULATIONS OF RHIZOBIUM ON SOYA... Inoculation; Nitrogen Fixation; Rhizobium; Soil Microbiology; . . . 4.0198

EROSION OF TILLED LAND... Harrowing; Management Effects on Soils; Plinthic Acrisols; Plowing; Rill Erosion; . . . 4.0199

CORRECTION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST... Ferric Acrisols; Gleyic Acrisols; Movement; Availability; Soil Minerals -natural; Soil Types; . . . 4.0200

EVOLUTION OF SOILS UNDER CULTIVATION... Ferric Acrisols; Management; Management Effects on Soils; Rhodic Ferralsols; Soil Fertility; . . . 4.0201

DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST... Calcium; Clay; Fertilizer; Fertility; Fungal Resistance; Nitrogen Metabolism; . . . 4.0202

ACIDIFICATION DUE TO THE INTENSIVE USE OF FERTILIZERS... Formulation; Fertilizer; Soil pH; Soil Chemical Properties; . . . 4.0203

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE... Cereal Crops; D, 2,4; Management; Propanil; Silvex; . . . 4.0204

CHEMICAL WEED DESTRUCTION ON IRREGARDED RICE... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; . . . 4.0205

INVENTORY OF THE WOOD FLORA OF PLUVIAL AND IRREGARDED RICE-FIELDS... Cereal Crops; Cultural Control; Ignition -general; Management; Phytology, Life Cycle; . . . 4.0206

Two Humid Seasons

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE... Dystric Nitosols; Mangifera; Persea; Psidium; . . . 1.0011

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT... Continuous Humid; Eutric Planosols; Management; Sulfur; . . . 1.0013

EXPERIMENTS ON THE DORMANCY OF POTTASCIUM FERTILIZATION OF COTTON... Dystric Nitosols; Management; . . . 1.0014

EXPERIMENTS WITH NATURAL PHOSPHATES OF ANECHO (TOGO)... Dystric Nitosols; Management; Source of Fertilizers; . . . 1.0015

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON... Dystric Nitosols; Management; . . . 1.0014

TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND REHABILITATION OF ORGANIC MATTER... Dystric Nitosols; Management; Organic Soils; Soil Fertility; . . . 1.0029

EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORCHORUS AND URENA... Corchorus; Environments, Plant; Humid & M. or Less; Management; . . . 1.0053

IMPROVEMENT OF THE PROCEDURES FOR STORAGE AND CONSERVATION OF MAIZE IN A RURAL ENVIRONMENT... Bins; Humidity; Jars; Storage; . . . 1.0059

PRODUCTION OF DOUBLE CRYPTO-HYBRIDS BETWEEN LOCAL IMPROVED WHITE MAIZE AND AN INTRODUCED MEXICAN VARIETY FROM TUXPENO STOCK... Breeding & Genetics; Dystric Nitosols; F Generation (F1, F2, F3, Etc); Selling; . . . 1.0060

CONSTITUTION OF A VARIETAL COMPOSITE OF MAIZE FROM INTRODUCED FOREIGN VARIETIES... Breeding & Genetics; Dystric Nitosols; Polycross Test; . . . 1.0061

THE OBTAINING OF PURE LINES FROM FOUR LOCAL POPULATIONS OF WHITE MAIZE... Breeding & Genetics; Disease Resistance; Dystric Nitosols; Lodging; . . . 1.0062

FABRICATION OF STEPLE-MALE STRAINS OF MAIZE ADAPTED TO DAHOMEY... Breeding & Genetics; Dystric Nitosols; Male Sterility; . . . 1.0063

INTRODUCTIONS AND TESTED COLLECTIONS OF FOREIGN VARIETIES OF MAIZE... Breeding & Genetics; Disease Resistance; Dystric Nitosols; Lodging; . . . 1.0064

PRODUCTION OF A COMPOSITE OF YELLOW MAIZE FROM INTRODUCTIONS FROM ABROAD... Breeding & Genetics; Dystric Nitosols; Reciprocal Recurrent Selection; . . . 1.0065

CORRECTION OF DEFICIENCIES IN P2O5... Dystric Nitosols; . . . 1.0066

CORRECTION OF DEFICIENCIES IN K2O... Dystric Nitosols; Management; . . . 1.0067

MAINTENANCE OF P2O5 AND K2O FERTILITY... Dystric Nitosols; Soil Fertility; . . . 1.0068

INTRODUCTION OF FOREIGN VARIETIES OF MANIOC... Dystric Nitosols; Management; Manibot; Mosaic Viruses; Salt; Virus Resistance; . . . 1.0069

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE... Dystric Nitosols; Mangifera; Persea; Psidium; . . . 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE... Dystric Nitosols; Management; Pasiflora; Plant Virus -general; Sapotecaceae; . . . 1.0071

STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM... Cover Crops; Leguminosae; Moisture Deficiency; Paniceae -other; . . . 1.0075

REGENERATION OF THE SOILS AND FERTILIZATION IN REPLANTATION... Management; Paniceae -other; Soil Structure; . . . 1.0076

STUDY OF THE INFLUENCE OF THE ANIONS S04 AND CL... . . . 1.0077

FERTILIZATION OF THE OIL PALM IN CONTINENTAL SOILS (THERES DE BARRE)... Deficiencies; Dystric Nitosols; Light Quantity or Intensity; Management; Rain; Soil Types; . . . 1.0078

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM... Catalase; Drought Resistance; Management; Plant Physiology; . . . 1.0079

REQUIREMENTS IN WATER OF IRREGARDED CROPS... Bromeliaceae; Consumative Use; Irrigation -general; Nuclear Moisture Meter; . . . 4.0091

DETERMINATION OF SOIL CHARACTERISTICS FOR IRRIGATION... Irrigation; Plant Requirements -water; Soil Types; . . . 4.0092

INVENTORY OF THE WOOD FLORA OF PLUVIAL AND IRREGARDED RICE-FIELDS... Cereal Crops; Irrigation -general; Management; Phytology, Life Cycle; Physical Control; . . . 4.0093

CHEMICAL WEED DESTRUCTION ON IRREGARDED RICE... Cereal Crops; Irrigation -general; Propanil; Silvex; . . . 4.0094

Dry Monsoon 5 Months, Plus

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT... Eutric Cambisols; Ferric Luvisols; Management; Mutis Monsunon, Sulfur; . . . 1.0020
HUMID 4 MONTHS

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY. Continuous Humid; Humic Gleysols; Management; Marsh; Organic Fertility; Timing of Application -other;1.0001

SPECIFIC ROLE OF ORGANIC MATTER - C/N Ratio; Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Plowing; Soil Fertility;1.0002

ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY - Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Management; Effect on Soils; Soil Tillage;1.0003

POTENTIALITIES OF TROPICAL SOILS - Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Livic Arenosols; Rain;1.0004

CORRECTION OF DEFICIENCIES IN P2O5 - Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Livic Arenosols;1.0005

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON - Ferric Luvisols; Management;1.0021

HERBICIDE EXPERIMENTATION ON COTTON - Dystric Nitosols; Fiber Crops; Management; Pesticides -other; Free-merge Application;1.0026

ECOLOGICAL STUDY OF THE ORCHARD - SUDANO-GUINEAN ZONE - Eutric Fluvisols; Mangifer; Passalora; Psidium;6.0004

DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERGION - Ferric Luvisols; Floods; Humid 3 Months; Management; Soil Moisture; Timing of Planting Procedures;6.0007

DATE OF SOWING OF CEREALS IN DRY CULTIVATION - Ferric Luvisols; Humid 3 Months; Management; Rain; Sorg­hum Vulgare (Grain); Timing of Planting Procedures;6.0008

THE FERTILIZATION OF RICE - Ferric Luvisols; Humid 3 Months; Management; Mineral Excess & Deficiency; Soil Minerals -natural;6.0009

FERTILIZATION ON GROUNDSNUTS AND ITS RESIDUAL EFFECTS - Ferric Luvisols; Fertilizer Accumulation; Humid 3 Months; Management; Sorghum Vulgare (Grain);6.0010

VARIELT EXPERIMENTS ON RICE - Ferric Luvisols; Humid 3 Months; Management;6.0011

VARIELT EXPERIMENTAL WORK ON GROUNDSNUTS - Breeding & Genetics; Ferric Luvisols; Humid 3 Months;6.0012

VARIELT EXPERIMENTAL WORK WITH MAIZE - Ferric Luvisols; Humid 3 Months; Management;6.0013

VARIELT EXPERIMENTAL WORK WITH SORGHUM - Ferric Luvisols; Humid 3 Months; Management; Sorg­hum Vulgare (Grain);6.0014

VARIELT EXPERIMENTAL WORK WITH PENNISIETUM MILLETS - Elevational Levels; Altitude; Ferric Luvisols; Humid 3 Months; Management;6.0015

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED - Back Cross; Breeding & Genetics; Ferric Luvisols;6.0047

RESEARCH ON FERTILIZATION OF GROUNDSNUTS - Management; Plant Residues -other; Sorghum Vulgare (Grain);6.0048

CREATION OF VARIETIES OF SORGHUM WITH SHORT-ENED STRAW - Breeding & Genetics; Ferric Luvisols; Sor­ghum Vulgare (Grain);6.0065

CREATION OF SYNTHETIC, HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES - Breeding & Genetics; Ferric Luvisols; Synthetic Varieties & Blends; Top Cross;6.0066

CREATION OF PENNISIETUM - MILLET HYBRID WITH SHORT STRAW - Breeding & Genetics; Ferric Luvisols;6.0067

DETECTION OF MINERAL DEFICIENCIES OF SOILS BY THE METHOD OF POT-CULTIVATION - Soil Types; Sul­fur;6.0068

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED - Back Cross; Breeding & Genetics; Ferric Luvisols;6.0069

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESIMI (MALI) ON ANNUAL CROPS - Fallowing; Ferric Luvisols; Management; Rain; Sorghum Vulgare (Grain); Source of Fertilizer;6.0070

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY - Breeding & Genetics; Elevational Levels; Altitude; Ferric Luvisols; Sorghum Vulgare (Grain);6.0071

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS - Ferric Luvisols; Management; Removal of Nutrients from Soil;6.0072

HYBRIDIZATION IN EUCALYPTUS - Eucalyptus; F Generation (F1, F2, F3, Etc); Pricking Out; Silviculture; Tree Breeding;9.0341

FOREST TREES PROVENANCE TRIALS - Eucalyptus; Pins; Tectona; Variation; Source; Wood Structure & Properties;9.0342

VEGETATIVE PROPAGATION OF PINUS SPECIES - Pine; Seed Nursery; Silviculture; Variation and Source;9.0343

NATURAL REGENERATION IN SAVANNA WOODLAND - Ecosystems; Fire Prevention; Measurement of Trees & Stands; Silviculture;9.0344

EFFECT OF REMOVAL, PARTIAL REMOVAL AND NON-REMOLV OF POLYTHENE POTS ON PLANTATION SPECIES - Eucalyptus; Forestry Insects; Isopera; Pins; Planting Methods -other; Silviculture;9.0348

POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPO­NSE - Ferric Luvisols; Livic Arenosols; Management;6.0022

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESIMI (MALI) ON ANNUAL CROPS - Fallowing; Ferric Luvisols; Management; Sorghum Vul­gare (Grain);6.0029

STUDY OF THE EFFECTS OF TILLAGE - Ferric Luvisols; Livic Arenosols; Management; Effect on Soils; Soil Tillage;6.0030

EVOLUTION OF SOILS UNDER CULTIVATION - Ferric Luvisols; Livic Arenosols; Management; Effect on Soils; Soil Analysis;6.0031

INNRODUCTIONS AND BEHAVIOUR TESTS OF PLUVIAL RICE - Breeding & Genetics; Ferric Luvisols; Management;6.0032

INNRODUCTIONS AND BEHAVIOUR OF RICE ON LOW LYING INUNDATED LAND - STUDY OF THE TECHNIQUES OF CULTIVATION FOR THE SIKASSO RE­GION - Excessive Moisture; Management;6.0033

WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (MALI) - Excessive Moisture; Management; Moisture Defi­ciency; Rain; Soil-water-plant Relationships;6.0034

IMPROVEMENT OF THE CROPPING TECHNIQUES IN TRADITIONAL AGRICULTURE - Farm Enterprises - general; Management; Production and Processing; Rain; Vegetables -other;6.0035

COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH - Flood Irrigation; Low Temp. Above 0 C; Management; Temperature -air; Temperature or Heat Budgets;6.0036

AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN - Climatology; Evapotranspiration; Rain; Solar Lights; Wind or Air Movement;6.0037

CREATION OF MAIZE HYBRIDS WITH WHITE SEEDS AND WITH YELLOW SEEDS - Back Cross; Breeding & Genetics; Ferric Luvisols;6.0047

RESEARCH ON FERTILIZATION OF GROUNDSNUTS - Management; Plant Residues -other; Sorghum Vulgare (Grain);6.0048

CREATION OF VARIETIES OF SORGHUM WITH SHORT-ENED STRAW - Breeding & Genetics; Ferric Luvisols; Sor­ghum Vulgare (Grain);6.0065

CREATION OF SYNTHETIC, HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES - Breeding & Genetics; Ferric Luvisols; Synthetic Varieties & Blends; Top Cross;6.0066

CREATION OF PENNISIETUM - MILLET HYBRID WITH SHORT STRAW - Breeding & Genetics; Ferric Luvisols;6.0067

DETECTION OF MINERAL DEFICIENCIES OF SOILS BY THE METHOD OF POT-CULTIVATION - Soil Types; Sul­fur;6.0068

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED - Back Cross; Breeding & Genetics; Ferric Luvisols;6.0069

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESIMI (MALI) ON ANNUAL CROPS - Fallowing; Ferric Luvisols; Management; Rain; Sorghum Vulgare (Grain); Source of Fertilizer;6.0070

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY - Breeding & Genetics; Elevational Levels; Altitude; Ferric Luvisols; Sorghum Vulgare (Grain);6.0071

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS - Ferric Luvisols; Management; Removal of Nutrients from Soil;6.0072

HYBRIDIZATION IN EUCALYPTUS - Eucalyptus; F Generation (F1, F2, F3, Etc); Pricking Out; Silviculture; Tree Breeding;9.0341

FOREST TREES PROVENANCE TRIALS - Eucalyptus; Pins; Tectona; Variation and Selection; Wood Structure & Properties;9.0342

VEGETATIVE PROPAGATION OF PINUS SPECIES - Pine; Seed Nursery; Silviculture; Variation and Selection;9.0343

NATURAL REGENERATION IN SAVANNA WOODLAND - Ecosystems; Fire Prevention; Measurement of Trees & Stands; Silviculture;9.0344

EFFECT OF REMOVAL, PARTIAL REMOVAL AND NON-REMOLV OF POLYTHENE POTS ON PLANTATION SPECIES - Eucalyptus; Forestry Insects; Isopera; Pins; Planting Methods -other; Silviculture;9.0348

260
Climate- Continental Sav.Trop. SUBJECT INDEX

CREATION OF A VARIETAL HYBRID OF YELLOW MAIZE ADAPTED TO THE NORTH OF DAHOMEY - Breeding & Genetics; Ferric Luvisols; Plant Virus - general; Streaks; Virus Resistance; . . . 1.0043

MODALITIES OF USE OF NATURAL TOGO PHOSPHATE . . . Ferric Luvisols; Source of Fertilizer; . . . 1.0044

EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING . . . Chemical Tillage or No-tillage; Deep Plowing; Minimum Tillage; Plowing; Soil Types; . . . 4.0207

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . Cereal Crops; Hand Tillage; Management; Propanil; Silvex; . . . 4.0208

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS . . . Cereal Crops; Irrigation - general; Management; Phenology; Life Cycle; Physical Control; . . . 4.0209

CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Cereal Crops; Pricking Out; Selectivity of Pesticides; . . . 4.0210

VARIETAL EXPERIMENT WORK ON SOYA . . . Glycine Max; Management; Multiple Cropping; . . . 4.0211

Humid 6 Months

INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS . . . Ferric Luvisols; Fertilizer Losses; Management; Mineralogy; Soil Testing; Timing of Planting Procedures; . . . 1.0024

STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW . . . Fallowing; Ferric Luvisols; Management; . . . 1.0052

EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORCHORUS AND URENA . . . Corchorus; Environments, Plant; Humid 6 M. or Less; Management; Two Humid Seasons; . . . 1.0063

EXPERIMENTS ON MINERAL FERTILIZATION OF HIBISCUS SADBARIFFA . . . Boron; Deficiencies; Ferric Luvisols; Management; Sulfur; . . . 1.0054

EXPERIMENT ON TECHNIQUES OF RETTING FOR HIBISCUS SADBARIFFA . . . Ferric Luvisols; Harvest and Storage; Retting; . . . 1.0057

MANAGEMENT PRACTICES OF TWO RECOMMENDED RICE VARIETIES . . . Cereal Crops; Hand Tillage; Insecticides - nonspecific; Management; . . . 9.0003

PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass - nonspecific; Planavirin; . . . 9.0004

RICE STRAW COMPOST TRIAL . . . C/N Ratio; Compost; . . . 9.0005

WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE . . . Evapotranspiration; Management; Moisture Levels; Plant Responses; . . . 9.0006

SUCKER TECHNIQUES TRIAL FOR RICE . . . Broadcast Application; Management; Nursery Observational Plots; Placement; Pregeration of Planting; Transplanting Methods; . . . 9.0007

POST-PLANTING HERBICIDE TRIAL FOR RICE . . . Cereal Crops; Marsh; Preemerge Application; Timing - other; . . . 9.0008

RICE CROP LOSE - DISEASE INTENSITY CORRELATION EXPERIMENT . . . Blast; Diseases; Fungicides - nonspecific; Marsh; Phytopathology; . . . 9.0009

FUNGICIDAL CONTROL OF THE RICE BLAST DISEASE . . . Blast; Pythium repens; . . . 9.0010

NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION . . . Broadcast Application; Eutric Luvisols; Sodium; Timing of Application - other; . . . 9.0011

FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE . . . Eutric Fluvisols; Fertilizer Technology; Management; Soil Morphology, Profiles; . . . 9.0012

MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Herbicides - nonspecific; Simazine; . . . 9.0019

VARIETAL EXPERIMENTS WITH COTTON . . . Ferric Luvisols; Fiber Crops; Insects; Insecticides - nonspecific; Management; Plinthic Luvisols; . . . 14.0078

RESEARCH ON MINERAL DEFICIENCY IN COTTON . . . Ferric Luvisols; Plinthic Luvisols; Sulfur; . . . 14.0081

EXPERIMENTS - SYSTEMS OF CULTIVATION AND FERTILIZATION . . . Management; . . . 14.0080

TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON . . . Ferric Luvisols; Formulations; Fertilizer; Management; Plinthic Luvisols; Sulfur; . . . 14.0081

COMBINED EXPERIMENT - METHOD OF PLoughING-FERTILIZATION . . . Distric Luvisols; Plinthic Luvisols; Plotting; Sorghum Vulgare (Grain); . . . 14.0082

STUDY OF NITROGENOUS NUTRITION ON COTTON . . . Ferric Luvisols; Management; . . . 14.0083

FOLIAR ANALYSIS ON THE COTTON PLANT . . . Boron; Ferric Luvisols; Management; Plinthic Luvisols; Sulfur; . . . 14.0084

STU DY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS . . . Ferric Luvisols; Management; Plinthic Luvisols; Sorghum Vulgare (Grain); Timing of Application - other; . . . 14.0085

COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS . . . Ferric Luvisols; Hand Tillage; Pesticides - other; Prometryne; . . . 14.0086

LEVEL OF PHYTOSANITARY PROJECTION ON COTTON . . . Ferric Luvisols; Pest Control Measures; Phytopathology; Plant Diseases; Plinthic Luvisols; . . . 14.0087

TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Fiber Crops; Insects; Plinthic Luvisols; . . . 14.0088

EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . DDT; Endrin; Fiber Crops; Insects; Sequential, Daily, Weekly, Yearly; . . . 14.0089

VARIETAL EXPERIMENTS ON HIBISCUS . . . Ferric Luvisols; Management; Plinthic Luvisols; . . . 14.0090

Humid 7 Months

MANGO VARIETY MUSEUM . . . Management, Plant Parts Bank; . . . 3.0006

EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF HIBISCUS CANNABINUS . . . Fibers; Management; . . . 3.0007

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS . . . Fibers; Management; Seed Production; Surface - soil; . . . 3.0008

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF HIBISCUS CANNABINUS . . . Fibers; Management; Timing of Planting Procedures; . . . 3.0009

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE . . . Breeding & Genetics; Fibers; Insect Resistance; Phytopathology; Seed Bank; . . . 3.0070

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS . . . Damping Off; Fungicides - nonspecific; Phytopathology; Seed Treatment; Soil-borne; . . . 3.0071

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA . . . Fibers; Management; Timing of Planting Procedures; Urena; . . . 3.0072

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS CAPSULARIS . . . Corchorus; Fibers; Management; Timing of Planting Procedures; . . . 3.0073

Climate- Cool Winter Tropical

Summer G

Humid 2 Months

AFLATOXIN - ASSESSMENT OF ANALYTICAL TECHNIQUES FOR USE UNDER LOCAL CONDITIONS . . . Nuins & Nutsmeats; Phytopathology; Spoilage of Food; . . . 9.0038

Climate- Hot Tropical Desert

Win. Tp Monsoon Desert

PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID PESTS OF FRUIT CROPS . . . Camphor Arelas; Diaspididae; Insecticides - nonspecific; Population Dynamics; Rearing of Insects; . . . 7.0001

Climate- Humid Equatorial

TYPOLOGY AND CLASSIFICATION OF FERRALYTIC SOILS IN AN EQUATORIAL TO TROPICAL CLIMATE . . . Climate- Continental Sav.Trop.; Soil Genesis; Soil Morphology, Profiles; Soil Types; . . . 4.0037

EVALUATION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING . . . Geology; Soil Analysis, Soil Crusts; Tertiary Period; . . . 4.0038

262
SUBJECT INDEX

MINEROCAL STUDY OF FERRALLYIC PEDOGEOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE	Goethite; Iron; Mineralogy; Soil Survey; . . . 4.0039
FOREST ECOLOGY IN THE LOWER IVORY COAST	Organic Fertility; Rain; Soil Minerals - natural; Surveys; . . . 4.0050
PHENOCYCLONE AND ECOLOGY OF THE SIPO (ENTANDROPHRAGMA UTILIS) - RHYTHM OF GROWTH IN NATURAL FOREST	Dendrochronology; Meliaceae - other; Phenology; Life Cycle; Plant Morphology; . . . 4.0050
STUDY OF THE POSSIBILITIES OF FRUIT CRPSES IN THE LOWER IVORY COAST	Management; Passiflora; Phytophthora; . . . 4.0050
STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST	Breeding & Genetics; Climate - Continental; Savanna; Fats & Oils; Fruits and Berries; Quality and Utilization; . . . 4.0156

Humid

Continuous Humid	COCONUT FERTILIZER TRIAL (NPK MG)	Cocoa; Magnesium; Management; . . . 3.0040
COCONUT FERTILIZER TRIAL NP (KMG)	Cocoa; Management; . . . 3.0041	
COCONUT SPACING TRIAL	Cocoa; Management; Placement; Space Competition; . . . 3.0042	
COCONUT DEPTH OF PLANTING TRIAL	Cocoa; Placement; Soil Depth; . . . 3.0043	
COCONUT INTERCROPPING TRIAL	Cocoa; Intercropping; Management; Manihot; Oilseed Crops; . . . 3.0044	
COCONUT AGE OF SEEDLING TRIAL	Cocoa; Management; . . . 3.0045	
RUBBER NP (KMG) FACTORIAL TRIAL	Magnesium; Management; . . . 3.0046	
RUBBER CLONE MUSEUM	Latex; Management; . . . 3.0047	
RUBBER STOCK/SCION RELATIONSHIP TRIAL	Management; . . . 3.0048	
RUBBER CLONE TRIAL 1965 A AND 1965 B	Disease Resistance; Latex; Management; Wind; Wind or Air Movement; . . . 3.0049	
RUBBER INTERCROPPING EXPERIMENT	Fomes; Green Manure; Intercropping; Management; Manihot; . . . 3.0050	
RUBBER CLONAL SEEDLING FAMILY TRIAL	Management; . . . 3.0051	
MINERAL FERTILIZATION ON COFFEE	Ferric Acrisols; Geology; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; . . . 4.0001	
MINERAL FERTILIZATION ON COCOA	Calcium - Other Than Lime; Ferric Acrisols; Magnesium; Nursery Observational Plots; . . . 4.0002	
GENERATIVE IMPROVEMENT OF THE CACAO-TREE	Breeding & Genetics; Spices & Bev; Ferric Acrisols; Interspecific Crosses; Intraspecific Genetic Relations; Management; Plant Resistance; . . . 4.0004	

Rainfall Surplus

| INSECTICIDE TESTING PROGRAM | Baytex; C 9491; Pesticides - other; Tenebrionidae; . . . 8.2039 |
| QUICK DETERMINATION OF FREE FATTY ACID CONTENT IN PALM KERNELS | Fats - Lipids & Oils; Oilseed Crops; . . . 9.0340 |

Two Humid Seasons

STUDY ON MANUAL POLLINATION AND FERTILIZATION OF THE CACAO-TREE AND OF THE INFLUENCE OF A COMPLEMENTARY MANUAL POLLINATION	Breeding & Genetics; Spices & Bev; Ferric Acrisols; Pollination & Fertilization; Wilts; . . . 4.0117
STUDY ON THE UTILIZATION OF GROWING SUBSTANCES IN COCOA CROPPING	B9; Ferric Acrisols; Fruit-set or Fruit-thinning; Growth Retardation of Plants; Management; . . . 4.0112
STUDY ON THE UTILIZATION OF GROWTH SUBSTANCES IN COFFEE CROPPING	Ethyl; Ferric Acrisols; Fruit-set or Fruit-thinning; Growth Retardation of Plants; Management; . . . 4.0113
IMPROVEMENT OF THE COLA TREE - COLA NITIDA	Breeding & Genetics; Spices & Bev; Cola; Ferric Acrisols; Interspecific Genetic Relations; Nursery Observational Plots; . . . 4.0140

PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE CACAO TREE | Ferric Acrisols; Management; Soil Analysis; Soil Survey; Soil Types; . . . 4.0141

PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE COFFEE TREE | Ferric Acrisols; Management; Soil Analysis; Soil Survey; Soil Types; . . . 4.0142

HAPLOIDY IN THEOBROMA CACAO | Breeding & Genetics; Spices & Bev; Ferric Acrisols; . . . 4.0143

FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS | Beverages & Crops; Ferric Acrisols; Foliar Application; Management; Miridae; Thiodan; . . . 4.0144

MINERAL FERTILIZATION ON COFFEE | Ferric Acrisols; Geology; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; . . . 4.0145

MINERAL FERTILIZATION ON COCOA | Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis; . . . 4.0146

PINEAPPLES - PHYSIOLOGICAL STUDIES | Bromeliaceae; Fruit-set or Fruit-thinning; Management; Phytopathology; Xanthix Ferrisals; . . . 4.0147

TO AVOID THE DEGRADATION OF SOILS BY CONTINUOUS CULTIVATION OF PINEAPPLES | Bromeliaceae; Erosion Control; Management; Removal of Nutrients from Soil; . . . 4.0148

PINEAPPLES - PHYTOSANITARY PROTECTION | Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; . . . 4.0149

PINEAPPLES - IMPROVEMENT OF THE PLANT - INTERACTION BETWEEN PLANT AND ENVIRONMENT | Breeding & Genetics; Bromeliaceae; Management; Xanthix Ferrisals; . . . 4.0150

IMPROVEMENT OF THE BANANA PLANT | Breeding & Genetics; Musa; Photosynthesis; Solar Light; . . . 4.0151

INFLUENCE OF MINERAL FERTILIZATION ON THE GROWTH OF BANANA PLANTS AND THE METABOLISM OF SUGARS | Deficiencies; Growth Stage of Plant; Musa; Phytopathology; . . . 4.0152

EVOLUTION OF THE SOILS OF BANANA PLANTATIONS | Cultivation in Organic Soils; Env. Plant Dis. Relation; Musa; Orthic Acrisols; Soil - Alkaline; Soil Drainage; . . . 4.0153

INTEGRATED CONTROL OF THE PARASITES AND MAURUDEAID OF THE COCONUT | Fungi - specific; Fungi - nonspecific; Nematospirotea; Phytopathology; Systemic Action (Plant); . . . 4.0154

STUDY THE LATUIDS OF THE LATEX OF THE RUBBER TREE | Hevea; Breeding & Genetics; Latex; Laticifers; Membranes, Cellular; Quality and Utilization; . . . 4.0227

REGENERATION OF THE LATEX OF THE RUBBER TREE AFTER TAPPING | Breeding & Genetics; Deficiencies; Harvest and Storage; Monosaccharides - nonspecific; Translocation; . . . 4.0224

TAPPING OF THE RUBBER TREE | Study the Flow of the Latex; Breeding & Genetics; Harvest and Storage; Latex; Genomic and Turgor Pressure; Soil Moisture; Solar Light; . . . 4.0225

TAPPING OF THE RUBBER TREE | Study of New Preparations for Stimulation of Production; Harvest and Storage; Latex; . . . 4.0226

IMPROVEMENT OF THE RUBBER TREE - VEGETATIVE IMPROVEMENT | Study of the Planting Material; Breeding & Genetics; Intraspecific Genetic Relations; Plant Resistance; Wind or Air Movement; . . . 4.0227

IMPROVEMENT OF HEVEA BRASILIENSIS - RESEARCH ON CRITERIA FOR SELECTION | Breeding & Genetics; Latex; Laticifers; Plant Morphology; Wind; Wind or Air Movement; . . . 4.0228

VEGETATIVE IMPROVEMENT OF HEVEA | Reduction of the Intergenerational Variability; Breeding & Genetics; Grafting; . . . 4.0229

PREPARATION OF PLANTING MATERIAL FOR HEVEA | Breeding & Genetics; Planting Methods; Topographical Parameters; . . . 4.0230

IMPROVEMENT OF HEVEA BRASILIENSIS - EARLY FLOWERING | Breeding & Genetics; Growth and Differentiation; Management; . . . 4.0231

IMPROVEMENT OF HEVEA BRASILIENSIS - CONTROLLED CROSSINGS OF OLD EXISTING ORIGINS | Breeding & Genetics; Intraspecific Genetic Relations; . . . 4.0232

IMPROVEMENT OF HEVEA - THE OBTAINING OF CROSSINGS STARTING FROM THE NEW ORIGINS | Breeding & Genetics; Intraspecific Genetic Relations; Pedigree; . . . 4.0233

Climate - Humid Equatorial

263
Climate- Humid Equatorial

SUBJECT INDEX

- IMPROVEMENT OF HEVEA BRASILIENSIS - THE OBTAINING OF POLYPLOIDS... Breeding & Genetics; Mutation... 4.0234
- DETERMINATION OF THE OPTIMUM PLANTATION DENSITIES AND ARRANGEMENTS FOR RUBBER TREES... Harvest and Storage; Management; Phytopathology; Placement; Space Competition... 4.0235
- METHODS OF PREPARING THE GROUND FOR PLANTATION OF RUBBER TREES... Hand Tillage; Management; Phytopathology; Sand; Seedbed Preparation... 4.0236
- PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES... Breeding & Genetics; Growth and Differentiation; Growth Substances; Hormones; IBA; Management... 4.0237
- MINERAL NUTRITION AND FERTILIZATION OF YOUNG PLANTATIONS OF RUBBER TREES... Management; Pueraria; Sand; Soil Fertility... 4.0239
- MINERAL NUTRITION AND FERTILIZATION OF RUBBER TREES ON PLANTATIONS IN PRODUCTION... Management; Sand; Soil Fertility... 4.0240
- STIMULATION OF RUBBER TREES FOR EARLY PRODUCTION... Growth Retardation of Plants; Harvest and Storage; Management; Plant Growth Regulators; Sequential, Daily, Weekly, Etc... 4.0243
- TAPPING OF RUBBER TREES - RESEARCH ON PRODUCTION - GROWTH EQUILIBRIUM... Harvest and Storage... 4.0244
- TAPPING OF RUBBER TREES - RESEARCH ON THE EQUILIBRIUM BETWEEN YIELD OF THE HECTARE AND YIELD BY WORKER... Costs; Harvest and Storage; Management; Plant Growth Regulators; Supply; Time & Motion Studies... 4.0245
- INFLUENCE OF THE PERIOD OF ARREST OF TAPPING RUBBER TREES UPON GROWTH, PRODUCTION AND TAPPING CUT DISEASES... Env. Plant Dis. Relation; Harvest and Storage; Management; Phytopathology; Plant Diseases... 4.0246
- CUMULATIVE TAPPING OF RUBBER TREES... Costs; Harvest and Storage; Latex; Management; Time & Motion Studies... 4.0247
- TAPPING OF RUBBER TREES - ANTI-RAIN BANDS... Costs; Harvest and Storage; Management; Rain... 4.0248
- DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS... Biocontrol -other; Fomes; Humidity; Phytopathology; Soil Moisture... 4.0249
- BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS... Cover Crops; Fomes; Ganoderma; Phytopathology... 4.0250
- DISEASES OF LEAVES OF HEVEA IN NURSERY... Foliage Diseases -nonspecific; Fungicides -nonspecific; Gloecapsorium; Helminthosporium; Nursery Observational Plots; Phytopathology... 4.0251
- CONTROL OF DISEASES OF THE TAPPING PANEL OF HEVEA... Env. Plant Dis. Relation; Fungi -nonspecific; Management; Phytopathology; Phytophthora; Plant Growth Regulators... 4.0252
- EVALUATION OF THE PROPERTIES OF THE RUBBERS OF THE IVORY COAST - SPECIFICATION OF RUBBER... Composition; Latex; Mechanical Properties; Rubber -natural... 4.0253
- TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING... Chemical Materials; Intraspec. Genetic Relations; Mechanical Properties; Processing -general... 4.0254
- TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL... Costs; Latex; Physical Properties; Rubber -natural... 4.0255
- TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS... Casein; Fillers; Extender; Latex; Quality and Utilization; Rubber -natural... 4.0256
- TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM... Drying; Forms -other; Harvest and Storage; Instrumentation; Equipment; Latex; Rubber -natural... 4.0257
- OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUINEENSIS... Cercospora; Endoderms; Interspecific Cross; Tannin... 4.0287

Moist Monsoon, 1 to 3 Dry M.

- Continuous Humid 7 Months,Plus
- STUDY OF SYSTEMS OF MANAGEMENT OF POULTRY INCLUDING DUCKS AND TURKEYS... Mallard; Meleagris; Poultry -nonspecific... 3.0013
- WEED CONTROL IN YOUNG AND MATURE OIL PALMS (ELAEIS GUINEENSIS), USING HERBICIDES... Biades; Eptam; MSMA; Oiled Crops; Parquat... 3.0017
- RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERY AND NURSERY/soil Blast; Saccharum; Nursery Observational Plots; Planting Methods -other... 3.0018
- FODDER CROP IMPROVEMENT... Breeding & Genetics; F Generation (F1, F2, F3, Etc); Recurrent Selection; Seed Production... 3.0019
- OIL PALM FERTILIZER REQUIREMENTS IN GHANA... Calcium - Other Than Lime; Magnesium; Management; Sand... 3.0020
- IMPROVEMENT OF OIL PALM SEED GERMINATION... Dip Application; Germination; Management; Moisture Content -plants... 3.0021
- ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM... Drought Resistance; Epidermis; Management; Moisture Deficiency; Photoperiod; Soil Depth... 3.0012
- WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES... Drought Resistance; Evapotranspiration; Management; Oiled Crops; Soil-water plant Relationships... 3.0013
- REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS... Crop Production; Harvesting; Harvest and Storage; Management... 3.0024
- FUNGICIDE SPRAYING TRAILS IN NURSERY AND FIELD... Cercospora; Economics of Chemical Control; Foruref; Mode of Action; Phytopathology... 3.0025
- STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA... Cocos; Mangifera; Nicotiana; Tuber... 3.0029
- INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS... Culturing Techniques; DD; Nematog; Nicotiana; Population Dynamics... 3.0030
- INVESTIGATIONS INTO THE CONTROL OF SUGAR CANE NEMATODES... Burning or Flaming; Mollases; Phytopathology; Saccharum; Sugar Derivatives... 3.0029
- INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA... Env. Plant Dis. Relation; Light Quantity or Intensity; Phytopathology; Seed-borne; Temperature -air... 3.0026
- EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROBSONI ON VEGETABLES AND LEGUMES... Lycopersicum; Sclerotium; Selectivity of Pesticides; Wits... 3.0031
- INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON... Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Traps... 3.0032
- INSECT PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL... Lycopersicum; Pulse Crops; Solanum; Surveys... 3.0033
- INVESTIGATION INTO THE INSECT PESTS OF BAST FIBRES AND THEIR CONTROL... Corchorus; Fiber Crops; Insecticides -nonspecific; Surveys; Urens... 3.0034
- INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE... Graminaceae; Dip Application; Isoptera; Saccharum; Tropidocorides... 3.0035
- INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE... Graminaceae; Dip Application; Isoptera; Saccharum; Tropidocorides; Insects; 3.0035
- BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA)... Economics of Chemical Control; Multiple Cropping; Parasites -biocontrol; Sevin... 3.0036
- EFFECTS OF FERTILIZER PLACEMENT ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABIS, URENA LOBATA... Growth Stage of Plant; Management; Urena... 3.0038
- REPRODUCTIVE BIOLOGY OF KENAF... Back Cross; Management; Poliena... 3.0039
SUBJECT INDEX
NATURAL CROSSING IN KENAF IN GHANA ... Breeding &
Genetics; Halictidac; ...3.0140
EFFECTS OF AGE AT HARVEST ON THE GROWTH AND
FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS, L.
... Harvest and Storqe; Retting; ... 3.0141
EFFECTS OF CONDITIONS AND LENGTH OF STORAGE
ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS, CANN AB I NUS, L. ... Germination; Low Temp. Above 0
C; Storqe; ...3.0142
FERTILIZER TRIALS ON FLUE, FIRE AND AIR CURED
TOBACCO . . . Costs; Curina Technique; Management;
Nicotiana; Placement; ...3.0143
AIR CURED TOBACCO VARIETY TRIAL ... Curing Technique; Management; Nicotiana; ... 3.0144
EFFECT OF TIME OF LAND PREPARATION AND PLANTING ON YIELD QUALITY OF FLUE CURED TOBACCO
. . . Management; Nicotiana; Plowing; Seedbed Preparation; Soil
TiU.,e Methods -other; Timing of Planting Procedures; ...
3.1145
POSSIBLE SECOND SEASON CASH CROP FOR FLUE
CURED TOBACCO FARMERS ... Fertilizer Losses; Management; Multiple Cropping; Production and Processing; Soil and
Rock Leaching; Sorghum Vulgare (Grain); ... 3.0146
FIRE CURED TOBACCO VARIETY TRIAL ... Management;
Nicotiana; ... 3.0147
TOBACCO SUCKER CONTROL WITH CHEMICALS ...
Growth Retardation of Plants; Maleic Hydrazide; Management;
Nicotiana; Off-shoot T; ... 3.0148
TOMATO VARIETY TRIAL ... Lycopenicum; Management;
Rain; Timing of Planting Procedures; ...3.0149
TOMATO BREEDING ... Breeding & Genetics; Cobalt; Disease
Resistance; Lycopenicum; Mutation; ...3.0150
TOMATO- COWPEA ROTATION ... Crop Rotation, Cropping
System; Lycopenicum; Management; Plant Nematodes -nonspecific; ... 3.0151
THE PRODUCTION OF HIGH YIELDING VARIETIES OF
GROUNDNUTS ... Fats - Lipids & Oils; Oilseed Crops; Orthic
Acrisols; Rosette Disease; Space Competition; ... 3.0152
COWPEA INVESTIGATION ... Disease Resistance; Insect Resistance; Management; Orthic Acrisols; Timing of Planting
Procedures; ... 3.0153
SUGARCANE AGRONOMIC INVESTIGATIONS ... Insect
Resistance; Management; Saccharum; ... 3.0154
CASSAVA IMPROVEMENT ... Manihot; Plant Virus ·general;
Timing of Planting Procedures; ... 3.0155
SORGHUM INVESTIGATION IN THE TROPICAL FOREST
ZONE ... Insect Resistance; Management; Sorghum Vulgare
(Grain); Timing of Planting Procedures; ... 3.0156
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE
GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS
CANNABINUS L. ... Fibers; Management; Retting; ... 3.0172
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE
GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Fibers; Retting; Surface -soil; ...
3.0173
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE
GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS
CANNABINUS L. ... Fiben; Management; Timing of Planting
Procedures; ... 3.0174
DEVELOPMENT OF DISEASE AND PEST RESISTANT
KENAF VARIETIES WITH A HIGH YIELD OF GOOD
QUALITY FIBRE ... Breeding .t Genetics; Disease Resistance;
Insect Resistance; Photoperiod; Seed Bank; ... 3.0175
INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ...
BHC; Damping OIT; Pesticides -other; Seed Treatment; ... 3.0176
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE
GROWTH AND FIBRE YIELD OF URENA LOBATA .. .
Fibers; Management; Timing of Planting Procedures; Urena; .. .
3.0177
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE
GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS,
CAPSULARIS ... Corchorus; Fiben; Management; Timing of
Planting Procedures; ... 3.0178
INTRODUCTION OF EXOTIC PLANTS ... Cocos; Disease Resistance; Insect Resistance; Phenology, Life Cycle; Plant Parts
Bank; Triticum; ... 3.0208
PLANT EXPLORATION AND COLLECTION ... Breeding &
Genetics; Cyclamate; Mutation; Plant Parts Bank; Plant Resistance; Sugar -nonspecific; ... 3.0209
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ...
C:ereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesti·
c1des; ... 4.0219

265

Climate- Humid Equatorial

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS ... Cereal Crops; Cultural Control;
Irrigation -general; Management; Phenology, Life Cycle; ...
4.0220
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE
... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ... 4.0221
VARIETAL EXPERIMENT WORK ON SOY A ... Glycine Max;
Management; Multiple Cropping; .. .4.0222
PHYSIOLOGY OF ROOT, TUBER CROPS AND VEGETABLES ... Breeding & Genetics; Ferralic Cambisols; lpomoea;
Plant Morphology; ...9.0162
PEPPER IMPROVEMENT ... Breeding & Genetics; Capsicum;
Disease Resistance; Ferralic Cambisols; Ferric Luvisols; Synthetic Varieties & Blends; ...9.0163
LEAFLY AND FRUIT VEGETABLE IMPROVEMENT ...
Breeding & Genetics; Disease Resistance; Ferralic Cambisols;
Ferric Luvisols; Lycopersicum; Synthetic Varieties & Blends; ...
9.0164
INCORPORATION OF LEAFLY AND FRUIT VEGETABLE
AND PEPPER PRODUCTION INTO FARMING SYSTEMS
. . . Capsicum; Ferralic Cambisols; Ferric Luvisols; Lycopersicum; Management; Plant Industries -other; ...9.0165
VARIETAL IMPROVEMENT (BREEDING) OF GRAIN
LEGUMES ... Breeding & Genetics; Leguminosae; Nutritive
Values -plant; Seed Bank; ...9.0166
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS
... Cajanus; Ferric Luvisols; lnsecta; Oilseed Crops; Phaseolus;
Surveys; ...9.0170
PEST CONTROL ON COWPEAS - VIGNA UNGUICALATA
. . . Chrysomelideae; Ferric Luvisols; Insect Resistance; Pests;
Seed Bank; Systemic Application; ...9.0171
HARVESTING IN RELATION TO COWPEA YIELDS ... Ferralic Cambisols; Ferric Luvisols; Harvest and Storage; ... 9.0172
COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS ...
Chemical Tillage or Non tillage; Ferralic Cambisols; Ferric Luvisols; Glycine Max; Management; Minimum Tillage; ...9.0173
COWPEA AND SOYBEAN FERTILIZATION ... Ferralic Cambisols; Ferric Luvisols; Glycine Max; Management; ... 9.0174
PLANT DENSITY ON COWPEAS AND SOYBEANS ... Ferralic Cambisols; Ferric Luvisols; Glycine Max; Management;
Space Competition; ...9.0175
GRAIN LEGUME PROTECTION ... Ferralic Cambisols; Ferric
Luvisols; Oilseed Crops; Pulse Crops; ...9.0176
SOIL CHEMISTRY ... Fallowing; Iodine; Mineralogy; Silicon;
Soil Resistance; ...9.0178
SOIL MICROBIOLOGY ... Chlorinated Hydrocarbons; Ferralic
Cambisols; Herbicides -nonspecific; Nitrogen Fixation; Sulfur;
Toxicity to Microorganisms; ...9.0179
AGRONOMY (SYSTEMS) ... Ferralic Cambisols; Ferric Luvisols; Production and Processing; ... 9.0180
IMPROVEMENT OF CEREALS PRODUCTION AND MAR·
KETING IN THE CENTRAL AFRICAN REGION ... Ferralic Cambisols; Ferric Luvisols; Grain Industries; Market
Structure; Marketing; ... 9.0181
CASSAVA BREEDING ... Bacterial Wilt; Cercospora; Disease
Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses;
Phytopathology; ... 9.0182
MECHANIZATION OF TROPICAL AGRICULTURE ... Design,Modify,Develop.of Equip; Ferralic Cambisols; Ferric Luvisols; Mathematical Models; Soil Tillage Methods -other; Tractors
and Accessories; ...9.0184
SOIL CONSERVING CROPS ... Cajanus; Disease Resistance;
Ferralic Carnbisols; Forage Grasses, Pasture, Range; Insect Resistance; Paniceae -other; Pueraria; ... 9.0185
YAM BREEDING ... Breeding & Genetics; Disease Resistance;
Ferric Luvisols; Nematode Resistance; Proteins; Starch; ...
9.0186
CASSAVA ENTOMOLOGY ... Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudococcidae; Vectors; ...9.0187
YAMS PATHOLOGY ... Breeding & Genetics; Disease Resistance; Ferric Luvisols; Plant.Nematodes-nonspecific; Shoe String;
Storage Rot; ...9.0192
MAIZE HERBICIDE TRIAL ... Cereal Crops; Simazine; ...
9.0199
MAIZE POPULATION STUDIES ... Management; Placement;
Space Competition; ...9.0203
HERBICIDE SCREENING ... Cereal Crops; Herbicides ·non·
specific; Postemerge Application; ... 9.0204
SEED RATE TRIAL WITH UPLAND RICE ... Crop Production,
Harvesting; Drill Application; Management; Seeding or Planting
Rate; ... 9.0209


THE COLLECTION OF INDIGENOUS AND THE INTRODUCTION OF EXOTIC CASSAVA VARIETIES FOR THE BREEDING OF CASSAVA . . . Breeding & Genetics; Disease Resistance; Manihot; . . . 9.0210

INVESTIGATIONS OF METHODS OF BREAKING CASSAVA SEED DORMANCY AND THE EFFECT OF AGE ON CASSAVA SEED GERMINATION . . . Dormancy; Germination; Management; Manihot; Scarcification; . . . 9.0211

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES . . . Breeding & Genetics; Manihot; Pedigree; Virus Resistance; . . . 9.0212

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES . . . Centrosema; Legume-grass Mixtures; Management; Proteins; Rhizobium; . . . 9.0214

STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUIICULATA (L) WALT) . . . Blight Diseases; Diptera; Pulse Crops; Vectors; Xanthomonas; . . . 9.0215

THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL . . . Nitrogen Fixation; Pesticidal Interaction -other; Pulse Crops; Simazine; Toxicity to Microorganisms; . . . 9.0216

BIOLOGICAL CONTROL OF THE BROWN LEAF SPOT DISEASE OF RICE USING ORGANISMS ANTAGONISTIC TO THE PATHOGEN . . . Brown Spot; Helminthosporium; Phytopathology; Soil-borne; . . . 9.0217

A STUDY OF THE CONTRIBUTION OF FIXED NITROGEN TO THE NUTRITION OF COWPEA (VIGNA UNGUIICULATA) . . . Inoculation; Nitrogen Fixation; Pulse Crops; Rhizobium; . . . 9.0218

SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARACTERS . . . Breeder Stock; Breeding & Genetics; Hybrid Breeding -nonspecific; . . . 9.0221

PRODUCTION OF BEAN (COWPEA) HYBRIDS . . . Breeding & Genetics; Hybrid Breeding -nonspecific; Indeterminate; . . . 9.0225

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT BEANS) UNDER IBADAN CONDITIONS . . . Dolichos; Glycine Max; Leguminosae -other; Management; Phaseolus; Seed Bank; . . . 9.0226

GENETIC VARIATIONS IN SOYA BEANS . . . Breeding & Genetics; Glycine Max; . . . 9.0227

HYBRIDIZATION METHOD FOR SOYA BEANS . . . Breeding & Genetics; Glycine Max; Hybrid Breeding -nonspecific; Pollination & Fertilization; . . . 9.0228

EVALUATION OF SELECTION METHODS FOR MAIZE . . . Breeding & Genetics; Recurrent Selection; Synthetic Varieties & Blends; . . . 9.0231

PRODUCTION OF WHITE FLOUHY MAIZE VARIETIES FOR HUMAN CONSUMPTION . . . Breeding & Genetics; Cer-eal Crops; Crop Products; Metabolic Expression; Organoleptic Studies of Food; Recurrent Selection; . . . 9.0232

PRODUCTION OF SHORTSTEMMED HIGH YIELDING ACCEPTABLE MAIZE VARIETIES . . . Back Cross; Breeding & Genetics; Lodging; Recurrent Selection; . . . 9.0233

RECURRENT SELECTION IN A NIGERIAN WHITE FLOUHY MAIZE (ZEA MAIZE) . . . Breeding & Genetics; Metabolic Expression; Recurrent Selection; Selfing; Synthetic Varieties & Blends; . . . 9.0236

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION FALLING . . . Centrosema; Cynodon; Ferric Acrosols; Legume-grass Mixtures; Organic Fertility; Pueraria; . . . 9.0250

PHOSPHATE PLACEMENT TRIAL . . . Broadcast Application; Ferric Acrosols; Management; Rain; . . . 9.0251

BASIC LAG AND SINGLE SUPERPHOSPHATE AS PHOSPHATIC FERTILIZERS . . . Ferric Acrosols; Management; Soil pH; . . . 9.0252

APPLICATION OF RADIOTRACER TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS . . . Ferric Acrosols; Ferric Luvioils; Management; Movement; Availability; Phosphorus; . . . 9.0253

LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FUNDAMENTALLY DIFFERENT FARMING SYSTEMS . . . Compost; Ferric Acrosols; Management; Nitrogen; . . . 9.0254

RHIZOSPHERE MICROFLORA CONTRIBUTION TO PHOSPHATE DISSOLUTION . . . Phosphorus; Removal of Nutrients from Soil; Rhizosphere; Soil Bacteria; Soil Microbiology; . . . 9.0255

POPULATION DYNAMICS . . . Phytopathology; Plant Nematodes -nonspecific; Population Dynamics; Surveys; . . . 9.0273

IDENTIFICATION OF RICE VARIETIES RESISTANT TO THE BROWN SPOT OF RICE CAUSED BY HELMINTHOSPORIUM ORYZAE . . . Breeding & Genetics; Brown Spot; Fusarial Resistance; Helminthosporium; Phytopathology; . . . 9.0277

STUDIES ON THE HOST RANGE OF HELMINTHOSPORIUM ORYZAE . . . Grains -nonspecific; Helminthosporium; Pathology of Weeds; . . . 9.0278

DETERMINATION OF APHIS PHYTOPHAGIC SURVIVAL OF HELMINTHOSPORIUM ORYZAE IN RICE SEEDS AND STRAW . . . Helminthosporium; Phytopathology; Seed-borne; . . . 9.0279

FIELD CONTROL OF THE BROWN SPOT OF RICE USING FUNGICIDES . . . Brown Spot; Fungicides -nonspecific; Maturity or Growth Stage; Phytopathology; . . . 9.0280

EFFECT OF PLANT NUTRITION ON RESISTANCE AGAINST THE BROWN SPOT OF RICE CAUSED BY H. ORYZAE . . . Brown Spot; Fusarial Resistance; Helminthosporium; Nutrition in Disease; Nutritional Regulation (Host); Phytopathology; . . . 9.0281

ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS . . . Chocolate & Cocoa; Fermentation; Molds; Spoilage of Food; . . . 9.0335

TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS . . . Infestation of Food; Radiation; Spoilage of Food; Vegetable & Vegetable Products; . . . 9.0336

ORIGIN OF MOLD DESTRUCTION OF PALM KERNELS . . . Molds; Phytopathology; Storage; . . . 9.0337

LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOWS . . . Crop Contribution to Soil Fert.; Fallowing; Mani-hot; Orlich Ferralsols; Pueraria; Soil Analysis; . . . 9.0366

MAIZE HERBICIDE TRIAL . . . Cereal Crops; Economics of Chemical Control; Management; . . . 9.0367

MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Economics of Chemical Control; Management; Simazine; . . . 9.0368

Humid 6 M.or Less

MAINTENANCE AND REGENERATION OF FERTILITY OF THE DEGRADED ‘TERRE DE BARRE’ SOILS . . . Dystric Nitosols; Organic Fertility; Soil Fertility; Source of Fertilizer; . . . 1.0010

HERBICIDE EXPERIMENTATION ON COTTON . . . Dystric Nitosols; Fiber Crops; Humid 4 Months; Management; Pesticides -other; Preemerge Application; . . . 1.0026

RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY . . . Behavioral Ecology; Dystric Nitosols; Fiber Crops; Insect Viruses -other; Integrated Control; Olethreutidae; . . . 1.0048

INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Dystric Nitosols; Endrin; Gardona; Insecticides -other; Synergism and Synergists; . . . 1.0049

INTEGRATED CONTROL OF CRYPTOPHLEBIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES . . . Disease -biocontrol; Fiber Crops; Mode of Action; Peprothion; . . . 1.0051

EXPERIMENTS WITH VARIETIES OF Hibiscus, COR-CHORUS AND URENA . . . Corchorus, Environment, Plant; Management; Two Humid Seasons; . . . 1.0053

MINERAL NUTRITION OF HYBRID COCONUT PALMS . . . Cocos; Magnesium; Management; . . . 1.0072

INFLUENCE OF IRRIGATION ON THE PRODUCTION OF THE HYBRID DWARF CROSSED WITH LARGE COCO· NUT PALMS . . . Cocos; Irrigation; Irrigation -general; Management; . . . 1.0073

EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM) . . . Copra; Othiozinoxin; . . . 1.0074

Two Humid Seasons-7 Month, Plus

N.P.K. FACTORIALS - FERTILIZER TRIAL IN SUGARCANE . . . Formulation; Fertilizer; Irrigation; Irrigation -general; Management; Saccharum; . . . 3.0112

TREATMENT OF SUGARCANE PLANTING METHOD . . . Dip Application; Management; Pesticides -other; Saccharum; Water; . . . 3.0113

SUGARCANE VARIETY STUDIES . . . Excessive Moisture; Management; Saccharum; . . . 3.0114
Climate- Marine Savanna Trop.

MOIST MONSUN 0 to 3 MONTHS

CAUSES OF MASTITIS IN DAIRY CATTLE AT AGRICULTURAL RESEARCH STATION... Matsitis; ... 3.0012
RATE OF GAIN IN CROSSBRED CATTLE ON NATIVE PASTURE AND SUPPLEMENTED FEED... Forage, Pasture or Range; Growth Rate; Management; ... 3.0014
NUTRITIONAL STUDIES WITH PIGS USING DIETS CONTAINING MAINLY LOCALLY PRODUCED FEED STUFFS... Swine Rations; Veriebrate Nutrition; ... 3.0015
THE PRODUCTIVITY OF IRRIGATED PASTURES... Grass -nonspecific; Irrigation; Irrigation -general; Management; ... 3.0016
CONTROL OF SKIN DISEASES OF FARM ANIMALS... Skin or Special Derivatives; Skin Diseases -other; Veterinary Medicine; ... 3.0017
PRODUCTION OF SORGHUM AS A GRAIN AND FODDER CROP FOR LIVESTOCK... Forage, Pasture or Range; Grain Sorghum, Milo; Sorghum Vulgare (Forage); Sorghum Vulgare (Grain); ... 3.0018
STUDIES WITH THE SMALL RUMINANTS... Bovidae; Sheep Husbandry; Veterinary Medicine; ... 3.0019
FIELD TRIALS OF SOYA BEAN PRODUCTION... Glycine Max; Management; ... 3.0020
TILLAGE SYSTEMS FOR TROPICAL AGRICULTURE... Soil Tillage Methods -other; ... 3.0021
TICK SURVEY ON SELECTED AREAS ON THE ACCRA PLAINS... Ixodidae; Maturity & Growth Stages; Surveys; ... 3.0028
SWEET POTATO ENTOMOLOGY... Curculionidae; Economics of Chemical Control; Ferroc Luviosols; Ipomoea; Vectors; ... 9.0189

MOIST MONSON 0 to 3 MONTHS

INVESTIGATIONS ON THE CAPE ST. PAUL WILT DISEASE OF COCONUT... Coccos; Disease Resistance; Forecast Outbreak - Plant Dis; Surveys; Wilts; ... 3.0111
CROPS SEQUENCE TRIAL... Disease Resistance; Fallowing; Management; ... 3.0100
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, Hibiscus cannabinus L... Eutric Nitosols; Fibers; Management; ... 3.0201
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH FIBRE AND SEED YIELDS OF KENAF, Hibiscus cannabinus L... Eutric Nitosols; Fibers; Management; ... 3.0202
EFFECTS OF DIFFERENT DATES OF PLANNING ON THE GROWTH AND FIBRE YIELD OF KENAF, Hibiscus cannabinus L... Eutric Nitosols; Fibers; Management; Timing of Planting Procedures; ... 3.0203
DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE... Breeding & Genetics; Eutric Nitosols; Insect Resistance; Nematode Resistance; Plant Nematodes -nonspecific; Seling; ... 3.0204
INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... BHC; Eutric Nitosols; Phytopathology; Soil-borne; ... 3.0205
EFFECT OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA... Eutric Nitosols; Fibers; Management; Timing of Planting Procedures; ... 3.0206
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CHAUCHUS, CAPSULARIAE... Chauchus; Eutric Nitosols; Fibers; Management; Timing of Planting Procedures; ... 3.0207
STUDY THE POTENTIAL FERTILITY OF SOILS... Dystric Nitosols; Management; Movement; Availability; ... 3.0001
MANIOC (CASSAVA) - PERIOD FOR PROPAGATION BY CUTTINGS AND DATE OF HARVEST... Carbohydrates; Dystric Nitosols; Harvest and Storage; Management; Manihot; Starch; ... 3.0002
PRODUCTION OF MAIZE AND MANIOC IN ASSOCIATED CULTIVATION... Companion Cropping; Competition; Dystric Nitosols; Management; Manihot; Timing of Planting Procedures; ... 3.0003
FERTILIZATION OF MANIOC... Dystric Nitosols; Management; Manihot; Starch; ... 3.0004
STUDY OF THE TOGO NATURAL PHOSPHATE AS A BASIC FERTILIZER... Costs; Dystric Nitosols; Movement; Availability; Source of Fertilizer; ... 3.0005

MOIST MONSUN 0 to 3 MONTHS

MODALITIES FOR USE OF THE TOGO PHOSPHATE... Dystric Nitosols; Movement; Availability; Source of Fertilizer; ... 13.0006
TILLAGE AND FERTILIZATION... Disking; Dystric Nitosols; Management Effects on Soils; ... 13.0007
STUDY OF MAINTENANCE FERTILIZATIONS... Continuous Cropping; Dystric Nitosols; Management; Movement; Availability; ... 13.0008
NITROGEN BALANCE - NITROGENOUS FERTILIZATION AND ORGANIC MANURING... C/N Ratio; Dystric Nitosols; Plant Residues -other; Soil Types; ... 13.0009
SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS... C/N Ratio; Plant Residues -other; ... 13.0100

Climate- Semi-arid Trop.

STUDY OF CONTINUOUS CULTIVATION... Continuous Cropping; Fallowing; Field Crops -nonspecific; Removal of Nutrients from Soil; ... 11.0066

Hot Equatorial or Hot Tropical

ADAPTION TRIAL ON VEGETABLE CROPS... Brassica oleracea; Cucurbita; Lactuca; Management; Sprinkler Irrigation; ... 7.0005
CROPPING TECHNIQUES FOR IRRIGATED RICE... Drill Application; Management; Planting Methods -other; Pricking Out... 8.0001
STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS... (WATER ECONOMY)... Chronic Cambisols; Consumptive Use; Humidity; Irrigation; Luvic Arenosols; Soil-water-plant Relationships; ... 8.0009
FORAGE CROP EXPERIMENTATION... Chlorideae -other; Management; Mucuna; Panicum; Sorghum Vulgare (Forage); ... 11.0062
RESEARCH ON VARIETIES OF VIGNA UNGUICULATA WITH GOOD RESPONSE TO INTENSIVE TECHNICS... (WATER, FERTILIZERS)... Management; Soil Moisture; ... 11.0003
STUDY OF WATER REQUIREMENTS OF COTTON UNDER IRRIGATION... Irrigation; Irrigation -general; Management; ... 11.0004
EXPERIMENTS WITH MAIZE AND SORGHUM... Irrigation; Irrigation -general; Management; Sorghum Vulgare (Grain); ... 11.0005
RESEARCH ON WHEAT AND BARLEY... Baking Food; Hordeum Vulgare; Irrigation; Management; Triticum; ... 11.0006
IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY... Irrigation; Irrigation -general; Management; ... 11.0007
COOLING OF AIR AND WATER IN RICE FIELDS AND RICE GROWTH... Low Temp. Above 0 C; Management; ... 11.0008
AGROMeteorological studies in the Senegal River Basin... Climatology; Energy Budgets; Rain Patterns; Wind or Air Movement; ... 11.0009
CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (150 DAYS)... Breeding & Genetics; Intraspecific Crosses; Synthetic Varieties & Blends; ... 11.0044
STUDY OF BEHAVIOUR OF VARIETIES OF POTATO... Management; Solanum; ... 11.0048
BEHAVIOUR STUDY WITH VARIETIES OF EGGPLANT... Management; Solanum; ... 11.0049
STUDY THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER... Costs; Eucalyptus; Luvic Arenosols; Pronysoy; Soil Types; ... 11.0140
STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE... Eutric Fluvisols; Eutric Gleysols; Management; Pregeneration of Seeds; ... 11.0149
CONTROL CAMPAIGN AGAINST RHIZOME RICE... Cereal Crops; Eutric Fluvisols; Eutric Gleysols; Grasses or Sedges; Herbicides -nonspecific; ... 11.0150
TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION... Crop Production; Harvesting; Eutric Fluvisols; Eutric Gleysols; Management; Seedbed Preparation; ... 11.0151

Humid 1 Month

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILLERMI (MALI) ON ANNUAL CROPS... Calcite
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatology</td>
<td>See Meteorology</td>
<td>Composition</td>
</tr>
<tr>
<td>Clostridia</td>
<td>See Bacteria</td>
<td>Composition</td>
</tr>
<tr>
<td>Cobalt</td>
<td>See Isotopes</td>
<td>Composition</td>
</tr>
<tr>
<td>Coccidiae</td>
<td>See Insecta</td>
<td>Composition</td>
</tr>
<tr>
<td>Coccidia</td>
<td>See Protozoa</td>
<td>Composition</td>
</tr>
<tr>
<td>Coccidioides</td>
<td>See Fungi</td>
<td>Composition</td>
</tr>
<tr>
<td>Coccidiosis</td>
<td>See Animal Pathology</td>
<td>Composition</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>See Insecta</td>
<td>Composition</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td>Composition</td>
</tr>
<tr>
<td>Cocos</td>
<td>See Plants - Monocots</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>Palmae</td>
<td>Composition</td>
</tr>
<tr>
<td>Codes and Standards</td>
<td>See Buildings & Land Development</td>
<td>Composition</td>
</tr>
<tr>
<td>Coffee</td>
<td>See Food Science and Technology</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>Cola</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>See Plants - Dicots</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>Sterculiaceae</td>
<td>Composition</td>
</tr>
<tr>
<td>Cold Resistance</td>
<td>See Plant Resistance</td>
<td>Composition</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>See Insecta</td>
<td>Composition</td>
</tr>
<tr>
<td>Colletotrichum</td>
<td>See Fungi</td>
<td>Composition</td>
</tr>
<tr>
<td>Combretaceae</td>
<td>See Plants - Dicots</td>
<td>Composition</td>
</tr>
<tr>
<td>Commercial Fishing</td>
<td>See Fish & Wildlife Biology</td>
<td>Composition</td>
</tr>
<tr>
<td>Commercial Rations or Feeds</td>
<td>See Feed Science and Technology</td>
<td>Composition</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>Mass Communication</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>THE USE OF MASS MEDIA AS A MEANS OF COMMUNICATION BY EXTENSION WORKERS WITH THE FARMERS OF THE WESTERN STATE OF NIGERIA</td>
<td>Composition</td>
</tr>
<tr>
<td></td>
<td>... Education and Training; Management; Rural Sociology; ...</td>
<td>Composition</td>
</tr>
<tr>
<td>Companion Cropping</td>
<td>See Cropping Practices</td>
<td>Composition</td>
</tr>
<tr>
<td>Competition</td>
<td>See Environments, Plant</td>
<td>Composition</td>
</tr>
<tr>
<td>Compositae</td>
<td>See Plants - Dicots</td>
<td>Composition</td>
</tr>
<tr>
<td>Composition</td>
<td>See Materials</td>
<td>Composition</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Compost</th>
<th>See Organic Fertility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Usage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPUTERIZATION OF ROUTINE DISEASE CONTROL WORK RECORDS - HEVEA PLANTATION ... Phytopathology; Surveys; ...5.0006</td>
</tr>
<tr>
<td>Concentrates</td>
<td>See Feed Science and Technology</td>
</tr>
<tr>
<td>Condiment, Spice & Herb Crops</td>
<td>See Horticulture</td>
</tr>
<tr>
<td>Condiments</td>
<td>See Food Science and Technology Seasonings & Flavorings</td>
</tr>
<tr>
<td>Conformation & Uniformity</td>
<td>See Animal Characteristics</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>See Animal Pathology</td>
</tr>
<tr>
<td>Construction Land Use Effects</td>
<td>See Fish & Wildlife Biology</td>
</tr>
<tr>
<td>Construction Materials</td>
<td>See Materials</td>
</tr>
<tr>
<td>Construction, Farm</td>
<td>See Farm Structures & Design</td>
</tr>
<tr>
<td>Consumer Attitudes, Awareness,</td>
<td>See Pest Control Measures</td>
</tr>
<tr>
<td>Consumer Pref. & Consumption</td>
<td>THE MARKET FOR PALM WINE IN NIGERIA ... Food Distribution Research; Marketing; Palmae -other; Wine; ...9.0333</td>
</tr>
<tr>
<td>Consumption</td>
<td>See Economics Income Analysis</td>
</tr>
<tr>
<td>Consumptive Use</td>
<td>See Water Supply</td>
</tr>
<tr>
<td>Continuous Cropping</td>
<td>See Cropping Practices</td>
</tr>
<tr>
<td>Control of Nuisance Species</td>
<td>See Fish & Wildlife Biology Birds - Wildlife Studies Mammals - Wildlife Studies</td>
</tr>
<tr>
<td>Control of Plants</td>
<td>... See Weeds</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td>Cooked Quality of Food</td>
<td>See Food Science and Technology Food Quality</td>
</tr>
<tr>
<td>Cooperatives</td>
<td>See Economics Market Structure</td>
</tr>
<tr>
<td>Copper</td>
<td>See Also Soil Nutrients/Fertilizers</td>
</tr>
<tr>
<td></td>
<td>GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZYOSPORES OF PHYTOPHTHORA PALMIVORA ... Chlorides; Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates; ...3.0061</td>
</tr>
<tr>
<td></td>
<td>STUDY OF MINERAL DEFICIENCY COMPLEXES ... Calcium; Forage, Pasture or Range; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilization -animal; ...11.0002</td>
</tr>
<tr>
<td>Copra</td>
<td>EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM) ... Humid 6 M.or Less; Othioquinox; ...1.0074</td>
</tr>
<tr>
<td></td>
<td>IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM ... Breeding & Genetics; Cocoa; Fats - Lipids & Oils; Management; Reciprocal Recurrent Selection; ...4.0310</td>
</tr>
<tr>
<td></td>
<td>OBSERVATION OF THE CHARACTERS OF PRODUCTION OF THE COCONUT PALM ... Cocoa; Fats - Lipids & Oils; Fibers; Moisture Content -plants; ...4.0317</td>
</tr>
<tr>
<td>Corchorus</td>
<td>See Plants - Dicots Tiliaceae</td>
</tr>
<tr>
<td>Core Samples</td>
<td>See Soil Analysis</td>
</tr>
<tr>
<td>Corn</td>
<td>See Feed Science and Technology Cereal Grains or Grasses</td>
</tr>
<tr>
<td>Corn Cobs, Stalks or Husks</td>
<td>See Feed Science and Technology By-products- Plant(White)</td>
</tr>
<tr>
<td>Corrosion, Deterioration</td>
<td>See Materials</td>
</tr>
<tr>
<td>Corticium</td>
<td>See Fungi</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>EDIBLE AND INDUSTRIAL GUMS ... Flotation; Foam Fractionation; Forest Product Development; Gums and Resins; ...3.0101</td>
</tr>
<tr>
<td>Costs</td>
<td>See Economics</td>
</tr>
<tr>
<td>Cotoran</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Cottonseed Oilmeal, Etc.</td>
<td>See Feed Science and Technology By-products- Plant(White)</td>
</tr>
</tbody>
</table>
Cropping Practices

Multiple Cropping

FERTILISER REQUIREMENTS OF IRRIGATED RICE ON THE BLACK SOILS, ACCRA PLAINS ... Formulation, Fertilizer, Iron; Management; Sulfur; ... 3.0003

BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA) ... Continuous Humid 7 Months, Plus; Economics of Chemical Control; Parasites - biocontrol; Sevin; ... 3.0136

POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS ... Continuous Humid 7 Months, Plus; Fertilizer Losses; Management; Production and Processing; Soil and Rock Leaching; Sorghum Vulgare (Grain); ... 3.0146

VARIETAL EXPERIMENT WORK ON SOYA ... Glycine Max; Humid 5 Months; Management; ... 4.0210

VARIETAL EXPERIMENT WORK ON SOYA ... Ferralic Cambisols; Glycine Max; Management; Two Humid Seasons-7 Month, Plus; ... 4.0221

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid 7 Months, Plus; Glycine Max; Management; ... 4.0222

VARIETAL EXPERIMENTS WITH RICE ... Breeding & Genetics; Eutric Fluvisols; Humid 2 Months; Irrigation - general; ... 8.0027

INTERCROPPING WITH SORGHUM ... Competition; Intercropping; Light Quantity or Intensity; Management; Sorghum Vulgare (Grain); ... 9.0158

STUDIES ON THE IMPROVEMENT OF FIELD PLOT AND SAMPLING TECHNIQUES FOR RICE ... Proteins; Soil Tillage; ... 10.0008

DEVELOPMENT OF IMPROVED CROPPING PATTERNS FOR SMALL ASIAN RICE FARMS ... Cereal Crops; Intercropping; Management; Phaseolus; Rain; ... 10.0011

UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS ... Glycine Max; Irrigation - general; Lycopersicum; Management; Sesamum; ... 14.0001

Cruciferae

See Plants - Dicots

Crustacea

SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS ... Factors Affecting Insect Pop.; Insect Resistance; Lamellibranchiate; Marine Animals; Maturity & Growth Stages; Wood Preservatives; ... 3.0095

Hippolyte

SHRIMP CULTURE ... Brackish Water; Shellfish Farming; ... 9.0017

Cucumis

See Plants - Dicots

Cucurbitaceae

Cucurbita

See Plants - Dicots

Cucurbitaceae

Culicidae - other

See Insecta

Diptera

Cultural Control

See Pest Control Measures

Culturing Food

See Food Science and Technology

Processing of Food

Culturing Techniques

GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTHORA PALMIVORA ... Chlorides; Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates; ... 3.0061

Investigation into the Biology and Control of Root-Knot Nematodes on Some Crops ... Continuous Humid 7 Months, Plus; DD; Nemagon; Nicotiana; Population Dynamics; ... 3.0128

Diseases of Coffee in Nigeria ... Fungicides - non-specific; Phytopathology; Rusts; Screening Potential Pesticides; Seed-borne; Surveys; ... 9.0146

Studies on the Host-Parasite Relations of Rice and Helminthosporium Oriza ... Cellular Physiology; Helminthosporium; Inoculation; Phytopathology; ... 9.0285

The Obtaining of Cell Lines Necessary to Supply the Requirements for the Production of Vaccines and for Diagnostic Purposes ... Bovine Foetal Hepatocytes; Diagnosis; Fetus; Urogenital System; Viral Vaccines; ... 11.0102

Curculionidae

See Insecta

Coleoptera

Curing Technique

See Cropping Practices

Cutting Sequence

See Pest Control Measures

Cultural Control

Cyanides

BOVINE OCULAR THELAZIOSIS - TREATMENTS ... Blindness - nonspecific; Bovine Ocular Thelaziosis; Muscidae; Tetramisole; Veterinary Medicine; ... 11.0087

Cycadales

See Plants - Gymnosperms

Cyclamate

PLANT EXPLORATION AND COLLECTION ... Breeding & Genetics; Continuous Humid 7 Months, Plus; Mutation; Plant Parts Bank; Plant Resistance; Sugar - nonspecific; ... 3.0209

Cyclophosphamid

STREPTOTHRICOSIS - EXPERIMENTS IN TREATMENT ... Chlorothalidone; Dermatophilus; Immunity; Skin or Special Derivatives; Streptothricosis; Veterinary Medicine; ... 11.0113

Cynodon

See Plants - Monocots

Gramineae

Cyperus Rotundus

See Plants - Monocots

Cyperaceae

Cystine

See Amino Acids

Cytoplasm

See Cellular Physiology

Cytoplasmic Sterility

See Genetics

Genetic & Breeding Methods

D, 2,4-

See Pesticides

Herbicides

274
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacthal</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Herbicides</td>
</tr>
<tr>
<td>Dairy Husbandry</td>
<td>See Animal Husbandry</td>
</tr>
<tr>
<td>Dairy Products</td>
<td>See Food Science and Technology</td>
</tr>
<tr>
<td>Dalapon</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Herbicides</td>
</tr>
<tr>
<td>Dalbergia</td>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td></td>
<td>Leguminosae</td>
</tr>
<tr>
<td>Damping Off</td>
<td>See Plant Diseases</td>
</tr>
<tr>
<td>Dams</td>
<td>STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES . . .</td>
</tr>
<tr>
<td></td>
<td>Construction Land Use Effects; Fish & Shellfish Biology; Lakes & Reservoirs,</td>
</tr>
<tr>
<td></td>
<td>. . . A.0330</td>
</tr>
<tr>
<td>Darkness</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td></td>
<td>Light Quantity or Intensity</td>
</tr>
<tr>
<td>Daucus</td>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td></td>
<td>Umbellifera</td>
</tr>
<tr>
<td>DD</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Multiple Usage Cpd.s.</td>
</tr>
<tr>
<td>DDT</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Insecticides</td>
</tr>
<tr>
<td>DDVP</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Insecticides</td>
</tr>
<tr>
<td>Decline</td>
<td>See Plant Diseases</td>
</tr>
<tr>
<td>Deep Freeze Storage</td>
<td>See Storage</td>
</tr>
<tr>
<td>Deep Plowing</td>
<td>See Soil Tillage</td>
</tr>
<tr>
<td>Deficiencies</td>
<td>See Plant Physiology</td>
</tr>
<tr>
<td></td>
<td>Metabolism</td>
</tr>
<tr>
<td>Dehydration</td>
<td>See Food Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Processing of Food</td>
</tr>
<tr>
<td>Dehydrogenase</td>
<td>See Enzymes</td>
</tr>
<tr>
<td>Demodicosis</td>
<td>See Animal Pathology</td>
</tr>
<tr>
<td>Dendrochronology</td>
<td>See Forestry</td>
</tr>
<tr>
<td>Depth- Water Level Fluctuation</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Dermatophilus</td>
<td>See Actinomycetes</td>
</tr>
<tr>
<td>Dermestidae</td>
<td>See Insecta</td>
</tr>
<tr>
<td></td>
<td>Coleoptera</td>
</tr>
<tr>
<td>Design, Modify, Develop. of Equip</td>
<td>See Farm Machinery, Equip & Power</td>
</tr>
<tr>
<td>Desmodium</td>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td></td>
<td>Leguminosae</td>
</tr>
<tr>
<td>Dexon</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Fungicides</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>See Medicine/Psyc.- General Topics</td>
</tr>
<tr>
<td>Diaspididae</td>
<td>See Insecta</td>
</tr>
<tr>
<td></td>
<td>Homoptera</td>
</tr>
<tr>
<td>Dibromoethane</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Fumigant, Nematocide</td>
</tr>
<tr>
<td>Didigam</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Insecticides</td>
</tr>
<tr>
<td>Dieback</td>
<td>See Plant Diseases</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>See Pesticides</td>
</tr>
<tr>
<td></td>
<td>Insecticides</td>
</tr>
<tr>
<td>Dietetic Foods</td>
<td>See Food Science and Technology</td>
</tr>
</tbody>
</table>

275
SUBJECT INDEX

Differential Centrifuge
See Centrifugation

Difolatan
See Pesticides
Fungicides

Digenea
See Platyhelminthes
Trematoda

Digestive Diseases -animal
See Veterinary Medicine

Digestive Diseases -other
See Animal Pathology

Digestive System
See Vertebrate Physiology

Digitaria
See Plants - Monocots
Gramineae

Dip Application
See Application Methods

Diptera
See Insecta

Discharge
See Water Movement
Hydraulics

Disease -biocontrol
See Pest Control Measures
Biological Control

Disease Resistance
See Animal Resistance
See Plant Resistance

Diseases
See Economics
Losses or Benefits from ...

Disinfectants & Antiseptics
See Pesticides

Disking
See Soil Tillage

Distillation
See Chemistry -related Fields

Distribution, Plant
See Ecology, Plant

Diuron
See Pesticides
Herbicides

DNA Viruses, Enveloped
See Viruses, Animal

Dolichos
See Plants - Dicots
Leguminosae

Dormancy
See Plant Physiology
See Seed

Dorylaimoidea
See Aschelminthes
Nematoda

Double Cross
See Genetics
Genetic & Breeding Methods

Dowfume Cpds.
See Pesticides
Fumigant, Nematocide

Drill Application
See Application Methods

Drought
See Plant Physiology

Drought Resistance
See Plant Resistance

Drying
See Also Chemistry -related Fields
See Also Farm Machinery, Equip & Power
See Also Food Science and Technology
Processing of Food
COCOA PROCESSING AT THE FARM LEVEL ... Crop Production, Harvesting; Design,Modify,Develop.of Equip; Harvest and Storage;4.0033
TREATMENT OF COFFEE AT THE CROP-HUSBANDRY STAGE ... Curing Technique; Harvest and Storage; Solar Light;4.0138
STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST ... Cellulosic Fiber; Crop Production, Harvesting; Fiber Cleaning; Humidity;4.0283
SOLAR AND AIR DRYING OF TIMBER ... Chlorophora; Costs; Energy Conversion; Instrumentation, Equipment; Solar Processes; Ulmaceae -other; Wood Preservation & Seasoning; ... 9.0105
POLLEN STORAGE (OIL PALM) ... Breeding & Genetics; Deep Freeze Storage; Polless; Pollination & Fertilization;9.0289
AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION ... Crop Production, Harvesting; Design,Modify,Develop.of Equip; Soil Preparation & Renovation; ... 10.0035

Dystric Gleysols
See Soil Unit Classification
Gleysols

276
SUBJECT INDEX

Ecology, Animal

STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA... Helminth -other; Forestry Insects; Scolytidae; Surveys; ... 3.0092
STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXPORT TIMBER SPECIES... Chlorophora; Forests; Pyralidae; Terminalia; ... 3.0093
INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS... Continuous Humid 7 Months; Pollinating Techniques; DD; Nematode; Nicotiana; ... 3.0128
INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON... Economics of Chemical Control; Gelechiidae; Nucuelidae; Surveys; Trap Crops; ... 3.0132
TERMITE ECOLOGY AT FUMESUA, GHANA... Factors Affecting Insect Pop.; Forests; Soil Environment; ... 3.0234
ECOLOGY OF RODENTS OF THE SAVANNAH... Adaptation and Evolution of These Rodents; Forests; Rodentidae; ... 4.0059
BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOZOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH... Energy Budgets; Forests; Mammalia; Surveys; ... 4.0061
BIOMETRIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST... Habitat Studies; Homoptera -other; Migration; ... 4.0062
STUDY OF THE BORRER OF THE MELIACEAE... HYSIPYLUS ROBUST (MOORE)... Forestry Insects; Insecta -other; Insects -nonspecific; Parasites -biocontrol; ... 4.0063
ECOLOGICAL OBSERVATIONS ON EARIAS SPECIES... Entomology, Physiology; Fiber Crops; High Temp. 30 C or Above; Rearing of Insects; Sex Ratio; ... 4.0286
BIOLOGY OF COELEAENOMENODERA ELAEIDIS, OIL PALM PEST... Insecta -other; Oleiscrew Crops; Rearing of Insects; ... 4.0304
METHODS OF BIOLOGICAL CONTROL OF COELEAENOMENODERA ELAEIDIS, OIL PALM PEST... Insecta -other; Oleiscrew Crops; Rearing of Insects; ... 4.0304
CONTROL OF ORYCTES IN THE IVORY COAST... Entomology, Physiology; Insecta -other; Oryctes; ... 4.0327
STUDY OF ECOLOGICAL RESEARCH WORK ON THE COTTON CULTIVATED SOIL... Environment, Animal; Factors Affecting Insect Pop.; Migration; Surveys; Tettigoniidae; ... 6.0005
INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES... Cereal Crops; Insecticide -nonspecific; Pests; Rearing of Insects; ... 6.0058
PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID FRUITS OF FRUIT CROPS... Cambic Acanthos; Diaspididae; Insecticide -nonspecific; Rearing of Insects; Win. Tp Monsoon Desert; ... 7.0091
MARKING INSECT PREDATORS OF FOOD COMMODITIES... Cereal Crops; Dermentidae; Oleiscrew Crops; Pulse Crops; Radioactive Isotopes; Surveys; ... 8.0010
POPULATION DYNAMICS OF PLANT PARASITIC NEMATODES IN CULTIVATED SOIL... Plant Parasitic Nematodes -nonspecific; Soil-borne; Taxonomy; Animal; ... 9.0044
TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE... Forestry Insects; Insecta -other; Meliacaea -other; Taxonomy; Animal; ... 9.0092
STUDY OF BIOLOGY AND CONTROL OF BORERS... Forestry Insects; Lepidoptera -other; Nauclea; Surveys; Terminalia; Triplochiton; ... 9.0095
THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Pathology of Weeds; Swollen Shoot Virus; Virulence and Pathogenicity; ... 9.0129
BIO-ECOLOGY OF THE COCOA MIRID... Beverage Crops; Entomology, Physiology; Factors Affecting Insect Pop.; Miridae; Moisture Deficiency; Sex Ratio; ... 9.0130
BATHYCOELIA THALASSINA (HETEROPTERA) ON CACAO... Beverage Crops; Insects -other; Maturity & Growth Stages; Parasites -biocontrol; Tachinidae; ... 9.0132
FISH POPULATION STUDIES... Commercial Fishing; Fish; Humid 1 Month; ... 9.0195
PESTS OF SWEET POTATOES... Curculionidae; Ipomea; Surveys; Vegetables; ... 9.0256

Dystric Nitosols
See Soil Unit Classification

Nitosols

Echinochloa
See Plants - Monocots

Gramineae

Ecology, Animal

PESTS OF CITRUS... Citrus; Coccoidea; Fruits and Berries; Nocuidae; ... 9.0025

Aquatic Ecology

STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES... Construction Land Use Effects; Fish & Shellfish Biology; Lakes & Reservoirs; ... 4.0030
STUDIES ON THE FAUNA OF CONTINENTAL WATERS... Commercial Fishing; Population Dynamics; ... 11.0072
DETERMINATION OF PRODUCTION OF FISH OF CONTINENTAL WATERS... Commercial Fishing; Fish; Lakes & Reservoirs; Population Dynamics; ... 11.0073
GENERAL ECOLOGY OF ESTUARINE AND FRESH WATERS... Estuaries; Growth Rate; Population Dynamics; Streams; Water Quality; ... 12.0005

Behavioral Ecology

RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY... Dystric Nitosols; Fiber Crops; Insect Viruses -other; Integrated Control; Otioteridae; ... 1.0048
HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN... Fish Food Supply; Plankton; Water Environment; ... 3.0236
BIOLOGY, ECOLOGY AND CONTROL OF RICE INSECT PESTS... Cambaridae; Habitat Studies; Insect Resistance; Predators -biocontrol; Surveys; ... 10.0003
GENERAL ECOLOGY OF ESTUARINE AND FRESH WATERS... Estuaries; Growth Rate; Population Dynamics; Streams; Water Quality; ... 12.0005

Habitat Studies

STUDY OF THE PARASITISM OF THE COTTON PLANT... Fiber Crops; Insects; Population Dynamics; ... 1.0045
ECOLOGY OF RODENTS OF THE SAVANNAH... Adaptation of These Rodents to the Cultivated Environment... Population Dynamics; Rodentidae; ... 4.0059
BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOZOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH... Energy Budgets; Forests; Mammalia; Population Dynamics; Surveys; ... 4.0061
BIOMETRIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST... Homoptera -other; Migration; ... 4.0062
STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES... Construction Land Use Effects; Fish & Shellfish Biology; Lakes & Reservoirs; ... 4.0030
RESEARCH ON THE AFRICAN MIGRATORY LOCUST... Environments, Animal; Factors Affecting Insect Pop.; Migration; Surveys; Tettigoniidae; ... 6.0005
INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES... Cereal Crops; Insecticide -nonspecific; Pests; Rearing of Insects; ... 6.0058
PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID FRUITS OF FRUIT CROPS... Cambic Acanthos; Diaspididae; Insecticide -nonspecific; Rearing of Insects; Win. Tp Monsoon Desert; ... 7.0091
MARKING INSECT PREDATORS OF FOOD COMMODITIES... Cereal Crops; Dermentidae; Oleiscrew Crops; Pulse Crops; Radioactive Isotopes; Surveys; ... 8.0010
POPULATION DYNAMICS OF PLANT PARASITIC NEMATODES IN CULTIVATED SOIL... Plant Parasitic Nematode -nonspecific; Soil-borne; Taxonomy; Animal; ... 9.0044
TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE... Forestry Insects; Insecta -other; Meliacaea -other; Taxonomy; Animal; ... 9.0092
STUDY OF BIOLOGY AND CONTROL OF BORERS... Forestry Insects; Lepidoptera -other; Nauclea; Surveys; Terminalia; Triplochiton; ... 9.0095
THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Pathology of Weeds; Swollen Shoot Virus; Virulence and Pathogenicity; ... 9.0129
BIO-ECOLOGY OF THE COCOA MIRID... Beverage Crops; Entomology, Physiology; Factors Affecting Insect Pop.; Miridae; Moisture Deficiency; Sex Ratio; ... 9.0130
BATHYCOELIA THALASSINA (HETEROPTERA) ON CACAO... Beverage Crops; Insects -other; Maturity & Growth Stages; Parasites -biocontrol; Tachinidae; ... 9.0132
FISH POPULATION STUDIES... Commercial Fishing; Fish; Humid 1 Month; ... 9.0195
PESTS OF SWEET POTATOES... Curculionidae; Ipomea; Surveys; Vegetables; ... 9.0256

Migration

BIOMETRIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST... Habitat Studies; Homoptera -other; ... 4.0062
RESEARCH ON THE AFRICAN MIGRATORY LOCUST... Environments, Animal; Factors Affecting Insect Pop.; Population Dynamics; Surveys; Tettigoniidae; ... 6.0005
FISH MIGRATION STUDIES... Commercial Fishing; Osteichthyidae -other; ... 9.0196

Population Dynamics

STUDY OF THE PARASITISM OF THE COTTON PLANT... Fiber Crops; Habitat Studies; Insects; ... 1.0045
HELMINTH PARASITES OF PIGS IN GHANA... Management; Taenia; ... 3.0029

277
Subject Index

<table>
<thead>
<tr>
<th>Economics</th>
<th>Economics Anthropology</th>
<th>Income Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>A RESIDUAL SOCIAL GROUP CHALLENGED WITH THE DEVELOPMENT OF MARKET CROPS - ALLOCATION TO OTHERS</td>
<td>Income Analysis</td>
</tr>
<tr>
<td>AN ECONOMIC ANALYSIS OF PRIVATE COMMERCIAL PIG FARMING IN THE ACCRA URBAN AREA</td>
<td>A RESIDUAL SOCIAL GROUP CHALLENGED WITH THE DEVELOPMENT OF MARKET CROPS - ALLOCATION TO OTHERS</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Production and Processing; Swine Industry</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>FERTILIZER TRIALS ON FLUE, FIRE AND AIR CURED TOBACCO</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Continuous Humid 7 Months, Plus; Curing Technique; Management; Nicotiana; Placement</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>IMPROVEMENT OF FORAGE PRODUCTION IN SAVANNAH ZONE BY MODIFICATION OF THE TRANSPORTATION SYSTEM</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Ceramic Plants; Management; Shade; Two Humid Seasons 7 Month; Plus</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>PYHOTECNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Plant Growth Regulators; Supply; Time & Motion Studies; Two Humid Seasons</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>CUMULATIVE TAPPING OF RUBBER TREES</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Harvest and Storage; Management; Shade; Two Humid Seasons</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Latex; Physical Properties; Rubber-natural</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>STUDY OF WEEDS IN IRRIGATED RICE</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Ceramic Plants; Economics Of Chemical Control; Herbicides -non-specific; Management</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>FERTILIZER STUDIES ON IRRIGATED AND UPLAND RICE</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Management; Placement; Sand; Swamps - Marshes; Timing of Application -other</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>COSTS AND METHODS OF DEVELOPING SMALL SWAMPS FOR RICE CULTIVATION</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Crop Production; Harvesting; Management; Swamps - Marshes; Time & Motion Studies</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>ERADICATION OF PERNIATTEN RICE SPECIES WITH RHIZOMES</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>O. LONGISTAMINATA</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Ceramic Plants; Cutting Sequence; Diuron; Grasses or Sedges; Management</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>The Use of Discarded Cocoa Bean Meal in Livestock Feeding</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>By-products-Plant(vegetative); In Vivo-see Also Feed Rations; Nutritional Values -plant; Proteins</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>DEVELOPMENT OF A LOW COST INCUBATOR FOR LOCAL USE</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Buildings & Land Development; Construction; Farm; Heat and Cooling Devices; Poultry Equipment</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>DEVELOPMENT OF COMPOSITE FLOUR FROM NIGERIAN FOURS</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Baking Food; Ceramic Product Development; Ceramic Products; New and Unconventional Foods</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>SOLAR AND AIR DRYING OF TIMBER</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Chlorophora; Energy Conversion; Instrumensation; Equipment; Solar Processes</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Ulinaceae -other; Wood Preservation & Seasoning</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>ECONOMICS OF PRODUCTION IN TREE CROP AGRICULTURE</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
<tr>
<td>Farmers & Financial Management; Cold; Management; Plant Industries -other; Savings and Investment</td>
<td>Income Analysis</td>
<td>The Use of Industrial by-Products in Sheep and Goat Rations</td>
</tr>
</tbody>
</table>
Economics

THE WORLD MARKET FOR PALM OIL AND PALM KERNELS ... Fats - Lipids & Oils; International Trade; Plant Industries; Trends and Cycles; ... 9.0334

Fiscal Studies
SCALE OF PRICES OF CUBAGE WITH DOUBLE ENTRY FOR TEAK - TABLE OF TEAK PRODUCTION IN THE IVORY COAST ... Forest Industry; Policy & Business Methods; Production and Processing; Tectona; ... 4.0346

Income
MEASUREMENT OF REAL WAGES AND INCOMES IN WESTERN STATE AGRICULTURE ... Labor Input; ... 9.0036
SOCIO-AGRO-ECONOMIC SURVEY OF SOME SELECTED VILLAGES IN IFE DIVISION ... Production and Processing; ... 9.0046
RURAL COMMUNITIES AND THEIR TERRITORIES SEEN THROUGH THE VILLAGE MONOGRAPHS OF AGBETIKO AND BENA (TOGO) ... Rural Sociology; Topographical Parameters; ... 13.0013

Savings and Investment
AGRICULTURAL CREDIT THROUGH COOPERATIVES IN WESTERN NIGERIA ... Capital & Financial Management; Cooperatives; ... 9.0037
ECONOMICS OF PRODUCTION IN TREE CROP AGRICULTURE ... Capital & Financial Management; Cole; Costs; Management; Plant Industries; ... 9.0133

International Trade
THE WORLD MARKET FOR PALM OIL AND PALM KERNELS ... Fats - Lipids & Oils; Plant Industries; Trends and Cycles; ... 9.0334

Land Use - Agriculture
DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA ... Geology; Roads and Highways; Soil Morphology; Profiles; Soil Physical Properties; Soil Survey; Transportation; ... 3.0212
STUDY OF LAND TENURE AND LAND CONSOLIDATION ... Natural Resources Economics; ... 11.0054

Losses or Benefits from... Diseases
RICE CROP LOSS - DISEASE INTENSITY CORRELATION EXPERIMENT ... Blast; Fungicides - nonspecific; Humid 6 Month; March; Phytopathology; ... 9.0009
GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS ... Cecropora; Disease Resistance; Fungicides - nonspecific; Phytopathology; Plant Nematodes - nonspecific; ... 9.0168
CASSAVA PATHOLOGY ... Bacterial Resistance; Breeding & Genetics; Environments; Path; Ferric Luvisols; Mosaic Viruses; Vectors; ... 9.0190
YAMS PATHOLOGY ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes; Shoe String; Storage Rot; ... 9.0192
NEMATODES OF SUGARCANE ... Phytopathology; Tylencholae; Virulence and Pathogenicity; ... 9.0264

Pests
INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA ... Cereal Crops; Grain Industries; Moisture Content; -plants; Price and Value; ... 3.0210
INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES ... Cereal Crops; Insecticides - nonspecific; Rearing of Insects; ... 6.0058
INSECTICIDE; TREATMENT OF COTTON CROPS AFTER WARNING SIGNS ... Fiber Crops; Insects; Insecticides - nonspecific; ... 6.0083
INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA ... Insecta; Nut; Nut; Surveys; Taxonomy; Animal; Thysanoptera; ... 9.0152
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months; Plus; Ferric Luvisols; Insecta; Oilseed Crops; Phaseolus; Surveys; ... 9.0170

PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA ... Chrysomelidae; Ferric Luvisols; Insect Resistance; Seed Bank; Systemic Application; ... 9.0171
THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COWPEAS BY THE LEAFHOPPER EMP OASCA DOLICHICHI ... Chlororhinus; Insecticides - nonspecific; Pulse Crops; Stunt Diseases; Undesired Results; ... 9.0268
THE INSECT PESTS OF THE OIL PALM IN NIGERIA ... Coleoptera; Hemiptera; Lepidoptera; Oilseed Crops; Population Dynamics; Surveys; ... 9.0286
THE INSECT PESTS OF THE COCONUT PALM IN NIGERIA ... Cocos; Coleoptera; Hemiptera; Lepidoptera; Oilseed Crops; Surveys; ... 9.0309
THE INSECT PESTS OF THE RAPHIA PALM IN NIGERIA ... Hemiptera; Lepidoptera; Oilseed Crops; Surveys; ... 9.0310

Market Structure
THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS ... Bran; Consumption; Food Science and Technology; In Vivo; also Feed Rations; Management; Mo nolasses; Service Industries; ... 9.0033
STUDY OF MARKET STRUCTURE AND ORGANIZATION WITH SPECIAL REFERENCE TO THE BUYING ARRANGEMENTS OF FOOD CONTRACTORS FOR INSTITUTIONS ... Consumption; Food Distribution Research; Food Science and Technology; Institutional Management; Service Industries; ... 9.0034
IMPROVEMENT OF CEREALS PRODUCTION AND MARKETING IN THE CENTRAL AFRICAN REGION ... Continuous Humid 7 Months; Plus; Ferralic Cambisols; Ferric Luvisols; Grain Industries; Marketing; ... 9.0181

Cooperatives
AGRICULTURAL CREDIT THROUGH COOPERATIVES IN WESTERN NIGERIA ... Capital & Financial Management; Savings and Investment; ... 9.0037

Marketing
IMPROVEMENT OF CEREALS PRODUCTION AND MARKETING IN THE CENTRAL AFRICAN REGION ... Continuous Humid 7 Months; Plus; Ferralic Cambisols; Ferric Luvisols; Grain Industries; Market Structure; ... 9.0181
INTERNAL MARKETING OF PALM OIL AND PALM KERNELS ... Harvest and Storage; Marketing Organizations; Plant Industries; -other; Transportation; ... 9.0332
THE MARKET FOR PALM WINE IN NIGERIA ... Consumer Pref. & Consumption; Food Distribution Research; Palmaceae; -other; Wine; ... 9.0333
THE WORLD MARKET FOR PALM OIL AND PALM KERNELS ... Fats - Lipids & Oils; International Trade; Plant Industries; -other; Trends and Cycles; ... 9.0334

Natural Resources Economics
STUDY OF LAND TENURE AND LAND CONSOLIDATION ... Natural Resources Economics; ... 11.0054

Price and Value
INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA ... Cereal Crops; Grain Industries; Moisture Content; -plants; ... 3.0210

Production and Processing
AN ECONOMIC ANALYSIS OF PRIVATE COMMERCIAL PIG FARMING IN THE ACCRA URBAN AREA ... Costs; Swine Industry; ... 3.0038
POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS ... Continuous Humid 7 Months; Plus; Fertilizer Losses; Management; Multiple Cropping; Soil and Rock Leaching; Sorghum Vulgare (Grain); ... 3.0146
ASSOCIATION OF AGRICULTURE WITH ANIMAL REARING IN THE CENTRAL IVORY COAST ... Nicotiana; Stylonychieae; ... 4.0025
INFLUENCES OF THE SODEPalm OPERATION IN THE EBRIE COUNTRY ... Modernization; ... 4.0079
FACTORS AND PROCESS OF CHANGE IN THE 'BETE' COUNTRY ... Grain Industries; Management; Modernization; ... 4.0080
Education and Training

OF THE WESTERN STATE OF NIGERIA... Management; Mass Communication; Rural Sociology; . . . 9.0053

Egg Production
See Vertebrate Nutrition

Egg Yolk
LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR... Chicken, Domestic; Egg Production; Eggs; Management; Medicago; Processing Feeds; . . . 3.0033

Eggs
See Animal Husbandry
Quality of Animal Products

Electric Power Transmission
NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES... Construction Materials; Nauclea; Wood; Wood Structure & Properties; . . . 9.0099

Electron Microscopy
See Microscopy

Electrophoresis
GENETICS OF COWPEA - VIGNA UNGUICULATA... Breeding & Genetics; Mutation; . . . 3.0060
NUTRIENT DETERMINATION IN THE MATURE SEEDS OF DIFFERENT VARIETIES OF BEANS... Extract Composition; Globulins; Phaseolus; . . . 9.0200

Gel Electrophoresis
ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA... Cholinesterase; Entomology, Physiology; Phosphatase - nonspecific; . . . 3.0065
THE ROLE OF THE LUTOIDS IN THE PHYSIOLOGY AND THE FLOW OF THE LATEX OF HAVEA BRASILIENSIS... Chromatography; Differential Centrifuge; Industrial & New Crops; Latex; Membranes, Cellular; Ribonucleic Acid; . . . 4.0058

Elevational Levels, Altitude
See Environments, Plant

Endodermis
See Plant Tissues

Endogenous Biological Extracts
See Pest Control Measures

Endrin
See Pesticides
Insecticides

Energy - Radiation
See Meteorology

Energy Budgets
See Environments, Animal
See Environments, Plant

Energy Conversion
SOLAR AND AIR DRYING OF TIMBER... Chlorophora; Costa; Instrumentation, Equipment; Solar Processes; Ulmaceae -other; Wood Preservation & Seasoning; . . . 9.0105

Engines
See Mechanical Power

Enrichment
See Food Science and Technology

Processing of Food

Entomology, Applied
TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER... Dieldrin; Nicosulfuron; Management; Organic Soils; Soil Fertility; . . . 1.0029
CITRUS ROOTSTOCK TRIAL... Citrus; Fungal Resistance; Gummosis; Management; Orange Tree Quick Decline; Virus Resistance; . . . 2.0008
SEXUAL ATTRACTION IN CRYPTOPHLEBIA LEUCOTRETA... Bait Traps; Insect Pheromones; Olethreutidae; . . . 4.0280

Agronomic Pests on

Beverage Crops
ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; Phosphatase - nonspecific; . . . 3.0065
THE FATE AND POSSIBLE NUTRITIONAL AND TOXICOLOGICAL SIGNIFICANCE OF METHYL BROMIDE RESIDUES IN FUMIGATED COCOA BEANS... Carbon; Industrial, Structural Insects; Methyl Bromide; Persistence of Residues; Storage; . . . 3.0116

BIological Research Studies on MIRD of COCOA DISTANTIELLA THEBROMAE... Bacteria; Disease - biocontrol; Entomology, Physiology; Host Preference, Host-insect; Rearing of Insects; . . . 4.0063
STUDY THE ATTRACTIVITY OF PLANT MATERIAL TO THE NOCTURNAL MOTH OF THE CACAO-TREE... EARIA BIPLAGA... Host Preference, Host-insect; Insect Resistance, Klendusity; Noctuidae; . . . 4.0134
STUDY THE RESISTANCE OF 6 HIGH-AMAZONIAN HYBRIDS TO MESOHOMOTOMA TESSMANI... A JUMPING PLANT LOUSE OF THE CACAO-TREE... Insect Resistance; Pyllidae; . . . 4.0135
FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS... Ferralic Araneoids; Foliar Application; Management; Miridae; Thiodon; Two Humid Seasons; . . . 4.0144
THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity; . . . 9.0129

BIO-ECOLOGY OF THE COCOA MIRD... Entomology, Physiology; Factors Affecting Insect Pop.; Miridae; Moisture Deficiency; Population Dynamics; Sex Ratio; . . . 9.0130
CONTROL OF MIRIDS ON COCOA... BHC; Insecticides - nonspecific; Miridae; Selectivity of Pesticides; . . . 9.0131
BATHYCOELIA THALASSINA (HETEROPERTA) ON CACAO... Hemiptera - other; Maturity & Growth Stages; Parasites -soicroud; Population Dynamics; Tachinidae; . . . 9.0132
PESTs OF KOLA IN NIGERIA... BHC; Cola; Curculionidae; Insect Utilization; Phostoxin; . . . 9.0143
INSECT PESTS OF COFFEE IN NIGERIA... Insects - other; Surveys; . . . 9.0149

Cereal Crops
INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA... Grain Industries, Moisture Content - plants; Price and Value; . . . 3.0210
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS... Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd.; Storage; Tenebrionidae; . . . 3.0211
SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK... Bruchoidea; Curculionidae; Insect Resistance; Pulse Crops; Stored Grain Insects; . . . 3.0215
COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS... Breeder Stock; Camarididae; Insect Resistance; Piricularia; Seed Bank; . . . 4.0160
STUDY OF RICE PESTS... Barriers & Weirs; Insects; Management; Rodentia - other; . . . 5.0014
INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES... Insecticides - nonspecific; Pests; Rearing of Insects; . . . 6.0058

282
SUBJECT INDEX

ENTOMOLOGY, APPLIED

INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . DDT; Formulation, Fertilizer; DDT; Formulation, Fertilizer; Sevin; l.0049

EXPERIMENT ON STARTING INSECTICIDAL TREATMENT OF THE COTTON PLANTS AT A WARNING SIGN . . . Insects; Insecticides -nonspecific; Timing -other; l.0050

INTEGRATED CONTROL OF CRYPTOPELBA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES . . . Disease -biocontrol; Humid 6 M.or Less; Mode of Action; Pseudonema; l.0051

COTTON IMPROVEMENT . . . DDT; Management; Sevin; . . . 2.0002

COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DDT; Formulation, Fertilizer; Preemergence; Soil Moisture; Synergism and Synergists; l.0009

INVESTIGATIONS INTO BIOMICROSCOPY AND CONTROL OF INSECT PESTS ON COTTON . . . Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Trap Crops; l.0013

INVESTIGATION INTO THE INSECT PESTS OF BAST FIBRES AND THEIR CONTROL . . . Continuous Humid 7 Months; Plus; Corchorus; Insecticides -nonspecific; Surveys; Urena; l.0054

BIOTIC GENETIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST . . . Habitat Studies; Homoptera -other; Migration; l.0002

BIOLGICAL CONTROL OF CRYPTOPELBA LEUCOTRETA . . . Disease -biocontrol; Granulosis Viruses; Multiplication & Replication; Olethreutidae; Polyhedrosis Viruses; Rearing of Insects; l.0027

BIOLGICAL CONTROL OF HELIOTHIS ARMIGERA . . . Disease -biocontrol; Isolation of Viruses; Multiplication & Replication; Noctuidae; Polyhedrosis Viruses; Rearing of Insects; l.0027

CONTROL OF COSMPHILIA FLAVA . . . Bacillus; Disease -biocontrol; Insecticides -nonspecific; Thureide; l.0027

CHEMICAL CONTROL OF THE LEPIDOPTERA PARASITIC ON THE COTTON POD IN THE IVORY COAST . . . Biosay; Gelechiidae; Lepidoptera -other; Olethreutidae; l.0028

ECOLOGICAL OBSERVATIONS ON EARIAS SPECIES . . . Entomology; Physiology; High Temp. 30 C or Above; Population Dynamics; Rearing of Insects; Sex Ratio; l.0028

INTEGRATED CONTROL OF EARIAS SPECIES . . . Insecta -other; Irrigation -general; Predators -biocontrol; Rearing of Insects; l.0092

POPULATION DYNAMICS OF THE INSECT PARASITES OF THE COTTON PLANT IN MALI . . . Insecticides -nonspecific; Surveys; l.0007

CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALI . . . DDT; Endrin; Insecta; Phthasone; Sequential, Daily, Weekly, Etc; l.0080

ACQUIRED RESISTANCE OF PREDATORS TO INSECTICIDES . . . Insecta -other; l.0081

BIOLGICAL CONTROL OF INSECT PARASITES OF THE COTTON PLANT . . . Lepidoptera; Predators -biocontrol; Rearing of Insects; Trichogrammatidae; l.0082

INSECTICIDE TREATMENT OF COTTON CROPS AFTER WARNING SIGNS . . . Insects; Insecticides -nonspecific; Pests; l.0083

TESTING OF PREPARATIONS FOR PHYTOSANITARY PROTECTION ON COTTON . . . DDT; Insecta; Parathion; Synergism and Synergists; l.0051

VARIETAL EXPERIMENTATION, COTTON . . . Breeding & Genetics; Insecticides -nonspecific; l.0015

EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS . . . DDT; Endrin; Methyl Parathion; Pseudonema; Thiobden; l.0073

TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS . . . Endrin; Humid 3 Months; Pseudonema; Thiobden; l.0073

EXPERIMENTS ON RATES OF APPLICATION FOR INSECTICIDE PREPARATIONS IN CULTIVATIONS OF COTTON . . . DDT; Methyl Parathion; Pseudonema; Thiobden; l.0073

EXPERIMENTS WITH RHYTHMS IN INSECTICIDAL TREATMENTS . . . Insecticides -nonspecific; Maturity or Growth Stage; l.0074

STUDY THE PARASITIC FAUNA OF THE COTTON PLANT IN SENEGAL AND THE OPTIMAL NUMBER OF TREAT-
Entomology, Applied

SUBJECT INDEX

MEN'S . . . Insects; Insecticides -nonspecific; Population Dynamics; Surveys; . . . 11.0175
EXPERIMENT ON INSECTICIDAL PROTECTION OF COTTON PLANTS . . . DDT; Endrin; Hoe 2960; Insects; Prolipherion; . . . 13.0040
VARIETAL EXPERIMENTS WITH COTTON . . . Insecta; Insecticides -nonspecific; Management; . . . 14.0066
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . DDT; Endrin; Insecta; Methyl Parathion; Thiodan; . . . 14.0078
VIRESCENCE (A DISEASE) OF THE COTTON PLANT ... Insects -other; Phytopathology; Pleuro pneumonia Group; Taxonomy, Animal; Vectors; Virescence; . . . 14.0077
VARIETAL EXPERIMENTS WITH COTTON . . . Ferric Luvisols; Humid 6 Months; Insecta; Insecticides -nonspecific; Management; Plutonic Luvisols; . . . 14.0078
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Insecta; Plutonic Luvisols; . . . 14.0088
EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . DDT; Endrin; Insecta; Sequential, Daily, Weekly, Etc; . . . 14.0089

Oilseed Crops
EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM) ... Copra; Humid 6 M. Mor Less; Osteochinonace; . . . 1.0074
A STUDY OF THE ECOLOGY, BIOLOGY, & CONTROL OF THE GROUNDNUT SEED BEETLE . . . Biological Control; Bruchidacea; Host Preference; Host-insect; Insecticides -nonspecific; . . . 2.0007
BIOLOGY OF COELAENOMENODORA ELAEIDIS, OIL PALM PEST ... Insecta -other; Population Dynamics; Rearing of Insects; . . . 4.0304
APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELAENOMENODORA ELAEIDIS FOR OIL PALM PROTECTION . . . Foliar Application; Maturity & Growth Stages; Parasites -biocontrol; Predators -biocontrol; . . . 4.0305
REARING OF COELAENOMENODORA ELAEIDIS IN AN ARTIFICIAL ENVIRONMENT ... Insecta -other; Parasites -biocontrol; Rearing of Insects; . . . 4.0306
METHODS OF BIOLOGICAL CONTROL OF COELAENOMENODORA ELAEIDIS ... Insecta -other; Light; Parasites -biocontrol; Population Dynamics; Rearing of Insects; Temperature -air; . . . 4.0307
CONTROL OF ORYCTES IN THE IVORY COAST ... Entomology, Physiology; Insect Attractants; Population Dynamics; Pueraria; . . . 4.0327
MARKING INSECT PREDATORS OF FOOD COMMODITIES ... Cereal Crops; Dermentidae; Population Dynamics; Pulse Crops; Radiocative Isotopes; Surveys; . . . 8.0010
INSECTICIDE EVALUATIONS ON SOYBEANS - (GLYCINE MAX) ... Eutric Cambisols; Ferric Luvisols; Glycine Max; Insecta; Insecticides -nonspecific; Phytotoxicity; . . . 9.0169
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months;Plus; Ferric Luvisols; Insecta; Phasicolus; Surveys; . . . 9.0170
GRAIN LEGUME PROTECTION ... Continuous Humid 7 Months;Plus; Ferralic Cambisols; Ferric Luvisols; Pulse Crops; . . . 9.0176
THE INSECT PESTS OF THE OIL PALM IN NIGERIA ... Coleoptera; Hemiptera; Lepidoptera; Pests; Population Dynamics; Surveys; . . . 9.0286
THE INSECT PESTS OF THE COCONUT PALM IN NIGERIA ... Annonaceae; Cocos; Coleoptera; Hemiptera; Lepidoptera; Pests; Surveys; . . . 9.0309
THE INSECT PESTS OF THE RAPHIA PALM IN NIGERIA ... Hemiptera; Lepidoptera; Pests; Surveys; . . . 9.0310

Pulse Crops
VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL ... Continuous Humid 7 Months,Plus; Lycopersicon; Surveys; . . . 3.0133
INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE ON SOME MARKETS IN GHANA ... Cereal Crops; Grain Industries; Moisture Content -plants; Price and Value; . . . 3.0210
SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK ... Bruchidae; Cereal Crops; Curculionidae; Insect Resistance; Stored Grain Insects; . . . 3.0215

MARKING INSECT PREDATORS OF FOOD COMMODITIES ... Cereal Crops; Dermentidae; Insecticides -nonspecific; Population Dynamics; Radiocative Isotopes; Surveys; . . . 8.0010
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months,Plus; Ferric Luvisols; Insecta; Phasicolus; Surveys; . . . 9.0170
PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA ... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application; . . . 9.0171
GRAIN LEGUME PROTECTION ... Continuous Humid 7 Months,Plus; Ferralic Cambisols; Ferric Luvisols; Oilseed Crops; . . . 9.0176
STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L) WALP) ... Blight Diseases; Diptera; Vectors; Xanthomonas; . . . 9.0215
SCREENING OF GERMPLASM FOR INSECT RESISTANCE ... Breeding & Genetics; Insect Resistance; Olethreutidae; Phytiidaceae; . . . 9.0266
THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COWPEAS BY THE LEAFHOPPER EMPAOSA DOLICHII ... Chlorinae; Insecticides -nonspecific; Pests; Stunt Diseases; Undesired Results; . . . 9.0268
SURVEY OF PARASITES AND PREDATORS OF MARUCA TESTUALIS AND LASPEYREAS PITYCHORA ... Forficulidae; Olethreutidae; Parasites -biocontrol; Predators -biocontrol; . . . 9.0269
INSECTICIDAL CONTROL OF COWPEA PESTS ... Lindane; Maturity or Growth Stage; Olethreutidae, Sequential, Daily, Weekly, Etc; . . . 9.0270

Sugar Crops
INVESTIGATIONS INTO THE BIOMETRICS AND CONTROL OF INSECT PESTS ON SUGAR CANE ... Cambiidae; Dip Application; Isopota; Saccharum; Toxophene; . . . 3.0135
PESTS OF SUGARCANE ... Cambiidae; Outbreaks of Insects; Saccharum; Surveys; . . . 9.0283

Weeds
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months,Plus; Ferric Luvisols; Insecta; Oilseed Crops; Phaseolus; Surveys; . . . 9.0170
PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA ... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application; . . . 9.0171

Factors Affecting Insect Pop.
SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS ... Crustacea; Insect Resistance; Lamellibranchiata; Marine Animals; Maturity & Growth Stages; Wood Products; . . . 9.0215
TERMITE ECOLOGY AT FUMESUA, GHANA ... Forests; Population Dynamics; Soil Environment; . . . 3.0234
RESEARCH ON THE AFRICAN MIGRATORY LOCUST ... Environments, Animal; Migration; Population Dynamics; Surveys; Tetrigonidae; . . . 9.0268
BIO-ECOLOGY OF THE COCOA MIRID ... Beverage Crops; Entomology, Physiology; Miridae; Moisture Deficiency; Population Dynamics; Sex Ratio; . . . 9.0310

Forestry Insects
STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA ... Coleoptera -other; Population Dynamics; Scolelytidae; Surveys; . . . 3.0092
STUDIES ON THE BIOMONICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTS OF ACCEPTED EXPORT TIMBER SPECIES ... Chlorophora; Forests; Population Dynamics; Pyralidae; Terminalia; . . . 3.0093
STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA ... Curculionidae; Diptera; Surveys; Terminalia; Triplichiton; . . . 3.0094
THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK ... Isopota; Leguminosae -other; Olacaceae; . . . 3.0223
TERMITE ECOLOGY AT FUMESUA, GHANA ... Factors Affecting Insect Pop.; Forests; Population Dynamics; Soil Environment; . . . 3.0224
A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK ... Insect Resistance; Isopota; Parenchyma; Tensile Strength; Terminalia; . . . 3.0225

284
Horticulture Insects on

CASSAVA ENTOLOGY ... Continuous Humid 7 Months,-Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudo-coccidae; Vectors; . . . 9.0187

FRUITS AND BERRIES

PINEAPPLES - PHYTOSANITARY PROTECTION ... Bromeliaceae; Horticultural Crops; Phytopathology; Two Humid Seasons; . . . 4.0149

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate- Continental Sav-Trop; Fats & Oils; Quality and Utilization; . . . 4.0156

PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID PESTS OF FRUIT CROPS ... Cambie Cyclics; Diaspididae; Insecticides -non-specific; Population Dynamics; Rearing of Insects; Win. Tp Monsoon Desert; . . . 7.0001

PESTS OF CITRUS ... Citrus; Coccidae; Ecology; Animal; Noc-tulidae; . . . 9.0259

NUTS

INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA ... Insects -other; Pests; Surveys; Taxonomy; Animal; Thysano-ptera; . . . 9.0152

ORNAMENTALS

PESTS OF EUPTATORIUM ODORATUM ... Eupatorium; Insecticides -biocontrol; Rearing of Insects; . . . 9.0258

VEGETABLES

VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL ... Continuous Humid 7 Months,Plus; Lycopersicon; Pulse Crops; Solarium; Surveys; . . . 3.0113

SWEET POTATO ENTOLOGY ... Curculionidae; Economics of Chemical Control; Ferric Luvisols; Ipomoea; Vectors; . . . 9.0188

YAMS ENTOLOGY ... Ferric Cambisols; Ferric Luvisols; Insects; . . . 9.0189

PESTS OF SWEET POTATOES ... Curculionidae; Ipomoea; Population Dynamics; Surveys; . . . 9.0256

PESTS OF OKRA, TOMATOES AND PEPPERS ... Capsicum; Insecticides -non-specific; Lycopersicon; Surveys; . . . 9.0261

INSECTICIDAL CONTROL OF YAM BEETLE ... Coleoptera -other; Timing of Application; . . . 9.0262

HOST PREFERENCES, HOST-INSECT

A STUDY OF THE ECOLOGY, BIOLOGY; & CONTROL OF THE GROUNDNUT SEED BEETLE ... Biological Control; Bruchidae; Insecticides -non-specific; Oilseed Crops; . . . 2.0007

TICK SURVEY ON SELECTED AREAS ON THE ACCRA PLAINS ... Dry Monsoon 4 to 5 Months; Ixodidae; Maturity & Growth Stages; Surveys; . . . 3.028

INVESTIGATIONS INTO THE BIOECONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE ... Crambidae; Dip Application; Isopera; Saccharum; Toxaphene; . . . 3.0135

BILOGY AND CONTROL OF CEREBAL STEM BORERS (LEFIDOPTERA) ... Continuous Humid 7 Months,Plus; Economics of Chemical Control; Multiple Cropping; Parasites - biocne; Serice; . . . 3.0136

BIOMEMIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST ... Habitat Studies; Homoptera -other; Migration; . . . 4.0062

BIOMICAL RESEARCH STUDIES ON MIRID OF COCOA - DISTANTIAPL THEBROMAE ... Bacteria; Disease - biocontrol; Entomology, Physiology; Rearing of Insects; . . . 4.0063

STUDY THE ATTRACTIVITY OF PLANT MATERIAL TO THE NOCTURNAL MOTH OF THE CACAO-TREE - EARIAS BIPLAGA ... Beverage Crops; Insect Resistance; Keridnity; Noc-tulidae; . . . 4.0134

CONTROL OF ORYCTES IN THE IVORY COAST ... Entomology; Physiology; Insect Attractants; Population Dynamics; Pueraria; . . . 4.0327

INDUSTRIAL, STRUCTURAL INSECTS

THE FATE AND POSSIBLE NUTRITIONAL AND TOXICOLOGICAL SIGNIFICANCE OF METHYL BROMIDE RESIDUES IN FUMIGATED COCOA BEANS ... Beverage Crops; Carbon; Methyl Bromide; Persistence of Residues; Storage; . . . 3.0216

STORED GRAIN INSECTS

THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS ... Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphoroshipate Cpas; Storage; Tenebrioidea; . . . 3.0211

SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK ... Bruchidae; Cereal Crops; Curculionidae; Insect Resistance; Pulse Crops; . . . 3.0215

INSECTICIDE TESTING PROGRAM ... Baytex; C 9491; Insecticides -other; Rainfall Surplus; Tenebrioidea; . . . 3.0339

STRUCTURAL INSECTS

PRESERVATION OF SMALL SIZED TIMBER AGAINST FUNGAL AND TERMITE ATTACK ... Fences; Dips; Osmocit; Pesticides -other; Wood Preservation & Seasoning; . . . 3.0109

INSECT UTILIZATION

PESTS OF KOLA IN NIGERIA ... Beverage Crops; BHC; Cola; Curculionidae; Photooxin; . . . 3.0143

PRODUCTION OF SILK IN NIGERIA ... Industrial Use of Invertebrate; Rearing of Insects; Saturniidae; . . . 3.0260

OUTBREAKS OF INSECTS

SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES AND IN TREE PLANTATIONS IN NIGERIA ... Forestry Insects; Insects; Surveys; Taxonomy; Plant; Teaching and Research; . . . 3.0090

PESTS OF SUGARCANE ... Crambidae; Saccharum; Sugar Crops; Surveys; . . . 3.0263

POLLENATION BY BEES

IMPROVEMENT OF TECHNIQUES FOR PRODUCTION OF HYBRIDS OF COCONUT PALM ... Breeding & Genetics; Coco; Seed Production; . . . 4.0312

REARING OF INSECTS

RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY ... Behavioral Ecology; Dystic Nitidos; Fiber Crops; Insect Viruses - other; Integrated Control; Olethreutidae; . . . 1.0048

SUBJECT INDEX

Entomology, Applied
Entomology, Applied

SUBJECT INDEX

HUMIDITY STUDIES ON HARD TICKS ... Hatchability; High Temp. 30 C or Above; Humidity; Ixodidae; Veterinary Entomology; .3.0027

BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOMOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH ... Energy Budgets; Forests; Mantidae; Population Dynamics; Surveys; .4.0061

BIOLOGICAL RESEARCH STUDIES ON MIRID OF COCOA - DISTANTIALLA THEOBROMAE ... Bacteria; Disease - biocontrol; Entomology, Physiology; Host Preference; Host-insect; .4.0063

BIOLOGICAL CONTROL OF CRYPTOPHLEBA LEUCOTRETA ... Disease -biocontrol; Fiber Crops; Granulovirus Viruses; Multiplication & Replication; Oletheleutidae; Polyhedrosis Viruses; .4.0277

BIOLOGICAL CONTROL OF HELIOTHIS ARMIGERA ... Disease -biocontrol; Fiber Crops; Isolation of Viruses; Multiplication & Replication; Noctuidae; Polyhedrosis Viruses; .4.0278

ECOLOGICAL OBSERVATIONS ON EARIAS SPECIES ... Entomology; Physiology; Fiber Crops; High Temp. 30 C or Above; Population Dynamics; Sex Ratio; .4.0282

BIOLOGY OF COELAENOMENODERA ELAEIDIS, OIL PALM ... Insecta -other; Oleisced Crops; Population Dynamics; .4.0304

REARING OF COELAENOMENODERA ELAEIDIS IN AN ARTIFICIAL ENVIRONMENT ... Insecta -other; Oleisced Crops; Population Dynamics; Temperature -air; .4.0307

INTEGRATED CONTROL OF EARIAS SPECIES ... Fiber Crops; Insects -other; Irrigation -general; Predators -biocontrol; .6.0002

INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES ... Cereal Crops; Insecticides -nonspecific; Pests; .6.0058

BIOLOGICAL CONTROL OF INSECT PARASITES OF THE COTTON PLANT ... Fiber Crops; Lepidoptera; Predatora -biocontrol; Trichogrammatidae; .6.0082

PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID PESTS OF FRUIT CROPS ... Cambic Arenosols; Diaspididae; Insecticides -nonspecific; Population Dynamics; Win. Tp Monsoon Desert; .7.0001

SORGHUM CROP PROTECTION ... Cereal Crops; Scrophulariaceae; Seedling Diseases -nonspecific; Smuta; Tettigoniidae; .9.0159

PESTS OF EUPATORIUM ODORATUM ... Eupatorium; Ornamentals; Parasites -biocontrol; .9.0258

PRODUCTION OF SILK IN NIGERIA ... Industrial Use of Invertebrate; Insect Utilization; Saturniidae; .9.0260

ENEMIES OF RICE ... ESTABLISHMENT OF TECHNIQUES FOR REARING ... Cereal Crops; Chalcididae; Entomology, Physiology; Humid 2 Months; Insecta -other; Parasites -biocontrol; .11.0018

STUDY OF THE INSECTS THAT ARE HARMFUL TO RICE IN CASAMANCE ... Cereal Crops; Humid 2 Months; Insects; Light Traps; Population Dynamics; Surveys; .11.0138

Surveys

TICK SURVEY ON SELECTED AREAS ON THE ACCRA PLAINS ... Dry Monsoon 4 to 5 Months; Ixodidae; Maturity & Growth Stages; .3.0028

STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA ... Coleoptera -other; Forestry Insects; Population Dynamics; Scolytidae; .3.0092

STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXPORT TIMBER SPECIES ... Chlorophora; Forests; Population Dynamics; Pyralidae; Terminaliidae; .3.0093

INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON ... Economics of Chemical Control; Gelechidae; Noctuidae; Trap Crops; .3.0132

VEGETABLE CROP PRODUCTION IN NIGERIA ... Continuous Humid 7 Months, Plus; Lycopersicium; Pulse Crops; Solarium; .3.0133

INVESTIGATION INTO THE INSECTS OF BASS FIBRES AND THEIR CONTROL ... Continuous Humid 7 Months, Plus; Corchorus; Fiber Crops; Insecticides -nonspecific; Urena; .3.0134

BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERAR) ... Continuous Humid 7 Months, Plus; Economics of Chemical Control; Multiple Cropping; Parasites - biocontrol; Sevin; .3.0166

BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOMOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH ... Energy Budgets; Forests; Mantidae; Population Dynamics; .4.0061

RESEARCH ON THE AFRICAN MIGRATORY LOCUST ... Environments, Animal; Factors Affecting Insect Pop.; Migration; Population Dynamics; Tetrigonoidea; .4.0065

INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES ... Cereal Crops; Insecticides -nonspecific; Pests; Rearing of Insects; .6.0058

POPULATION DYNAMICS OF THE INSECT PARASITES OF THE COTTON PLANT IN MALI ... Fiber Crops; Insecticides -nonspecific; .6.0079

MARKING INSECT PREDATORS OF FOOD COMMODITIES ... Cereal Crops; Dermestidae; Oleisced Crops; Population Dynamics; Pulse Crops; Radioactive Isotopes; .8.0010

TO SURVEY FIELD PESTS OF RICE IN NIGERIA ... Cereal Crops; Coleoptera -other; Crabidae; .9.0013

TO CONTROL FIELD PESTS OF RICE ... (I) EVALUATION OF DIFFERENT INSECTICIDES ... Biological Control; Cereal Crops; Crambidae; Insecticides -nonspecific; Integrated Control; .9.0015

SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES AND IN TREE PLANTATIONS IN NIGERIA ... Forestry Insects; Insecta; Outbreaks of Insects; Taxonomy, Plant; Teaching and Research; .9.0090

STUDY OF BIOLOGY AND CONTROL OF BORERS ... Forestry Insects; Lepidoptera -other; Naucidae; Population Dynamics; Termitidae; Trypophion; .9.0093

INSECT PESTS ON FLOWERS, SEEDS AND SEEDLING OF FOREST TREES ... Forestry Insects; Insecta; Khaya; Management; Quarantine & / or Inspection; .9.0094

INSECT PESTS OF COFFEE IN NIGERIA ... Beverage Crops; Insects -other; .9.0149

INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA ... Insecta -other; Nuts; Pests, Taxonomy, Animal; Thysanoptera; .9.0152

GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months, Plus; Ferric Luvisols; Insects; Oleisced Crops; Phaseolus; .9.0170

PESTS OF SWEET POTATOES ... Curculionidae; Ipomoea; Population Dynamics; Vegetables; .9.0156

PESTS OF OKRA, TOMATOES AND PEPPERS ... Capsicum; Insecticides -nonspecific; Lycopersicium; Vegetables; .9.0261

PESTS OF SUGARCANE ... Crambidae; Outbreaks of Insects; Saccharum; Sugar Crops; .9.0263

THE INSECT PESTS OF THE OIL PALM IN NIGERIA ... Coleoptera; Hemiptera; Lepidoptera; Oleisced Crops; Pests; Population Dynamics; .9.0286

THE INSECT PESTS OF THE COCONUT PALM IN NIGERIA ... Cocos; Coleoptera; Hemiptera; Lepidoptera; Oleisced Crops; Pests; .9.0309

THE INSECT PESTS OF THE RAPHIA PALM IN NIGERIA ... Hemiptera; Lepidoptera; Oleisced Crops; Pests; .9.0310

BIOLOGY, ECOLOGY AND CONTROL OF INSECT PESTS ... Behavioral Ecology; Crambidae; Habitat Studies; Insect Resistance; Predators -biocontrol; .10.0003

TRYANOSOMIASIS ... CONTROL CAMPAIGN AGAINST THE VECTORS ... Dieldrin; Muscidae; Tryponomos; Tryanosomiasis; Veterinary Entomology; Veterinary Medicine; .11.0002

STUDY OF THE POSSIBILITIES OF BIOLOGICAL CONTROL OF RICE PESTS ... Bacillus; Disease -biocontrol; Insects; Sevin; Population Dynamics; .9.0015

STUDY OF THE INSECTS THAT ARE HARMFUL TO RICE IN CASAMANCE ... Cereal Crops; Humid 2 Months; Insects; Light Traps; Population Dynamics; Rearing of Insects; .11.0138

STUDY THE PARASITIC FAUNA OF THE COTTON PLANT IN SENEGAL AND THE OPTIMAL NUMBER OF TREATMENTS ... Fiber Crops; Insecta; Insecticides -nonspecific; Population Dynamics; .11.0175

Veterinary Entomology

HUMIDITY STUDIES ON HARD TICKS ... Hatchability; High Temp. 30 C or Above; Humidity; Ixodidae; Rearing of Insects; .3.0027

286
Environments, Plant

FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO Drought IN THE GENUS ORYZA... Breeding & Genetics; Continuous Humid; Drought Resistance; Oryza -other; Plant Parts Bank; ... 4.0172

DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS... Biocidal -other; Fomes; Phytopathology; Soil Moisture; ... 4.0249

STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUCTION, PICKING OF VOUND OF COTTON IN THE IVORY COAST... Cellulolytic Fiber; Crop Production; Harvesting; Fiber Cleaning; ... 4.0283

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS... Blast; Interaction with Environment; Management; Nutritional Regulation (Host); Pricking Out; Temperature -air; ... 4.0300

STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM... Cocoa; Germination; Management; Storage; Temperature -air; ... 4.0325

STUDY OF SOIL MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY)... Chromic Cambisols; Consumptive Use; Irrigation; Luvic Arenosols; Soil-water-plant Relationships; ... 8.0009

GROWTH PATTERNS OF IMPORTANT TIMBER TREE SPECIES... Cedrela; Gmelina; Measurement of Trees & Stands; Osmotic and Turgor Pressure; Rain; Soil Moisture; Tectona; ... 9.0070

DIURNAL AND SEASONAL PERIODICITY OF PYRICULARIA SPORES IN AIR... Blast; Env. Plant Dis. Relation; Low Temp. Above 0 C; Moisture Budgets; Pyricularia; Pyricularia; ... 9.0107

GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD... Elevational Levels; Altitude; Light Quantity or Intensity; Silviculture; Temperature or Heat Budgets; ... 9.0340

STUDY OF THE MOLD DISEASES OF THE PANICLES OF SORGHUM... Env. Plant Dis. Relation; Molds; Plant Patho-genetic Fungi; Surveys; ... 11.0010

CROPPING TECHNIQUES FOR SANDY SOILS ON THE DIFFERENT PLOT TYPES... Soybeans; Tolerance to Water Stress; Wheat; Yield; ... 13.0007

INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER... Irrigation; Irrigation -general; Shelter; Balsa, Windbreaks; Soil Moisture; Temperature -air; Wind or Air Movement; ... 14.0005

Hydroponic Studies

STUDY OF THE ACTION OF TRACE ELEMENTS ON THE COTTON PLANT... Fibers; Management; ... 4.0268

MINERAL FERTILIZATION OF THE COTTON PLANT... Deficiencies; Management; Soil Analysis -other; Sulfur; ... 6.0074

Latitude

GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD... Elevational Levels; Altitude; Humidity; Light Quantity or Intensity; Silviculture; Temperature or Heat Budgets; ... 9.0160

Light Quantity or Intensity

FERTILIZATION OF THE OIL PALM IN FERRALICYC CLAY SOILS ON 'CONTINENTAL TERMINAL' SOILS ('TERRRES DE BARRE')... Deficiencies; Dystric Nitosols; Management; Rain; Soil Types; Two Humid Seasons; ... 4.0074

INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA... Continuous Humid 7 Months,Plus, Env. Plant Dis. Relation; Phytopathology; Seedborne; Temperature -air; ... 3.0100

DETERMINATION OF THE TRIBES OF ORANGE RUST OF THE COFFEE-SHRUB IN THE IVORY COAST - CHARACTERIZATION OF THE RESISTANCE OF COFFEE-SHRUBS... Env. Plant Dis. Relation; Hemileia; Rusta; ... 4.0064

GROWING EUCALYPTUS FROM CUTTINGS... Eucalyptus; Humidity; Month; Liriaceae; Mist Irrigation; Silviculture; Soil Environment -other; ... 8.0019

INTERCROPPING WITH SORGHUM... Competition; Intercropping; Management; Multiple Cropping; Sorghum Vulgare (Grain); ... 9.0158

GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD... Elevational Levels; Altitude; Humidity; Silviculture; Temperature or Heat Budgets; ... 9.0360

IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDIZATION BETWEEN LOCAL MATERIAL AND FOREIGN MATERIAL... Back Cross; Breeding & Genetics; Ferric Luvicols; Humid 3 Months; Rain; Sorghum Vulgare (Grain); ... 14.0030

IMPORTATION OF FOREIGN LATE AND SEMI-LATE SMALL MILLETS... Breeding & Genetics; Ferric Luvicols; Humid 3 Months; ... 14.0035

Darkness

SAVANNA FORESTREY RESEARCH STATION... Low Intensity Light; Sand; Silviculture; ... 9.0347

High Intensity Light

THE ADAPTABILITY OF THEOBROMA CACAO SEEDLINGS TO HIGH LIGHT INTENSITY... Chlorophyll, Enzymes; Management; Photosynthesis; Shade; ... 3.0064

Low Intensity Light

SAVANNA FORESTREY RESEARCH STATION... Darkness; Sand; Silviculture; ... 9.0347

Shade

THE ADAPTABILITY OF THEOBROMA CACAO SEEDLINGS TO HIGH LIGHT INTENSITY... Chlorophyll, Enzymes; High Intensity Light; Management; Photosynthesis; ... 3.0064

CONTROL OF BLAST OF THE OIL PALM TREES... Blast; Habitat Manipulation-eradicates; Phytopathology; Rhizoctonia; ... 4.0096

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT... Breeding & Genetics; Spicae; F Generation (F1, F2, F3, F4, etc); Intraspec. Genetic Relations; ... 4.0107

PHYTOTECHNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE... Costs; Ferric Acrisols; Management; Two Humid Seasons-7 Month,Plus; ... 4.0108

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT... Breeding & Genetics; Spicae; F Generation (F1, F2, F3, F4, etc); Intraspec. Genetic Relations; Moisture Deficiency; Mulches; ... 4.0126

PHYTOTECHNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE... Plants; Management; ... 4.0127

STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHTHORA PALMIVORA... Black Pod; Env. Plant Dis. Relation; Interaction with Environment; Phytophthora; ... 4.0139

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS... Blast; Interaction with Environment; Management; Nutritional Regulation (Host); Pricking Out; Temperature -air; ... 4.0300

STUDIES ON FIELD ESTABLISHMENT OF COCOA... Management; ... 9.0118

FIELD CONTROL OF PHYTOPHTHORA PALMIVORA ON COCOA... Black Pod; Fungicides -nonspecific; Petroleum Cpd.-nonspecific; Phytophthora; ... 9.0128

COFFEE AGRONOMY PROJECT... Beverage Crops; Ethrel; Fruit-set or Fruit-thinning; Management; Mulches; Space Comb. ... 9.0145

THE OIL PALM BLAST DISEASE AND ITS CONTROL... Benzene; Breeding & Genetics; Fungal Resistance; Irrigation -general; Rhizoctonia; Terrachlor; Vapam; ... 9.0327

PHYTOTECHNICAL STUDIES ON METHODS OF PLANTATION OF CACAO-TREES... Companion Copping; Leguminous Cover; Management; Masa; Planting Methods -other; ... 13.0022

Savanna

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY... Continuous Humid; ...
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Environments, Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD ... Environmental Levels; Altitude; Humidity; Light Quantity or Intensity; Silviculture; Temperature or Heat Budgets; ... 9.0360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indeterminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION OF BEAN (COWPEA) HYBRIDS ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Hybrid Breeding -nonspecific; 9.0225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONION IMPROVEMENT ... Breeding & Genetics; Storage Changes; 2.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTION PATTERNS OF YOUNG ECONOMIC TREE SPECIES AND THEIR CORRELATION WITH ENVIRONMENTAL FACTORS ... Competition; Mineralogy; Silviculture; Soil Depth; Surveys; ... 9.0083</td>
</tr>
<tr>
<td>COMPARISON OF THE DEVELOPMENT OF THE STANDARD VARIETIES OF GROUNDNUTS AND OF EARLY HYBRID VARIETIES ... Breeding & Genetics; Drought Resistance; Hybrid Breeding -nonspecific; 14.0018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENTIALITIES OF TROPICAL SOILS ... Dry Monsoon 4 M. or Less; Dysric Nitosols; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; 1.0004</td>
</tr>
<tr>
<td>POTENTIALITIES OF TROPICAL SOILS ... Ferric Luvisols; Humid 5 Months; 1.0036</td>
</tr>
<tr>
<td>FERTILIZATION OF THE OIL PALM IN FERRALYtic SOILS ON 'CONTINENTAL TERMINAL SOILS (TERRAS DE BARRE)' ... Deficiencies; Dysric Nitosols; Light Quantity or Intensity; Management; Soil Types; Two Humid Seasons; 1.0078</td>
</tr>
<tr>
<td>TOMATO VARIETY TRIAL ... Continuous Humid 7 Months; Plus; Lycopersicum; Management; Timing of Planting Procedures; 3.0149</td>
</tr>
<tr>
<td>SUSCEPTIBILITY OF SOILS TO EROSION AND EVOLUTION OF THEIR STABILITY UNDER MECHANIZED CULTIVATION - HYDRAULICITY OF A WATERSHED ... Cover Crops; Irrigation -general; Management Effects on Soils; Rainfall Simulators; Resil Erosion; Watersheds; 4.0041</td>
</tr>
<tr>
<td>STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KHOGO WATERSHED ... Erosion; Soil Moisture; Soil Types; Watersheds; 4.0045</td>
</tr>
<tr>
<td>FOREST ECOLOGY IN THE LOWER IVORY COAST ... Climate- Humid Equatorial; Organic Fertility; Soil Minerals -natural; Surveys; ... 4.0050</td>
</tr>
<tr>
<td>ECOPHYsiOLOGICAL RESEARCH ON THE COFFEE-SHRUB ... Beverage Crops; Evaporation; Phenology, Life Cycle; Temperature -air; 4.0130</td>
</tr>
<tr>
<td>ECOPHYsiOLOGICAL RESEARCH ON THE COCOA-SHRUB ... Beverage Crops; Evaporation; Temperature -air; Transpiration & Evaporation; ... 4.0131</td>
</tr>
<tr>
<td>TAPPING OF RUBBER TREES - ANTI-RAIN BANDS ... Costs; Harvest and Storage; Management; Two Humid Seasons; 4.0248</td>
</tr>
<tr>
<td>AGROECOMIC-VARIETAL EXPERIMENTS WITH COTTON (RAINFED CULTIVATION) ... Management; 4.0259</td>
</tr>
<tr>
<td>VARIETAL EXPERIMENTATION WITH COTTON (RAINFED CULTIVATION) ... Management; 4.0261</td>
</tr>
<tr>
<td>DATE OF SOWING OF CEREALS IN DRY CULTIVATION ... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Management; Sorghum Vulgare (Grain); Timing of Planting Procedures; 6.0008</td>
</tr>
<tr>
<td>STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESMI (MALL) ON ANNUAL CROPS ... Fallowing; Humid 4 Months; Management; Sorghum Vulgare (Grain); 6.0017</td>
</tr>
<tr>
<td>STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILESMI (MALL) ON ANNUAL CROPS ... Caricar Regosols; Fallowing; Management; Sorghum Vulgare (Grain); 6.0023</td>
</tr>
<tr>
<td>WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (MALL) ... Excessive Moisture; Humid 4 Months; Management; Moisture Deficiency; Soil-water-plant Relationships; 6.0034</td>
</tr>
</tbody>
</table>

Mesic Environments

| STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST ... Climate- Humid Equatorial; Management; Passiflora; Phytophthora; 4.0155 |
| ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Eutric Fluvisols; Manganese; Management; Passiflora; Psidium; 6.0004 |

Moisture Budgets

| MECHANISMS OF CLIMATIC ACTION ON PRODUCTION AND CONSUMPTION OF WATER BY A FORAGE CROP IN A HUMID TROPICAL CLIMATE ... Energy Budgets; Management; Moisture Deficiency; Water Application Methods; 4.0051 |
| DIURNAL AND SEASONAL PERIODICITY OF PYRicULARIA SPINES IN AIR ... Blast; Env. Plant Dur. Relation; Humidity; Low Temp. Above 0 C; Pyricularia; Pyriculariosis; 9.0238 |
| WATER STRESS IN RELATION TO GROWTH AND SURVIVAL IN SEEDLINGS OF EUCALYPTUS AND SOME INDEGENOUS SAVANNA SPECIES ... Eucalyptus; Humid 4 Months; Moisture Deficiency; Pasam; Plant Requirements -water; Silviculture; 9.0359 |
| AGROCLIMATIC KNOWLEDGE OF THE PRINCIPAL ZONES WHERE AGRONOMIC RESEARCH IS APPLIED ... Climatology; Evaporation; Rain; Rain Amount; Transpiration; 11.0056 |
| MOISTURE BALANCE BENEATH CUTOFFS, BARE SOIL AND FALLFALLOWING; Cover Crops; Fallowing; Humidity; Management; Soil - Bare; Soil-water-plant Relationships; 11.0061 |

Photoperiod

| DEVELOPMENT OF DISEASE AND PEST RESISTANT KENIAVARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Fibers; Insect Resistance; Seed Bank; 3.0070 |
| ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM ... Continuous Humid 7 Months; Plus; Drought Resistance; Epidemics; Management; Moisture Deficiency; Soil Depth; 3.0122 |
| DEVELOPMENT OF DISEASE AND PEST RESISTANT KENIAVARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Disease Resistance; Insect Resistance; Seed Bank; 3.0175 |
| DEVELOPMENT OF DISEASE AND PEST RESISTANT KENIAVARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Insect Resistance; Nematode Resistance; Plant Nematodes -nonspecific; Sclerotinia; 3.0194 |
| STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT ... Deficiencies; Development; Differentiation; Orchidaceae; Root Crops; Thermoperiod; 4.0049 |
| GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS ... Breeding & Genetics; Glycine Max; Management; Seed Bank; 9.0167 |

| Humic Gleysols; Humid 4 Months; Management; Organic Fertility; Timing of Application -other; 1.0001 |
| SUITABILITY OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY ... Ferric Luvisols; Humid 5 Months; Management; Organic Fertility; 1.0033 |
| STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND ... Bracharia; Depths; Water Level; Fluctuation; Excessive Moisture; Panicum; Stylosanthes; 4.0026 |
| STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS ... ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA ... Fungal Resistance; Hyphomycetes; Surveys; 4.0066 |
| INTRODUCTION OF ELAIS MELANOCCOCA ... STUDY OF ITS INTERSPECIFIC HYBRID WITH E. GUINEENSIS ... Back Cross; Breeding & Genetics; Disease Resistance; Fats - Lipids & Oils; Interspecific Cross; 4.0290 |
| POST-PLANTING HERBICIDE TRIAL FOR RICE ... Cereal Crops; Humid 6 Months; Freeware Application; Timing -other; 9.0008 |
| RICE CROP LOSS - DISEASE INTENSITY CORRELATION EXPERIMENT ... Blast; Diseases; Fungicides -nonspecific; Humid 6 Months; Phytopathology; 9.0009 |
SUBJECT INDEX

VARIETAL IMPROVEMENT OF RICE BY HYBRIDIZATION FOR THE IMPROVED FRESH-WATER RICE FIELDS OF CASAMANCE ... Breeding & Genetics; Disease Resistance; Phytopathology; Pesticides; Soil Resistance; ...11.0126

ACTION OF LIME AND OF MANGANESE DIOXIDE ON THE DYNAMICS OF AN ACID CLAYEY SOIL ... Deficiencies; Iron; Management; ...11.0131

IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE ... Management; Soil Amendments, Sulfur; ...11.0132

Soil Compaction or Density

EFFECT OF LOCAL FARMER'S PRACTICE OF STEPPING ON GROUNDNUTS ... Management; Management Effects on Soils; Seedbed Preparation; ...3.0165

Soil Composition

Clay

SOIL GENESIS STUDY OF UPLAND DRIFT SOILS AND ASSOCIATED RESIDUAL SOIL ... Silt; Soil Chemical Properties; Soil Types; ...3.0221

TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS ... Casein; Fillers, Extenders; Latex; Quality and Utilization; Rubber - natural; ...4.0256

BALANCE THE SUPPLIES OF MANURE ON CLAY SOILS ... Fertilizer Losses; Soil and Rock Leaching; Soil Analysis; Soil Column, Leaching Diff.; ...4.0295

IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION) ... Back Cross; Breeding & Genetics; Humid 3 Months; Irrigation - general; Male Sterility; Sorghum Vulgare (Grain); ...8.0053

THE SULPHUR AND ZINC STATUS OF SOILS OF THE WESTERN STATE OF NIGERIA ... Management; Movement, Availability; Organic Fertility; Soil pH; Sulfur; Zinc; ...9.0051

POTASSIUM IN THE SOILS OF THE NIGERIAN OIL PALM BELT ... Movement; Movement, Availability; Sand; ...9.0292

SOIL MOISTURE AND THE GROWTH OF THE OIL PALM IN THE ACID SAND SOILS OF SOUTHERN NIGERIA ... Management; Pans; Sand; ...9.0294

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED ... Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain); ...11.0025

ACTION OF BURIED STRAW ON THE DYNAMICS OF SOILS ... Humid 2 Months; Loam - Sand Soil; Management; Organic Fertility; Soil Amendments; ...11.0130

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED ... Clay; Forage Grasses; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain); ...11.0029

Loam - Sand Soil

ACTION OF BURIED STRAW ON THE DYNAMICS OF SOILS ... Humid 2 Months; Management; Organic Fertility; Soil Amendments; ...11.0130

Organic Soils

TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER ... Dystric Nitosol; Management; Soil Fertility; ...1.0025

COMPOSTING OF SAWDUST ... C/N Ratio; Compost; Lycopersicum; Management; Sawdust Utilization; ...3.0100

EVALUATION OF THE SOILS OF BANANA PLANTATIONS, CULTIVATION IN ORGANIC SOILS ... Eny. Plant Dis. Relation; Muss; Orthic Acresoils; Soil - Alkaline; Soil Drainage; ...4.0153

Sand

OIL PALM FERTILIZER REQUIREMENTS IN GHANA ... Calcium - Other Than Lime; Continuous Humid 7 Months,Plus; Magnesium, Management; ...3.0120

STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KOR-
Determination of the Availability of Potassium in Some Sandy Soils in Senegal... Fertilizer Losses; Formulation, Fertilizer; Luscic Arenosol; Movement, Availability; Placement... 11.0064

Study of Herbicide Preparations on Groundnuts on Sandy Soils... Ferric Luvisols; Humid 3 Months; Oilled Crops; Premerger Application; Prometryne;... 11.0147

Experiment Duration of Fallow... Fallowing; Management; Phaseolus;... 13.0048

Sand - Loam Soil

The Distribution and Activity of Root Systems of Cocoa... Management; Phosphorus; Placement; Seasonal Application; Soil Depth;... 3.0017

Soil Genesis Study of Upland Drift Soils and Associated Residual Soil... Clay; Soil Chemical Properties; Soil Types;... 3.0221

Synthetic Soils

Improvement of Potting Mixture in Forest Nurseries... Gmelina; Movement, Availability; Silviculture; Terminalis;... 9.0070

Soil Crusting

Evolution of Ferralytic Landscapes in an Equatorial and Tropical Climate... Alteration, Erosion, Recasting, Hardening... Climate-Humid Equatorial; Geology; Soil Analysis; Soil Crusts; Tertiary Period;... 4.0018

Soil Depth

Coconut Depth of Planting Trial... Coco; Continuous Humid; Management; Placement;... 3.0043

Ecological Conditions and Yield Variations in the Oil Palm... Continuous Humid 7 Months; Plus; Drought Resistance; Epidemics; Management; Moisture Deficiency; Photoperiod;... 3.0122

The Distribution and Activity of Root Systems of Cocoa... Management; Phosphorus; Placement; Sand - Loam Soil; Seasonal Application;... 3.0017

Effect of Ploughing and Fertilizer Application on the Yield of Crops (Maize, Cassava and Cowpeas)... Deep Plowing; Management; Management Effects on Soils; Mankind; Plowing;... 3.0026

Study of Different Types of Ploughing for the Cultivation of Floating Rice... Deep Plowing; Management; Non-dry 3 Months; Plus; Plowing;... 6.0001

Study of the Dormancy of the Wild Varieties of Rice, O. Beviligulatus, and O. Longistaminata... Dormancy; Non-dry 3 Months; Plus; Physiology of Weeds;... 6.0064

Distribution Patterns of Young Economic Tree Species and Their Correlation with Environmental Factors... Competition; Mineralogy; Silviculture; Surveys;... 9.0062

Study of the Possibilities of Replanting Woodland in the Western Centre of Senegal Utilizing Exotic Species of Rapid Growth... Chronic Vertisols; Eucalyptus; Fuelwood; Planting Methods - other; Shelter Belts; Windbreaks;... 11.0118

Study the Possibilities of Afforestation on the Salt Lands of Sine-Saloum... Chlorine; Humid 3 Months; Prosopis; Silviculture;... 11.0139

Soil Environment - other

Growing Eucalyptus from Cuttings... Eucalyptus; Humid 1 Month; Light Quantity or Intensity; Luscic Arenosol; Mist Irrigation; Silviculture;... 9.0019

Effect of Forest Plantation on Soil Physical and Chemical Properties... Elevational Levels; Altitude; Gmelina; Pinus; Silviculture; Soil Analysis; Soil Physical Properties;... 9.0072

Root Studies on Cocoa, Cashew and Kola... Cola; Management;... 9.0125

Growth and Yield of Tea (Tectona Grandis)... Humid 4 Months; Measurement of Trees & Stands; Silviculture; Site Index and Site Quality; Tectona;... 9.0354

Growth and Yield of Gmelina Arborea... Gmelina; Measurement of Trees & Stands; Silviculture; Site Index and Site Quality;... 9.0355

Epidemiology of Pircularia Cryzae - Methods of Control... Disease Resistance; Env. Plant Dis. Relation; Humid 4 Months; Physicopathology; Pircularia; Pircularia;... 11.0152

Soil Fertility

Specific Role of Organic Matter... C/N Ratio; Dry Monsoon 4 M. or Less; Dystric Nitosol; Ferric Luvisols; Humid 4 Months; Plowing;... 1.0002

Maintenance and Regeneration of Fertility of the Degraded "Terre de Barre" Soils... Dystric Nitosol; Humid 6 M. or Less; Organic Fertility; Source of Fertilizer;... 1.0010

Test on Maintenance of the Fertility of Soils by Protection and Restoration of Organic Matter... Dystric Nitosol; Management; Organic Soils;... 1.0029

Specific Role of Organic Matter... C/N Ratio; Ferric Luvisols; Humid 5 Months; Plowing;... 1.0034

Maintenance of P2O5 and K2O Fertility... Ferric Luvisols; Humid 5 Months;... 1.0039

Maintenance of P2O5 and K2O Fertility... Dystric Nitosols; Two Humid Seasons;... 1.0068

Evolution of Soils Under Cultivation... Continuous Humid; Ferric Acrisols; Management; Management Effects on Soils; Rhodic Ferralsols;... 4.0029

Determination of Mineral Deficiencies in the Principal Soils of the Ivory Coast... Calcium - Other Than Lime; Excessive Moisture; Glycic Acrisols; Magnesium; Removal of Nutrients from Soil;... 4.0020

Weed Destruction by Herbicides in Hevea Plantations... Competition; Economics of Chemical Control; Field Crops - nonspecific; Herbicides - nonspecific; Maturity or Growth Stage; Sand;... 4.0028

Mineral Nutrition and Fertilization of Young Plantations of Rubber Trees... Management; Fuerana; Sand; Two Humid Seasons;... 4.0140

Mineral Nutrition and Fertilization of Rubber Trees on Plantations in Production... Management; Sand; Two Humid Seasons;... 4.0240

Fertilization of Irrigated Rice... Humid 2 Months; Irrigation - general; Management;... 8.0026

Fertility Status of Major Soil of Nigeria Grown to Rice... Estric Phaeudults; Fertilizer Technology; Management; Soil Morphology, Profiles;... 9.0012

Tree Species Elimination Trials... Humid 4 Months; Pinus; Silviculture; Variation and Selection; Water Table;... 9.0349

Soil Minerals - natural

Forest Ecology in the Lower Ivory Coast... Climate-Humid Equatorial; Organic Fertility; Rain; Surveys;... 4.0050

Correction of Mineral Deficiencies of the Principal Soils of the Ivory Coast... Continuous Humid; Ferric Acrisols; Glycic Acrisols; Movement, Availability; Soil Types;... 4.0200

The Fertilization of Rice... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Management; Mineral Excess & Deficiency;... 6.0009

Soil Chemistry... Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance;... 9.0178

Soil Moisture

Cotton Agronomy on the Black Soils, Accra Plains... DDT; Formulation, Fertilizer; Preboran; Synergism and Synergists;... 3.0005

Varietal Improvement of Upland Rice... Breeding & Genetics;... 3.0170

Study of Rivulet Formation, Infiltration and of Their Conditional Factors on the Korhogos Watershed... Rain; Erosion; Soil Types; Watersheds;... 4.0045

Problems Caused by the Contact of Forest with Savannah in the Ivory Coast... Balance of Nature; Silviculture; Soil Morphology, Profiles; Soil-water-plant Relationships; Topographical Parameters-other;... 4.0046

294
<table>
<thead>
<tr>
<th>Subject Index Environments, Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREST ECOLOGY IN THE LOWER IVORY COAST: Climate- Humid Equatorial; Organic Fertility; Rain; Soil Minerals - natural; Surveys; ...</td>
</tr>
<tr>
<td>STUDY OF THE INTERACTIONS BETWEEN THE SOIL AND FORAGE PLANTS IN A HUMID TROPICAL ENVIRONMENT: Management; Removal of Nutrients from Soil; Soil Testing; ...</td>
</tr>
<tr>
<td>TAPPING OF THE RUBBER TREE - STUDY THE FLOW OF THE LATEX: Breeding & Genetics; Harvest and Storage; Latex; Osmotic and Turgor Pressure; Solar Light; Two Humid Seasons; ...</td>
</tr>
<tr>
<td>DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS: Biocontrol - other; Fomes; Humidity; Phytopathology; ...</td>
</tr>
<tr>
<td>DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERGION: Ferric Luvisols; Floods; Humid 3 Months; Humid 4 Months; Management; Timing of Planting Procedures; ...</td>
</tr>
<tr>
<td>WATER REQUIREMENTS OF IRRIGATED CROPS: Humid 1 Month; Irrigation - general; Management; ...</td>
</tr>
<tr>
<td>ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE: Eutrophic Cambisols; Management; Passiflora; Plant Virus - general; ...</td>
</tr>
<tr>
<td>SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE: Elevational Levels; Altitude; Percolation; Soil and Rock Leaching; Soil Types; ...</td>
</tr>
<tr>
<td>GROWTH PATTERNS OF IMPORTANT TIMBER TREE SPECIES: Cedrela; Gymnema; Measurement of Trees & Stands; Osmotic and Turgor Pressure; Rain; Tectona; ...</td>
</tr>
<tr>
<td>WASTE USE EFFICIENCY OF MAIZE IN SOME NIGERIAN SOILS: Evapotranspiration; Nuclear Moisture Meters; Radionuclide Tracers; Soil Profile Studies; Soil-water-plant Relationships; ...</td>
</tr>
<tr>
<td>RESEARCH ON VARIETIES OF VIGNA Unguiculata WITH GOOD RESPONSE TO INTENSIVE TECHNICS: (WATER, FERTILIZERS) - Hot Equatorial or Hot Tropical; Management; ...</td>
</tr>
<tr>
<td>WATER REQUIREMENTS OF IRRIGATED CROPS: Irrigation; Irrigation - general; Lysimeters; Management; Nuclear Moisture Meters; Sorghum Vulgare (Grain); ...</td>
</tr>
<tr>
<td>MOISTURE BALANCE BENEATH CUT CROPS, BARE SOIL AND FALLOW: Cover Crops; Fallowing; Humidity; Management; Soil - Bare; Soil-water-plant Relationships; ...</td>
</tr>
<tr>
<td>LEACHING OF THE MINERAL ELEMENTS FROM SANDY SOILS CULTIVATED AS INTENSIVE SYSTEMS: Fallowing; Fertilizer; Losses; Lycium arenosum; Sand; Soil and Rock Leaching; ...</td>
</tr>
<tr>
<td>STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE FIELD: Dystric Gleysols; Humid 3 Months; Management; ...</td>
</tr>
<tr>
<td>MOISTURE STANCE OF THE COTTON-GROWING SOILS OF SINE SALUM: Management; Nitrates; Soil-water-plant Relationships; ...</td>
</tr>
</tbody>
</table>

Excessive Moisture

SUGARCANE VARIETY STUDIES: Management; Saccharum; Sucrose; Two Humid Seasons-7 Month, Plus; ... | 3.0114 |

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND: Brachiaria; Ferric Luvisols; Depth- Water Level Fluctuation; Marsh; Panicum; Stylosanthes; ... | 4.0026 |

DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST: Calcium - Other Than lime; Glycine Acrisol; Magnesium; Removal of Nutrients from Soil; Soil Fertility; ... | 4.0202 |

INTRODUCTION AND TESTS OF BEHAVIOUR OF RICE ON LOW LYING INUNDATED LAND: STUDY OF THE TECHNIQUES OF CULTIVATION FOR THE SIKASSO REGION; Humid 4 Months; Management; ... | 6.0053 |

WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (Mali); Humid 4 Months; Management; Moisture Deficiency; Rain; Soil-water-plant Relationships; ... | 6.0034 |

CEREAL BREEDING - MAIZE: Breeding & Genetics; Ecosystems; Humid 3 Months; Westlands; ... | 6.0041 |

STUDY OF THE DYNAMICS OF THE SOILS OF RICE-FIELDS IN LOWER CASAMANCE: Humid 2 Months; Soil Chemical Properties; Soil Profile Studies; ... | 7.0029 |

STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE: Eutric Gleysols; Flood Irrigation; Management; ... | 14.0026 |

STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE: Eutric Gleysols; Flood Irrigation; Management; ... | 14.0060 |

Moisture Deficiency

STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM: Cover Crops; Leguminosae; Paniceae - other; Two Humid Seasons; ... | 11.0057 |

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM: Cassava; Drought Resistance; Management; Plant Physiology; Two Humid Seasons; ... | 11.0079 |

INTRODUCTION AND SELECTION OF NEW RICE VARIETIES: Irrigation - general; Management; ... | 3.0024 |

CONTROL OF WEEDS IN RICE: Cereal Crops; Irrigation - general; Postemergence Application; Propanil; ... | 3.0004 |

ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM: Continuous Humid 7 Months, Plus: Drought Resistance; Epidermis; Management; Photoepider; Soil Depth; ... | 3.0122 |

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES: Continuous Humid 7 Months, Plus: Drought Resistance; Evapotranspiration; Management; Oilseed Crops; Soil-water-plant Relationships; ... | 3.0123 |

MECHANISMS OF CLIMATIC ACTION ON PRODUCTION AND CONSUMPTION OF WATER BY A FORAGE CROP IN A HUMID TROPICAL CLIMATE: Energy Budgets; Management; Moisture Budgets; Water Application Methods; ... | 4.0051 |

BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT: Breeding & Genetics; Drought Resistance; ... | 4.0055 |

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT: Breeding & Genetics; Nutritive & Drinking Water; Management; ... | 4.0189 |

IMPROVEMENT OF THE MASCUINITY OF ELAEIS PISIFERA: Hormones; Management; Mulches; Parthenocarpy; Space Competition; ... | 4.0249 |

STUDY THE NUTRITION OF THE OIL PALM IN WATER: Irrigation; Irrigation - general; Management; ... | 4.0298 |

WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (Mali): Excessive Moisture; Humid 4 Months; Management; Rain; Soil-water-plant Relationships; ... | 6.0004 |

SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION: Breeding & Genetics; Harvest and Storage; Management; Mutation; Non-dry 3 Months, Plus; ... | 6.0057 |

STUDY OF THE PREPARATION OF THE SEED BED AND OF TEAM-CULTIVATION IMPLEMENTS FOR THE CULTIVATION OF FLOATING RICE: Management; Non-dry 3 Months, Plus; Rotary Tilling; Rotary Hoe; Soil Preparation & Renovation; ... | 6.0006 |

IMPROVEMENT OF VARIETIES OF THE COTTON PLANT FOR DRY CULTIVATION: Breeding & Genetics; Insect Resistance; ... | 6.0073 |

NITROGENOUS MINERAL NUTRITION OF THE COTTON PLANT: Growth Stage of Plant; Management; ... | 6.0075 |

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE: Sahara-Sahelian; ... Carissa; Humid 1 Month; Mangifera; Passiflora; ... | 7.0006 |

DATE-PALM SELECTION, PHYTOCHEMICAL AND ECOLOGICAL RESEARCH WORK: Calcaric Fluvisols; Groundwater; Humid 1 Month; Management; Phoenix, Streams; ... | 7.0007 |

EXPERIMENTS WITH FORAGE SHRUBS: Management; Prosopis; Sand; ... | 8.0008 |

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS: Water Economy; Chromic Cambisols; Consumptive Use; Humidity; Irrigation; Lycium arenosum; Soil-water-plant Relationships; ... | 8.0006 |

WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE: Evapotranspiration; Management; Moisture Levels; Plant Responses; ... | 9.0006 |

BIO-ECOLOGY OF THE COCOA MIRID: Beverage Crops; Entomology, Physiology; Factors Affecting Insect Pop.; Miridaceae; Population Dynamics; Sex Ratio; ... | 9.0130 |
<table>
<thead>
<tr>
<th>Environments, Plant SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL MOISTURE AND THE GROWTH OF THE OIL PALM IN THE ACID SAND SOILS OF SOUTHERN NIGERIA... Clay; Management; Passam; Sand; ... 9.0294</td>
</tr>
<tr>
<td>WATER STRESS IN RELATION TO GROWTH AND SURVIVAL IN SEEDLINGS OF EUCALYPTUS AND SOME INNOCUOUS SAVANNA SPECIES... Eucalyptus; Humid 4 Months; Moisture Budgets; Passam; Plant Requirements -water; Silviculture; ... 9.0359</td>
</tr>
<tr>
<td>EFFECT OF TILLAGE ON THE MINERAL NUTRITION AND THE SUPPLY OF MOISTURE TO CROPS... Drought Resistance; Management; Plowing; Subsoiling; Surface-soil; ... 11.0027</td>
</tr>
<tr>
<td>MOISTURE NUTRITION OF PLUVIAL RICE - RESISTANCE TO DROUGHT... Evapotranspiration; Irrigation; Management; ... 11.0062</td>
</tr>
<tr>
<td>SILVICULTURAL RESEARCH WORK IN AN ARID ZONE... Silviculture; ... 11.0142</td>
</tr>
<tr>
<td>Soil Type</td>
</tr>
<tr>
<td>FERTILIZATION OF THE OIL PALM IN FERRELLISTIC SOILS ON 'CONTINENTAL TERMINAL' SOILS('TERRES DE BARRE')... Deficiencies; Dystric Nitosols; Light Quantity or Intensity; Management; Rain; Two Humid Seasons; ... 1.0078</td>
</tr>
<tr>
<td>PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE CACAO TREE... Ferralic Arenosols; Management; Soil Analysis; Soil Survey; Two Humid Seasons; ... 4.0141</td>
</tr>
<tr>
<td>PEDOLOGICAL-AGRONOMIC STUDIES WITH REGARD TO THE COFFEE TREE... Ferralic Arenosols; Management; Soil Analysis; Soil Survey; Two Humid Seasons; ... 4.0142</td>
</tr>
<tr>
<td>FERTILIZATION OF OIL PALM ON FERRELLISTIC SOILS THAT HAVE COME FROM GRANITE... Ferralic; Management; ... 4.0292</td>
</tr>
<tr>
<td>Solar Light</td>
</tr>
<tr>
<td>STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION... Management; ... 4.0003</td>
</tr>
<tr>
<td>STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION... Ferralic Cambisols; Ferric Acrisols; Management; Two Humid Seasons-7 Month,Plus; ... 4.0010</td>
</tr>
<tr>
<td>STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION... Ferric Acrisols; Management; Two Humid Seasons-7 Month,Plus; ... 4.0011</td>
</tr>
<tr>
<td>TREATMENT OF COFFEE AT THE CROP-HUSBANDRY STAGE... Curing Technique; Drying; Harvest and Storage; ... 4.0138</td>
</tr>
<tr>
<td>IMPROVEMENT OF THE BANANA PLANT... Breeding & Genetics; Musa; Photosynthesis; ... 4.0151</td>
</tr>
<tr>
<td>TAPPING OF THE RUBBER TREE... STUDY OF THE FLOW OF THE LATEX... Breeding & Genetics; Harvest and Storage; Latex; Osmotic and Turgor Pressure; Soil Moisture; Two Humid Seasons; ... 4.0225</td>
</tr>
<tr>
<td>STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION... Ferric Acrisols; Management; Two Humid Seasons-7 Month,Plus; ... 4.0342</td>
</tr>
<tr>
<td>AGROMETEOROLOGICAL STUDIES IN THE SENEegal RIVER BASIN... Climatology; Evapotranspiration; Rain; Wind or Air Movement; ... 6.0037</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS, CANNABINUS, ... Continuous Humid 7 Months,Plus; Germination; Low Temp. Above 0 C; ... 3.0142</td>
</tr>
<tr>
<td>STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM... Coco; Germination; Humidity; Management; Temperature -air; ... 4.0235</td>
</tr>
<tr>
<td>Temperature -air</td>
</tr>
<tr>
<td>INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA... Continuous Humid 7 Months,Plus; Env. Plants; Plant Relation; Light Quantity or Intensity; Phytophathy; Seed-borne; ... 3.0130</td>
</tr>
<tr>
<td>STORAGE OF MAIZE IN A CONCRETE SILO... Buildings, Farm; Fumigant; Photosin; Storage; ... 3.0212</td>
</tr>
<tr>
<td>DETERMINATION OF THE TRIBES OF ORANGE RUST OF THE COFFEE-SHRUB IN THE IVORY COAST... CHARAC... ... 296</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

TERATIZATION OF THE RESISTANCE OF COFFEE
SHRUBS (1) Env. Plant Dis. Relation; Hemileia Light Quantity or Intensity; Rusta; . . . 4.0004
ECOPHYSIOLOGICAL RESEARCH ON THE COFFEE
SHRUB (2) Beverage Crops; Evaporation; Phenology, Life Cycle; Rain; . . . 4.0140
ECOPHYSIOLOGICAL RESEARCH ON THE COCOA
SHRUB (3) Beverage Crops; Evaporation; Rain; Transpiration & Evaporation; . . . 4.0141

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL
FERTILIZATION ON NURSERY'S OF OIL PALMS IN
BAGS (4) Blast; Interaction with Environment; Management; Nutritional Regulation (Host); Pricking Out; . . 4.0300
STUDY OF CONSERVATION OF THE SEEDS OF THE
COCONUT PALM (5) Cocos; Germination; Humidity; Management; Storage; . . . 4.0325
COOLING OF AIR AND WATER IN RICE FIELDS AND
RICE GROWTH (6) Flood Irrigation; Humid 4 Months; Low Temp. Above 0 C; Management; Temperature or Heat Budgets; . . . 6.0036

DORMANCY IN SEEDS FROM DELI PALMS (OIL PALM) . . Back Cross; Dormancy; Oiled Seed Crops; . . . 9.0288
GROWTH OF SEEDLING TREES IN RELATION TO VARIATION IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD (7) Elevational Levels, Altitude; Humidity; Light Quantity or Intensity; Silviculture; Temperature or Heat Budgets; . . . 9.0360
INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER (8) Humidity; Irrigation; Irrigation -general; Shelter Belts, Windbreaks; Soil Moisture; Wind or Air Movement; . . 14.0005

Low Temp. Above 0 C

GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHthora PALMIVORA (9) Chlorides; Extract Composition; Glutamic Acid; Phytophthora; Sulfates; . . . 3.0061
EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS CANNABINUS, . . Continuous Humid 7 Months, Plut; Germination; Storage; . . . 3.0142
COOLING OF AIR AND WATER IN RICE FIELDS AND
RICE GROWTH (10) Humid 1 Month; Management; . . . 7.0003
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN (11) Climatology; Energy Budgets; Humid 1 Month; Rain Patterns; Wind or Air Movement; . . . 7.0004
DIURNAL AND SEASONAL PERIODICITY OF PYRICALARIA SPORES IN AIR (12) Blast; Env. Plant Dis. Relation; Humidity; Moisture Budgets; Piricularia; Piriculariosis; . . . 9.0238
COOLING OF AIR AND WATER IN RICE FIELDS AND
RICE GROWTH (13) Hot Equatorial or Hot Tropical; Management; . . . 11.0008
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN (14) Climatology; Energy Budgets; Hot Equatorial or Hot Tropical; Rain Patterns; Wind or Air Movement; . . . 11.0009
THE EFFECT OF PHYSICAL FACTORS ON GROWTH AND YIELD OF RICE (15) Management; . . . 12.0007

Therompner
STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT (16) Deficiencies; Dormancy; Growth and Differentiation; Orchidaceae; Photoperiod; Root Crops; . . . 4.0049

Temperature -soil
FIXATION OF APPLIED PHOSPHORUS IN SOME GHANA SOILS (17) Soil Testing; . . . 3.0230
EVALUATION OF THE SOILS OF BANANA PLANTATIONS, CULTIVATION IN ORGANIC SOILS (18) Env. Plant Dis. Relation; Muss; Orthic Acrots; Soil - Alkaline; Soil Drainage; . . . 4.0153
SOIL MICROBIOLOGY (19) Chlorinated Hydrocarbons; Ferralic Cambids; Herbicides -nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; . . . 9.0179
High Temp. 30 C or Above
MYCORRHIZAL ASSOCIATIONS IN PINES (20) Mycorrhiza; Pines; Silviculture; . . . 9.0362

Low Temp. Above 0 C

COOLING OF AIR AND WATER IN RICE FIELDS AND
RICE GROWTH (21) Flood Irrigation; Humid 4 Months; Management; Temperature -air; Temperature or Heat Budgets; . . . 6.0036

Temperature -water
Low Temp. Above 0 C

COOLING OF AIR AND WATER IN RICE FIELDS AND
RICE GROWTH (22) Flood Irrigation; Humid 4 Months; Low Temp. Above 0 C; Management; Temperature -air; . . . 6.0036
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN (23) Climatology; Evapotranspiration; Rain; Solar Light; Wind or Air Movement; . . . 6.0037
GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY AND PHOTOPERIOD (24) Elevational Levels, Altitude; Humidity; Light Quantity or Intensity; Silviculture; . . . 9.0360

Topographical Parameters-other
EVILOVATION OF FERRALYTIC LANDSCAPES IN AN
EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING . . Climate-Humid Equatorial; Geology; Soil Analysis; Soil Crusta; Tertiary Period; . . . 4.0038
PROBLEMS CAUSED BY THE CONTACT OF FOREST WITH
SAVANNAH IN THE IVORY COAST . . Balance of Nature; Silviculture; Soil Moisture; Soil Morphology; Profiles; Soil-water-plant Relationships; . . . 4.0046
PREPARATION OF PLANTING MATERIAL FOR HEVEA . . Management; Planting Methods; Two Humid Seasons; . . . 4.0220
CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BAS-SARI DISTRICT . . Geology; Quaternary Period; Sedimentology; Soil Morphology; Profiles; Soil Survey; Soil Types; . . 13.0012
RURAL COMMUNITIES AND THEIR TERRITORIES SEEN THROUGH THE VILLAGE MONOGRAPHS OF AG-BETIKO AND BENA (TOGO) . . Income; Rural Sociology; . . . 13.0013
CARTOGRAPHY OF THE AGRARIAN ACTIVITIES OF
TOGO . . Geology; Remote Sensing; Soil Survey; . . . 13.0014
OCCUPATION AND DEVELOPMENT OF THE NEW COUNTRIES . . Mobility; Modernization; . . . 13.0015

Water Environment -other
STUDY OF THE NUTRITION, IN WATER, OF THE OIL
PALM (25) Cover Crops; Leguminosae; Moisture Deficiency; Paniceae -other; Two Humid Seasons; . . . 14.0005

Wind or Air Movement
RUBBER CLONE TRIAL 1965 A AND 1965 B . . . Continuous Humid; Disease Resistance; Lates; Management; Wind; . . . 3.0049
IMPROVEMENT OF THE RUBBER TREE - VEGETATIVE
IMPROVEMENT . . STUDY OF THE PLANTING MATERIAL . . Breeding & Genetics; Intraspec. Genetic Relations; Plant Resistance; Two Humid Seasons; . . . 4.0227
IMPROVEMENT OF HEVEA BRASILIENSIS . . RESEARCH ON CRITERIA FOR SELECTION . . Breeding & Genetics; Lates; Laticifers; Plant Morphology; Two Humid Seasons; Wind; . . . 4.0228
BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS . . Breeding & Genetics; Disease Resistance; Lates; Open Pollination; Teens; Wind; . . . 5.0003
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN (26) Climatology; Evapotranspiration; Rain; Solar Light; . . . 6.0037
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN (27) Climatology; Energy Budgets; Humid 1 Month; Rain Patterns; . . . 7.0004

297
Enzyme Kinetics

MALT PRODUCTION FROM LOCAL GRAINS ... Beer; Cereal Crops; Hordeum Vulgare; Malting Food; Sorghum Vulgare (Grain); ... 9.0057

Enzymes

See Also Plant Physiology
Metabolism

Acid Phosphatase

BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT ... Breeding & Genetics; Drought Resistance; Moisture Deficiency; ... 4.0055

Amino Peptidase

ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA ... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; Phosphatase -nonspecific; ... 3.0065

Catalase

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM ... Drought Resistance; Management; Plant Physiology; Two Humid Seasons; ... 1.0079

Cellulase

MICROORGANISMS IN THE RUMEN AND THEIR ROLE IN NUTRITION ... Cellulose; Goat Husbandry; In Vivo—see Also Feed Rations; Rumen Bacteria; Taxonomy, Plant; Vertebrate Nutrition; ... 9.0025

Cholinesterase

ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA ... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; Phosphatase -nonspecific; ... 3.0065

Dehydrogenase

ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA ... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; Phosphatase -nonspecific; ... 3.0065

Esterase

ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA ... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; Phosphatase -nonspecific; ... 3.0065

Extracellular Enzymes

STUDY OF THE MECHANISMS OF PARASITISM ... Cor-ticulum; ... 4.0068

Hydrolytic Enzymes -general

DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT ... Cereal Crops; Continuous Humid; Drought; Drought Resistance; Epidermis; Transpiration & Evaporation; ... 4.0171

Ligase

PHYSICO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE ... Child Developmental Stages; Nitrites; Proteins; Starch; ... 10.0009

Phosphatase -nonspecific

ENZYMES AND THEIR VARIATION IN INSECT PESTS OF COCOA ... Cholinesterase; Entomology, Physiology; Gel Electrophoresis; ... 3.0065

Trypsin

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Trypsinase; ... 9.0177
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>Extract Composition</th>
</tr>
</thead>
</table>
| **Rill Erosion** | Eutric Cambisols
See Soil Unit Classification Cambisols |
| **Wind Erosion** | Eutric Fluvisols
See Soil Unit Classification Fluvisols |
| **Escherichia Coli** | Eutric Gleysols
See Soil Unit Classification Gleysols |
| **Essential Oils** | Eutric Nitosols
See Soil Unit Classification Nitosols |
| **Esterase** | Eutric Planosols
See Soil Unit Classification Planosols |
| **Estuaries** | Eutric Regosols
See Soil Unit Classification Regosols |
| **Ethrel** | Evaluation, Efficacy
See Medicine/Psyc.- General Topics |
| **Etiology** | Evaporation
See Water Supply |
| **Eucalyptus** | Evapotranspiration
See Water Supply |
| **Eupatorium** | Excessive Moisture
See Environments, Plant Soil Moisture |
| **Euphorbiaceae** | Extracellular Enzymes
See Enzymes |
| **Extract Composition** | **GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTHORA PALMIVORA**
Chemical Materials; Finishes of Textiles; Forest Product Development; Leather; Tannin;
Studies on Plant Parasitic Nematodes Associated with Economic Crops in Ghana
Management; Pesticides
Correlation of Soil Test Methods with Crop Yields (Millet and Guinea Corn)
Management; Pesticides
Study of castration of the Oil Palm
Nutrient Determination in the Mature Seeds of the Different Varieties of Beans
The Effect of Grass Legume Mixtures on Herbage Production and Chemical Composition as Compared with Application of Nitrogen Fertilizer

299
Extract Composition

CHENO - TAXONOMIC STUDIES ... Chromatography; Oil-seed Crops; Remote Sensing; Sugar -nonspecific; Taxonomy, Plant;9.0118

F Generation (F1, F2, F3, Etc) See Genetics Genotypes

Fallowing See Soil Tillage

Farm Animals -other See Animal Husbandry

Farm Buildings & Shelters See Environments, Animal

Farm Enterprises -general See Ag Industries & Agribusiness

Farm Machinery, Equip & Power

Animal Powered Equipment
ADAPTATION OF MATERIAL FOR A POLYCULTIVATOR FOR ANIMAL TRACTION ... Design,Modify,Develop.of Equip; Mammals; Soil Preparation & Renovation;11.0039
STUDY OF A SOWING-HOEING OF GREAT BREADTH, FOR ANIMAL TRACTION ... Design,Modify,Develop.of Equip; Soil Preparation & Renovation;11.0040
STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES (OF PLANTS) ... Labor Input; Management; Soil Tillage Methods -other; Sorghum Vulgare (Grain); Time & Motion Studies;11.0053

Crop Production, Harvesting
REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS ... Continuous Humid 7 Months,Plus; Harvest and Storage; Management;3.0124
COCOA PROCESSING AT THE FARM LEVEL ... Design.,Modify,Develop.of Equip; Drying; Harvest and Storage;4.0033
STUDY OF THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST ... Cellophane Fiber; Fiber Cleaving; Humidity;4.0283
ADAPTABILITY TO MECHANICAL HARVESTING OF CERTAIN VARIETIES OF COTTON PLANTS IN THE IVORY COAST ... Harvest and Storage;4.0285
COSTS AND METHODS OF DEVELOPING SMALL SWAMPS FOR RICE CULTIVATION ... Costs; Management; Swamps - Marshes; Time & Motion Studies;5.0018
TECHNOLOGICAL PREPARATION OF NATURAL TEXTILE FIBRES FOR SACKING ... Harvest and Storage; Repeating;6.0017
THE DESIGN, TESTING AND DEVELOPMENT OF A MACHINE FOR SHELLING MELON SEEDS AND EXTRACTING MELON SEED OIL ... Cucumis; Design,Modify,Develop.of Equip; Fats - Lipids & Oils; Harvest and Storage;9.0045
SEED RATE TRIAL WITH UPLAND RICE ... Continuous Humid 7 Months,Plus; Drill Application; Management; Seeding or Planting Rate;9.0205
AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION ... Design.,Modify,Develop.of Equip; Drying; Soil Preparation & Renovation;10.0005
TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION ... Eucalyptus; Eucalyptus Glaucophylla-Glauca; Hot Equatorial or Hot Tropical; Management; Seedbed Preparation;11.0151

Design,Modify,Develop.of Equip
COCOA PROCESSING AT THE FARM LEVEL ... Crop Production, Harvesting; Drying; Harvest and Storage;4.0033

SUBJECT INDEX

DESIGN AND DEVELOPMENT OF A TRACTOR AND RELATED IMPLEMENTS FOR LOCAL MANUFACTURE ... Engines; Gearing and Power; Soil Preparation & Renovation; Tractors and Accessories;9.0052
THE DESIGN, TESTING AND DEVELOPMENT OF A MACHINE FOR SHELLING MELON SEEDS AND EXTRACTING MELON SEED OIL ... Crop Production, Harvesting; Cucumis; Fats - Lipids & Oils; Harvest and Storage;9.0054
MECHANIZATION OF TROPICAL AGRICULTURE ... Continuous Humid 7 Months,Plus; Ferralic Cambisols; Ferric Luvisols; Mathematical Models; Soil Tillage Methods -other; Tractors and Accessories;9.0184
AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION ... Crop Production, Harvesting; Drying; Soil Preparation & Renovation;10.0005
ADAPTATION OF MATERIAL FOR A POLYCULTIVATOR FOR ANIMAL TRACTION ... Mammals; Soil Preparation & Renovation;11.0005
STUDY OF A SOWING-HOEING OF GREAT BREADTH, FOR ANIMAL TRACTION ... Soil Preparation & Renovation;11.0040
TESTS IN TRUE SIZE OF A PROTOTYPE FOR A MILLET THRUSHING MACHINE ... Harvest and Storage;11.0041
STUDY OF SEED-DISTRIBUTORS FOR RICE ... Fertilizing, Planting & Cult; Management; Pregermination of Seeds;11.0122

Drying
COCOA PROCESSING AT THE FARM LEVEL ... Crop Production, Harvesting; Design,Modify,Develop.of Equip; Harvest and Storage;4.0003
TREATMENT OF COFFEE AT THE CROP-HUSBANDRY STAGE ... Curing Technique; Harvest and Storage; Solar Light;4.0138
SOLAR AND AIR DRYING OF TIMBER ... Chlorophora; Costs; Energy Conversion; Instrumentation, Equipment; Solar Processes; Ulmusaceae -other; Wood Preservation & Seasoning;9.0165
AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION ... Crop Production, Harvesting; Design,Modify,Develop.of Equip; Soil Preparation & Renovation;10.0005

Fertilizing, Planting & Cult
STUDY OF SEED-DISTRIBUTORS FOR RICE ... Design.,Modify,Develop.of Equip; Management; Pregermination of Seeds;11.0122

Pest, Disease & Weed Control
EMPENMENT 17-1 WEED CONTROL IN OIL PALM PLANTATIONS ... Diuron; Hand Tillage; Oilseed Crops;9.0301
EXPERIMENT 17-2. MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTATIONS ... Cultiv; Management;9.0302

Poultry Equipment
DEVELOPMENT OF A LOW COST INCUBATOR FOR LOCAL USE ... Buildings; & Land Development; Construction, Farm; Costs; Heat and Cooling Devices;9.0047

Soil Preparation & Renovation
INTER-RELATION BETWEEN SOIL PREPARATION AND LEVEL OF FERTILIZATION ... Fertilizer Accumulation; Humid 3 Months; Management, Management Effects on Soils;6.0046
STUDY OF THE PREPARATION OF THE SEED BED AND OF TEAM-CULTIVATION IMPLEMENTS FOR THE CULTIVATION OF FLOATING RICE ... Management; Non-dry 3 Months,Plus; Rotary Tillage, Rotary Hoe;6.0062
DESIGN AND DEVELOPMENT OF A TRACTOR AND RELATED IMPLEMENTS FOR LOCAL MANUFACTURE ... Design,Modify,Develop.of Equip; Engines; Gearing and Power; Tractors and Accessories;9.0052
AGRICULTURAL EQUIPMENT DEVELOPMENT RESEARCH FOR TROPICAL RICE CULTIVATION ... Crop Production, Harvesting; Design,Modify,Develop.of Equip; Drying;10.0005
ADAPTATION OF MATERIAL FOR A POLYCULTIVATOR FOR ANIMAL TRACTION ... Design,Modify,Develop.of Equip; Mammals;11.0005
Fats - Lipids & Oils

Genetics; Harvest and Storage; Synthetic Varieties & Blends; ... 11.0043

IMPROVEMENT OF SESAME BY HYBRIDIZATION ... Breeding & Genetics; Hybrid Breeding - nonspecific; Sesamum; ... 14.0012

RESEARCH ON EARLY VARIETIES OF GROUNDNUTS RESISTANT TO ROSETTE ... Breeding & Genetics; Disease Resistance; Phytopathology; Rosette Disease; ... 14.0025

Feces

GASTRO-INTESTINAL PARASITISIM OF ZEBU CATTLE ... Strongylodes; Veterinary Medicine; ... 9.0002
GASTRO-INTESTINAL PARASITISIM IN THE RED GOAT ... Coccidia; Digestive Diseases - animal; Malnutrition; Strongylodes; Treatment; ... 8.0006
SALMONELLOSIS - EPIDEMIOLOGICAL SURVEY ON HEALTHY CARRIERS ... Birds; Rodentia; Salmonelloses; ... 11.0105

Feed Additives

Fermacto

FERMACTO 500 SUPPLEMENTATION TO LAYER DIETS ... Commercial Rations or Feeds; Fermacto; In Vivo—see Also Feed Rations; Management; Poultry Rations; Supplements; Feed Additives; ... 3.0035

Feed Proteins & Amino Acids

See Vertebrate Nutrition

Diet Components - animal

Feed Science and Technology

Animal Rations

THE USE OF BYPRODUCTS OF CASSAVA PROCESSING FOR LIVESTOCK FEEDING ... By-products - Plant(Vegetative); Manhattan; ... 3.0057

Calf Rations, Starter Rations

PRODUCTION OF MILK AND REARING OF THE CALF ... Management; ... 11.0078

Cattle Rations

EXPERIMENT ON FATTENING N’DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Continuous Humid; Cottonseed Oilmeal, etc.; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANThES PASTURE WITH OR WITHOUT A PODDER SUPPLEMENT ... Continuous Humid; Forage, Pasture or Range; Legumes; Rice; Stylosanthes; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR OLD N’DAMA CATTLE ... Carcass Evaluation; Concentrates; Cottonseed Oilmeal, etc.; Green-chop; Management; Panicum; Stylosanthes; ... 4.0016

CROSSBREEDING JERSEY N’DAMA. FATTENING OF BEEF QUALITY JERSEY N’DAMA CROSSBRED CATTLE ... Carcass Evaluation; Cottonseed Oilmeal, etc.; In Vivo—see Also Feed Rations; Manhattan; Panicum; ... 4.0019

IMPROVEMENT OF THE BOVINE HERD IN ORDER TO OBTAIN WORK OXEN ... Farm Animals - other; Growth Rate; Humid 3 Months; Supplements, Feed Additives; ... 8.0032

IMPROVEMENT OF THE PRODUCTION OF BEEF - EXTERIORIZATION OF THE GENETIC POTENTIALITIES OF SENEGAL FULANI (GORA) ZEBU CATTLE ... Breeding & Genetics; Carcass Evaluation; ... 11.0075

IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING ... By-products - Industrial; Management; Peanut Shells; Straw; ... 11.0084

BALANCE FAVOURABLE TO THE EFFICACY OF RATIONS FOR CATTLE INTENDED FOR BEEF OR FOR MILK PRODUCTION ... In Vivo—see Also Feed Rations; Nitritae; Nutritive Values - plant; Peanut Shells; Straw; ... 11.0086

Poultry Rations

LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR ... Chicken; Domestic; Egg Production; Eggs; Management; Medicago; Processing Feeds; ... 3.0035

LOCAL FEED INGREDIENTS IN Poultry Rations ... Chicken, Domestic; Concentrates; Corn; Growth Rate; Management; ... 3.0034

FERMACTO 500 SUPPLEMENTATION TO LAYER DIETS ... Commercial Rations or Feeds; Fermacto; Fishmeal; In Vivo—see Also Feed Rations; Management; Supplements, Feed Additives; ... 3.0035

THE USE OF WHEAT BRAN IN POULTRY DIETS ... Bran; Concentrates; Corn; In Vivo—see Also Feed Rations; Metabolic Efficiency; Wheat; ... 3.0036

PROTEIN REQUIREMENT OF CHICKENS IN TROPICAL ENVIRONMENT - PROTEIN LEVEL FOR CHICKS ... Chicken, Domestic; Feed Proteins & Amino Acids; Management; ... 3.0037

THE CALCIUM AND PHOSPHORUS REQUIREMENTS OF THE LAYING HEN ... Calcium; Chicken; Domestic; Egg Production; Inorganic Elements in Foods; Management; Phosphorus; ... 9.0012

NUTRITIVE VALUE OF OPAQUE-2 MAIZE FOR THE CHICK AND RAT IN THE TROPICS ... Chicken, Domestic; In Vivo Feed Studies; Muridae; Supplements, Feed Additives; ... 9.0023

Swine Rations

NUTRITIONAL STUDIES WITH PIGS USING DIETS CONTAINING MAINLY LOCALLY PRODUCED FEED STUFFS ... Dry Monosodium to 5 Months; Management; Vertebrate Nutrition; ... 3.0015

THE COMPARATIVE PERFORMANCE OF PIGS FED DIGITS CONTAINING DIFFERENT LEVELS OF WHEAT BRAN ... Bran; Carcass Evaluation; Fishmeal; Management; Wheat; ... 3.0031

By-products - Plant(vegetative)

Fishmeal

THE EFFECT OF LEVEL OF WHEAT BRAN ON NUTRIENT METABOLISM OF THE CHICK ... Bran; Management; Vertebrate Nutrition; Wheat; ... 3.0030

THE COMPARATIVE PERFORMANCE OF PIGS FED DIGITS CONTAINING DIFFERENT LEVELS OF WHEAT BRAN ... Bran; Carcass Evaluation; Management; Swine Rations; Wheat; ... 3.0031

FERMACTO 500 SUPPLEMENTATION TO LAYER DIETS ... Commercial Rations or Feeds; Fermacto; In Vivo—see Also Feed Rations; Management; Poultry Rations; Supplements, Feed Additives; ... 3.0035

By-products - Industrial

EVALUATION OF CROP RESIDUES, INDUSTRIAL WASTE PRODUCTS AND SILAGE ON THE PERFORMANCE OF BEEF CATTLE ... Bran; In Vivo Feed Studies; Management; Rice; ... 9.0031

THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS ... Bran; Consumption; Food Science and Technology; In Vivo—see Also Feed Rations; Management; Molasses; Service Industries; ... 9.0033

IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING ... Cattle Rations; Management; Peanut Shells; Straw; ... 11.0084

By-products - Plant(Vegetative)

THE USE OF BYPRODUCTS OF CASSAVA PROCESSING FOR LIVESTOCK FEEDING ... Manhattan; ... 3.0057

THE USE OF DISCARDED COCOA BEAN MEAL IN LIVESTOCK FEEDING ... In Vivo—see Also Feed Rations; Nutritive Values - plant; Proteins; ... 9.0030

CROP UTILIZATION PROJECT ... Chocolate & Cocoa; Compost; Food Processing Wastes; Nut & Nutmeats; Preserves & Jelly; ... 9.8154

UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS ... Concentrates; Grains; In Vivo—see Also Feed Rations; Management; Nutritive Values - plant; Processing Feeds; ... 11.0033

Bagassae

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON
SUBJECT INDEX

WHEAT BRAN AND BAGASSE) ... Bran; Digitaria; In Vivo--see Also Feed Rations; Wheat; ... 3.0039

Bran

THE EFFECT OF LEVEL OF WHEAT BRAN ON NUTRIENT METABOLISM BY PIGS ... Fishmeal; Management; Vertebrate Nutrition; Wheat; ... 3.0030

THE COMPARATIVE PERFORMANCE OF PIGS FED DIETS CONTAINING DIFFERENT LEVELS OF WHEAT BRAN ... Car cass Evaluation; Fishmeal; Management; Swine Rations; Wheat; ... 3.0031

THE USE OF WHEAT BRAN IN POULTRY DIETS ... Concentrates; Corn; In Vivo--see Also Feed Rations; Metabolic Efficiency; Poultry Rations; Wheat; ... 3.0036

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) ... Digitaria; In Vivo--see Also Feed Rations; Wheat; ... 3.0039

EVALUATION OF CROP RESIDUES, INDUSTRIAL WASTE PRODUCTS AND SILAGE ON THE PERFORMANCE OF BEEF CATTLE ... In Vitro Feed Studies; Management; Rice; ... 9.0031

THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS ... Consumption; Food Science and Technology; In Vivo--see Also Feed Rations; Management; Molasses; Service Industries; ... 9.0033

Corn Cobs, Stalks or Husks

THE NUTRITIVE VALUE OF NIGERIAN FORAGÈS ... Cel lulose; In Vitro Feed Studies; Lignin; Nutritive Values -plant; Stylosanthes; ... 9.0020

Cottonseed Oilmeal, Etc.

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Legumes; Rice; Stylosanthes; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Car cass Evaluation; Concentrates; Green-chop; Management; Panicum; Stylosanthes; ... 4.0016

CROSSBREEDING JERSEY N'DAMA. FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Car cass Evaluation; In Vivo--see Also Feed Rations; Mani hot; Panicum; ... 4.0019

Molasses

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Car cass Evaluation; Concentrates; Cottonseed Oilmeal, Etc.; Green-chop; Management; Panicum; Stylosanthes; ... 4.0016

EVALUATION OF CROP RESIDUES, INDUSTRIAL WASTE PRODUCTS AND SILAGE ON THE PERFORMANCE OF BEEF CATTLE ... Bran; In Vitro Feed Studies; Management; Rice; ... 9.0031

THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS ... Bran; Consumption; Food Science and Technology; In Vivo--see Also Feed Rations; Management; Service Industries; ... 9.0033

Pea nut Shells

STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES ... Costs; Farm Enterprises -general; Management; Production and Processing; Sorghum Vulgare (Grain); Straw; ... 11.0036

IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING ... By-products- Industrial; Cattle Rations; Management; Straw; ... 11.0084

BALANCE FAVOURABLE TO THE EFFICACY OF RATIONS FOR CATTLE INTENDED FOR BEEF OR FOR MILK PRODUCTION ... Cattle Rations; In Vivo--see Also Feed Rations; Nitrates; Nutritive Values -plant; Straw; ... 11.0086

Straw

HYDROCYANIC TOXICITY OF 63-18 (A DWARF VARIETY OF SORGHUM) ... Cereal Crops; Sorghum Vulgare (Grain); ... 11.0032

STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES ... Costs; Farm Enterprises -general;

Feed Science and Technology

Management; Peanut Shells; Production and Processing; Sorghum Vulgare (Grain); ... 11.0036

IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING ... By-products- Industrial; Cattle Rations; Management; Peanut Shells; ... 11.0084

BALANCE FAVOURABLE TO THE EFFICACY OF RATIONS FOR CATTLE INTENDED FOR BEEF OR FOR MILK PRODUCTION ... Cattle Rations; In Vivo--see Also Feed Rations; Nitrates; Nutritive Values -plant; Peanut Shells; ... 11.0086

CARRYING CAPACITY - pasture

IMPROVEMENT OF FORAGE PRODUCTION IN SAVANNAH ZONE BY MODIFICATION OF THE TRADITIONAL SYSTEM ... Broadcast Application; Costs; Dry Monsoon 4 M. or Less; Moist Monsoon; Stylosanthes; ... 4.0027

STUDY OF THE ESTABLISHMENT OF PASTURES OF PANICUM MAXIMUM ... Breeding & Genetics; Ecotypes; Irrigation -general; Panicum; ... 4.0029

STUDY OF THE ESTABLISHMENT OF ARTIFICIAL PASTURES OF STYLOSANTHES GRACILIS ... Continuous Humid; Herbicides -nonspecific; Irrigation -general; Management; Stylosanthes; ... 4.0030

Cereal Grains or Grasses

Corn

LOCAL FEED INGREDIENTS IN POULTRY RATIONS ... Chicken, Domestic; Concentrates; Growth Rate; Management; Poultry Rations; ... 3.0034

THE USE OF WHEAT BRAN IN POULTRY DIETS ... Bran; Concentrates; In Vivo--see Also Feed Rations; Metabolic Efficiency; Poultry Rations; Wheat; ... 3.0036

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, Etc.; Management; Panicum; ... 4.0014

NUTRITIVE VALUE OF OPAQUE-2 MAIZE FOR THE CHICK AND RABBIT IN THE TROPICS ... Chicken, Domestic; In Vivo Feed Studies; Muridae; Poultry Rations; Supplements; Feed Additives; ... 9.0023

Grain Sorghum, Milo

PRODUCTION OF SORGHUM AS A GRAIN AND FODDER CROP FOR LIVESTOCK ... Dry Monsoon 4 to 5 Months; Forage, Pasture or Range; Sorghum Vulgare (Forsage); Sorghum Vulgare (Grain); ... 3.0018

Rice

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, Etc.; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Legumes; Stylosanthes; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Car cass Evaluation; Concentrates; Cottonseed Oilmeal, Etc.; Green-chop; Management; Panicum; Stylosanthes; ... 4.0016

CROSSBREEDING JERSEY N'DAMA. FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Car cass Evaluation; In Vivo--see Also Feed Rations; Manihot; Panicum; ... 4.0019

Fishmeal

PRODUCTION OF SORGHUM AS A GRAIN AND FODDER CROP FOR LIVESTOCK ... Dry Monsoon 4 to 5 Months; Forage, Pasture or Range; Sorghum Vulgare (Forsage); Sorghum Vulgare (Grain); ... 3.0018

Rice

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, Etc.; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Legumes; Stylosanthes; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Car cass Evaluation; Concentrates; Cottonseed Oilmeal, Etc.; Green-chop; Management; Panicum; Stylosanthes; ... 4.0016

CROSSBREEDING JERSEY N'DAMA. FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Car cass Evaluation; Concentrates; Cottonseed Oilmeal, Etc.; In Vivo--see Also Feed Rations; Manihot; Panicum; ... 4.0019

Evaluation of Crop Residues, Industrial Waste Products and Silage on the Performance of Beef Cattle ... Bran; In Vitro Feed Studies; Management; ... 9.0031

The Use of Industrial By-Products in Sheep and Goat Rations ... Bran; Consumption; Food Science and Technology; In Vivo--see Also Feed Rations; Management; Service Industries; ... 9.0033

Wheat

THE EFFECT OF LEVEL OF WHEAT BRAN ON NUTRIENT METABOLISM BY PIGS ... Bran; Fishmeal; Management; Vertebrate Nutrition; ... 3.0030

THE COMPARATIVE PERFORMANCE OF PIGS FED DIETS CONTAINING DIFFERENT LEVELS OF WHEAT BRAN ... Bran; Car cass Evaluation; Fishmeal; Management; Swine Rations; ... 3.0031

303
Feed Science and Technology

THE USE OF WHEAT BRAN IN POULTRY DIETS ... Bran; Concentrates; Corn; In Vivo--see Also Feed Rations; Metabolic Efficiency; Poultry Rations; ... 3.0036

THE FEEDING OF WHEAT BRAN TO CATTLE (SOIL-LEAF OBSERVATIONS ON FEATTENING MATURE CATTLE ON WHEAT BRAND AND BAGASSE) ... Bran; Digitaria; In Vivo--see Also Feed Rations; ... 3.0039

Commercial Rations or Feeds

FERMACTO 500 SUPPLEMENTATION TO LAYER DIETS ... Fermacto; Fishmeal; In Vivo--see Also Feed Rations; Management; Poultry Rations; Supplements, Feed Additives; ... 3.0035

Concentrates

LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR ... Chicken; Domestic; Egg Production; Eggs; Management; Medicago; Processing Feeds; ... 3.0033

LOCAL FEED INGREDIENTS IN POULTRY RATIONS ... Chicken; Domestic; Corn; Growth Rate; Management; Poultry Rations; ... 3.0034

THE USE OF WHEAT BRAN IN POULTRY DIETS ... Bran; Corn; In Vivo--see Also Feed Rations; Poultry Rations; Wheat; ... 3.0036

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, etc.; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Legumes; Rice; Stylosanthas; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Carcass Evaluation; Cottonseed Oilmeal, etc.; Green-chop; Management; Panicum; Stylosanthas; ... 4.0016

UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS ... By-products - Plant(vegetative); Grains; In Vivo--see Also Feed Rations; Management; Nutritive Values - plant; Processing Feeds; ... 11.0033

Forage, Pasture or Range

RATE OF GAIN OF CROSSBREED CATTLE ON NATIVE PASTURE AND SUPPLEMENTED FEED ... Dry Monsoon 4 to 5 Months; Growth Rate; Management; ... 3.0014

PRODUCTION OF SORGHUM AS A GRAIN AND FODDER CROP FOR LIVESTOCK ... Dry Monsoon 4 to 5 Months; Grains; In Vivo--see Also Feed Rations; Management; ... 3.0018

NUTRITIVE VALUE OF DIGITARIA DECEMINS AND CYDONIA PECOTTOSTACHYUM IN ADMIXTURE WITH CENTROSCMA PUSCIFERS ... Centrosoma; Digitaria; Forage Legumes; In Vivo Feed Studies; ... 3.0023

PRODUCTIVITY OF GRASS/LEGUME PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES ... Centrosoma; Digitaria; Forage Grasses; In Vivo Feed Studies; Legume-grass Mixtures; ... 3.0025

DRY MATTER YIELD ASSESSMENT OF LOCAL AND EXOTIC GRASS SPECIES ... Forage Grasses; Grass - nonspecific; In Vivo Feed Studies; ... 3.0026

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) ... Bran; Digitaria; In Vivo--see Also Feed Rations; Wheat; ... 3.0039

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Legumes; Rice; Stylosanthas; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Carcass Evaluation; Concentrates; Cottonseed Oilmeal, etc.; Green-chop; Management; Panicum; Stylosanthas; ... 4.0016

EXPERIMENT ON THE FATTENING OF N'DAMA AND BAGUE BULL CALVES ON PERMANENT PASTURES OF STYLOSANTHES GRACILIS ... Continuous Humid; Legumes; Stylosanthas; ... 4.0017

Grains

UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS ... By-products - Plant(vegetative); Concentrates; In Vivo--see Also Feed Rations; Management; Nutritive Values - plant; Processing Feeds; ... 11.0033

THE FRUIT OF FAIDHERBIA ALBIDA IN THE NUTRITION OF CATTLE ... Humid 2 Months; In Vivo--see Also Feed Rations; Management; Nutritive Values - plant; ... 11.0034

DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS ... Forage, Pasture or Range; Hay; Management; ... 11.0038

Green-chop

EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, etc.; Management; Panicum; ... 4.0014

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Legumes; Rice; Stylosanthas; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Carcass Evaluation; Concentrates; Cottonseed Oilmeal, etc.; Management; Panicum; Stylosanthas; ... 4.0016

EXPERIMENT ON THE FATTENING OF N'DAMA AND BAGUE BULL CALVES ON PERMANENT PASTURES OF STYLOSANTHES GRACILIS ... Continuous Humid; Legumes; Stylosanthas; ... 4.0017

Hay

DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS ... Forage, Pasture or Range; Grains; Management; ... 11.0038

Legumes

LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR ... Chicken; Domestic; Egg Production; Eggs; Management; Medicago; Processing Feeds; ... 3.0033

EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT ... Cattle Rations; Continuous Humid; Forage, Pasture or Range; Rice; Stylosanthas; ... 4.0015

UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE ... Carcass Evaluation; Concentrates; Cottonseed Oilmeal, etc.; Green-chop; Management; Panicum; Stylosanthas; ... 4.0016

EXPERIMENT ON THE FATTENING OF N'DAMA AND BAGUE BULL CALVES ON PERMANENT PASTURES OF STYLOSANTHES GRACILIS ... Continuous Humid; Green-chop; Stylosanthas; ... 4.0017

CROSSBREEDING JERSEY N'DAMA, FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Carcass Evaluation; Cottonseed Oilmeal, etc.; In Vivo--see Also Feed Rations; Manihot; Panicum; ... 4.0019

FODDER CROP IMPROVEMENT ... Digitaria; Management; Paspalum; ... 6.0045

EXPLOITATION OF GROUNDNUTS AS A FORAGE CROP ... Humid 2 Months; Management; ... 11.0035

Mineral Blocks, Salt Blocks

STUDIES ON IRON SUPPLEMENT FOR PIGLETS ... Growth Rate; Inorganic Elements in Feeds; Iron; Management; Supplements, Feed Additives; Vitamins; ... 3.0032

STUDY OF MINERAL DEFICIENCY COMPLEXES ... Calcium; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilization - animal; ... 11.0082

Seasonal Variations of the Pastures and Nutrition of Cattle ... In Vivo--see Also Feed Rations; Lignin; Nutritive Values - plant; Vertebrate Nutrition; ... 11.0085

Processing Feeds

LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR ... Chicken; Domestic; Egg Production; Eggs; Management; Medicago; ... 3.0033

304
Quality Evaluation of Feed

In Vitro Feed Studies

The nutritive value of digitaria decumbens and cydonion plectostachyus in admixture with centrosema pubescens... Centrosema; Digitaria; Forage Grasses... 3.0023

Productivity of grass/legume pastures against pure stands of grasses and legumes... Centrosema; Digitaria; Forage Grasses; Forage, pasture or Range; Legume-grass Mixtures... 3.0025

Dry matter yield assessment of local and exotic grass species... Forage Grasses; Forage, pasture or Range; Grass - nonspecific... 3.0026

Variation in the food value of forage plants according to the rhythm of production... Cellulose; Irrigation - general; Panicum; Stylosanthes... 4.0028

The nutritive value of Nigerian forages... Cel-lulose; Lignin; Nutritive Values - plant; Stylosanthes... 9.0020

Nutritive Value of Opaque-2 Maize for the Chick and Rat in the Tropics... Chicken, Domestic; Mirlia; Poultry Rations; Supplements, Feed Additives... 9.0023

Changes in the mineral content of soil and feed as related to the block composition of farm animals... Blood and Lymph System; Metabolism; Mineralogy; Soil Environment... 9.0028

Evaluation of crop residues, industrial waste products and silage on the performance of beef cattle... Bran; Management; Rice... 9.0031

The use of industrial by-products in sheep and goat rations... Bran; Consumption; Food Science and Technology; Management; Molasses; Service Industries... 9.0033

The effect of grass - legume mixtures on herbage production and chemical composition as compared with application of nitrogen fertilizers... Cydonion; Management; Proteins... 9.0028

Study of mineral deficiency complexes... Calcium; Forage, pasture or Range; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilization - animal... 11.0082

In Vitro - see Also Feed Rations

Fermacto 500 supplementation to layer diets... Commercial Rations or Feeds; Fermacto; Fishmeal; Management; Poultry Rations; Supplements, Feed Additives... 3.0035

The use of wheat bran in poultry diets... Bran; Concentrates; Corn; Metabolic Efficiency; Poultry Rations; Wheat... 3.0036

The feeding of wheat bran to cattle (some observations on fattening mature cattle on wheat bran and bagasse)... Bran; Digitaria; Wheat... 3.0039

Thermal decomposition of wood charcoal... Charcoal; Forest Product Development; Industrial Operation; Scrub Timber Utilization; Thermal Decomposition; Wood Chemistry... 3.0108

Crossbreeding Jersey N'Dama, fattening of beef quality Jersey N'Dama crossbred cattle... Carcass Evaluation; Cottonseed Oilmeal, etc.; Manihot; Panicum... 4.0019

The nutritive value of Nigerian forages... Cel-lulose; In Vitro Feed Studies; Lignin; Nutritive Values - plant; Stylosanthes... 9.0020

Microorganisms in the rumen and their role in nutrition... Cellulase; Cellulose; Goat Husbandry; Rumen Bacteria; Taxonomy, Plant; Vertebrate Nutrition... 9.0025

The use of discarded cocoa bean meal in live-stock feeding... By-products; Plant (Vegetative); Nutritive Values - plant; Proteins... 9.0030
SUBJECT INDEX

STUDY FORMS OF PHOSPHATE FERTILIZERS . . . Source of Fertilizer; . . . 11.0164
THE MINERAL REQUIREMENTS OF RICE . . . Management; Swamps - Marshes; . . . 12.0010
TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON . . . Management; Sulfur; . . . 14.0069
TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON . . . Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvisols; Sulfur; . . . 14.0081

Growth Stage of Plant

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT . . . Continuous Humid; Eutric Planosols; Management; . . . 1.0017
STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT . . . Eutric Cambisols; Ferric Luvisols; Management; Moist Monsoon; . . . 1.0019
FERTILIZER REQUIREMENTS OF IRRIGATED RICE ON THE BLACK SOILS, ACCRA PLAINS . . . Formulation, Fertilizer, Iron; Management; Sulfur; . . . 3.0003
SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS . . . Blaxoa; Saccharum; Simimaza; Space Competition; Sulfates; . . . 3.0006
EFFECTS OF OPTIMUM TIME OF APPLYING FERTILIZERS ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCU, CANNABIS AND URENA LOBATA . . . Continuous Humid 7 Months; Plus; Management; Urena; . . . 3.0138
TIME OF NITROGEN TOP DRESSING OF UPLAND RICE . . . Dry Monsoon 5 Months; Plus; Management; Top Dress Application; . . . 3.0187
MINERAL FERTILIZATION ON COFFEE . . . Continuous Humid; Eutric Acrisols; Management; Nursery Observational Plots; Soil Types; . . . 4.0001
MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Ferric Acrisols; Magnesium; Nursery Observational Plots; . . . 4.0002
MINERAL FERTILIZATION OF COFFEE . . . Ferralic Cambisols; Geology; Management; Soil Types; . . . 4.0006
MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Ferric Acrisols; Magnesium; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus; . . . 4.0007
MINERAL FERTILIZATION ON COFFEE . . . Continuous Humid; Eutric Fluviosols; Geology; Management; Nursery Observational Plots; Soil Types; . . . 4.0089
MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Ferric Acrisols; Magnesium; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month,Plus; . . . 4.0112
MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Management; Soil Analysis; Two Humid Seasons-7 Month,Plus; . . . 4.0113
MINERAL FERTILIZATION ON COFFEE . . . Ferralic Acrisols; Geology; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons; . . . 4.0145
MINERAL FERTILIZATION OF COCOA . . . Calcium - Other Than Lime; Management; Soil Analysis; Two Humid Seasons; . . . 4.0146
INFLUENCE OF MINERAL FERTILIZATION ON THE GROWTH OF BANANA PLANT AND THE METABOLISM OF SUGARS . . . Deficiencies; Musa; Phytopathology; Two Humid Seasons; . . . 4.0152
ROLE OF NITROGENOUS FEEDING FOR THE COTTON PLANT . . . Management; . . . 4.0269
FERTILIZATION OF THE COCONUT PALM - FERTILIZING SOILS ON TERTIARY SANDS . . . Chlorine; Deficiencies; Management; . . . 4.0313
STUDY THE ROOT SYSTEM OF THE COCONUT PALM . . . Cocos; Management; . . . 4.0324
MINERAL FERTILIZATION ON COFFEE . . . Ferric Acrisols; Geology; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month,Plus; . . . 4.0331
MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Management; Soil Analysis -other; . . . 4.0335
FERTILIZATION OF HONEY OF AFRICAN BEES AND ITS EFFECT ON GROWTH . . . Calcium; Magnesium; Management; Nitrogen; Phosphorus; Potassium; . . . 5.0004
NITROGENOUS MINERAL NUTRITION OF THE COTTON PLANT . . . Management; Moisture Deficiency; . . . 6.0075
NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION . . . Broadcast Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; . . . 9.0011
EFFECTS OF TIME OF APPLICATION OF NITROGEN ON YIELD & OTHER GROWTH CHARACTERISTICS OF UPLAND RICE & RESPONSE OF UPLAND RICE TO PHOSPHORUS . . . Elevational Levels, Altitude; Management; Timing of Application -other; . . . 9.0030
LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOW . . . Crop Contribution to Soil Fert; Fallowing; Maquis; Orthic Ferralsols; Purca; Soil Analysis; . . . 9.0366
STUDY OF THE EFFECT OF NITROGENOUS FERTILIZATION ON THE COTTON PLANT . . . Management; . . . 14.0046
NITROGEN FERTILIZATION FOR AQUATIC RICE . . . Eutric Gleysols; Humid 3 Months; Management; . . . 14.0008
NITROGEN FERTILIZATION FOR AQUATIC RICE . . . Eutric Gleysols; Humid 4 Months; Management; . . . 14.0061

Placement

EFFECTS OF FERTILIZER PLACEMENT ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCU, CANNABIS AND URENA LOBATA . . . Continuous Humid 7 Months,Plus; Management, Subsoil Application; . . . 3.0137
FERTILIZER TRIALS ON FLUE, FIRE AND AIR CURED TOBACCO . . . Continuous Humid 7 Months,Plus; Costs; Curing Technique; Management; Nicotiana; . . . 3.0187
THE DISTRIBUTION AND ACTIVITY OF ROOT SYSTEMS OF COCOA . . . Management; Phosphorus; Sand - Loam Soil; Seasonal Application; Soil Depth; . . . 3.0217
FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA . . . Irrigation -general; Management; Nitrogen Fixation; Phosphorus; Soil pH; Timing of Application -other; . . . 3.0218
STUDIES ON THE NUTRITION OF GROUNDNUTS (ARACHIS HYPOGAEA L.) . . . Deficiencies; Management; Nitrogen; . . . 3.0225
FERTILIZER STUDIES ON IRRIGATED AND UPLAND RICE . . . Costs; Management; Sand; Swamps - Marshes; Timing of Application -other; . . . 5.0017
NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION . . . Broadcast Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; . . . 9.0011
THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NIGERIA GRASS-LAND ASSOCIATIONS . . . Management; Nitrogen; . . . 9.0026
PHOSPHATE PLACEMENT TRIAL . . . Broadcast Application; Ferric Acrisols; Management; Rain; . . . 9.0251
EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM . . . Management; Phosphorus; Rubidium; Soil Types; . . . 9.0311
DETERMINATION OF THE AVAILABILITY OF POTASSIUM IN SOME SANDY SOILS IN SENEGAL . . . Fertilizer Losses; Formulation, Fertilizer; Acrisols; Movement, Availability; Sand; . . . 9.0366
COMPARISON OF METHODS OF APPLICATION OF FERTILIZERS ON RICE . . . Humid 2 Months; Management; Side Dressing; Subsoil Application; . . . 11.0123

Removal of Nutrients from Soil

STUDY OF THE INTERACTIONS BETWEEN THE SOIL AND FORAGE PLANTS IN A HUMID TROPICAL ENVIRONMENT . . . Management; Soil Testing; . . . 4.0052
TO AVOID THE DEGRADATION OF SOILS BY CONTINUOUS CULTIVATION OF PINEAPPLES . . . Bromeliaceae; Erosion Control; Management; Two Humid Seasons; . . . 4.0148
BALANCE OF MINERAL ELEMENTS UNDER CULTIVATION - MAINTENANCE FERTILIZATION . . . Continuous Humid; Fertilizer Losses; Lysimeters; Organic Fertility; Soil Analysis; . . . 4.0158
DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST . . . Calcium - Other Than Lime; Excessive Moisture; Gleyic Acrisols; Magnesium; Soil Fertility; . . . 4.0212
BALANCE OF MINERAL ELEMENTS UNDER CULTIVATION - MAINTENANCE FERTILIZATION . . . Ferralic Cambisols; Fertilizer Losses; Lysimeters; Organic Fertility; Soil Analysis; Two Humid Seasons-7 Month,Plus; . . . 4.0216

Fertilizer Technology
Fish & Wildlife Biology

Commercial Fishing
THE CHEMICAL COMPOSITION OF COMMERCIALY IMPORTANT GHANAIAN FISHES... Chemical Analysis of Food; Fish; Fish and Shellfish; Nutritive Value of Food; Nutritive Values -animal... 3.0077
FISHING GEAR TRIALS... Fish; Fish & Shellfish Biology; Fishing Methods and Equipment; Humid 1 Month; ... 9.0194
FISH POPULATION STUDIES... Fish; Humid 1 Month; Population Dynamics; ... 9.0195
FISH MIGRATION STUDIES... Migration; Osteichthyes -other; ... 9.0196
STUDIES ON THE FAUNA OF CONTINENTAL WATERS... Fish; Lakes & Reservoirs; Population Dynamics; Streams; ... 11.0072
DETERMINATION OF PRODUCTION OF FISH OF CONTINENTAL WATERS... Fish; Lakes & Reservoirs; Population Dynamics; Streams; ... 11.0073

Construction Land Use Effects
STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES... Fish & Shellfish Biology; Lakes & Reservoirs; ... 4.0330

Fish & Shellfish Biology
STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES... Construction Land Use Effects; Lakes & Reservoirs; ... 4.0330
FISHING GEAR TRIALS... Commercial Fishing; Fish; Fishing Methods and Equipment; Humid 1 Month; ... 9.0194
ECOLOGICAL PARASITOLOGY... Fish; Marine Animals; Population Dynamics; Taxonomy, Animal; ... 12.0002

Fish Food Supply
HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN... Behavioral Ecology; Plankton; Water Environment; ... 3.0236
GENERAL ECOLOGY OF ESTUARINE AND FRESH WATERS... Estuaries; Growth Rate; Population Dynamics; Streams; Water Quality; ... 12.0005

Mammals - Wildlife Studies
Control of Nuisance Species
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS... Barriers & Weirs; DDVP; Phosphorothioate Cpds.; Storage; Tsetseblionidae; ... 3.0211
ECOLOGY OF RODENTS OF THE SAVANNAH - ADAPTATION OF THESE RODENTS TO THE CULTIVATED ENVIRONMENT... Habitat Studies; Population Dynamics; Rodenticides; ... 4.0059
STUDY OF RICE PESTS... Barriers & Weirs; Cereal Crops; Insects; Management; Rodentia -other; ... 5.0014

Management
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT... Breeding & Genetics; Hormones; Pregnancy; Sexual Cycle; Vagina; ... 4.0060

Pathology -mammal
AFRICAN HORSE SICKNESS - EPIDEMIOLOGICAL WORK... Epidemiology of Disease; Horses; Serology; Veterinary Medicine; ... 11.0099
LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY... Epidemiology of Disease; Histology and Cytology; Leptospirosis; Veterinary Medicine; ... 11.004
SALMONELLOSIS - EPIDEMIOLOGICAL SURVEY ON HEALTHY CARRIERS... Birds; Feces; Rodentia; Salmonellosis; ... 11.0105
INFECTIONS AND INTOXICATIONS ('TOXI-INFECTIONS') CAUSED BY ANEROBIC BACTERIA - BOTULISM... Bacterial Toxins; Clostridia; Etiology; Toxoid Vaccine; Water Environment; ... 11.0109

Fish and Shellfish
See Food Science and Technology

Fish Farming
See Fish & Wildlife Biology

Aquaculture

Fish Food Supply
See Fish & Wildlife Biology
Fish & Shellfish Biology

Fish Product Development
THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING... Fermentation; Osteichthyes -other; Shelf Life & Storage of Food; ... 3.0074
TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS... Casein; Fillers, Extenders; Latex; Quality and Utilization; Rubber -natural; ... 4.0256

Fishing Methods and Equipment
See Fish & Wildlife Biology
Aquaculture

Fishmeal
See Feed Science and Technology
By-products- Animal

Flacourtiaceae
See Plants - Dicots

Flotation
See Chemistry -related Fields

Flow Characteristic -water
See Water Movement
Hydraulics

Fluorine
STUDY FORMS OF PHOSPHATE FERTILIZERS FOR THE COCONUT PALM... Calcium; Cocos; Fertilizer Toxicity; Formulation; Fertilizer, Management; Phosphates; ... 4.0321

Fluvisols
See Soil Unit Classification

Foam Fractionation
See Chemistry -related Fields

Foliage Diseases -nonspecific
See Plant Diseases

Foliar Application
See Application Methods

Fomes
See Fungi

Food Additives
See Food Science and Technology

310
SUBJECT INDEX

Food Distribution Research
See Ag Industries & Agribusiness

Food Engineering & Technology
See Food Science and Technology

Food Processing Wastes
See Utilization of Ag Wastes
See Waste Treatment/Disposal

Food Proteins
See Food Science and Technology

Food Quality
See Food Science and Technology

Food Science and Technology
THE USE OF INDUSTRIAL BY-PRODUCTS IN SHEEP AND GOAT RATIONS... Bran; Consumption; In Vivo—see Also Feed Rations; Management; Molasses; Service Industries; ... 9.0033
STUDY OF MARKET STRUCTURE AND ORGANIZATION WITH SPECIAL REFERENCE TO THE BUYING ARRANGEMENTS OF FOOD CONTRACTORS FOR INSTITUTIONAL USES... Consumption; Food Distribution Research; Institutional Management; Market Structure; Service Industries; ... 9.0034

Alcoholic Beverages
Beer
MALT PRODUCTION FROM LOCAL GRAINS... Cereal Crops; Enzyme Kinetics; Hordeum Vulgare; Malting Food; Sorghum Vulgare (Grain); ... 9.0057
Wine
PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES... Fermentation; Food Processing Wastes; Food Yeast; Fruits; Vegetable & Vegetable Products; ... 3.0076
CROP UTILIZATION PROJECT... By-products—Plant(vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly; ... 9.0154
SUGAR CONTENT OF PALM SAP... Carbohydrates; Fermentation; Food Quality; Palmae; Sugar—nonspecific; ... 9.0319
PERFUMATION OF PALM WINE... Fermentation; Food Additives; Palmae; Shelf Life & Storage of Food; Temperature Control; ... 9.0320
THE MARKET FOR PALM WINE IN NIGERIA... Consumer; Pref. & Consumption; Food Distribution Research; Marketing; Palmae—other; ... 9.0333

Baby Foods
DEVELOPMENT OF WEANING FOODS FROM VEGETABLE PROTEIN SOURCES... Food Proteins; Malnutrition; Nuts & Nutmeats; Therapeutic Nutrition; Treatment; ... 3.0075

Beverages -other
INDUSTRIAL TRANSFORMATION OF FRUITS... Essential Oils; Fats & Oils; Food Processing Wastes; Fruits; ... 6.0003

Cereal Products
THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL... Dehydration; Fermentation; Organic Acids; Organoleptic Studies of Food; Spoilage of Food; ... 3.0079
FOOD COMPOSITION TABLES... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products, Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products; ...3.0080
MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS... Drying; Manihot; Piperaceae; ... 3.0214
EXPERIMENTAL CULTIVATION OF COTTON-PLANTS WITHOUT GOSSYPOL... Breeding & Genetics; Gossypol; Insect Resistance; ... 6.0006

DEVELOPMENT OF COMPOSITE FLOUR FROM NIGERIAN FOODS... Baking Food; Cereal Product Development; Costs; New and Unconventional Foods; ... 9.0059
COMMERCIAL PRODUCTION OF SOY-OIL AND CAROB... Child Developmental Stages; Food Proteins; Nutritive Value of Food; ... 9.0060
BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Trypsinase; ... 9.0177
TO COMPARE THE NUTRIENT CONTENT OF PARBOILED RICE THROUGH VARIOUS STAGES OF PROCESSING... Cooked Quality of Food; Food Proteins; Nutritive Value of Food; Proteins; ... 9.0202
PRODUCTION OF WHITE FLOURY MAIZE VARIETIES FOR HUMAN CONSUMPTION... Breeding & Genetics; Cereal Product Development; Continuous Humid 7 Months; Plus; Metabolic Expression; Organoleptic Studies of Food; Recurrent Selection; ... 9.0232

PHYSICO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE... Child Developmental Stages. Lignase; Nitrate; Proteins; Starch; ... 10.0009
RESEARCH ON WHEAT AND BARLEY... Baking Food; Hordeum Vulgare; Irrigation; Management; Triticum; ... 11.0006
INTRODUCTION OF NEW VARIETIES OF RICE FOR THE FRESH-WATER RICE FIELDS OF CASAMANCE... Disease Resistance; Humid 2 Months; Phytopathology; Piricularia; Piriculariosis; Soil pH; ... 11.0124
INTRODUCTION OF NEW VARIETIES OF PLUVIAL RICE... Disease Resistance; Drought Resistance; Humid 2 Months; Phytopathology; Piricularia; Piriculariosis; ... 11.0125
VARIETAL IMPROVEMENT OF RICE BY HYBRIDATION FOR THE IMPROVED FRESH-WATER RICE FIELDS OF CASAMANCE... Breeding & Genetics; Disease Resistance; Phytopathology; Piriculariosis; Soil Resistance; ... 11.0126
VARIETAL IMPROVEMENT OF RICE BY HYBRIDIZATION FOR THE SALT-WATER RICE FIELDS OF LOWER CASAMANCE... Breeding & Genetics; Humid 2 Months; Saline Soils; Soil Resistance; ... 11.0127
VARIETAL IMPROVEMENT OF PLUVIAL RICE BY HYBRIDIZATION... Breeding & Genetics; Disease Resistance; Humid 2 Months; Piricularia; ... 11.0128
MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT... Breeding & Genetics; Cereal Product Development; Enrichment; Food Proteins; ... 11.0159
PRODUCTION OF COTTON HAVING FREE FROM GOSSYPOL... Breeding & Genetics; Food Proteins, Gossypol; Metabolic Expression; Proteins; ... 13.0039

Coffee
INDUSTRIAL PROCESSING OF COFFEE... Beverage Crops; Food Engineering & Technology; Plant Industries—other; Processing of Food; ... 4.0031

Dairy Products
FOOD COMPOSITION TABLES... Catalogs, Tables, Compilations; Chemical Analysis of Food; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products; ... 3.0080

Dietetic Foods
Low Fat Foods
CROP UTILIZATION PROJECT... By-products—Plant(vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly; ... 9.0154

Fats & Oils
STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST... Breeding & Genetics; Climate- Continental Sav.; ... Trop.; Fruits and Herbs; Quality and Utilization; ... 4.0156
INDUSTRIAL TRANSFORMATION OF FRUITS... Beverages—other; Essential Oils; Food Processing Wastes; Fruits; ... 6.0003
LIQUID AND SOLID COMPONENTS OF PALM OIL... Fats - Lipids & Oils; Food Quality; Oilsseed Crops; Temperature Control; ... 9.0321

Fish and Shellfish
THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING... Fermentation; Fish Product Development; Osteichthyes—other; Shelf Life & Storage of Food; ... 3.0074

311
Food Science and Technology

THE CHEMICAL COMPOSITION OF COMMERCIALLY IMPORTANT GHANAIAN FISHES ... Chemical Analysis of Food; Fishing; Nutritive Value of Food; Nutritive Values -animal;... 3.0077

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products;... 3.0080

Food Additives

FERMENTATION OF PALM WINE ... Fermentation; Palmaceae; Shelf Life & Storage of Food; Temperature Control; Wine;... 9.0320

Food Engineering & Technology

THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING ... Fermentation; Fish Product Development; Osteichthyes -other; Shelf Life & Storage of Food;... 3.0074

INDUSTRIAL PROCESSING OF COFFEE ... Beverage Crops; Coffee; Plant Industries -other; Processing of Food;... 4.0031

INDUSTRIAL PROCESSING OF COCOA ... Chocolate & Cocoa; Drying; Fermentation; Harvest and Storage; Sacks & Bags;... 4.0032

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Organoleptic Studies of Food; Yeasts -non-specific;... 9.0058

CROP UTILIZATION PROJECT ... By-products-Plant(vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly;... 9.0154

Food Proteins

DEVELOPMENT OF WEANING FOODS FROM VEGETABLE PROTEIN SOURCES ... Baby Foods; Malnutrition; Nuts & Nutmeats; Therapeutic Nutrition; Treatment;... 3.0075

USE OF RADIATION FOR THE IMPROVEMENT OF FUNGAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE-RICH ROOT CROPS OF NIGERIA ... Culturing Food; Management; Mutation; Starch;... 9.0024

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Organoleptic Studies of Food; Yeasts -non-specific;... 9.0058

COMMERCIAL PRODUCTION OF SOY-OGI AND GARI ... Child Developmental Stages; Nutritive Value of Food;... 9.0060

ORGANOLEPTIC EVALUATION OF PROTEIN ENRICHED FOOD ... Nutritive Value of Food;... 9.0061

TO COMPARE THE NUTRIENT CONTENT OF PARBOILED RICE THROUGH VARIOUS STAGES OF PROCESSING ... Cereal Products; Cooked Quality of Food; Nutritive Value of Food; Protein;... 9.0202

MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT ... Breeding & Genetics; Cereal Product Development; Cereal Products; Enrichment;... 11.0159

PRODUCTION OF COTTON HAVING SEEDS FREE FROM GOSSYPOL ... Breeding & Genetics; Cereal Products; Gossypol; Metabolic Expression; Protein;... 13.0039

Food Quality

SUGAR CONTENT OF PALM SAP ... Carbohydrates; Fermentation; Palmaceae; Sugar -non-specific; Wine;... 9.0319

LIQUID AND SOLID COMPONENTS OF PALM OIL ... Fats & Oils; Fats - Lipids & Oils; Fruits; Oilseed Crops; Temperature Control;... 9.0321

Chemical Analysis of Food

THE CHEMICAL COMPOSITION OF COMMERCIALLY IMPORTANT GHANAIAN FISHES ... Chemical Analysis of Food; Fishing; Fish; Fish and Shellfish; Nutritive Value of Food; Nutritive Values -animal;... 3.0077

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products;... 3.0080

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Fruits; Hydrogen Cyanide; Manihot; Organic Acids; Root Crops; Starch;... 9.0213

Cooked Quality of Food

THE DEVELOPMENT OF READY-TO-EAT CANNED GHANAIAN FOODS ... Heating; Soups;... 3.0078

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products;... 3.0080

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptoophan;... 9.0177

TO COMPARE THE NUTRIENT CONTENT OF PARBOILED RICE THROUGH VARIOUS STAGES OF PROCESSING ... Cereal Products; Cooked Quality of Food; Food Proteins; Protein;... 9.0202

PHYSCO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE ... Child Developmental Stages; Lipase; Nitrates; Proteins; Starch;... 10.0009

Infestation of Food

TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months; Plus; Radiation; Spoilage of Food; Vegetable & Vegetable Products;... 9.0336

Nutritive Value of Food

THE CHEMICAL COMPOSITION OF COMMERCIALLY IMPORTANT GHANAIAN FISHES ... Chemical Analysis of Food; Commercial Fishing; Fish; Fish and Shellfish; Nutritive Values -animal;... 3.0077

COMMERCIAL PRODUCTION OF SOY-OGI AND GARI ... Child Developmental Stages; Food Proteins;... 9.0060

BIOLOGICAL EVALUATION OF PROTEIN ENRICHED FOOD ... Food Proteins;... 9.0061

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Pulse Crops; Tryptoophane;... 9.0177

TO COMPARE THE NUTRIENT CONTENT OF PARBOILED RICE THROUGH VARIOUS STAGES OF PROCESSING ... Cereal Products; Cooked Quality of Food; Food Proteins; Protein;... 9.0202

EVALUATION OF THE NUTRITIVE QUALITY OF BEANS ... Feed Proteins & Amino Acids; Management; Phaseolus; Vegetable & Vegetable Products;... 9.0207

Organoleptic Studies of Food

THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Dehydration; Fermentation; Organic Acids; Spoilage of Food;... 3.0079

CROSSBREEDING JERSEY N'DAMA; FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Cassava Evaluation; Cottonseed Oilmeal, Etc.; In Vivo;see Also Feed Rations; Manihot; Panicum;... 4.0019

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Yeasts -non-specific;... 9.0058

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptoophane;... 9.0177

PRODUCTION OF WHITE FLOURY MAIZE VARIETIES FOR HUMAN CONSUMPTION ... Breeding & Genetics; Cereal Product Development; Cereal Products; Continuous Humid 7 Months; Plus; Metabolic Expression; Recurrent Selection;... 9.0232

PHYSCO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE ... Child Developmental Stages; Lipase; Nitrates; Proteins; Starch;... 10.0009

Raw Quality of Food

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products;... 3.0080

Shelf Life & Storage of Food

THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING ... Fermentation; Fish Product Development; Osteichthyes -other;... 3.0074

THE PRESERVATION OF PALM FRUIT AS DEFIBRED MESOCARP PASTE ... Fruits; Heating; Phoenix;... 3.0213

MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS ... Cereal Products; Drying; Manihot; Piperaceae;... 3.0214

FERMENTATION OF PALM WINE ... Fermentation; Food Additives; Palmaceae; Temperature Control; Wine;... 9.0320

ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS ... Chocolate & Cocoa; Fermentation; Molds; Spoilage of Food;... 9.0335
SUBJECT INDEX

TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months; Plus; Infestation of Food; Radiation; Spoilage of Food; Vegetable & Vegetable Products;9.0036

PHYSICO-CHEMICAL AND BIOCHEMICAL STUDIES ON THE STARCH AND PROTEIN OF RICE ... Child Developmental Stages; Licaae; Nitrates; Proteins; Starch; ... 10.0009

Food Yeast

PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES ... Fermentation; Food Processing Wastes; Fruits; Vegetable & Vegetable Products; Wine; ... 3.0076

Fruits

PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES ... Fermentation; Food Processing Wastes; Food Yeast; Vegetable & Vegetable Products; Wine; ... 3.0076

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Nuts & Nutmeats; Vegetable & Vegetable Products; ... 3.0080

THE PRESERVATION OF PALM FRUIT AS DEFIBRED MESOSCARP PASTE ... Heating; Phoenix; Shelf Life & Storage of Food; ... 3.0213

MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS ... Cereal Products; Dryging; Manihot; Piperaceae; ... 3.0214

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate- Continental Savannas; Fats & Oils; Fruits and Berries; Quality and Utilization; ... 4.0156

INDUSTRIAL TRANSFORMATION OF FRUITS ... Beverages - non-alcoholic; Essential Oils; Fats & Oils; Food Processing Wastes; ... 6.0003

USE OF RADIATION FOR THE IMPROVEMENT OF FUNKAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA ... Culturing Food; Food Proteins; Management; Mutation; Starch; ... 9.0024

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Food Processing Wastes; Microorganism Utilization; Organoleptic Studies of Food; Yeasts - nonspecific; ... 9.0058

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Chemical Analysis of Food; Hydrogen Cyanide; Manihot; Organic Acids; Root Crops; Starch; ... 9.0123

LIQUID AND SOLID COMPONENTS OF PALM OIL ... Fats & Oils; Fats - Lipids & Oils; Food Quality; Oilsseed Crops; Temperature Control; ... 9.0321

Meats and Meat Products

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits, Nuts & Nutmeats; Vegetable & Vegetable Products; ... 3.0080

CROSSBREEDING JERSEY N'DAMA. FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSBRED CATTLE ... Carcass Evaluation; Cottonseed Oilmeal, Etc.; In Vivo—see Also Feed Rations; Manihot; Pancreas; ... 4.0019

New and Unconventional Foods

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Food Processing Wastes; Microorganism Utilization; Organoleptic Studies of Food; Yeasts - non-specific; ... 9.0058

DEVELOPMENT OF COMPOSITE FLOUR FROM GHANAIAN FOODS ... Baking Food; Cereal Product Development; Cereal Products; Costs; ... 9.0059

Nuts & Nutmeats

DEVELOPMENT OF WEANING FOODS FROM VEGETABLE PROTEIN SOURCES ... Baby Foods; Food Proteins; Malnutrition; Therapeutic; Nutrition; Treatment;9.0075

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits, Vegetable & Vegetable Products; ... 3.0080

CROP UTILIZATION PROJECT ... By-products- Plant(Vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Preserves & Jelly; ... 9.0154

AFLATOXIN: ASSESSMENT OF ANALYTICAL TECHNIQUES FOR USE UNDER LOCAL CONDITIONS ... Humid 2 Months; Pathophysiology; Spoilage of Food; ... 9.0338

Food Science and Technology

CREATION OF "EATING" VARIETIES OF GROUNDNUTS ... Breeding & Genetics; ... 14.0007

ADAPTATION TO THE NORTH OF UPPER VOLTA OF VARIETIES OF GROUNDNUTS THAT CAN BE SUITABLE FOR SALE AS SHELLED - DELIMITED WEIGHT ... Breeding & Genetics; ... 14.0020

Preserves & Jelly

CROP UTILIZATION PROJECT ... By-products- Plant(Vegetative); Chocolate & Cocoa; Compost; Food Processing Wastes; Nuts & Nutmeats; ... 9.0154

Processing of Food

INDUSTRIAL PROCESSING OF COFFEE ... Beverage Crops; Coffee; Food Engineering & Technology; Plant Industries - other; ... 4.0031

Baking Food

DEVELOPMENT OF COMPOSITE FLOUR FROM GHANAIAN FOODS ... Cereal Product Development; Cereal Products; Costs; New and Unconventional Foods; ... 9.0059

RESEARCH ON WHEAT AND BARLEY ... Hordeum Vulgare; Irrigation; Management; Triticum; ... 11.0006

Culturing Food

USE OF RADIATION FOR THE IMPROVEMENT OF FUNKAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA ... Food Proteins; Management; Mutation; Starch; ... 9.0024

Dehydration

THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Fermentation; Organic Acids; Organoleptic Studies of Food; Spoilage of Food; ... 3.0079

Drying

MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS ... Cereal Products; Dryging; Manihot; Piperaceae; ... 3.0214

INDUSTRIAL PROCESSING OF COCOA ... Chocolate & Cocoa; Fermentation; Food Engineering & Technology; Harvest and Storage; Sacks & Bags; ... 4.0032

TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months; Plus; Infestation of Food; Radiation; Spoilage of Food; Vegetable & Vegetable Products; ... 9.0036

Enrichment

USE OF RADIATION FOR THE IMPROVEMENT OF FUNKAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA ... Culturing Food; Food Proteins; Management; Mutation; Starch; ... 9.0024

COMMERCIAL PRODUCTION OF SOY-OIL AND GARI ... Child Developmental Stages; Food Proteins; Nutritive Value of Food; ... 9.0060

MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT ... Breeding & Genetics; Cereal Product Development; Cereal Products; Food Proteins; ... 11.0019

Fermentation

THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING ... Fish Product Development; Osteichthyes - other; Shelf Life & Storage of Food; ... 3.0074

PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES ... Food Processing Wastes; Food Yeast; Fruits, Vegetable & Vegetable Products; Wine; ... 3.0076

THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Dehydration; Organic Acids; Organoleptic Studies of Food; Spoilage of Food; ... 3.0079

INDUSTRIAL PROCESSING OF COCOA ... Chocolate & Cocoa; Drying; Food Engineering & Technology; Harvest and Storage; Sacks & Bags; ... 4.0032

SUGAR CONTENT OF PALM SAP ... Carbohydrates; Food Quality; Palmase; Sugar - nonspecific; Wine; ... 9.0319

FERMENTATION OF PALM WINE ... Food Additives; Palmase; Shelf Life & Storage of Food; Temperature Control; Wine; ... 9.0320

313
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>Food Science and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS ... Chocolate & Cocoa; Molds; Spoilage of Food; ...</td>
<td>9.0335</td>
</tr>
<tr>
<td>Freezing</td>
<td>VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING ... Crop Rotation, Cropping System; Lycopersicum; Phaseolus; Vegetable & Vegetable Products; ... 2.0006</td>
</tr>
<tr>
<td>Heating</td>
<td>VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING ... Crop Rotation, Cropping System; Freezing; Lycopersicum; Phaseolus; Vegetable & Vegetable Products; ... 2.0006</td>
</tr>
<tr>
<td>THE DEVELOPMENT OF READY-TO-EAT CANNED GHANAIAN FOODS ... Cooked Quality of Food; Soups; ... 3.0078</td>
<td></td>
</tr>
<tr>
<td>THE PRESERVATION OF PALM FRUIT AS DEPIRED MESOCARP PASTE ... Fruits; Phoenix; Shelf Life & Storage of Food; ... 3.0213</td>
<td></td>
</tr>
<tr>
<td>Malting Food</td>
<td>MALT PRODUCTION FROM LOCAL GRAINS ... Beer; Cereal Crops; Enzyme Kinetics; Hordeum Vulgare; Sorghum Vulgare (Grain); ... 9.0057</td>
</tr>
<tr>
<td>Radiation</td>
<td>TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months,Plus; Infestation of Food; Spoilage of Food; Vegetable & Vegetable Products; ... 9.0336</td>
</tr>
<tr>
<td>Smoking</td>
<td>THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING ... Fermentation; Fish Product Development; Osteichthyes -other; Shelf Life & Storage of Food; ... 3.0074</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Fermentation of Palm Wine ... Fermentation; Food Additives; Palmæ; Shelf Life & Storage of Food; Wine; ... 9.0320</td>
</tr>
<tr>
<td>LIQUID AND SOLID COMPONENTS OF PALM OIL ... Fats & Oils; Fats - Lipids & Oils; Food Quality; Fruits; Oilsed Crop; ... 9.0321</td>
<td></td>
</tr>
<tr>
<td>TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months,Plus; Infestation of Food; Spoilage of Food; Vegetable & Vegetable Products; ... 9.0336</td>
<td></td>
</tr>
<tr>
<td>Seasonings & Flavorings</td>
<td>Chocolate & Cocoa INDUSTRIAL PROCESSING OF COCOA ... Drying; Fermentation; Food Engineering & Technology; Harvest and Storage; Sacks & Bags; ... 4.0032</td>
</tr>
<tr>
<td>CROP UTILIZATION PROJECT ... By-products; Plant (Vegetative); Compost; Food Processing Wastes; Nuts & Nutmeats; Preserves & Jelly; ... 9.0154</td>
<td></td>
</tr>
<tr>
<td>ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS ... Fermentation; Molds; Spoilage of Food; ... 9.0335</td>
<td></td>
</tr>
<tr>
<td>Condiments</td>
<td>MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS ... Cereal Products; Drying; Manihot; Piperaceae; ... 3.0214</td>
</tr>
<tr>
<td>Soups</td>
<td>THE DEVELOPMENT OF READY-TO-EAT CANNED GHANAIAN FOODS ... Cooked Quality of Food; Heating; ... 3.0078</td>
</tr>
<tr>
<td>Spoilage of Food</td>
<td>THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Dehydration; Fermentation; Organic Acids; Organoleptic Studies of Food; ... 3.0079</td>
</tr>
<tr>
<td>ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS ... Chocolate & Cocoa; Fermentation; Molds; ... 9.0335</td>
<td></td>
</tr>
<tr>
<td>TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months,Plus; Infestation of Food; Spoilage of Food; Vegetable & Vegetable Products; ... 9.0336</td>
<td></td>
</tr>
<tr>
<td>Vegetable & Vegetable Products</td>
<td>VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING ... Crop Rotation, Cropping System; Freezing; Lycopersicum; Phaseolus; Vegetable & Vegetable Products; ... 2.0006</td>
</tr>
<tr>
<td>PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES ... Fermentation; Food Processing Wastes; Food Yeast; Fruits; Wine; ... 3.0076</td>
<td></td>
</tr>
<tr>
<td>FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; ... 3.0080</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF THE NUTRITIVE QUALITY OF BEANS ... Feed Proteins & Amino Acids; Management; Nutritive Value of Food; Phaseolus; ... 9.0207</td>
<td></td>
</tr>
<tr>
<td>TO REDUCE STORAGE LOSSES IN FRESH AND DRIED YAMS ... Continuous Humid 7 Months,Plus; Infestation of Food; Radiation; Spoilage of Food; ... 9.0336</td>
<td></td>
</tr>
</tbody>
</table>

Food Yeast
See Food Science and Technology

Forage Disease
See Animal Pathology

Forage Grasses
See Agronomy

Forage Grasses, Pasteure, Range
See Weeds

Forage, Pasture or Range
See Feed Science and Technology

Forbs (Broadleaf Herbs)
See Weeds

Forage Legumes
See Agronomy

Forest Grazing
See Agronomy

Range Management

Forest Industry
See Ag Industries & Agribusiness

Forest Product Development
See Utilization of Ag Wastes

Forestry
STUDY OF THE POLLEN OF THE REGION OF CONTACT BETWEEN FOREST AND SAVANNAH ... Balance of Nature; Distribution; Plant; Ecosystems; Paleoecology; Pollen; ... 4.0047
<table>
<thead>
<tr>
<th>Forestry</th>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCIBILITY OF NATURAL FORESTS OF NIGERIA</td>
<td>...Forests; Productivity; Silviculture; Swamps - Marshes; Wild Type Genotype; ...</td>
</tr>
<tr>
<td>SURVEY OF WOOD DENSITY VARIATION OF SOME NIGERIAN TREE CROPS</td>
<td>...Gmelina; Moisture Content; plants; Tectona; Tree Breeding; Wood Structure & Properties; ...</td>
</tr>
<tr>
<td>NATURAL REGENERATION IN SAVANNA WOODLAND</td>
<td>...Ecosystems; Fire Prevention; Humid 4 Months; Silviculture; ...</td>
</tr>
<tr>
<td>INCREMENT RATES IN NATURAL SAVANNA WOODLAND</td>
<td>...Humid 4 Months; Leguminosa -other; Silviculture; ...</td>
</tr>
<tr>
<td>GROWTH AND YIELD OF TEAK (TECTONA GRANDIS)</td>
<td>...Humid 4 Months; Silviculture; Site Index and Site Quality; Soil Environment; Tectona; ...</td>
</tr>
<tr>
<td>GROWTH AND YIELD OF GMELINA ARBOREA</td>
<td>...Gmelina; Silviculture; Site Index and Site Quality; Soil Environment; ...</td>
</tr>
<tr>
<td>STUDIES OF BEHAVIOUR AND GROWTH OF SELECTED PLANTATION SPECIES</td>
<td>...Environments; Plant; Silviculture; Variation and Selection; ...</td>
</tr>
<tr>
<td>STUDY OF THE GROWTH OF TEAK</td>
<td>...Humid 2 Months; Silviculture; Tectona; ...</td>
</tr>
<tr>
<td>TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS</td>
<td>...Eucalyptus; Gmelina; Luluvial; Silviculture; ...</td>
</tr>
<tr>
<td>EXPERIMENT ON SOURCES OF TEAK</td>
<td>...Eucalyptus; Eutric Fluvisols; Gmelina; Luluvial; Silviculture; ...</td>
</tr>
<tr>
<td>PATHOLOGY FOREST</td>
<td>CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES</td>
</tr>
<tr>
<td>FUNGAL DISEASE OF SEEDS AND SEEDLINGS</td>
<td>...Seedborne; Sorghum; Storage; Surveys; Viability; ...</td>
</tr>
<tr>
<td>STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES</td>
<td>...Drying; Fungal Resistance; Machaer; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties; ...</td>
</tr>
<tr>
<td>BUTT AND ROOT ROT OF TEAK</td>
<td>...Butt Rot; Fomes; Root Rot; Tectona; ...</td>
</tr>
<tr>
<td>PLANTATION SILVICULTURE IN THE SAVANNA REGION OF NIGERIA</td>
<td>...Nursery Observational Plots; Silviculture; Variation and Selection; ...</td>
</tr>
<tr>
<td>POLICY & BUSINESS METHODS</td>
<td>PROMOTION OF ABUNDANT COMMERCIAL SPECIES OF WHICH LITTLE USE IS MADE</td>
</tr>
<tr>
<td>SCALE OF PRICES - COMPARISON WITH DOUBLE ENTRY FOR TEAK - TABLE OF TEAK PRODUCTION IN THE IVORY COAST</td>
<td>...Fiscal Studies; Forest Industry; Production and Processing; Tectona; ...</td>
</tr>
<tr>
<td>PROCESSING FOREST PRODUCTS</td>
<td>PROTECTION OF WOOD AGAINST FIRE</td>
</tr>
<tr>
<td>FABRICATION AND TESTING OF TIMBER STRUCTURES AND COMPONENTS</td>
<td>...Codes and Standards; Construction Materials; Construction; Farm; Laminates; Mechanical Properties; Wood; ...</td>
</tr>
<tr>
<td>EDIBLE AND INDUSTRIAL GUMS</td>
<td>...Cosmetics; Floation; Foam Fractionation; Forest Product Development; ...</td>
</tr>
<tr>
<td>SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - SILVICULTURE OF THE LOCAL SPECIES</td>
<td>...Lavica Arenosols; Planting Methods; ...</td>
</tr>
<tr>
<td>WOOD PRESERVATION & SEASONING</td>
<td>DIFFUSION-INJECTION TREATMENT OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS</td>
</tr>
<tr>
<td>EFFICACY OF PRESERVATIVES UNDER GHANAIAN CONDITIONS</td>
<td>...Chemical Materials; Wood; Wood Preservatives; ...</td>
</tr>
<tr>
<td>FIELD TEST OF TREATED ROUND POSTS FOR FENCING</td>
<td>...Eucalyptus; Fencing; Tectona; ...</td>
</tr>
<tr>
<td>PRESERVATION OF SMALL SIZED TIMBER AGAINST FUNGAL AND TERMITE ATTACK</td>
<td>...Fences; Osmolsalts; Pesticides -other; ...</td>
</tr>
<tr>
<td>STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES</td>
<td>...Drying; Fungal Resistance; Machaer; Plant Morphology; Wood Structure & Properties; ...</td>
</tr>
<tr>
<td>STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS</td>
<td>...Construction Materials; Electric Power Transmission; ...</td>
</tr>
<tr>
<td>SOLAR AND AIR DRYING OF TIMBER</td>
<td>...Chlorophora; Costs; Energy Conversion; Instrumentation; Equipment; Solar Processes; Ulmaceae -other; ...</td>
</tr>
<tr>
<td>SURVEY OF THE MOISTURE CONTENT OF WOOD IN SERVICE IN NIGERIA</td>
<td>...Composition; Khaya; Nauclea; Triplochiton; ...</td>
</tr>
<tr>
<td>Shelter Belts, Windbreaks</td>
<td>STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH</td>
</tr>
<tr>
<td>INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER</td>
<td>...Humidity; Irrigation; Irrigation -general; Soil Moisture; Temperature -air; Wind or Air Movement; ...</td>
</tr>
<tr>
<td>SILVICULTURE</td>
<td>ROOT ECOLOGY OF KHAYA IN GHANA</td>
</tr>
<tr>
<td>PROVENANCE TRIAL OF TEAK AND TERMINALIA IVORENSIS</td>
<td>...Nursery Observational Plots; Tectona; Terminalia; Variation and Selection; ...</td>
</tr>
<tr>
<td>ESTABLISHMENT OF CLONAL SEED ORCHARDS</td>
<td>...Ce­drela; Seed Production; Terminalia; Triplochiton; Variation and Selection; ...</td>
</tr>
<tr>
<td>TIMING OF TROPICAL SHELTERWOOD OPERATIONS</td>
<td>...Measurement of Trees & Stands; ...</td>
</tr>
<tr>
<td>TIMING OF POST-EXPLOITATION TREATMENTS AND THEIR EFFECTS ON REGENERATION, GROWTH AND INCREMENT</td>
<td>...Measurement of Trees & Stands; ...</td>
</tr>
<tr>
<td>THE SILVICULTURAL EFFECT OF INTENSIVE FELLING ENVIASGED IN FUTURE FELLING CYCLES ON FOREST BEING WORKED ON SELECTION BASIS</td>
<td>...Measurement of Trees & Stands; Surveys; ...</td>
</tr>
<tr>
<td>TENDING OF EMERGENT CROPS TREATED UNDER T.S.S. AND P.E.S. IN ASCONY RURAL RESEARCH CENTER</td>
<td>...Measurement of Trees & Stands; ...</td>
</tr>
<tr>
<td>ASSESSMENT OF REGENERATION OF PERICOPSIS ELATA</td>
<td>...Forests; Leguminosae -other; Measurement of Trees & Stands; ...</td>
</tr>
<tr>
<td>ENRICHMENT PLANTING IN THE HIGH FOREST, USING INDIGENOUS SPECIES WHOSE RATES OF GROWTH HAVE BEEN SLOW UNDER NATURAL FOREST TREATMENTS</td>
<td>...Khaya; Leguminosae -other; ...</td>
</tr>
<tr>
<td>PROBLEMS CAUSED BY THE CONTACT OF FOREST WITH SAVANNAH IN THE IVORY COAST</td>
<td>...Balance of Nature; Soil Moisture; Soil Morphology; Profiles; Soil-water-plant Relationships; Topographical Parameters -other; ...</td>
</tr>
<tr>
<td>FOREST ECOLOGY IN THE LOWER IVORY COAST</td>
<td>...Climate - Humid Equatorial; Organic Fertility; Rain; Soil Minerals -natural; Surveys; ...</td>
</tr>
<tr>
<td>DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST</td>
<td>...Calcium - Other Than Lime; Excessive Moisture; Gleyic Acridosols; Magnesium; Removal of Nutrients from Soil; Soil Fertility; ...</td>
</tr>
<tr>
<td>RELATIONS BETWEEN SOIL AND GROWTH FOR PRINCIPAL SPECIES FOR FORESTRY PLANTATIONS</td>
<td>...Ecosystems; Geology; Soil Types; Tectona; ...</td>
</tr>
<tr>
<td>STUDY CLEARINGS IN FOREST PLANTATIONS OF HIGH PLANTATION DENSITY</td>
<td>...Tectona; ...</td>
</tr>
<tr>
<td>EXPERIMENT ON MANUAL TILLAGE BEFORE PLANTATION</td>
<td>...Eucalyptus; Hand Tillage; Humid 1 Month; Lavica Arenosols; ...</td>
</tr>
</tbody>
</table>
EXPERIMENT ON THE SPACING OF EUCALYPTUS …
Eucalyptus: Humid 1 Month; Luvic Arenosols; Space Competition; … 9.0014

STUDY OF EUCALYPTUS - SOIL RELATIONSHIP … Eucalyptus: Humid 1 Month; Luvic Arenosols; … 8.0015

COMPARISON OF NURSERY TECHNIQUES FOR DALBERGIA AZADIRACTA INDICA AND CASSIA SIAMEA … Cassia; Dalbergia: Humid 1 Month; Luvic Arenosols; Nursery Observational Procedures; … 8.0016

NURSERY EXPERIMENT WITH FOREST TREES … Humid 1 Month; Luvic Arenosols; Nursery Observational Plots; Sprinkler Irrigation; … 8.0018

GROWING EUCALYPTUS FROM CUTTINGS … Eucalyptus; Humid 1 Month; Light Quantity or Intensity; Luvic Arenosols; Mist Irrigation; Soil Environment -other; … 8.0019

FOREST TREES SPECIES TRIALS IN MOIST FOREST … Placement; Soil Types; Space Competition; Variation and Selection; 9.0062

FOREST TREES ESTABLISHMENT TRIALS … Borrinagraceae; Eucalyptus; 9.0063

SILVICULTURE - THINNING AND SPACING TRIALS … Gmelina; Nauclea; Space Competition; Tectona; Terminalia; 9.0064

REGENERATION OF NATURAL MOIST FOREST … Forests; Sodium Arsenite; … 9.0065

IMPROVEMENT OF THE TIMBER POTENTIAL OF NATURAL MOIST FOREST … Measurement of Trees & Stands; 9.0066

ENRICHMENT OF NATURAL MOIST FOREST … Placement; 9.0067

CONSTRUCTION OF GROWTH AND YIELD TABLES FOR EVEN-AGED TREE CROSSES … Gmelina; Nauclea; Site Index and Site Quality; Terminalia; 9.0069

IMPROVEMENT OF POTTING MIXTURE IN FOREST NURSERIES … Gmelina; Movement, Availability; Syntactic Soils, Terminalia; 9.0070

SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE … Elevational Levels, Altitude; Percolation; Soil and Site Leaching; Soil Moisture; Soil Types; 9.0071

EFFECT OF FOREST PLANTATION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES … Elevational Levels, Altitude; Gmelina; Pinus; Soil Analysis; Soil Environment -other; Soil Physical Properties; 9.0072

FOREST TREES PROVENANCE STUDIES … Tectona; Variation and Selection; 9.0073

SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES … Gmelina; Nauclea; Plant Parts Bank; Tectona; Variation and Selection; 9.0074

DEVELOPMENT OF SEED STEMS AND SEED ORCHARDS … Gmelina; Intraspec. Genetic Relations; Management; Tectona; Variation and Selection; 9.0075

VEGETATIVE PROPAGATION OF SELECTED FOREST TREES … Variation and Selection; 9.0077

GROWTH PATTERNS OF IMPORTANT TIMBER TREE SPECIES … Cedrela; Gmelina; Measurement of Trees & Stands, Omnicotic and Turgor Pressure; Rain; Soil Moisture; Tectona; 9.0078

PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA … Forests; Measurement of Trees & Stands, Productivity; Swamps - Marshes; Wild Type Genotype; 9.0080

MAP OF THE NATURAL VEGETATION OF NIGERIA … Flora, Mapping; Surveys; 9.0081

DISTRIUTION PATTERNS OF YOUNG ECONOMIC TREE SPECIES AND THEIR CORRELATION WITH ENVIRONMENTAL FACTORS … Competition; Mineralog; Soil Depth, Surveys; 8.0082

CLASSIFICATION AND DISTRIBUTION OF MOIST FOREST VEGETATION TYPES … Flora, Information Centers & Services; Mapping; 9.0088

FUNGAL DISEASE OF SEEDS AND SEEDLINGS … Pathology, Forest; Seed-borne; Storage; Surveys; Viability; 9.0088

ESTABLISHMENT OF PINE MYCORRHIZAS … Basidio- mycetes; Inoculation; Mycorrhiza; Pinus; Symbionts, Plant Diseases; 9.0088

HYBRIDIZATION IN EUCALYPTUS … Eucalyptus: F Generations (F1, F2, F3, etc); Humid 4 Months; Preparing Out; Tree Breeding; 9.0041

VEGETATIVE PROPAGATION OF PINUS SPECIES … Humid 4 Months, Pinus; Seed Nurseries, Variation and Selection; 9.0043

NATURAL REGENERATION IN SAVANNA WOODLAND … Ecosystems; Fire Prevention; Humid 4 Months; Measurement of Trees & Stands; 9.0044

COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK … Dowtime Cps.; Inoculation; Mycorrhiza; Nursery Observational Procedures; Soil Quality; 9.0057

TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK … Eucalyptus; Nursery Observational Plots; Packaging Materials; Physical Properties; Radiation Effects; 9.0046

SAVANNA FORESTRY RESEARCH STATION … Darkness; Low Intensity Light; Sand; 9.0047

EFFECT OF REMOVAL, PARTIAL REMOVAL AND NON-REMOVAL OF POLYTHENE POTS ON PLANTATION SPECIES … Eucalyptus; Forestry Insects; Humid 4 Months; Isopera; Pinus; Planting Methods -other; 9.0048

TREE SPECIES ELIMINATION TRIALS … Humid 4 Months; Pinus; Soil Fertility, Variation and Selection; Water Table; 9.0048

PLANTATION TRIALS … Eucalyptus; Humid 4 Months; Pinus; Tectona; 9.0058

ESTABLISHMENT OF SEED ORCHARDS … Eucalyptus; Humid 4 Months; Pinus; Seed Nurseries; Variation and Selection; 9.0051

ESTABLISHMENT OF ACACIA NILOTICA AND ACACIA SENEGAL … Humid 4 Months; Planting Methods -other; 9.0052

INCREMENT RATES IN NATURAL SAVANNA WOODLAND … Humid 4 Months; Leguminosaceae -other; Measurement of Trees & Stands; 9.0053

GROWTH AND YIELD OF TEAK (TECTONA GRANDIS) … Humid 4 Months; Measurement of Trees & Stands; Site Index and Site Quality; Soil Environment -other; Tectona; 9.0054

GROWTH AND YIELD OF GEMELINA ARBOREA … Gmelina; Measurement of Trees & Stands; Site Index and Site Quality; Soil Environment -other; 9.0055

CULTIVATION AND WEEDING METHODS IN PLANTATIONS … Costs; Eucalyptus; Hand Tillage; Mechanical Control; Pinus; 9.0056

ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS … Forests, Injection; Selectivity of Pesticides; Time & Motion Studies; 9.0057

WATER STRESS IN RELATION TO GROWTH AND SURVIVAL IN SEEDLINGS OF EUCALYPTUS AND SOME INDIGENOUS SAVANNA SPECIES … Eucalyptus; Humid 4 Months; Moisture Budget; Moisture Deficiency, Passam; Plant Requirements -water; 9.0059

GROWTH OF SEEDLING TREES IN RELATION TO VARIATIONS IN TEMPERATURE, LIGHT INTENSITY PHOTOPERIOD … Elevational Levels, Altitude; Humidity; Light Quantity or Intensity; Temperature or Heat Budgets; 9.0060

MYCORRHIZAL ASSOCIATIONS IN PINES … High Temp. 30 C or Above; Mycorrhiza; Pinus; 9.0062

SITE EVALUATION FOR PLANTATION DEVELOPMENT IN THE SAVANNA REGION … Groundwater Movement; Moisture Levels; Movement, Availability; Site Index and Site Quality; Soil Analysis -other; 9.0063

PLANTATION SILVICULTURE IN THE SAVANNA REGION OF NIGERIA … Nursery Observational Plots, Pathology, Forest; Variation and Selection; 9.0064

STUDIES OF BEHAVIOUR AND GROWTH OF SELECTED PLANTATION SPECIES … Environments, Plant; Measurement of Trees & Stands; Variation and Selection; 9.0065

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH … Chromic Vertisols; Eucalyptus; Fuel -wood, Planes, Altitude; Humidity; Shelter Belts, Windbreaks; Soil Depth; 11.0118

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES … Chromic Vertisols; Fuel -wood; Humid 3 Months; Planting Methods; 11.0119

STUDY OF THE GROWTH OF TEAK … Humid 2 Months; Measurement of Trees & Stands; Soil Potting Mixture; 9.0044

EXPERIMENT ON THE INTRODUCTION OF TROPICAL RESINOUS SPECIES … Humid 2 Months; Pinus; 9.0045

STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINELALUM … Chlorite; Humid 3 Months; Prosopis; 9.0039

137

SUBJECT INDEX

Forestry

9.0044
9.0046
9.0047
9.0048
9.0052
9.0054
9.0055
9.0056
9.0057
9.0058
9.0059
9.0060
9.0063
9.0064
9.0065
9.0045
9.0039
9.0038
9.0037
Forestry

<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDY THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER ... Coste; Eucalyptus; Livic Arenosols; Prosopea; Soil Types; ... 11.0140</td>
</tr>
<tr>
<td>SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - SILVICULTURE OF THE LOCAL SPECIES ... Gums and Resins; Livic Arenosols; Planting Methods; ...11.0141</td>
</tr>
<tr>
<td>SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - EXPERIMENT ON THE INTRODUCTION OF EXOTIC SPECIES ... Eucalyptus; Fuel - wood; Humid 1 Month; Livic Arenosols; Moisture Deficiency; Wind Erosion; ...11.0142</td>
</tr>
<tr>
<td>TECHNIQUES OF CLEARING IN TEAK POPULATIONS OF EQUAL AGE ... Forests; Lumbering; T, 2,4,5-; Tectona; ... 13.0017</td>
</tr>
<tr>
<td>EXPERIMENTS WITH FERTILIZERS IN PLANTATIONS OF EUCALYPTUS CAMALDULENSIS ... Eucalyptus; Phosphates; Potassium; Sulfates; Sulfur; ... 13.0019</td>
</tr>
<tr>
<td>PRICKING OUT IN A NURSERY ... Dystric Gleysols; Nursery Observational Plot; Space Competition; ... 13.0020</td>
</tr>
<tr>
<td>FUMIGATION OF THE SOIL IN A NURSERY ... Dystric Gleysols; Forests; Methyl Bromide; Sterculiaceae - other; ... 13.0021</td>
</tr>
<tr>
<td>TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS ... Eucalyptus; Gleyic Luvisols; Humid 4 Months; Measurement of Trees & Stands; ... 14.0006</td>
</tr>
<tr>
<td>EXPERIMENT ON SOURCES OF TEAK ... Eutric Fluviosols; Gleyic Luvisols; Humid 4 Months; Measurement of Trees & Stands; Tectona; Variation and Selection; ... 14.0040</td>
</tr>
</tbody>
</table>

Site Index and Site Quality

| CONSTRUCTION OF GROWTH AND YIELD TABLES FOR EVEN-AGED TREE CROPS ... Gmelina; Nauclea; Terminalia; ... 9.0069 |
| GROWTH AND YIELD OF TEAK (TACTONA GRANDIS) ... Humid 4 Months; Measurement of Trees & Stands; Silviculture; Soil Environment - other; Tectona; ... 9.0354 |
| GROWTH AND YIELD OF GMELENA ARBORECA ... Gmelina; Measurement of Trees & Stands; Silviculture; Soil Environment - other; ... 9.0355 |
| SITE EVALUATION FOR PLANTATION DEVELOPMENT ... Groundwater Movement; Moisture Levels; Movement, Availability; Silviculture; Soil Analysis - other; ... 9.0363 |

Surveys

| THE SILVICULTURAL EFFECT OF INTENSIVE FELLING ENVISAGED IN FUTURE FELLING CYCLES ON FOREST BEING WORKED ON SELECTION BASIS ... Measurement of Trees & Stands; Silviculture; ... 3.0088 |
| STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA ... Curculionidae; Diapedia; Forest Insects; Terminalia; Triplochiton; ... 3.0094 |
| FOREST ECOLOGY IN THE LOWER IVORY COAST ... Climate; Humid Equatorial; Organic Fertility; Rain; Soil Minerals - natural; ... 4.0050 |
| MAP OF THE NATURAL VEGETATION OF NIGERIA ... Flora; Mapping; Silviculture; ... 9.0081 |
| DISTRIBUTION PATTERNS OF YOUNG ECONOMIC TREE SPECIES AND THEIR CORRELATION WITH ENVIRONMENTAL FACTORS ... Competition; Mineralogy; Silviculture; Soil Depth; ... 9.0082 |
| FUNGAL DISEASE OF SEEDS AND SEEDLINGS ... Pathology; Forest; Seed-borne; Silviculture; Storage; Viability; ... 9.0088 |

Wood Structure & Properties

| PROPERTIES OF GHANAIAN TIMBERS ... Mechanical Properties; Physical Properties; Wood; ... 3.0104 |
| PROMOTION OF ABUNDANT COMMERCIAL SPECIES OF WHICH LITTLE USE IS MADE ... Forest Product Development; Lumbering; Policy & Business Methods; ... 4.0086 |
| STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES ... Drying; Fungal Resistance; Markings; Pathology; Forest; Plant Morphology; Wood Preservation & Seasoning; ... 9.0095 |
| STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS ... Construction Materials; Joining & Bolting; Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylen; ... 9.0096 |
| NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES ... Construction Materials; Electric Power Transmission; Nauclea; Wood; ... 9.0099 |

Freeze-dry Techniques

| FREEZE-DRYING OF THE POLLEN OF THE OIL PALM TREE ... Breeding & Genetics; Storage Changes; ... 4.0286 |
| FLORAL BIOLOGY OF THE COCONUT PALM ... Breeding & Genetics; Coco; Pollination & Fertilization; ... 4.0315 |
| BOVINE PLEUROPNEUMONIA - ESTABLISHMENT OF A FREEZE-DRIED, HEAT-RESISTANT VACCINE ... Bacterial Vaccine; Immunity; Pneumonia; Thiosulfates; Veterinary Medicine; ... 11.0103 |

Freezing

| See Food Science and Technology Processing of Food |
SUBJECT INDEX

Fructose
See Carbohydrates

Fruit Rot
See Plant Diseases

Fruit-set or Fruit-thinning
See Pest Control Measures

Fruits
See Food Science and Technology

Fruits and Berries
See Entomology, Applied Horticulture Insects on
See Horticulture

Fuel -wood
See Forestry

Fumigant
See Pesticides

Fumigant, Nematocide
See Pesticides

Fungal Resistance
See Plant Resistance

Fungi
BIOLOGICAL RESEARCH STUDIES ON MIRID OF COCOA - DISTANTIELLA THEOBROMAE . . . Bacteria; Disease - biocontrol; Entomology, Physiology; Host Preference, Host-insect; Rearing of Insects; . . . 4.0063

SURVEY OF THE DISEASES OF THE IMPORTANT VEGETABLES IN NIGERIA . . . Bacteria; Phytopathology; Surveys; . . . 9.0087

STREPTOTHRICOSIS - EXPERIMENTS IN TREATMENT . . . Chlorohexidine; Dermatophilus; Immunity; Skin or Special Derivatives; Streptothricosis; Veterinary Medicine; . . . 11.0113

Alternaria
STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA . . . Fungal Resistance; Hyphomycetes; March; Surveys; . . . 4.0066

Armillaria
BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS . . . Cover Crops, Fomes; Ganoderma, Phytopathology; Two Humid Seasons; . . . 4.0250

Basidiomycetes
ESTABLISHMENT OF PINE MYCORRHIZAS . . . Inoculation; Mycorrhiza; Pinus; Silviculture; Symbionts, Plant Diseases; . . . 9.0089

Candida
SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES . . . Food Processing Wastes, Fruits; Microorganism Utilization; Organoleptic Studies of Food; Yeasts -nonspecific; . . . 9.0058

Ceratocystis
VARIABILITY OF THE PATHOGENIC CAPACITY OF PARASITIC FUNGI . . . Mitosis; Recombination; Virulence and Pathogenicity; . . . 4.0067

RESISTANCE TO DISEASE IN THE OIL PALM . . . Basal Rot; Breeding & Genetics; Disease Resistance; Fusarium; Phytopathology; Rhizoctonia; Vascular Wilt; . . . 9.0314

THE CONTROL OF THE OIL PALM DRY BASAL ROT DISEASE . . . Basal Rot; Inoculation; Phytopathology; . . . 9.0323

Cercospora
FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD . . . Economics of Chemical Control; Forturf; Mode of Action; Phytopathology; . . . 3.0125

THE INTRODUCTION AND SELECTION OF HIGH YIELDING VARIETIES OF GROUNDNUTS PROCESSING HIGH OIL CONTENT FOR NORTHERN GHANA . . . Breeding & Genetics; Dry Monsoon 5 Months, Plus; Fats - Lpidis & Oils; Leaf Spot; Management; Rosette Disease; . . . 3.0185

CERCOSPORIOsis OF THE OIL PALM TREE . . . Fungicides -nonspecific; Inoculation; Phytopathology; Systemic Application; . . . 4.0097

OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUI-NEENSIS . . . Endodermis; Interspecific Cross; Tannin; Two Humid Seasons; . . . 4.0287

GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS . . . Disease Resistance; Diseases; Fungicides -nonspecific; Phytopathology; Plant Nematodes -nonspecific; . . . 9.0168

CASSAVA BREEDING . . . Bacterial Wilt; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Virus; Phytopathology; . . . 9.0182

CASSAVA PATHOLOGY . . . Bacterial Resistance; Breeding & Genetics; Diseases; Environments; Plant Nematodes; Phytopathology; . . . 9.0190

YAMS PATHOLOGY . . . Disease Resistance; Continuous Humid 7 Months, Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes -nonspecific; Shoe String; Storage Rot; . . . 9.0192

FUNGICIDAL SPRAYING AND LEAF PRUNING TRIAL FOR THE CONTROL OF CERCOSPORIA LEAF SPOT . . . Fungicides -nonspecific; Leaf Spot; Phytopathology; . . . 9.0325

CONTROL OF CERCOSPORIA LEAF SPOT OF THE OIL PALM . . . Breeding & Genetics; Fure; Fungal Resistance; Leaf Spot; Phytopathology; . . . 9.0326

CONTINUOUS CROP ROTATION WITH MANURE . . . Chlorosis; Fallowing; Leaf Spot; Management; Manure; Phytopathology; . . . 14.0014

Choanephora
STUDIES ON THE CHOANEPHORA CUCURBITARUM WET ROT OF AMARANTHUS VIRIDIS . . . Env. Plant Dis. Relation; Environments, Plant; Fungal Resistance; Fungicides -nonspecific; Wet Rot; . . . 9.0284

Cladosporium
INTEGRATED CONTROL OF THE PARASITES AND MA- RAUDERS OF THE BANANA PLANT . . . Fungicides -nonspecific; Nematocides; Phytopathology; Systemic Action (Plant); . . . 4.0154

Claviceps
CEREAL BREEDING . . . PEARL MILLET . . . Breeding & Genetics; Ergot; Humid 3 Months; Phytopathology; Smuts; . . . 6.0040

Coccidioide
DISEASE RESISTANCE OF LOCAL CHICKENS . . . Breeding & Genetics; Coccioidiosis; Disease Resistance; Leucoasis; Veterinary Medicine; . . . 9.0029

Colletotrichum
STUDY OF ANTHRACNOSIS OF KENAF - HIBISCUS CAN-NABINUS . . . Breeding & Genetics; Fungal Resistance; Phytopathology; . . . 4.0273

INHERITANCE STUDIES IN COWPEA (VIGNA VIN-GUICULATA) . . . Breeding & Genetics; Fungal Resistance; Metabolic Expression; Reccessive Trait; . . . 9.0039

319
Fungi

SUBJECT INDEX

Corticium
- MORPHOGENESIS OF FUNGI WITH RHIZOMORPHS AND WITH SCLEROTIA . . . Cellular Physiology; Leptoporus; Prickling Out; Sclerotium; Soil Microbiology; . . . 9.0065
- STUDY OF THE MECHANISMS OF PARASITISM . . . Extracellular Enzymes; . . . 9.0069
Pink disease control in Hevea brasiliensis
- FUNGICIDES . . . non-specific; Late, Phytopathology; Time-release Capsules; . . . 9.0007

Fomes
- RUBBER INTERCROPPING EXPERIMENT . . . Continuous Humid; Green Manure; Intercropping; Management; Manihot; . . . 9.0050
- DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST POMES LIGNOSUS . . . Bioculture -other; Humidity; Phytopathology; Soil Moisture; . . . 9.0024
- BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS . . . Cover Crop; Ganoderma; Phytopathology; Two Humid Seasons; . . . 9.0025
- DISEASES OF KOLA IN NIGERIA . . . Cola; Phytopathology; Premature Application; . . . 9.0142
- BUTT AND ROOT ROT; FEAK (TECTONA GRANDIS) . . . Butt Rot; Pathology; Forest; Root Rot; Tectona; . . . 9.0361

Fungi Imperfecti
- IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Breeding & Genetics; Fungal Resistance; Humid 3 Months; Molts; Sorgum Vulgare (Grain); . . . 14.0055
- IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Breeding & Genetics; Fungal Resistance; Humid 4 Months; Molts; Sorghum Vulgare (Grain); . . . 14.0059

Fusarium
- FUSARIOSIS OF THE OIL PALM TREE - SELECTION OF RESISTANT MATERIAL . . . Env. Plant Dis. Relation; Fungal Resistance; Inoculation; Nursery Observational Plots; Physiotherapy; Sclerotium; . . . 9.0069
- PINEAPPLES - PHYTOSANITARY PROTECTION . . . Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; . . . 9.0149
- PROSPECTION AND INTRODUCTION OF OIL PALMS OF AFRICAN ORIGIN . . . Breeding & Genetics; Disease Resistance; Fungi; Lipids & Oils; Management; . . . 9.0034
- RESISTANCE TO DISEASE IN THE OIL PALM . . . Basal Rot; Breeding & Genetics; Disease Resistance; Phytopathology; Rhizoctonia; Vascular Wilt; . . . 9.0034
- STUDIES ON THE OIL PALM PATCH YELLOWS . . . Fungal Infection; Inoculation; Phytopathology; Yellow; . . . 9.0032
- CONTROL OF THE OIL PALM VASCULAR WILT DISEASE . . . Fungal Resistance; Fusarium Wilt; Inoculation; Phytopathology; Soil-borne; . . . 9.0034

Ganoderma
- BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS . . . Cover Crop; Fomes; Phytopathology; Two Humid Seasons; . . . 9.0026

Gloeosporium
- DISEASES OF LEAVES OF HEVEA IN NURSERY . . . Foliage Diseases . . . non-specific; FUNGICIDES . . . non-specific; Helminthosporium; Nursery Observational Plots; Phytopathology; Two Humid Seasons; . . . 9.0026
- DISEASES OF LEAVES OF HEVEA IN NURSERY . . . Foliage Diseases . . . non-specific; FUNGICIDES . . . non-specific; Gloeosporium; Nursery Observational Plots; Phytopathology; Two Humid Seasons; . . . 9.0026
- STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOSIS . . . Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Sclerotium; . . . 9.0026
- BIOLOGICAL CONTROL OF THE BROWN LEAF SPOT DISEASE OF RICE USING ORGANISMS ANTAGONISTIC TO THE PATHOGEN . . . Brown Spot; Phytopathology; Soil-borne; . . . 9.0021

Helminthosporium
- DISEASES OF LEAVES OF HEVEA IN NURSERY . . . Foliage Diseases . . . non-specific; FUNGICIDES . . . non-specific; Helminthosporium; Nursery Observational Plots; Phytopathology; Two Humid Seasons; . . . 9.0026
- STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOSIS . . . Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Sclerotium; . . . 9.0026
- BIOLOGICAL CONTROL OF THE BROWN LEAF SPOT DISEASE OF RICE USING ORGANISMS ANTAGONISTIC TO THE PATHOGEN . . . Brown Spot; Phytopathology; Soil-borne; . . . 9.0021

Hemileia

Hyphomycetes
- STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA . . . Fungal Resistance; Marsh; Surveys; . . . 9.0066

Leptoporus
- MORPHOGENESIS OF FUNGI WITH RHIZOMORPHS AND WITH SCLEROTIA . . . Cellular Physiology; Leptoporus; Prickling Out; Sclerotium; Soil Microbiology; . . . 9.0065

Microcylus
- SOUTH AMERICAN LEAF BLIGHT RESISTANCE SCREENING . . . Blight Disease; Chromatography; Fungal Resistance; Phytopathology; Plant Pathogenic Fungi; . . . 9.0066

Mycorrhiza
- ESTABLISHMENT OF PINE MYCORRHIZAS . . . Basidiomycetes; Inoculation; Pinus; Silviculture; Symbionts; Plant Diseases; . . . 9.0089
- COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK . . . env. Plant Dis. Relation; Nutritional Regulation; Plant Dis.; Soil Potting Mixture; . . . 9.0034

Penicillium
- PINEAPPLES - PHYTOSANITARY PROTECTION . . . Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons; . . . 9.0026

Phytophthora
- GERMINATION AND SURVIVAL OF SPORANGIA AND BEHAVIOUR OF ZOOSPORES OF PHYTOPHTHORA PALMIVORA . . . Chlorides; Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Sulfates; . . . 9.0061
- STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD . . . Black Pod; Deficiencies; Moisture Content; Plants; Nutritional Regulation (Host); Phytopathology; Potassium; . . . 9.0037
- STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHTHORA PALMIVORA . . . Black Pod; env. Plant Dis. Relation; Interaction with Environment; Shaded; . . . 9.0039
- PINEAPPLES - PHYTOSANITARY PROTECTION . . . Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons; . . . 9.0026
Subject Index

Piricularia

Improvement of rice (indica group) . . . Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resistance; Piriculariosis; . . . 4.0159

Collection of varieties for the pluvial rice-fields . . . Breeder Stock; Cereal Crops; Gramineae; Insect Resistance; Seed Bank; . . . 4.0160

Varietal experimental work for pluvial rice . . . Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piriculariosis; . . . 4.0167

Varietal experimental work for irrigated rice . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Irrigation; Phytopathology; Piriculariosis; . . . 4.0168

Varietal experimental work for inundated rice . . . Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piriculariosis; . . . 4.0169

Study the influence of the drought factor on the resistance of rice to piriculariosis . . . Env. Plant Dis. Relation; Management; Phytopathology; Piriculariosis; . . . 4.0181

Chemical control measures against piricularia oryzae . . . Continuous Humid; Inoculation; Phytopathology; Piriculariosis; . . . 4.0190

Study of the genetic structures of horizontal resistance of rice to piricularia oryzae . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculariosis; . . . 4.0191

Research in cultivated rice for sires having horizontal resistance to piriculariosis . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculariosis; . . . 4.0192

Analysis of the relative incidence of strains of piricularia oryzae in rice-fields . . . Continuous Humid; Env. Plant Dis. Relation; Inoculation; Phytopathology; Piriculariosis; . . . 4.0194

Creation of a differential scale of strains of piricularia oryzae . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculariosis; . . . 4.0196

Introduction and behaviour tests of pluvial rice . . . Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Management; . . . 4.0032

Identification of races of piricularia oryzae . . . Blast; Fungal Resistance; Phytopathology; Piriculariosis; Taxonomy; Plant; . . . 9.0237

Diurnal and seasonal periodicity of piricularia oryzae in air . . . Blast; Env. Plant Dis. Relation; Humidity; Low Temp. Above 0 C; Moisture Budgets; Piriculariosis; . . . 9.0238

Selection of rice varieties for resistance to the rice blast disease (piricularia oryzae) . . . Blast; Fungal Resistance; Inoculation; Phytopathology; Piriculariosis; . . . 9.0239

Introduction of new varieties of rice for the fresh-water rice fields of casamance . . . Cereal Products; Disease Resistance; Humid 2 Months; Phytopathology; Piriculariosis; Soil pH; . . . 11.0124

Introduction of new varieties of pluvial rice . . . Cereal Products; Disease Resistance; Drought Resistance; Humid 2 Months; Phytopathology; Piriculariosis; . . . 11.0125

Varietal improvement of rice by hybridization for the improved fresh-water rice fields of casamance . . . Breeding & Genetics; Disease Resistance; Phytopathology; Piriculariosis; Soil Resistance; . . . 11.0126

Varietal improvement of pluvial rice by hybridization . . . Breeding & Genetics; Disease Resistance; Humid 2 Months; . . . 11.0128

Epidermology of piricularia oryzae - methods of control . . . Disease Resistance; Env. Plant Dis. Relation; Humid 4 Months; Phytopathology; Piriculariosis; Soil Environment; . . . 11.0152

Research for varieties of pluvial rice with a short cycle, resistant to piriculariosis, by introduction . . . Blast; Chromic Verticil; Fungal Resistance; Phytopathology; Piriculariosis; . . . 14.0063

Plant Pathogenetic Fungi

South American leaf blight resistance screening . . . Blight Diseases; Chromatography; Fungal Resistance; Microcylus; Phytopathology; . . . 5.0006

Control of root rot of susceptible plantation tree species . . . Cucumis; Management; Root Rot; Space Competition; Terminalia; . . . 9.0086

Determination of the mode of fungicidal Yam tuber protection . . . Benlate; Captain; Phytopathology; Storage Rot; Tuberc Rot; TBZ; . . . 9.0248

Study of the mold diseases of the panicles of sorghum . . . Env. Plant Dis. Relation; Humidity; Molds; Surveys; . . . 11.0013

Puccinia

Identification of races of puccinia polysora and helminthosporium maydis that may be virulent to ncrbb . . . Blight Diseases; Fungal Resistance; Phytopathology; Rusts; . . . 9.0241

Assessment of the loss in yield attributable to maize rust and maize blight . . . Blight Diseases; Fungal Resistance; Helminthosporium; Phytopathology; Rusts; . . . 9.0242

Improvement of the local material by cumulative selection - maize . . . Breeding & Genetics; Fungal Resistance; Lodging; Recurrent Selection; Scalif; . . . 14.0047

Production of a local composite of maize with broadened genetic variability . . . Breeding & Genetics; Fungal Resistance; Lodging; Recombination; Scalif; . . . 14.0049

Pythium

Control of blast of the oil palm tree . . . Blast; Habitat Manipulation-eradicade; Phytopathology; Rhizoctonia; . . . 4.0096

Col lar canker control in hevea brasiliensis . . . Canker; Fungicides; specific; Phytopathology; . . . 5.0010

Resistance to disease in the oil palm . . . Basal Rot; Breeding & Genetics; Disease Resistance; Fusarium; Phytopathology; Rhizoctonia; Vascular Wilt; . . . 9.0314

The oil palm blast disease and its control . . . Benlate; Breeding & Genetics; Fungal Resistance; Irrigation general; Rhizoctonia; Terrachlor; Vapam; . . . 9.0327

Rhizoctonia

Control of blast of the oil palm tree . . . Blast; Habitat Manipulation-eradicade; Phytopathology; Rhizoctonia; . . . 4.0096

Resistance to disease in the oil palm . . . Basal Rot; Breeding & Genetics; Disease Resistance; Fusarium; Phytopathology; Vascular Wilt; . . . 9.0314

The oil palm blast disease and its control . . . Benlate; Breeding & Genetics; Fungal Resistance; Irrigation general; Terrachlor; Vapam; . . . 9.0327
Fungi

SUBJECT INDEX

Ganoderma
See Fungi

Gardona
See Pesticides
Insecticides

Gas Content -air
See Environments, Plant

Gearing and Power
See Mechanical Power

Gel Electrophoresis
See Electrophoresis

Gelechiidae
See Insects
Lepidoptera

Genetic Evolution

BIOLOGY AND PHYSIOLOGY OF PHYTOPHTHORA PALMIVORA.
Black Pod; Carbon; Nutrition in Disease; Phytopathology; Sterculiaceae -other; 9.0127

Genetics

COLLECTION AND CLASSIFICATION OF YAM CULTIVARS.
Breeding & Genetics; Plant Morphology; Plant Parts Bank; 3.0159

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEOPHORA) BY GENERATIVE MEANS.
Breeding & Genetics; Spice & Bev; Ferralic Cambisols; Ferric Acrisols; Management; Seed Production; Two Humid Seasons-7 Month,Plus; Weathering Resistance; 4.0112

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEOPHORA) BY GENERATIVE MEANS.
Breeding & Genetics; Spice & Bev; Ferric Acrisols; Management; Seed Production; Two Humid Seasons-7 Month,Plus; Weathering Resistance; 4.0104

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEOPHORA) BY GENERATIVE MEANS.
Breeding & Genetics; Spice & Bev; Ferric Acrisols; Two Humid Seasons-7 Month,Plus; 4.0337

Chromosomes

INTERSPECIFIC HYBRIDATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES.
Back Cross; Breeding & Genetics; Interspecific Cross; Selling; 4.0263

CHROMOSOME CYTOLOGY.
Hepaticae; Histology and Cytology; 12.0001

Genetic & Breeding Methods

Back Cross

REPRODUCTIVE BIOLOGY OF KENAF.
Continuous Humid 7 Months,Plus; Management; Pollens; 3.0139

MAIZE IMPROVEMENT THROUGH BREEDING.
Breeding & Genetics; Lodging; Lysine; Proteins; Recurrent Selection; Tryptophane; 3.0161

INTERSPECIFIC HYBRIDATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES.
Breeding & Genetics; Chromosomes; Interspecific Cross; Selling; 4.0263

INTRODUCTION OF ELAEIS MELANOCOCCA -STUDY OF ITS INTERSPECIFIC HYBRID WITH E. GUINEENESIS.
Breeding & Genetics; Disease Resistance; Fats - Lipids & Oils; Interspecific Cross; Marsh; 4.0290

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED.
Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; 6.0016

CREATION OF MAIZE HYBRIDS WITH WHITE SEEDS AND WITH YELLOW SEEDS.
Breeding & Genetics; Ferric Luvisols; Humid 4 Months; 6.0047

Fungi

Rhizopus

USE OF RADIATION FOR THE IMPROVEMENT OF FUNGAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA.
... Culturing Food; Food Proteins; Management; Mutation; Starch; 9.0024

Sclerospora

CEREAL BREEDING - PEARL MILLET.
Breeding & Genetics; Ergot; Humid 3 Months; Phytopathology; Smuts; 6.0040

STUDY OF THE MILDEW DUE TO SCLEROSPORA GRAMINICOLA.
Breeding & Genetics; Mildew Diseases; Phenology; Life Cycle; Phytopathology; 11.0014

PROJECT F.E.D. 215.
Breeding & Genetics; Disease Resistance; Intraspecific Cross; Phytopathology; Synthetic Varieties & Blends; 11.0023

IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES.
Breeding & Genetics; Fungal Resistance; Lodging; Seta; 14.0029

IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION.
Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 3 Months; Lodging; Recurrent Selection; 14.0034

IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION.
Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 4 Months; Lodging; Recurrent Selection; 14.0055

Sclerotium

EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLLPHII ON VEGETABLES AND LEGUMES.
Continuous Humid 7 Months, Plus; Lycopersicum; Selectivity of Pesticides; Wilts; 3.0131

MORPHOGENESIS OF FUNGI WITH RHIZOMORPHS AND WITH SCLEROTIA.
Cellular Physiology; Corticium; Lep-totrophs; Pricking Out; Soil Microbiology; 4.0065

Tolyposporium

CEREAL BREEDING - PEARL MILLET.
Breeding & Genetics; Ergot; Humid 3 Months; Phytopathology; Smuts; 6.0040

Ustilaginaceae

SURVEY AND ASSESSMENT OF THE SMUT AND BLAST DISEASES OF SUGARCANE.
Blast; Fungal Resistance; Phytopathology; Saccharum; Smuts; Surveys; 9.0024

Yeasts -nonspecific

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES.
Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Organoleptic Studies of Food; 9.0058

Fungi Imperfecti
See Fungi

Fungicides
See Pesticides

Furrow Irrigation
See Irrigation

Fusarium
See Fungi

Fusarium Wilt
See Plant Diseases
Wilt

Gaging

HYDROLOGICAL RATES OF FLOW, SOLIDS CARRIED BY AND CHEMISTRY OF THE WATERS OF THE SAN PEDRO, NERO, AND BRIME RIVERS.
Discharge; Flow Characteristics -water; Streams; Water Quality; 4.0043
CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED … Breeding & Genetics; Ferric Luvisols; Humid 4 Months; 9.0102

IMPROVEMENT OF SORGHUMS GROWN ON SAND DUNES … Breeding & Genetics; Humid 3 Months; Male Sterility; Sand; Sorghum Vulgare (Grain). 14.0015

IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION) … Breeding & Genetics; Clay; Humid 3 Month & General; Male Sterility; Sorghum Vulgare (Grain). 9.0287

THE OBTAINING OF VARIETIES OF MILLET WITH SHORT STRAW … Breeding & Genetics; Humid 3 Months; 9.0034

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES … Breeding & Genetics; Manihot; Pedigree; Virus Resistance; 9.0112

PRODUCTION OF SHORT-STEMMED HIGH YIELDING ACCEPTABLE MAIZE VARIETIES … Breeding & Genetics; Continuous Humid 7 Months; Plus; Lodging; Recurrent Selection; 9.0033

DORMANCY IN SEEDS FROM DELI PALMS (OIL PALM) … Dormancy; Oilseed Crops; Temperature -air; 9.0288

IMPROVEMENT OF THE PROTEIN CONTENT AND QUALITY OF THE PROTEINS OF MAIZE … Breeding & Genetics; Lysine; Nutritive Values -plant; Proteins; Tryptophane; 11.0015

INTRA SPECIFIC HYBRIDIZATION OF COTTON (G. BARBENDESE) … Breeding & Genetics; Fiber; Intraspecific Cross; Pedigree; 13.00035

IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDIZATION WITH FOREIGN MATERIAL AND FOREIGN MATERIAL … Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Light Quantity or Intensity; Rain; Sorghum Vulgare (Grain); 14.0030

SHORTENING OF THE STRAW OF THE LOCAL MATERIAL - SMALL MILLET … Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 3 Months; Setaria; 14.0033

Cytoplasmic Sterility

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM … Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; 14.0058

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM … Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; Sorghum Vulgare (Grain); 14.0058

Double Cross

BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO … Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; 14.0037

FERTILITY RESTORER GENES

COTTON - STUDY OF THE MALE STERILITY IN GOSYPIUM HIRSUTUM … Breeding & Genetics; Male Sterility; Management; 13.0057

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM … Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; 14.0037

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM … Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; Sorghum Vulgare (Grain); 14.0058

Hybrid Breeding -nonspecific

DIALELLE CROSSING PROGRAMME IN CACAO … Breeding & Genetics; Nonspecific; Disease Resistance; 9.0039

BREEDING COCOA FOR HIGH YIELD AND DESIRABLE COMMERCIAL QUALITIES … Breeding & Genetics; SpicedeBve; 9.0112

SORGHUM BREEDING … Breeding & Genetics; Pedigree; Sorghum Vulgare (Grain); 9.0156

SELECTION OF BEAN (COWPEA) VARIETIES WITH DESIRABLE AGRONOMIC AND ECONOMIC CHARACTERS … Breeder Stock; Breeding & Genetics; Continuous Humid 7 Months;Plus; 9.0223

PRODUCTION OF BEAN (COWPEA) HYBRIDS … Breeding & Genetics; Continuous Humid 7 Months; Plus; Indeterminate; 9.00225

HYBRIDIZATION METHOD FOR SOYA BEANS … Breeding & Genetics; Continuous Humid 7 Months; Plus; Glycine Max; Pollination & Fertilization; 9.00228

SWEET POTATOES (IPOMAEA BATATAS) BREEDING … Breeding & Genetics; Ipomoea; 9.0029

IDOLATRICA CHARACTER (OIL PALM) … Breeding & Genetics; Phenotypes; Plant Morphology; 9.0028

GERMINATIVE IMPROVEMENT OF THE CACAO-TREE (THEOBROMA CACAO) … Breeding & Genetics; SpicedeBve; Intraspecific; Genetic Relations; Swollen Shoot Virus; Virus Resistance; 9.0028

IMPROVEMENT OF SESAME BY HYBRIDIZATION … Breeding & Genetics; Fats - Lipids & Oils; Sesamum; 9.001012

RESEARCH FOR LATE VARIETIES OF GROUNDNUTS RESISTANT TO 'ROSETTE' … Diseased Resistance; Phytopathology; Rosette Disease; 14.0016

COMPARISON OF THE DEVELOPMENT OF THE STANDARD VARIETIES OF GROUNDNUTS AND OF EARLY HYBRID VARIETIES … Breeding & Genetics; Drought Resistance; Precipitation; 14.0018

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL … Breeding & Genetics; Fungal Resistance; Humid 3 Months; Molds; Sorghum Vulgare (Grain); 14.0038

IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY HYBRIDIZATION WITH FOREIGN MATERIAL … Breeding & Genetics; Ferric Luvisols; Humid 4 Months; 9.0036

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS … Breeding & Genetics; Humid 4 Months; Sorghum Vulgare (Grain); 14.0057

IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL … Breeding & Genetics; Fungal Resistance; Humid 4 Months; Molds; Sorghum Vulgare (Grain); 14.0059

Intergeneric Cross

SHORT-STEMMED OIL PALM … Breeding & Genetics; Palmae -other; Phenotypes; 9.0291

Interspecific Cross

GENERATIVE IMPROVEMENT OF THE CACAO-TREE … Breeding & Genetics; SpicedeBve; Continuous Humid; Ferric Acerisols; Intraspecific; Genetic Relations; Management; Plant Resistance; 9.0044

GENERATIVE IMPROVEMENT OF THE CACAO-TREE … Breeding & Genetics; SpicedeBve; Ferric Acerisols; Intraspecific; Genetic Relations; Plant Resistance; 9.0049

METHODOLOGY FOR THE IMPROVEMENT OF COFFEE-TREES BY INTERSPECIFIC HYBRIDIZATIONS … Breeding & Genetics; SpicedeBve; 9.0053

BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM … Breeding & Genetics; Metabolic Expression; Parthenocarpy; 14.00057

GENERATIVE IMPROVEMENT OF THE CACAO-TREE … Breeding & Genetics; SpicedeBve; Ferric Acerisols; Intraspecific; Genetic Relations; Plant Resistance; Two Humid Seasons-7 Month;Plus; 4.0017

GENERATIVE IMPROVEMENT OF THE CACAO-TREE … Breeding & Genetics; SpicedeBve; Intraspecific; Genetic Relations; Management; Plant Resistance; 4.0020

VARIETAL IMPROVEMENT OF COTTON … Breeding & Genetics; Irrigation -general; Plant Parts Bank; Tensile Strength; 4.0260

STUDY OF QUANTITATIVE HEREDITY IN A TRIPLE-HYBRID MATERIAL BETWEEN CULTIVATED SPECIES AND WILD SPECIES OF COTTON … Breeding & Genetics; Genetic Dup. & Transmission; 4.0262

INTERSPECIFIC HYBRIDIZATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES … Breeding & Genetics; Chromosomes; Seling; 4.0262

INTERSPECIFIC HYBRIDIZATION ON THE COTTON PLANT BETWEEN CULTIVATED SPECIES … Breeding & Genetics; Selling; 4.0265

OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUI-
Open Pollination
GRASS AND LEGUME SEED · IMPROVEMENT AND MULTIPLICATION · Centrosema; Foundation Seed; Panicum; Setaria; ... 3.0022

BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS · Breeding & Genetics; Disease Resistance; Latex; Tectona; Wind; Wind or Air Movement; ... 5.0003

SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES ... Guadua; Nucleus; Plant Parts Bank; Tectona; Variation and Selection; ... 9.0074

Polycross Test
CONSTITUTION OF A VARIETAL COMPOSITE OF MAIZE FROM INTRODUCED FOREIGN VARIETIES · Breeding & Genetics; Dyrctic Nitosols; Two Humid Seasons; ... 1.0061

Reciprocal Recurrent Selection
PRODUCTION OF A COMPOSITE OF YELLOW MAIZE FROM INTRODUCTIONS FROM ABROAD · Breeding & Genetics; Dyrctic Nitosols; Two Humid Seasons; ... 1.0065

IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM · Breeding & Genetics; Coco; Copra; Fats - Lipids & Oils; Management; ... 4.0310

Recurrent Selection
FOOD CROP IMPROVEMENT · Breeding & Genetics; Continuous Humid 7 Months; Fl Generation (F1, F2, F3, Etc); Seed Production; ... 3.0119

MAIZE IMPROVEMENT THROUGH BREEDING · Back Cross; Breeding & Genetics; Lodging; Lysine; Management; ... 3.0161

THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING, PALATABLE VARIETIES OF PENNISETUM MILLET RESISTANT TO DISEASES, PESTS AND LODGING · Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months; Plus, Insect Resistance; Lodging; ... 9.0140

THE DEVELOPMENT OF LATE MATURING, HIGH YIELDING, PALATABLE VARIETIES OF MILLET (PENNISETUM) RESISTANT TO DISEASES, PESTS AND LODGING · Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months; Plus, Insect Resistance; Lodging; ... 3.0185

VARIETAL IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY RECURSIVE TO COMPOSITES · Breeding & Genetics; Continuous Humid; ... 4.0176

IMPROVEMENT OF THE LOCAL EARLY MILLET · Breeding & Genetics; Humid 3 Months; Synthesis Varieties & Blends; ... 4.0307

SORGHUM CROP PROTECTION · Cereal Crops; Rearing of Insects; Scrophulariaceae; Seedling Diseases -nonspecific; Smuts; Tettigoniae; ... 9.0159

EVALUATION OF SELECTION METHODS FOR MAIZE · Breeding & Genetics; Continuous Humid 7 Months; Plus, Synthesis Varieties & Blends; ... 9.0236

PRODUCTION OF WHITE FLOURY MAIZE VARIETIES FOR HUMAN CONSUMPTION · Breeding & Genetics; Cereal Product Development; Cereal Products; Continuous Humid 7 Months; Metabolic Expression; Organolectic Studies of Food; ... 9.0232

PRODUCTION OF SHORT STEMMED HIGH YIELDING ACCEPTABLE MAIZE VARIETIES · Back Cross; Breeding & Genetics; Continuous Humid 7 Months; Plus, Lodging; ... 9.0233

STUDY AND IMPROVEMENT OF LOCAL MAIZE VARIETIES · Breeder Stock; Breeding & Genetics; Synthesis Varieties & Blends; ... 9.0235

RECURRENT SELECTION IN A NIGERIAN WHITE FLOURY COMPOSITE · Breeding & Genetics; Continuous Humid 7 Months; Plus, Metabolic Expression; Selling; Synthesis Varieties & Blends; ... 9.0236

IMPROVEMENT OF YIELD, FRUIT AND BUNCH QUALITY OF THE OIL PALM · Breeding & Genetics; Continuous Humid 7 Months; Plus, Metabolic Expression; Selling; Synthesis Varieties & Blends; ... 9.0313

CREATION OF HYBRID VARIETIES OF MAIZE · Breeding & Genetics; Hybrid; Intraspecific Cross; Synthesis Varieties & Blends; ... 11.0040

IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION · Breeding & Genetics; Fertile Sterility; Intraspecific Cross; Synthesis Varieties & Blends; ... 14.0034

IMPROVEMENT OF THE LOCAL MATERIAL BY CUMULATIVE SELECTION · MAIZE · Breeding & Genetics; Fertile Sterility; Lodging; Scald; ... 14.0047

324
IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION ... Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 4 Months; Lodging; Sclerospora; ... 14.0055

Selfing OBTAINMENT OF SORGHUM HYBRIDS OF AMERICAN-DIHOMEY TYPE WITH SHORT STAW ... Breeding & Genetics; Ferric Luvisols; Humid 5 Months; Lodging; Sorgum Vulgare (Grain); ... 1.0041

PRODUCTION OF DOUBLE CRYPTO-HYBRIDS BETWEEN LOCAL IMPROVED WHITE MAIZE AND AN INTRODUCED MEXICAN VARIETY FROM TUXPENO STOCK ... Breeding & Genetics; Dytric Nitosols; F Generation (F1, F2, F3, Etc); Two Humid Seasons; ... 1.0060

GRASS AND LEGUMES SEED - IMPROVEMENT AND MULTIPLICATION ... Centrosema; Foundation Seed; Panicum; Setaria; ... 3.0022

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Fibers; Insect Resistance; Photoperiod; Seed Bank; ... 3.0070

REPRODUCTIVE BIOLOGY OF KENAF ... Back Cross; Continuous Humid 7 Months; Plus; Management; Pollens; ... 3.0139

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Dry Monsoon 5 Months; Plus; Insect Resistance; Photoperiod; Seed Bank; ... 3.0175

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Etric Nitosols; Insect Resistance; Nematode Resistance; Plant Nematodes - non specific; ... 3.0204

FUSARIOISIS OF THE OIL PALM TREE - SELECTION OF RESISTANT MATERIAL ... Env. Plant; Dis. Relation; Fungal Resistance; Fusarium; Inoculation; Nursery Observational Plots; Phytopathology; ... 4.0095

STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODS DUE TO PHYTOPHTHORA PALMIVORA ... Black Pod; Env. Plant; Dis. Relation; Interaction with Environment; Phytophthora; Shade; ... 4.0139

INTERSPECIFIC HYBRIDATION ON COTTON PLANTS BETWEEN CULTIVATED SPECIES AND WILD SPECIES ... Back Cross; Breeding & Genetics; Chromosomes; Interspecific Cross; ... 4.0263

INTERSPECIFIC HYBRIDATION ON THE COTTON PLANT BETWEEN CULTIVATED SPECIES ... Breeding & Genetics; Interspecific Cross; ... 4.0265

STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOSIS ... Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; ... 4.0328

RECURRENT SELECTION IN A NIGERIAN WHITE FLOURY COMPOSITE ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Metabolic Expression; Recurrent Selection; ... 5.0037

PISIFERA PALM SELECTION ... Breeding & Genetics; Sex Ratio; ... 5.0029

Synthetic Varieties & Blends

GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION ... Centrosema; Foundation Seed; Panicum; Setaria; ... 3.0022

CREATION OF SYNTHETIC, HYBRID PENNISIETUM MILLET FROM LOCAL VARIETIES ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Triple Cross; ... 6.0066

IMPROVEMENT OF THE LOCAL EARLY MILLET ... Breeding & Genetics; Humid 3 Months; Recurrent Selection; ... 8.0037

PEPPER IMPROVEMENT ... Breeding & Genetics; Capsicum; Continuous Humid 7 Months; Plus; Disease Resistance; Ferrallic Cambisols; Ferruc Luvisols; ... 9.0163

LEAFY AND FRUIT VEGETABLE IMPROVEMENT ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Disease Resistance; Ferrulic Cambisols; Ferruc Luvisols; Lycopernicum; ... 9.0164

EVALUATION OF SELECTION METHODS FOR MAIZE ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Recurrent Selection; ... 9.0231

STUDY AND IMPROVEMENT OF LOCAL MAIZE VARIETIES ... Breeder Stock; Breeding & Genetics; Recurrent Selection; ... 9.0235

RECURRENT SELECTION IN A NIGERIAN WHITE FLOURY COMPOSITE ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Metabolic Expression; Recurrent Selection; Selfing; ... 9.0236

IDENTIFICATION OF RACES OF PUCINIA POLYSSORA AND HELMINTHOSPORIUM MAYDIS THAT MAY BE VIRULENT TO NCBB ... Blight Disease; Fungal Resistance; Phytophathology; Rusts; ... 9.0241

PROJECT F.E.D. 215 ... Breeding & Genetics; Disease Resistance; Intraspecific Cross; Phytopathology; Sclerospora; ... 11.0023

CREATION OF HYBRID VARIETIES OF MAIZE ... Breeding & Genetics; Heterosis; Intraspecific Cross; Recurrent Selection; ... 11.0024

IMPROVEMENT OF SORGHUM ... Breeding & Genetics; Heterosis; Intraspecific Cross; Sorghum Vulgare (Grain); ... 11.0025

IMPROVEMENT OF THE TECHNICAL CHARACTERS OF ARACHIS FOR OIL PRODUCTION ... Breeding & Genetics; Fats - Lipids & Oils; Harvest and Storage; ... 11.0043

CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (105 DAYS) ... Breeding & Genetics; Hot Equatorial or Hot Tropical; Interspecific Cross; Disease Resistance; ... 11.0044

IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES ... Breeding & Genetics; Fungal Resistance; Lodging; Setaria; ... 14.0029

PRODUCTION OF A SORGHUM COMPOSITE WITH WIDE VARIABILITY BY UTILIZING THE GENETIC MALE STERILITY ... Breeding & Genetics; Fertile Luvisols; Humid 3 Months; Male Sterility; Sorghum Vulgare (Grain); ... 14.0046

IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY PRODUCTION OF SYNTHETIC VARIETIES ... Breeding & Genetics; Fertile Luvisols; Heterosis; Humid 4 Months; Pedigree; ... 14.0046

PRODUCTION OF A LOCAL COMPOSITE OF MAIZE WITH BROADENED GENETIC VARIABILITY ... Breeding & Genetics; Fungal Resistance; Lodging; Recombination; Scalid; ... 14.0049

Top Cross

CREATION OF SYNTHETIC, HYBRID PENNISIETUM MILLET FROM LOCAL VARIETIES ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Synthetic Varieties & Blends; ... 6.0066

BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO ... Breeding & Genetics; Virus; Virus Resistance; ... 9.0113

SELECTION AND BREEDING OF CASHEW FOR HIGH YIELD AND DESIRABLE NUT CHARACTERISTICS ... Breeding & Genetics; ... 9.0150

Genetic Dup. & Transmission

STUDY OF QUANTITATIVE HEREDITY IN A TRIPLE-HYBRID MATERIAL BETWEEN CULTIVATED SPECIES AND WILD SPECIES OF COTTON ... Breeding & Genetics; Interspecific Cross; ... 4.0262

Meiosis

CYTOGENETIC STUDIES IN CACAO ... Breeding & Genetics; Nucleic Acid & Protein; Histology and Cytology; Interspecific Cross; Mitosis; ... 11.0043

Mitosis

VARIABILITY OF THE PATHOGENIC CAPACITY OF PARASITIC FUNGI ... Breeding & Genetics; Virus Resistance; Recombination; Virulence and Pathogenicity; ... 4.0007

CYTOGENETIC STUDIES IN CACAO ... Breeding & Genetics; Nucleic Acid & Protein; Histology and Cytology; Interspecific Cross; Mitosis; ... 11.0043

Recombination

VARIABILITY OF THE PATHOGENIC CAPACITY OF PARASITIC FUNGI ... Breeding & Genetics; Virus Resistance; Recombination; Virulence and Pathogenicity; ... 4.0007

PRODUCTION OF A LOCAL COMPOSITE OF MAIZE WITH BROADENED GENETIC VARIABILITY ... Breeding & Genetics; Fungal Resistance; Lodging; Scalid; ... 14.0049
Genetics

Genotypes

F Generation (F1, F2, F3, Etc)

Constitution of a composite of white maize with improved varieties originating in Da-homey... Breeding & Genetics; Ferric Luvisols; Humid 5 Months; Seed Bank;... 1.0042

Production of double cryptohybrids between local improved white maize and an introduced mexican variety from tuxpeno stock... Breeding & Genetics; Dystric Nitosols; Selling; Two Humid Seasons;... 1.0042

CROSSBREEDING FOR DAIRY PRODUCTION... Breeding & Genetics;... 3.0054

FODDER CROP IMPROVEMENT... Breeding & Genetics; Continuous Humid 7 Months, Plus; Recurrent Selection; Seed Production;... 3.0119

REPRODUCTIVE BIOLOGY OF KENAF... Back Cross; Continuous Humid 7 Months, Plus; Management; Pollens;... 3.0139

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT... Breeding & Genetics, Spiced&Bev; Intraspec. Genetic Relations; Shade;... 4.0107

RESEARCH ON CACAO CLONES OR INTERCIONAL HYBRIDS PRESENTING A "DISTINCT" TOLERANCE TO PHYTOPHTORA PALMIVORA... Black Pod; Fungal Resistance; Phytopathology;... 4.0110

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT... Breeding & Genetics, Spiced&Bev; Drought Resistance; Intraspec. Genetic Relations; Moisture Deficiency; Mulches; Shade;... 4.0126

RESEARCH ON CACAO CLONES OR INTERCIONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTORA PALMIVORA... Black Pod; Breeding & Genetics, Spiced&Bev; Fungal Resistance; Intraspec. Genetic Relations; Phytopathology;... 4.0129

RESEARCH ON CACAO CLONES OR INTERCIONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTORA PALMIVORA... Black Pod; Breeding & Genetics, Spiced&Bev; Fungal Resistance; Intraspec. Genetic Relations; Phytopathology;... 4.0134

HYBRIDIZATION IN EUCALYPTUS... Eucalyptus; Humid 4 Months; Pricking Out; Silviculture; Tree Breeding;... 9.0341

Recessive Trait

INHERITANCE STUDIES IN COWPEA (VIGNA VIN-GUICULATA)... Breeding & Genetics; Colletotrichum; Fungal Resistance; Metabolic Expression;... 9.0039

Wild Type Genotype

CONTROL OF WEEDS ON IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAEAMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS... Grasses or Sedges; Humid 1 Month;... 6.0050

STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVILIGULATA AND O. LONGISTAMINATA... Dormancy; Non-dry 3 Months; Plus; Physiology of Weeds; Soil Depth;... 6.0064

PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA... Forests; Measurement of Trees & Stands; Productivity; Silviculture; Sugar;... 4.0080

CYTOGENETIC STUDIES IN COCOA... Breeding & Genetics, Spiced&Bev; Histochemistry and Cytology; Interspecific Cross; Metis­sis, Mitosis;... 9.0108

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity;... 9.0129

Heterosis

SELECTION OF A WHITE MAIZE ADAPTED TO NORTH DAHOMEY... Breeding & Genetics; Ferric Luvisols;... 1.0032

VARIEL IMROVEMENT OF THE PRODUCTIVITY OF MAIZE BY RECURSSE TO COMPOSITES... Breeding & Genetics; Continuous Humid; Recurrent Selection;... 4.0176

CREATION OF HYBRID VARIETIES OF MAIZE... Breeding & Genetics; Interspecific Cross; Recurrent Selection; Synthetic Varieties & Blends;... 11.0024

Genetics

SUBJECT INDEX

IMPROVEMENT OF SORGHUMS... Breeding & Genetics; Interspecific Cross; Sorghum Vulgare (Grain); Synthetic Varieties & Blends;... 11.0025

COTTON - PRODUCTION OF F1 HYBRIDS - GOSSYPIUM HIRSUTUM X G. BARBADENSE... Breeding & Genetics; Interspecific Cross; Male Sterility;... 11.1025

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM... Breeding & Genetics; Ferric Luvisols; Male Sterility;... 14.0027

IMPROVEMENT OF THE LOCAL VARIETIES OF MAIZE BY PRODUCTION OF SYNTHETIC VARIETIES... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; pedigree; Synthetic Varieties & Blends;... 14.0046

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM... Breeding & Genetics; Ferric Luvisols; Male Sterility; Sorghum Vulgare (Grain);... 14.0058

Metabolic Expression

BILOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM... Breeding & Genetics; Interspecific Cross; Parthenocarpy;... 4.0054

INHERITANCE STUDIES IN COWPEA (VIGNA VIN-GUICULATA)... Breeding & Genetics; Colletotrichum; Fungal Resistance; Recessive Trait;... 9.0030

PRODUCTION OF WHITE FLOURY MAIZE VARIETIES FOR HUMAN CONSUMPTION... Breeding & Genetics; Cereal Product Development; Cereal Products; Humid 7 Months, Plus; Organoleptic Studies of Food; Recurrent Selection;... 9.0123

RECURRENT SELECTION IN A NIGERIAN WHITE FLOURY COMPOSITE... Breeding & Genetics; Continuous Humid 7 Months, Plus; Recurrent Selection; Selling; Synthetic Varieties & Blends;... 9.0236

PRODUCTION OF COTTON HAVING SEEDS FREE FROM GOSSYPOL... Breeding & Genetics; Cereal Products; Food Proteins; Gossypol; Proteins;... 13.0039

Mutation

GENETICS OF COWPEA, VIGNA UNGUICULATA... Breeding & Genetics; Electrophoresis;... 3.0060

TOMATO BREEDING... Breeding & Genetics; Cobalt; Continuous Humid 7 Months, Plus; Disease Resistance; Lycopersicum;... 3.0150

PLANT EXPLORATION AND COLLECTION... Breeding & Genetics; Continuous Humid 7 Months, Plus; Cyclamate; Plant Parts Bank; Plant Resistance; Sugar - nonspecific;... 3.0209

IMPROVEMENT OF HEVEA BRASILICENSES - THE OBTAIN­ING OF POLYPLOIDS... Breeding & Genetics; Two Humid Seasons;... 4.0124

SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION... Breeding & Genetics; Harvest and Storage; Management; Moisture Deficiency; Non-dry 3 Months, Plus;... 6.0057

USE OF RADIATION FOR THE IMPROVEMENT OF FUN­GAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA... Culturing Food; Food Proteins; Management; Starch;... 9.0024

MUTATION BREEDING IN CACAO AND KOLA... Black Pod; Breeding & Genetics, Spiced&Bev; Cocoa; Fungal Resistance; Phytophthora;... 9.0114

SHORTENING THE STAW OF A LOCAL VARIETY OF SORGHUM BY PROVOKING MUTATIONS... Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Sorghum Vulgare (Grain);... 14.0032

IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS... Breeding & Genetics; Eutric Gleysols; Humid 4 Months; Pyricularia;... 14.0045

Phenotypes

IDOLATRICA CHARACTER (OIL PALM)... Breeding & Genetics; Hybrid Breeding - nonspecific; Plant Morphology;... 9.0287

SHORT-STEMMED OIL PALM... Breeding & Genetics; Interspecific Cross; Palmae - other;... 9.0291

Population Genetic Relations

OIL PALM - STUDY THE CHARACTERS AND THE FER­TILITY OF THE HYBRID E. MELANOCOCCA X E. GUI· NEENSISS... Cercropiae; Endodermis; Interspecific Cross; Tannin; Two Humid Seasons;... 4.0287
SUBJECT INDEX

Interspec. Genetic Relations

PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM ... Breeding & Genetics; Interspecific Cross; Metabolic Expression; Pathogenesis ... 4.0054

Intraspec. Genetic Relations

POTATO (SOLANUM TUBEROSUM) BREEDING PROJECT ... Breeding & Genetics; Management; Solanum ... 2.0003

ESTABLISHMENT OF CLONE BANKS ... Cedecea, Lemunio- lase -other; Terminalia, Triplochlorenchym ... 3.0085

GENERATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spicilegus; Continuous Humid; Ferric Acrisols; Interspecific Cross; Management; Plant Resistance ... 4.0004

IMPROVEMENT OF THE COLA TREE - COLA NITIDA ... Breeding & Genetics, Spicilegus; Cola; Ferralitic Cambisols; Ferric Acrisols; Nursery Observational Plots; Two Humid Seasons-7 Month, Plus ... 4.0008

GENERATIVE IMPROVEMENT OF THE CACAO TREE ... Breeding & Genetics, Spicilegus; Ferric Acrisols; Plant Resistance ... 4.0009

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION ... Breeding & Genetics, Spicilegus; Elevated Levels, Altitude; Ferralitic Cambisols; Ferric Acrisols; Intraspecific Cross; Two Humid Seasons-7 Month, Plus ... 4.0013

BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM ... Breeding & Genetics; Interspecific Cross; Metabolic Expression; Pathogenesis ... 4.0054

GENERATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spicilegus; Ferric Acrisols; Interspecific Cross; Plant Resistance; Two Humid Seasons-7 Month, Plus ... 4.0101

VEGETATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spicilegus; Ferric Acrisols; Management; Two Humid Seasons-7 Month, Plus ... 4.0102

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION ... Breeding & Genetics, Spicilegus; Elevated Levels, Altitude; Ferralitic Cambisols; Ferric Acrisols; Intraspecific Cross; Two Humid Seasons-7 Month, Plus ... 4.0105

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT ... Breeding & Genetics, Spicilegus; F Generation (F1, F2, F3, Etc); Shade ... 4.0107

TECHNOCAL STRUCTURES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF CACAO TREES USED IN THE SELECTION PROGRAMME ... Breeding & Genetics, Spicilegus; Fats - Lipids & Oils; Ferric Acrisols; Two Humid Seasons-7 Month, Plus ... 4.0109

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A "DISTINCT" TOLERANCE TO PHYTOPHTHORA PALMIVORA ... Black Pod; Breeding & Genetics; Spicilegus; Elevated Levels, Altitude; Ferric Acrisols; Fungal Resistance; Phytophathology ... 4.0110

IMPROVEMENT OF THE COLA TREE - COLA NITIDA ... Breeding & Genetics, Spicilegus; Cola; Ferric Acrisols; Nursery Observational Plots; Two Humid Seasons-7 Month, Plus ... 4.0114

GENERATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spicilegus; Interspecific Cross; Management; Plant Resistance ... 4.0120

VEGETATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spicilegus; Spicilegus; Management; Plant Resistance ... 4.0121

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDIZATION ... Breeding & Genetics, Spicilegus; Elevated Levels, Altitude; Intraspecific Cross ... 4.0124

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT ... Breeding & Genetics, Spicilegus; Drought Resistance; F Generation (F1, F2, F3, Etc); Shade ... 4.0126

TECHNOCAL STRUCTURES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF CACAO TREES USED IN THE SELECTION PROGRAMME ... Breeding & Genetics, Spicilegus; Fats - Lipids & Oils ... 4.0128

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA ... Black Pod; Breeding & Genetics, Spicilegus; F Generation (F1, F2, F3, Etc); Fungal Resistance; Phytophathology ... 4.0129

IMPROVEMENT OF THE COLA TREE - COLA NITIDA ... Breeding & Genetics, Spicilegus; Cola; Ferralitic Arenosols; Nursery Observational Plots; Two Humid Seasons-7 Month, Plus ... 4.0140

VARIETAL COLLECTION OF YAMS ... Breeding & Genetics; Continuous Humid; Plant Parts Bank ... 4.0178

IMPROVEMENT OF THE RUBBER TREE - VEGETATIVE IMPROVEMENT ... STUDY OF THE PLANTING MATERIAL ... Breeding & Genetics; Plant Resistance; Two Humid Seasons; Wind or Air Movement ... 4.0227

IMPROVEMENT OF HEVEA BRASILIENSIS - CONTROLLED CROSSINGS OF OLD EXISTING ORIGINS ... Breeding & Genetics; Two Humid Seasons ... 4.0232

IMPROVEMENT OF HEVEA - THE OBTAINING OF CROSSINGS STARTING FROM THE NEW ORIGINS ... Breeding & Genetics; Pedigree; Two Humid Seasons ... 4.0233

TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Chemical Materials; Mechanical Properties; Processing -general; Two Humid Seasons ... 4.0234

IMPROVEMENT OF THE COLA TREE ... Breeding & Genetics, Spicilegus; Cola; Nursery Observational Plots ... 4.0341

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA ... Black Pod; Breeding & Genetics, Spicilegus; F Generation (F1, F2, F3, Etc); Fungal Resistance; Phytophathology ... 4.0343

SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES ... Gmelina, Nucleas; Plant Parts Bank; Tectona; Variation and Selection ... 9.0074

DEVELOPMENT OF SEED STANDS AND SEED ORCHARDS ... Gmelina, Management; Silviculture, Tectona; Variation and Selection ... 9.0075

COLLECTION AND ESTABLISHMENT OF KOLA GERM- PLASM ... Cola; Management; Plant Parts Bank; Sex Ratio, Taxonomy; Plant ... 9.0133

STUDIES ON VARIOUS YIELD AND QUALITY FACTORS IN KOLA ... Cassine; Cola; Management; Space Competition ... 9.0155

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE- PHORA) BY VEGETATIVE MEANS ... Disease Resistance; Insect Resistance; Management; Weathering Resistance ... 13.0023

GENERATIVE IMPROVEMENT OF THE CACAO-TREE (THEOBROMA CACAO L.) ... Breeding & Genetics, Spicilegus; Breeding & Genetics, Spicilegus; Hybrid Breeding -nonspecific; Swollen Shoot Virus; Virus Resistance ... 13.0024

Pedigree

SELECTION OF N'DAMA CATTLE IN THE RANCHES OF THE IVORY COAST ... Breeding & Genetics ... 4.0018

HYBRIDISATIONS BETWEEN VARIETIES OF RICE (INDICA AND JAPONICA) ... Breeding & Genetics; Continuous Humid ... 4.0161

IMPROVEMENT OF HEVEA - THE OBTAINING OF CROSSINGS STARTING FROM THE NEW ORIGINS ... Breeding & Genetics; Interspec; Genetic Relations; Two Humid Seasons ... 4.0233

STUDY THE CROSSINGS WITH SOME IRRI VARIETIES FROM VARIETIES OF IRRIGATED RICE WITH LONG STRAW ... Breeding & Genetics; Humid 1 Month; Insect Resistance ... 6.0052

STUDY OF CROSSINGS BETWEEN FLOATING RICE AND ERECT RICE ... Breeding & Genetics; Non-dry 3 Months, Plus ... 6.0059

SORGHUM BREEDING ... Breeding & Genetics; Hybrid Breeding -nonspecific; Sorghum Vulgare (Grain) ... 9.0156

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES ... Breeding & Genetics; Manihot; Virus Resistance ... 9.0121

SELECTION FOR CONSERVATION OF THE POPULARIZED CULTIVAR OF THE COTTON PLANT ... Breeding & Genetics; Dystic Gleysols; Ferralic Luvisols; Humid 3 Months; Luvic Arenosols; ... 11.0160

IMPROVEMENT OF VARIETIES OF COTTON (BAR- BADENSE) GROWN IN ASSOCIATED CULTIVATION ... Breeder Stock; Breeding & Genetics; Interspecific Cross; ... 13.0035
Geologic Time

Cenozoic Era

Quaternary Period

EVOLUTION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING ... Climates-Humid Equatorial; Geology; Soil Analysis; Soil Crusts; Tertiary Period; ... 4.0038
CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BAS-SARI DISTRICT ... Geology; Sedimentology; Soil Morphology; Profiles; Soil Survey; Soil Types; Topographical Parameters-other; ... 13.0012
Tertiary Period

EVOLUTION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING ... Climates-Humid Equatorial; Geology; Soil Analysis; Soil Crusts; ... 4.0038

Geology

DETAILED RECONNAISSANCE SOIL SURVEY OF UPPER AFRAM BASIN ... Mineralogy; Soil Physical Properties; Soil Survey; ... 3.0220
DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA ... Land Use - agriculture; Roads and Highways; Soil Morphology; Profiles; Soil Physical Properties; Soil Survey; Transportation; ... 3.0222
DETAILED RECONNAISSANCE SOIL SURVEY OF THE LOWER AFRAM BASIN ... Mineralogy; Soil Morphology; Profiles; Soil Physical Properties; Soil Survey; ... 3.0233
MINERAL FERTILIZATION ON COFFEE ... Continuous Humid; Ferralic Acrisols; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; ... 4.0001
MINERAL FERTILIZATION ON COFFEE ... Ferralic Cambisols; Management; Soil Types; ... 4.0006
OPERATION OF RESEARCH IN GEODYNAMICS, GEOCHEMISTRY AND GEOMORPHOLOGY IN THE IVORY COAST ... Infiltration; Soil Crusts; Soil Morphology; Profiles; ... 4.0036
EVOLUTION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE - ALTERATION, EROSION, RECASTING, HARDENING ... Climates-Humid Equatorial; Soil Analysis; Soil Crusts; Tertiary Period; ... 4.0038
MINERAL FERTILIZATION ON COFFEE ... Continuous Humid; Eutric Fluvisols; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; ... 4.0089
MINERAL FERTILIZATION ON COFFEE ... Ferralic Acrisols; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month; Plus; ... 4.0112
MINERAL FERTILIZATION ON COFFEE ... Ferralic Arenosols; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons; ... 4.0145
MINERAL FERTILIZATION ON COFFEE ... Ferralic Arenosols; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month; Plus; ... 4.0331
RELATIONS BETWEEN SOIL AND GROWTH FOR PRINCIPAL SPECIES FOR FORESTRY PLANTATIONS ... Ecosystems; Silviculture; Soil Types; Tectons; ... 4.0344
GENESIS OF SOME REPRESENTATIVE SOILS OF THE DESIRED SAVANNA REGION ... Soil Analysis; Soil Genesis; Soil Morphology; Profiles; Soil Physical Properties; Soil Profile Studies; Soil Types; ... 9.0055
INVESTIGATION OF THE INFLUENCE OF CLIMATE ON SOIL MORPHOLOGY AND SOIL DISTRIBUTION IN THE METAMORPHIC REGIONS OF NIGERIA ... Soil Genesis; Soil Morphology; Profiles; Soil Profile Studies; Soil Types; ... 9.0056

SUBJECT INDEX

STUDY OF THE SOILS DEVELOPED ON THE CRYSTALLOPHYLLIAN BASE OF TOGO - CARTOGRAPHY AT 1/200,000TH OF THE SOUTHERN PART ... Sedimentology; Soil Morphology; Profiles; Soil Survey; Soil Types; ... 13.0011
CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BAS-SARI DISTRICT ... Quaternary Period; Sedimentology; Soil Morphology; Profiles; Soil Survey; Soil Types; Topographical Parameters-other; ... 13.0012
CARTOGRAPHY OF THE AGRARIAN ACTIVITIES OF TOGO ... Remote Sensing; Soil Survey; Topographical Parameters-other; ... 13.0014
RECONNAISSANCE AND EVALUATION OF THE SOILS OF TOGO ... Soil Survey; ... 13.0016
STUDY OF THE MINERAL DEFICIENCIES OF THE SOILS OF TOGO AND THEIR EVOLUTION ... Deficiencies; Management; Movement; Availability; Sulfur; ... 13.0041

Germination
See Seed

Gibbsite
See Mineralogy

Gleyic Acrisols
See Soil Unit Classification
Acrisols

Gleyic Luvisols
See Soil Unit Classification
Luvisols

Gleysols
See Soil Unit Classification

Gliadin
See Proteins

Globulins
See Proteins

Gloeosporium
See Fungi

Glucose
See Carbohydrates

Glutamic Acid
See Amino Acids

Glutamine
See Amino Acids

Glutelin
See Proteins

Glycine -other
See Plants - Dicot
Leguminosae

Glycine Max
See Plants - Dicot
Leguminosae

Glycoside -general
See Carbohydrates
SUBJECT INDEX

Gmelina
See Plants - Dicots
Verbenaceae

Goat Husbandry
See Animal Husbandry

Goethite
See Mineralogy

Gossypol
EXPERIMENTAL CULTIVATION OF COTTON-PLANTS WITHOUT GOS­SYPOL... Breeding & Genetics; Cereal Products; Insect Resistance;... 6.0006
PRODUCTION OF COTTON HAVING SEEDS FREE FROM GOS­SYPOL... Breeding & Genetics; Cereal Products; Food Proteins; Metabolic Expression; Proteins;... 13.0039

Grafting
See Plant Physiology

Grain Industries
See Ag Industries & Agribusiness

Grain Sorghum, Milo
See Feed Science and Technology
Cereal Grains or Grasses

Grains
See Feed Science and Technology

Gramineae
See Plants - Monocots

Granulosis Viruses
See Viruses, Animal
Viruses of Insects

Grass -nonspecific
See Plants - Monocots
Gramineae

Grasses or Sedges
See Weeds
Control of Plants...

Green Manure
See Organic Fertility

Green-chop
See Feed Science and Technology

Greenhouses
See Environments, Plant

Groundwater
DATE-PALM SELECTION. PHYTOTECHNICAL AND ECO-
LOGICAL RESEARCH WORK... Calcaric Fluvisols; Humid
1 Month; Management; Moisture Deficiency; Phoenix; Streams;...
7.0007
PEDOLOGY PROJECT... Cambisols; Ferric Luvisols; Soil Types;... 9.0161

Handicraft Products

Groundwater Movement
See Water Movement

Growth and Differentiation
See Plant Physiology

Growth Chamber
See Environments, Plant

Growth Inhibitors
See Environments, Plant
Competition

Growth Rate
See Animal Characteristics

Growth Retardation of Plants
See Pest Control Measures

Growth Stage of Plant
See Fertilizer Technology

GS 16068
See Pesticides
Herbicides

Gummosis
See Plant Diseases

Gums and Resins
See Forestry
Processing Forest Products

Guttiferae
See Plants - Dicots

Habitat Manipulation-eradicate
See Pest Control Measures
Physical Control

Habitat Studies
See Ecology, Animal

Haemorrhagic Septicaemia
See Animal Pathology

Halictidae
See Insecta
Hymenoptera

Hand Tillage
See Soil Tillage

Handbooks
See Publications

Handicraft Products
STUDY OF THE POSSIBILITIES OF REPLANTING OF
WOODLAND IN THE WESTERN CENTRE OF SENEGAL
UTILIZING LOCAL FOREST SPECIES... Chromic Vertisols;
Fuel -wood; Humid 3 Months; Planting Methods; Silviculture;...
11.0119
Harrowing
See Soil Tillage

Harvest and Storage
See Agronomy
Beverage Crops
Cereal Crops
Fiber Crops
Industrial & New Crops
Oilseed Crops
Pulse Crops
See Horticulture
Root Crops
Vine, Shrub, Bramble Fruit Crop

Hatchability
See Animal Characteristics

Hay
See Feed Science and Technology

Heat and Cooling Devices
See Mechanical Power

Heat Resistance
See Plant Resistance

Heat-stable Protein
See Proteins

Heating
See Food Science and Technology
Processing of Food

Height
See Animal Characteristics

Helminthosporium
See Fungi

Hemagglutination Inhibition
IMMUNE RESPONSE TO NEWCASTLE DISEASE VACCINES...Chicken, Domestic; Evaluation, Efficacy; Globulins; Immunity; Newcastle Disease; Viral Vaccines;...3.0024

Hemagglutinins
See Proteins

Hematite
See Mineralogy

Hemileia
See Fungi

Hemiptera
See Insecta

Hemorrhagic
See Veterinary Medicine

Hepaticae
See Bryophyta

Herbicides
See Pesticides

Heterosis
See Genetics

High Intensity Light
See Environments, Plant
Light Quantity or Intensity

High Temp. 30 C or Above
See Environments, Animal
Temperature -air
See Environments, Plant
Temperature -soil

Hippoboscidae
See Insecta
Diptera

Hippolyte
See Crustacea

Histology and Cytology
POULTRY DISEASE INVESTIGATION...Nutrition in Disease; Poultry - nonspecific; Poultry Husbandry;...3.0001
CYTOLOGY OF YAMS...Breeding & Genetics; Management;...3.0160
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT...Breeding & Genetics; Hormones; Pregnancy; Sexual Cycle; Vagina;...4.0060
CYTOGENETIC STUDIES IN COCOA...Breeding & Genetics, Spice & Bev; Interspecific Cross; Meiosis; Mitosis; Wild Type Genotype;...9.0108
LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY...Epidemiology of Disease; Leptospiroses; Pathology - mammal; Veterinary Medicine;...11.0104
CHROMOSOME CYTOLOGY...Chromosomes; Hepaticae;...12.0001

Hoe 2960
See Pesticides
Insecticides

Holoptelea
See Plants - Dicots
Ulmaceae

Homoptera
See Insecta

Hordeum Vulgare
See Plants - Monocots
Gramineae

Hormones
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT...Breeding & Genetics; Pregnancy; Sexual Cycle; Vagina;...4.0000
PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES...Breeding & Genetics; Growth and Differentia-
Horticulture

SUBJECT INDEX

EVOLUTION OF THE SOILS OF BANANA PLANTATIONS. CULTIVATION IN ORGANIC SOILS ... Env. Plant Dis. Res. Mau; Orthic Acrisols; Soil - Alkaline; Soil Drainage; ... 4.0153

INTEGRATED CONTROL OF THE PARASITES AND MA- RAUDERS OF THE BANANA PLANT ... Cladosporium; Fungicides - nonspecific; Nematocides; Systemic Action (Plant); ... 4.0154

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST ... Climate; Humid Equatorial; Management; Passiflora; Phytophthora; ... 4.0155

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate; Continental Sav.-Trop.; Fats & Oils; Fruits and Berries; Quality and Utilization; ... 4.0156

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHEL-SOUDANIAN) ... Eutric Cambisols; Management; Passiflora; Plant Virus - general; Soil Moisture; ... 8.0024

Leafy & Fruit-type Vegetables

Breeding & Genetics

TOMATO BREEDING ... Cobalt; Continuous Humid 7 Months; Plus; Disease Resistance; Lycopersicum; Mutation; ... 4.0150

PEPPER IMPROVEMENT ... Capsicum; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Ferric Luvisols; Synthetic Varieties & Blends; ... 9.0163

LEAFY AND FRUIT VEGETABLE IMPROVEMENT ... Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Ferric Luvisols; Lycopersicum; Synthetic Varieties & Blends; ... 9.0164

CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES ... Bacterial Resistance; Eutric Gleysols; Hybrid Breeding - nonspecific; Pedigree; Pseudomonas - nonspecific; ... 14.0053

CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES (2) ... Bacterial Resistance; Fruit Rot; Lycopersicum; Phytopathology; ... 14.0054

Management

VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING ... Crop Rotation; Cropping System; Freezing; Lycopersicum; Phaseolus; Vegetable & Vegetable Products; ... 2.0006

COMPOSTING OF SAWDUST ... C/N Ratio; Compost; Lycopersicum; Organic Soils; Sawdust Utilization; ... 3.0100

TOMATO VARIETY TRIAL ... Continuous Humid 7 Months; Plus; Lycopersicum; Rain; Timing of Planting Procedures; ... 3.0149

TOMATO - COWPEA ROTATION ... Continuous Humid 7 Months; Plus; Crop Rotation; Cropping System; Lycopersicum; Plant Nematodes - nonspecific; ... 3.0151

ADAPTATION TRIAL ON VEGETABLE CROPS ... Brassica Oleracea; Cucurbita; Lactuca; Sprinkler Irrigation; ... 7.0005

INCORPORATION OF LEAFY AND FRUIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS ... Capsicum; Continuous Humid 7 Months; Plus; Ferralic Cambisols; Ferric Luvisols; Lycopersicum; Plant Industries - other; ... 9.0165

BEHAVIOUR STUDY WITH VARIETIES OF EGGPLANT ... Hot Equatorial or Hot Tropical; Solanum; ... 11.0049

UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS ... Glycine Max; Irrigation - general; Lycopersicum; Multiple Cutting; Sesamum; ... 14.0011

VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS ... Cajanus; Fallowing; Sesamum; Solanum; ... 14.0013

Phytopathology

INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS ... Continuous Humid 7 Months; Plus; Culturing Techniques; DD; Nema- gon; Nicotiana; Population Dynamics; ... 3.0128

STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS ... ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA ... Fungal Resistance; Hyphomycetes; Marsh; Surveys; ... 4.0066

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSION FRUIT AND PEPPER ... Capsicum; Mosaic Viruses; ... 9.0221

Nutm Crops

Breeding & Genetics

SELECTION AND BREEDING OF CASHEW FOR HIGH YIELD AND DESIRABLE NUT CHARACTERISTICS ... Top Cross; ... 9.0150

Management

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dyctria Nitosol; Mangifera; Persia; Pseudium; Two Humid Seasons; ... 11.0005

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dyctria Nitosol; Mangifera; Persia; Pseudium; Two Humid Seasons; ... 11.0007

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dyctria Nitosol; Passiflora; Plant Virus - general; Sapotecaceae; ... 11.0071

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN) ... Carica; Humid 1 Month; Mangifera; Passiflora; ... 7.0005

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHELO-SOUDANIAN) ... Eutric Cambisols; Mangifera; Passi- flora; Plant Virus - general; Soil Moisture; ... 8.0024

ROOT STUDIES ON COCOA, CASHEW AND KOLA ... Cola; Soil Environment - other; ... 9.0152

MINERAL NUTRITION OF CASHEW ... Deficiencies; Fertilizer Toxicity; ... 9.0151

CULTIVATION OF GROUNDNUTS IN ANACARDIUM (CASHEW NUT) PLANTATION DURING THE FIRST FEW YEARS OF DEVELOPMENT OF THE TREE ... Costs; Intercropping; Sesamum; ... 14.0001

Root Crops

STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT ... Deficiencies; Dormancy; Growth and Differentiation; Orchidaceae; Photoperiod; Thermoperiod; ... 4.0049

SINGLE CELL PROTEIN PRODUCTION FROM Cassava Wastes ... Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Organoelectic Studies of Food; Yeasts - nonspecific; ... 9.0058

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASAVA VARIETIES ... Chemical Analysis of Food; Fruits; Hydrogen Cyanide; Manihot; Organic Acids; Starch; ... 9.0213

Breeding & Genetics

POTATO (SOLANUM TUBEROUS) BREEDING PROJECT ... Intraspec. Genetic Relations; Management; Solanum; ... 2.0003

ONION IMPROVEMENT ... Short Day; Storage Changes; ... 2.0004

COLLECTION AND CLASSIFICATION OF YAM CULTIVARS ... Genetics; Plant Morphology; Plant Parts Bank; ... 3.0159

CYTOLOGY OF YAMS ... Histology and Cytology; Management; ... 3.0160

VARIETAL COLLECTION OF YAMS ... Continuous Humid; Intraspec. Genetic Relations; Plant Parts Bank; ... 4.0178
Horticulture

CASSAVA PATHOLOGY ... Bacterial Resistance; Breeding & Genetics; Diseases; Environments; Plant; Ferric Luvisols; Mosaic Viruses; Vectors;9.0190

SWEET POTATO PATHOLOGY ... Breeding & Genetics; Ferric Luvisols; Plant Parts Bank; Root Rot;9.0191

YAMS PATHOLOGY ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes -nonspecific; Shoe String; Storage Rot;9.0192

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES ... Breeding & Genetics; Manihot; Pedigree; Virus Resistance;9.0212

STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT UTILISSIMA) ... Bacterial Wilt; Insects; Manihot; Taxonomy; Plant; Vectors; Xanthomonas;9.0220

STUDIES ON THE BACTERIAL WILTS OF SOLANACEOUS VEGETABLES ... Bacterial Wilt; Pseudomonas -nonspecific; Solanaceae -other; Virulence and Pathogenicity;9.0221

INVESTIGATION INTO THE CAUSES OF YAM-TUBER ROTS ... Harvest and Storage; Mineralogy; Nutrition in Disease; Storage Rot; Taxonomy; Plant; Tuber Rot;9.0247

DETERMINATION OF THE MODE OF FUNGICIDAL YAM TUBER PROTECTION ... Benlate; Captan; Plant Pathogenic Fungi; Storage Rot; Tuber Rot; TBZ;9.0248

CONTROL OF YAM STORAGE ROTS ... Benlate; Captan; Harvest and Storage; Storage Rot; Tuber Rot; TBZ;9.0249

SURVEY OF THE DISEASES OF THE IMPORTANT VEGETABLES IN NIGERIA ... Bacteria; Fungi; Surveys;9.0282

Vegetables -other

IMPROVEMENT OF THE CROPPING TECHNIQUES IN TRADITIONAL AGRICULTURE ... Farm Enterprises -general; Humid 4 Months; Management; Production and Processing; Rain;6.0035

RESEARCH AND DEVELOPMENT IN GENERAL HORTICULTURE, ESPECIALLY FRUITS AND VEGETABLES ... Fruits and Berries; Vine, Shrub, Bramble Fruit Crop;9.0267

PLANT PHYSIOLOGY ... Fruits and Berries; Vitamins;12.0003

Vine, Shrub, Bramble Fruit Crop

RESEARCH AND DEVELOPMENT IN GENERAL HORTICULTURE, ESPECIALLY FRUITS AND VEGETABLES ... Fruits and Berries; Vegetables -other;9.0267

Harvest and Storage

THE DESIGN, TESTING AND DEVELOPMENT OF A MACHINE FOR SHELLING MELON SEEDS AND EXTRACTING MELON SEED OIL ... Crop Production, Harvesting; Cucumis; Design, Modify, Develop, of Equip; Fats - Lipids & Oils;9.0054

Management

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Euritic Fluvisols; Humid 4 Months; Mangifers; Passiflora; Psidium;6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHILIAN) ... Carica; Humid 1 Month; Mangifera; Passiflora;7.0006

INVESTIGATION AND IMPROVEMENT OF NIGERIAN SEED MELON PRODUCTION ... Cucumis; Placement; Timing of Planting Procedures;9.0045

CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES ... Cucumis; Plant Pathogenic Fungi; Root Rot; Space Competition; Terminalia;9.0086

Phytopathology

TO SCREEN SULPHUR-FREE FUNGICIDES FOR EFFECTIVENESS IN CONTROLLING MILDEWS IN CUCURBITACEOUS ... Cucurbita; Fungicides -nonspecific; Mildew Diseases; Phytoxicity; Sulfur;9.0283

Horticulture Insects on

See Entomology, Applied

Host Preference, Host-insect

See Entomology, Applied

Hydrolytic Enzymes -general

See Enzymes

Hydroponic Studies

See Environments, Plant

Hygromas Bursitis

See Animal Pathology

Hymenoptera

See Insecta

Hyphomycetes

See Fungi

Hydrogen Cyanide

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Nutritive Value of Food; Pulse Crops; Tryptophane;9.0177

CASSAVA BREEDING ... Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Phytopathology;9.0182

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Chemical Analysis of Food; Fruits; Manihot; Organic Acids; Root Crops; Starch;9.0213

Immunity

IMMUNE RESPONSE TO NEWCASTLE DISEASE VACCINES ... Chicken, Domestic; Evaluation, Efficacy; Globulins; Hemagglutination Inhibition; Newcastle Disease; Viral Vaccines;3.0024

DISEASES OF THE RED GOAT ... Evaluation, Efficacy; Rinderpest; Veterinary Medicine;8.0004

CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF 'PEC' TISSUE VACCINE ... Blood and Lymph System; Pneumonia; Sheep Husbandry; Vaccines; Veterinary Medicine;9.0019

RINDERPEST PROPHYLAXIS - ESTABLISHMENT OF A THERMO-RESISTANT VACCINE ... Prophylaxis; Pseudomyxoviruses; Rinderpest; Veterinary Medicine; Viral Vaccines;11.0096

Hydric Gleysols

See Soil Unit Classification

Gleysols

Humidity

See Environments, Animal

See Environments, Plant

See Meteorology

Hybrid Breeding -nonspecific

See Genetics

Hydraulics

See Water Movement

Index

See

Hydrolytic Enzymes -general

See Enzymes

Hydroponic Studies

See Environments, Plant

Hygromas Bursitis

See Animal Pathology

Hymenoptera

See Insecta

Hyphomycetes

See Fungi

Hydrogen Cyanide

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Nutritive Value of Food; Pulse Crops; Tryptophane;9.0177

CASSAVA BREEDING ... Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Phytopathology;9.0182

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Chemical Analysis of Food; Fruits; Manihot; Organic Acids; Root Crops; Starch;9.0213

Hydrolytic Enzymes -general

See Enzymes

Hydroponic Studies

See Environments, Plant

Hygromas Bursitis

See Animal Pathology

Hymenoptera

See Insecta

Hyphomycetes

See Fungi

Hydrogen Cyanide

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Nutritive Value of Food; Pulse Crops; Tryptophane;9.0177

CASSAVA BREEDING ... Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Phytopathology;9.0182

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Chemical Analysis of Food; Fruits; Manihot; Organic Acids; Root Crops; Starch;9.0213

Immunity

IMMUNE RESPONSE TO NEWCASTLE DISEASE VACCINES ... Chicken, Domestic; Evaluation, Efficacy; Globulins; Hemagglutination Inhibition; Newcastle Disease; Viral Vaccines;3.0024

DISEASES OF THE RED GOAT ... Evaluation, Efficacy; Rinderpest; Veterinary Medicine;8.0004

CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF 'PEC' TISSUE VACCINE ... Blood and Lymph System; Pneumonia; Sheep Husbandry; Vaccines; Veterinary Medicine;9.0019

RINDERPEST PROPHYLAXIS - ESTABLISHMENT OF A THERMO-RESISTANT VACCINE ... Prophylaxis; Pseudomyxoviruses; Rinderpest; Veterinary Medicine; Viral Vaccines;11.0096
SUBJECT INDEX

Insect Pheromones
See Pheromones & Sex Attractants

Insect Resistance
See Plant Resistance

Insect Utilization
See Entomology, Applied

Insect Viruses - other
See Viruses, Animal

Insects

STUDY OF THE PARASITISM OF THE COTTON PLANT... Fiber Crops; Habitat Studies; Population Dynamics; ... 1.0043
EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS... Endrin; Prophentho; Phoxvel; Thiodan; ... 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS... DDT; Fiber Crops; Prophentho; Phoxvel; Thiodan; Zectran; ... 1.0047
INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS... Dystric Nitosols; Endrin; Gardona; Humid 6 Moor; Less; Pesticides - other; Synergism and Synergists; ... 1.0049
EXPERIMENT ON STARTING INSECTICIDAL TREATMENT OF THE COTTON PLANTS AT A WARNING SIGN... Fiber Crops; Insecticides - nonspecific; Timing - other; ... 1.0050
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS... DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; ... 3.0005
INSECT INFESTATION AND DAMAGE OF MAIZE... Insecticides - nonspecific; Managing Maize; Population Dynamics; Surveys; ... 3.0013
STUDY OF RICE PESTS... Barriers & Weirs; Cereal Crops; Managing Barriers & Weirs; Rodentia - other; ... 5.0014
CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALI... DDT; Endrin; Fiber Crops; Phosalone; Sequential, Daily, Weekly, Etc; ... 6.0080
INSECTICIDE TREATMENT OF COTTON CROPS AFTER WARNING SIGNS... Fiber Crops; Insecticides - nonspecific; Pesticides - other; ... 6.0083
TESTING OF PREPARATIONS FOR PHYTOSANITARY PROTECTION ON COTTON... DDT; Fiber Crops; Parathion; Synergism and Synergists; ... 8.0001
VARIETAL RESISTANCE OF RICE TO THE MAJOR PESTS... Breeding & Genetics; Insect Resistance; ... 9.0016
SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES... Plant Breeding & Genetics; Plant Pathology; Plant Pest Management; Surveys; ... 9.0090
INSECT PESTS ON FLOWERS, SEEDS AND SEEDLING OF FOREST TREES... Forestry Insects; Khaya; Management; Quarantine &/or Inspection; Surveys; ... 9.0094
STUDIES ON TREE CROP REHABILITATION... Cocos; Management; Plant Breeding & Genetics; Plant Pest Management; Surveys; ... 9.0119
THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity; ... 9.0129
INSECTICIDE EVALUATIONS ON SOYBEANS... (GLYCINE MAX)... Eutric Cambisols; Fiber Luvicolls; Glycine Max; Insecticides - nonspecific; Oilseed Crops; Phytotoxicity; ... 9.0149
GRAIN LEGUMES ENTOMOLOGICAL INVESTIGATIONS... Cajanus; Continuous Humid 7 Months; Plu; Ferric Luvicolls; Oilseed Crops; Phoxvel; Surveys; ... 9.0170
YAMS ENTOMOLOGY... Ferralic Cambisols; Ferric Luvicolls; Vegetables; ... 9.0189
STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT UTILISSIMA)... Bacterial Wilt; Manihot; Phytopathology; Taxonomy, Plant; Vegetables; Xanthomonas; ... 9.0220
CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRIGATED RICE... Cereal Crops; Economics of Chemical Control; ... 9.0255

Coleoptera

THE INSECT PESTS OF THE OIL PALM IN NIGERIA... Hemiptera; Lepidoptera; Oilseed Crops; Pests; Population Dynamics; Surveys; ... 9.0027
THE INSECT PESTS OF THE COCONUT PALM IN NIGERIA... Cocos; Hemiptera; Lepidoptera; Oilseed Crops; Pests; Surveys; ... 9.0029

Bruchidae

A STUDY OF THE ECOLOGY, BIOLOGY, & CONTROL OF THE GROUNDNUT SEED BEETLE... Biological Control; Host Preference, Host-insect; Insecticides - nonspecific; Oilseed Crops; ... 2.0007
SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK... Cereal Crops; Curculionidae; Insect Resistance; Pulse Crops; Stored Grain Insects; ... 3.0215

Chrysomelidae

PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA... Ferric Luvicolls; Insect Resistance; Pests; Seed Bank; Systemic Application; ... 9.0017

Coccinellidae

PROJECT ON ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARIAN PESTS OF FRUIT CROPS... Cambic Arenosols; Diapriidae; Insecticides - nonspecific; Population Dynamics; Rearing of Insects; Wm. Tp Monsoon Desert; ... 7.0001

Coleoptera - other

STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA... Forestry Insects; Population Dynamics; Scolytidae; Surveys; ... 3.0092
TO SURVEY FIELD PESTS OF RICE IN NIGERIA... Cereal Crops; Curculionidae; Surveys; ... 9.0013
SURVEY AND CONTROL OF INSECT PESTS ON TIMBER... Forestry Insects; Taxonomy, Animal; ... 9.0091
INSECTICIDAL CONTROL OF YAM BEETLE... Timing of Application; Vegetables; ... 9.0262

Curculionidae

STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA... Digenes; Forestry Insects; Surveys; Terminalia; Triphloeon; ... 3.0094
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS... Barriers & Weirs; Control of Nuisance Species;
SUBJECT INDEX

Insecta

- **BOVINE OCULAR THELAZIOSIS - AETIOLOGY** -nonspecific; Bovine Ocular Thelaziosis; Epidemiology of Disease; Veterinary Medicine;... 11.0088
- **TRYPANOSOMIASIS - CONTROL CAMPAIGN AGAINST THE VECTORS** - Dieldrin; Surveys; Trypanosoma; Trypanosomiasis; Veterinary Entomology; Veterinary Medicine;... 11.0092
- **TRYPANOSOMIASIS - ENTOLOGOLOGICAL STUDY OF THE VECTORS** - Hippoboscidae; Tabanidae; Taxonomy, Animal; Trypanosoma; Veterinary Entomology; Veterinary Medicine;... 11.0094
- **BIOLGICAL CONTROL OF GLOSSINA SPECIES** - Cesium, Sterile Release; Veterinary Entomology;... 14.0043

Tephritidae

- **MARKING INSECT PREDATORS OF FOOD COMMODITIES** - Cereal Crops; Oilsseed Crops; Population Dynamics; Pulse Crops; Radioactive isotopes; Surveys;... 8.0010

Auchenorrhyncha

- **STUDIES ON AMBROSIA BEETLE POPULATIONS IN THE FOREST ZONES OF GHANA** - Coleoptera -other; Forestry Insects; Population Dynamics; Surveys;... 3.0092

Dactylopiidae

- **THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS** - Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd's; Storage;... 3.0021

Hippoboscidae

- **STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L) WALP)** - Blight Diseases; Pulse Crops; Vectors; Xanthomonas;... 9.0215

Coccinellidae

- **DEVELOPMENT OF MEDIUM MATURE, SHORT STATURE, HIGH YIELDING SORGHUM VARIETIES OF ACCEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE** - Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months, Plus; Insect Resistance; Smuts; Sorgum Vulgare (Grain);... 3.0017

Diploptera

- **STUDIES ON THE DISEASES OF FOOD CROPS • THEOBRUMAE CACAO • THE RAPHIA PALM IN NIGERIA • INSECT PESTS ON COTTON • ENTOMOLOGICAL FAUNA OF THE FOREST SAVANNAH IN GHANA • BEHAVIOURAL RESPONSES TO TRYPANOSOMIASIS** - Disease Resistance; Dry Two Humid Seasons; Insect Resistance; Population Dynamics; Smuts; Tree Insects;... 3.0018

Coccinellidae

- **FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS** - Beverages; Crop Protection; Foliar Application; Management; Non-vegetable Crops;... 4.0013

Hippoboscidae

- **INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON** - Economics of Chemical Control; Gelechiidae; Nocuidae; Surveys; Trap Crops;... 3.0132

Hemiptera

- **BIOGENETIC STUDY OF INSECT MARAUDERS OF COTTON IN THE IVORY COAST** - Habitat Studies; Host Preference, Selectivity of Pesticides;... 3.0134

Coccinellidae

- **TRYPANOSOMIASIS - ENTOLOGOLOGICAL STUDY OF THE VECTORS** - Breeding & Genetics; Pulse Crops; Seed Bank; Systemic Application;... 9.0215

Hemiptera

- **BIOLOGICAL RESEARCH STUDIES ON MIRID OF COCOA** - DISTANTIETTA THEOBROMAE - Bacteria; Disease -biocontrol; Entomology, Physiology; Host Preference, Host-insect; Rearing of Insects;... 4.0006

Coccinellidae

- **BIO-ECOLOGY OF THE COCOA MIRID** - Beverages; Crop Protection; Entomology, Physiology; Factors Affecting Insect Pop.; Moisture Deficiency; Population Dynamics; Sex Ratio;... 9.0130

Hemiptera

- **CONTROL OF MIRIDS ON COCOA** - Beverages; Crop Protection; Insecticides -nonspecific; Selectivity of Pesticides;... 9.0131

Pentatomidae

- **BIOLOGICAL AND ECOLOGICAL RESEARCH WORK ON THE ENTOLOGOLOGICAL FAUNA OF THE HERBACEOUS SWARD OF A PRE-FOREST SAVANNAH** - Energy Budgets; Forests; Mantidae; Population Dynamics; Surveys;... 4.0006

Aleyrodidae

- **IDENTIFICATION OF DISEASES OF FOOD CROPS - MANIOC (CASSAVA) AND YAMS** - Electron Microscopy; Manihot; Phytopathology; Vectors;... 4.0076

Aphididae

- **NATURAL CROSSING IN KENAF IN GHANA** - Breeding & Genetics; Continuous Humid 7 Months,Plus; Halicidæ;... 3.0140
Insecta

<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecta</td>
</tr>
<tr>
<td>Biogenetic study of insect marauders of cotton in the ivory coast...Habitat Studies; Homoptera -other; Migration;...4.0062</td>
</tr>
<tr>
<td>Screening of maize germplasm for resistance to insect pests...Breeding & Genetics; Cereal Crops; Crambidae; Insect Resistance;...9.0257</td>
</tr>
<tr>
<td>Cicadeidae</td>
</tr>
<tr>
<td>Development of improved rice varieties...Blast; Breeding & Genetics; Cold Resistance; Homoptera -other; Phytopathology; Seed Bank;...10.0007</td>
</tr>
<tr>
<td>Coccidae</td>
</tr>
<tr>
<td>Pineapples - phytosanitary protection...Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons;...4.0149</td>
</tr>
<tr>
<td>PESTS OF CITRUS...Citrus; Ecology; Animal; Fruits and Berries; Nocotidae;...9.0259</td>
</tr>
<tr>
<td>Diapriidae</td>
</tr>
<tr>
<td>Pineapples - phytosanitary protection...Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons;...4.0149</td>
</tr>
<tr>
<td>Project on adapted control measures against the insect and acarid pests of fruit crops...Cactac Ambrosia; Insecticidal Specifict; Population Dynamics; Rearing of Insects; Win. Tp Monsoon Desert;...7.0001</td>
</tr>
<tr>
<td>Homoptera -other</td>
</tr>
<tr>
<td>Biogenetic study of insect marauders of cotton in the ivory coast...Habitat Studies; Migration;...4.0062</td>
</tr>
<tr>
<td>Biology, ecology and control of rice insect pests...Behavioral Ecology; Crambidae; Habitat Studies; Insect Resistance; Predators -biocontrol; Surveys;...10.0003</td>
</tr>
<tr>
<td>Development of improved rice varieties...Blast; Breeding & Genetics; Cold Resistance; Phytopathology; Seed Bank;...10.0007</td>
</tr>
<tr>
<td>Psocococcidae</td>
</tr>
<tr>
<td>Enzymes and their variation in insect pests of cocoa...Cholinesterase; Entomology; Physiology; Gel Electrophoresis; Phosphatase -non-specific;...3.0065</td>
</tr>
<tr>
<td>Cassava entomology...Continuous Humid 7 Months;...Plus; Feric Livisolo; Insect Resistance; Mosaic Viruses; Vectors;...9.0187</td>
</tr>
<tr>
<td>Psyllidae</td>
</tr>
<tr>
<td>Studies on the bionomics of potentially dangerous insects attacking indigenous plantations of accepted export timber species...Chloropha; Foresr; Population Dynamics; Pyralidae; Terminalia;...3.0093</td>
</tr>
<tr>
<td>Study the resistance of 6 high-amazonian hybrids to mesohomotoma tessmanii - a jumping plan louse of the cacao-tree...Beverage Crops; Insect Resistance;...4.0135</td>
</tr>
<tr>
<td>Hymenoptera</td>
</tr>
<tr>
<td>Hymenoptera</td>
</tr>
<tr>
<td>Apidae</td>
</tr>
<tr>
<td>Improvement of techniques for production of hybrids of coconut palm...Breeding & Genetics; Cocos; Pollination by Bees; Seed Production;...4.0312</td>
</tr>
<tr>
<td>Chalcididae</td>
</tr>
<tr>
<td>Enemies of rice - establishment of techniques for rearing...Cereal Crops; Entomology; Physiology; Humid 2 Months; Insecta -other; Parasites -biocontrol; Rearing of Insects;...11.0018</td>
</tr>
<tr>
<td>Formicidae</td>
</tr>
<tr>
<td>Survey of parasites and predators of maruca testulalis and laspeyresia ptychora...Olethreutidae; Parasites -biocontrol; Predators -biocontrol; Pulse Crops;...9.0269</td>
</tr>
<tr>
<td>Halictidae</td>
</tr>
<tr>
<td>Natural crossing in kenaf in ghana...Breeding & Genetics; Continuous Humid 7 Months.Plus;...3.0140</td>
</tr>
<tr>
<td>Ichneumonidae</td>
</tr>
<tr>
<td>Study of the borers of millet - acigona igenusalis...Cereal Crops; Lepidoptera -other; Parasites -biocontrol;...11.0069</td>
</tr>
<tr>
<td>Trichogrammatidae</td>
</tr>
<tr>
<td>Biological control of insect parasites of the cotton plant...Fiber Crops; Lepidoptera; Predators -biocontrol; Rearing of Insects;...6.0082</td>
</tr>
</tbody>
</table>

Insecta -other

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of the borer of the meliaceae - hyspsiphylla robusta (moore)...Forestry Insects; Insecticides -non-specific; Khaya; Parasites -biocontrol; Population Dynamics;...4.0085</td>
</tr>
<tr>
<td>Biology of coelae menodora elaeidis, oil palm pest...Oilseed Crops; Population Dynamics; Rearing of Insects;...4.0304</td>
</tr>
<tr>
<td>Application of methods of chemical control against coelae menodora elaeidis for oil palm protection...Folar Application; Maturity & Growth Stages; Oilseed Crops; Parasites -biocontrol; Predators -biocontrol;...4.0305</td>
</tr>
<tr>
<td>Rearing of coelae menodora elaeidis in an artificial environment...Oilseed Crops; Parasites -biocontrol; Rearing of Insects;...4.0306</td>
</tr>
<tr>
<td>Methods of biological control of coelae menodora elaeidis...Breeding & Genetics; Disease Resistance; Insect Resistance; Irrigation -general; Timing of Planting Procedures;...6.0001</td>
</tr>
<tr>
<td>Integrated control of earias species...Fiber Crops; Irrigation -general; Predators -biocontrol; Rearing of Insects;...6.0302</td>
</tr>
<tr>
<td>Acquired resistance of predators to insecticides...Fiber Crops;...4.0681</td>
</tr>
<tr>
<td>Breeding for resistance to various pests and diseases...Chlorophora; Insect Resistance; Nauclea; Terminalia;...9.0076</td>
</tr>
<tr>
<td>Taxonomy, biology and control of borers of meliaceae...Forestry Insects; Meliaceae -other; Taxonomy, Animal;...9.0092</td>
</tr>
<tr>
<td>Insect pests of coffee in nigeria...Beverage Crops; Surveys;...9.0149</td>
</tr>
<tr>
<td>Insect pests associated with cashew in nigeria...Nuts; Pests; Surveys; Taxonomy, Animal; Thysanoptera;...9.0152</td>
</tr>
<tr>
<td>Study of sorghum gall-midge - contarinia sorghicola...Cereal Crops; Insect Resistance; Phenology, Life Cycle; Sorghum Vulgar (Grain);...11.0016</td>
</tr>
<tr>
<td>Enemies of rice - establishment of techniques for rearing...Cereal Crops; Chalcidae; Entomology; Physiology; Humid 2 Months; Parasites -biocontrol; Rearing of Insects;...11.0018</td>
</tr>
<tr>
<td>Virecence (a disease) of the cotton plant...Fiber Crops; Phytopathology; Pleurophomoeus Group; Taxonomy, Animal, Vectors; Virecence;...14.0077</td>
</tr>
</tbody>
</table>

Isoptera

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation of small sized timber against fungal and termite attack...Fences; Gummosa; Pesticides -other; Wood Preservation & Seasoning;...3.0109</td>
</tr>
<tr>
<td>Investigations into the bionomics and control of insect pests on sugar cane...Crambidae; Dip Application; Saccharum;...3.0113</td>
</tr>
<tr>
<td>The natural resistance of ghanaian timbers to termite attack...Forestry Insects; Leguminosae -other; Glococoe;...3.0233</td>
</tr>
<tr>
<td>Termite ecology at fumesua, ghana...Factors Affecting Insect POP; Forests; Population Dynamics; Soil Environment;...3.0234</td>
</tr>
<tr>
<td>A study of the factors affecting the resistance of terminalia ivorenensis to termite attack...Forestry Insects; Insect Resistance; Parenchyma; Tensile Strength; Terminalia;...3.0235</td>
</tr>
<tr>
<td>Effect of removal, partial removal and non-removal of polythene pots on plantation species...Eucalyptus; Forestry Insects; Humid 4 Months; Pine; Planting Methods -other; Silviculture;...9.0348</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Insecta

Biology and control of cereal stem borers (Lepidoptera) ... Continuous humid 7 months; plus; Economics of Chemical Control; Multiple cropping; Parasites - biocontrol; Sevin; ... 3.0136

Study the attractiveness of plant material to the nocturnal moth of the caacoo-tree - Earias biplaga ... Beverages; host preference; host-insect; insect resistance; Krundt; ... 4.0134

Biological control of Heliotis armigera ... Disease - biocontrol; fiber crops; isolation of viruses; multiplication & replication; Polyhedrosis viruses; rearing of insects; ... 4.0278

Chemical control of the Lepidoptera parasitic on the cotton pod in the ivory coast ... Biosays; gelechiidae; Lepidoptera - other; Olethreutidae; ... 4.0281

Pests of Citrus ... Citrus; Cocciidae; ecology; animal; fruited; and berries; ... 9.0259

Olethreutidae

Research into methods for the integrated control of cotton pests in Dahomey ... Behavioral ecology; Dysmic nitols; fiber crops; insect viruses - other; integrated control; ... 1.0448

Integrated control of Cryptophlebia, by addition of viruses to the chemical insecticides ... Disease - biocontrol; fiber crops; humid 6 m or less; mode of action; pepirothion; ... 3.051

Biological control of Cryptophlebia leucotreata ... Disease - biocontrol; fiber crops; granulosis viruses; multiplication & replication; polyhedrosis viruses; rearing of insects; ... 4.0277

Sexual attraction in Cryptophlebia leucotreata ... Bait traps; entomology, applied; insect pheromones; ... 4.0280

Chemical control of the Lepidoptera parasitic on the cotton pod in the ivory coast ... Biosays; gelechiidae; Lepidoptera - other; ... 4.0281

Screening of Germlasm for insect resistance ... Breeding & genetics; insect resistance; phytoxicidae; Pulse crops; ... 9.0266

Survey of Parasites and Predators of Marucia, testulalis and laspeyresia ptychora ... For­ micidae; Parasites - biocontrol; predators - biocontrol; Pulse crops; ... 9.0269

Insecticidical control of cowpea pests ... LIndane; maturity or growth stage; Pulse crops; sequential, daily, weekly, etc; ... 9.0270

Phycitidae

Pest control on cowpeas - vigna ungulicalata ... Chrysomelidae; ferric luvisols; insect resistance; pests; Seed bank; systemic application; ... 9.0171

Screening of germlasm for insect resistance ... Breeding & Genetics; insect resistance; olethreutidae; Pulse crops; ... 9.0266

Pyralidae

Studies on the biomics of potentially dangerous insects attacking indigenous plantations of accepted export timber species ... Chlorophora; forests; population dynamics; terminalia; ... 3.0993

Pyraustidae

Development of improved cropping patterns for small asian rice farms ... Cereal crops; intercropping; management; Phaseolus; rain; ... 10.0011

Saturniidae

Production of Silk in Nigeria ... Industrial use of invertebrate; insect utilization; rearing of insects; ... 9.0260

Orthoptera

Acrididae

Biological and ecological research work on the entomological fauna of the herbaceous sward of a pre-forest savannah ... Energy budgets; forests; mantidae; population dynamics; surveys; ... 4.0061

Cassava entomology ... Continuous humid 7 months; plus; Ferric luvisols; insect resistance; Mosaic viruses; Pseudo­ cocciidae; vectors; ... 9.0187

Noctuidae

Research into methods for the integrated control of cotton pests in Dahomey ... Behavioral ecology; Dysmic nitols; fiber crops; insect viruses - other; integrated control; Olethreutidae; ... 1.0448

Investigations into biomics and control of insect pests on cotton ... Economics of chemical control; gelechiidae; surveys; trap crops; ... 3.0132

Lepidoptera

Biological control of insect parasites of the cotton plant ... Fiber crops; predators - biocontrol; rearing of insects; Trichogrammatidae; ... 6.0002

The insect pests of the oil palm in Nigeria ... Coleoptera; Hemiptera; oleseed crops; pests; population dynamics; surveys; ... 9.0266

The insect pests of the coconut palm in Nigeria ... Cocos; Coleoptera; Hemiptera; oleseed crops; pests; surveys; ... 9.0309

The insect pests of the rapha palm in Nigeria ... Hemiptera; oleseed crops; pests; surveys; ... 9.0310

Arctiidae

Pests of eupatorium odoratum ... Eupatorium; ornamentals; parasites - biocontrol; rearing of insects; ... 9.0258

Crambidae

Investigations into the biomics and control of insect pests on sugar cane ... Dip application; isopota; saccharum; toxaphene; ... 3.0135

Biological and control of cereal stem borers (Lepidoptera) ... Continuous humid 7 months; plus; economics of chemical control; multiple cropping; parasites - biocontrol; Sevin; ... 3.0136

Collection of varieties for the pluvial ricefields ... Breeder stock; cereal crops; insect resistance; prisculanta; seed bank; ... 4.0160

Inventory of the insects harmful to rice in mali and evaluation of the losses ... cereal crops; Insecticides - nonspecific; pests; rearing of insects; ... 6.0058

To survey field pests of rice in nigeria ... cereal crops; coleoptera - other; surveys; ... 9.0013

To study the biology and ecology of different species of rice stem borers ... cereal crops; habitat; studies; ... 9.0041

To control field pests of rice - (1) evaluation of different insecticides ... Biological control; cereal crops; Insecticides - nonspecific; integrated control; surveys; ... 9.0015

Screening of maize germplasm for resistance to insect pests ... Breeding & genetics; cereal crops; insect resistance; ... 9.0257

Pests of sugar cane ... Outbreaks of insects; saccharum; sugar crops; surveys; ... 9.0263

Biology, ecology and control of rice insect pests ... Behavioral ecology; habitat studies; insect resistance; predators - biocontrol; surveys; ... 10.0003

Gelechiidae

Investigations into biomics and control of insect pests on cotton ... Economics of chemical control; noctuidae; surveys; trap crops; ... 3.0132

Chemical control of the Lepidoptera parasitic on the cotton pod in the ivory coast ... Biosays; gelechiidae; Lepidoptera - other; Olethreutidae; ... 4.0281

Lepidoptera - other

Studies on the biomics of potentially dangerous insects attacking indigenous plantations of accepted export timber species ... Chlorophora; forests; population dynamics; pyla­ridae; terminalia; ... 3.0993

Chemical control of the Lepidoptera parasitic on the cotton pod in the ivory coast ... biosays; gelechiidae; Olethreutidae; ... 4.0281

Study of biology and control of borers ... For­ estry insects; naucela; population dynamics; surveys; termi­ nalia; triplochiton; ... 9.0093

Study of the borers of millet - acigona ignefusalis ... Cereal crops; Ichneumonidae; parasites - biocontrol; ... 11.0069
N.P.K. FACTORIALS - FERTILIZER TRIAL IN SUGARCANE... FORMULATION, FERTILIZER; IRRIGATION; MANAGEMENT; SACHARUM; Two Humid Seasons - 7 Month, Plus... 3.0112

FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA... MANAGEMENT; NITROGEN Fixation; Phosphorus; Soil pH; Timing of Application... OTHER... 3.0218

VARIATION IN THE FOOD VALUE OF FORAGE PLANTS ACCORDING TO THE RHYTHM OF PRODUCTION... Cellulose, Panicum; Stylosanthes; 4.0028

STUDY OF THE ESTABLISHMENT OF PASTURES OF PANICUM MAXIMUM... BREEDING & GENETICS; MANAGEMENT; NITROGEN Fixation; Continuous Humid; Herbicides - nonspecific; MANAGEMENT; Stylosanthes; 4.0030

SUSCEPTIBILITY OF SOILS TO EROSION AND EVOLUTION OF THEIR STABILITY UNDER MECHANIZED CULTIVATION... HYDRAULICITY OF A WATERSHED... Cover Crops; MANAGEMENT; Effects on Soils; Rain; Rainfall Simulators; July, Rainfall; Watersheds... 4.0041

IRRIGATION OF THE CACAO TREE... IRRIGATION; MANAGEMENT; 4.0087

IRRIGATION OF THE COFFEE-SHRUB... IRRIGATION, MANAGEMENT; 4.0088

REQUIREMENTS IN WATER OF IRRI GATED CROPS... BROMELIAEACEAE; CONSUMPTIVE USE; NUCLEAR MOISTURE METERS; Two Humid Seasons... 4.0091

DETERMINATION OF SOIL CHARACTERISTICS FOR IRRI GATION... IRRIGATION; PLANT REQUIREMENTS - water; SOIL TYPES; Two Humid Seasons... 4.0092

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR RIGATED RICE-FIELDS... CEREAL CROPS; MANAGEMENT; PHENOLOGY, LIFE CYCLE; PHYSICAL CONTROL; Two Humid Seasons... 4.0093

CHEMICAL WEED DESTRUCTION ON IRRI GATED RICE... CEREAL CROPS; PROPANIL; SILVEX; 4.0094

CONTROL OF BLAST OF THE OIL PALM TREE... BLAST; HABITUAL MANIPULATION-ERADICATE; PHYTOPATHOLOGY; RHIZOCTONIA... 4.0096

VARIETAL EXPERIMENTAL WORK FOR IRRI GATED RICE... BREEDING & GENETICS; CONTINUOUS HUMID; FUNGAL RESISTANCE; PHYTOPATHOLOGY; RHIZOCTONIA; 4.0168

TECHNIQUES FOR PRODUCTION OF RICE SEEDS OF GOOD GERMINATIVE QUALITY... CEREAL CROPS; CONTINUOUS HUMID; HUMIDITY; MANAGEMENT... 4.0170

STUDY THE INFLUENCE OF THE DROUGHT FACTOR ON THE RESISTANCE OF RICE TO PIRICULARIOUSIS... ENV. PLANT DISEASES; RELATION; MANAGEMENT; PHYTOPATHOLOGY; PIRICULARIOUSIS... 4.0189

ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE - MAIZE)... C/N RATIO; DEFINITION; PROCESSES; 4.0196

DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST... CALCIUM - OTHER THAN LIME; EXCESSIVE MOISTURE; OLEIC ACIDS; MAGNESIUM; REMOVAL OF NUTRIENTS FROM SOIL; SOIL FERTILITY; 4.0202

CHEMICAL WEED DESTRUCTION ON IRRI GATED RICE... CEREAL CROPS; HAND TILLAGE; PRICKING OUT; SELECTIVITY OF PESTICIDES; 4.0205

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR RIGATED RICE-FIELDS... CEREAL CROPS; HUMID 5 MONTHS; MANAGEMENT; PHENOLOGY; LIFE CYCLE; PHYSICAL CONTROL; 4.0206

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR RIGATED RICE-FIELDS... CEREAL CROPS; HUMID 5 MONTHS; MANAGEMENT; PHENOLOGY; LIFE CYCLE; PHYSICAL CONTROL; 4.0209

CHEMICAL WEED DESTRUCTION ON IRRI GATED RICE... CEREAL CROPS; HUMID 5 MONTHS; PRICKING OUT; SELECTIVITY OF PESTICIDES; 4.0210

ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE)... C/N RATIO; FERRALIC CAMBIOSOLS; MANAGEMENT; PLANTS; RESIDUES - OTHER; TWO HUMID SEASONS - 7 MONTH PLUS; 4.0214

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR RIGATED RICE-FIELDS... CEREAL CROPS; CULTURAL CONTROL; FERRALIC CAMBIOSOLS; MANAGEMENT; PHENOLOGY, LIFE CYCLE; TWO HUMID SEASONS - 7 MONTH PLUS; 4.0216

CHEMICAL WEED DESTRUCTION ON IRRI GATED RICE... CEREAL CROPS; HAND TILLAGE; PRICKING OUT; SELECTIVITY OF PESTICIDES; TWO HUMID SEASONS - 7 MONTH PLUS; 4.0217

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE... CEREAL CROPS; HAND TILLAGE; PRICKING OUT; SELECTIVITY OF PESTICIDES; 4.0219

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR RIGATED RICE-FIELDS... CEREAL CROPS; CONTINUOUS HUMID 7 MONTHS; PLUS; CULTURAL CONTROL; MANAGEMENT; PHENOLOGY, LIFE CYCLE; 4.0220

CHEMICAL WEED DESTRUCTION ON IRRI GATED RICE... CEREAL CROPS; HAND TILLAGE; PRICKING OUT; SELECTIVITY OF PESTICIDES; 4.0221

VARIETAL IMPROVEMENT OF COTTON... Breeding & Genetics; Inter-specific Cross; Plant Parts Bank; Tensile Strength; 4.0260

ACTION OF GROWTH-REGULATORS ON THE COTTON PLANT - SUBSTANCES WHICH INHIBIT GIBBERELLINS... GROWTH REGULATION OF PLANTS; MANAGEMENT; MODE OF ACTION; PARASITE - OTHER; PLANT GROWTH REGULATORS; 4.0276

STUDY THE NUTRITION OF THE OIL PALM IN WATER... IRRIGATION; MANAGEMENT; MOISTURE DEFICIENCY; 4.0298

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS... Blast; INTERACTION WITH ENVIRONMENT; MANAGEMENT; NUTRITIONAL REGULATION (HOST); PRICKING OUT; TEMPERATURE AIR; 4.0300

STUDY OF WEEDS IN IRRI GATED RICE... CEREAL CROPS; ECONOMICS OF CHEMICAL CONTROL; HERBICIDES - NONSPECIFIC; MANAGEMENT; 4.0501

EXPERIMENTAL WORK WITH VARIETIES OF THE COTTON PLANT GOSPYRUM BARDESENE... BREEDING & GENETICS; DISEASE RESISTANCE; INSECT RESISTANCE; INSECTS - OTHER; TIMING OF PLANTING PROCEDURES; 4.0001

INTEGRATED CONTROL OF ERIAS SPECIES... FIBER CROPS; INSECTS - OTHER; PREDATORS - BIOCONTROL; REARING OF INSECTS; 4.0006

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Guinean Zone... Eutric Fluvisols; Humid 4 Months; Mangifera; Passiflora; Padium... 4.0007

CONTROL OF WEEDS ON IRRI GATED RICE-FIELDS... PARTICULARLY ISCAEMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS... GRASSES & SEDGES; HUMID 1 MONTH; ORYZA - OTHER; 4.0050

WATER REQUIREMENTS OF IRRI GATED CROPS... HUMID 1 MONTH; MANAGEMENT; SOIL MOISTURE; 4.0092

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Passiflora... 4.0008

CULTIVATION OF FORAGE CROPS... ECHINOCHLOA; MANAGEMENT; 4.0087

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY)... CHROMIC CAMBIOSOLS; CONSUMPTIVE USE; HUMIDITY; IRRIGATION; LUVIC ARENOSOLS; SOIL-WATER PLANT RELATIONSHIPS; 8.0008

IMPROVEMENT OF TILLAGE IN IRRI GATED RICE-FIELDS... HUMID 3 MONTHS; MANAGEMENT; SOIL TILLAGE... 4.0025

FERTILIZATION OF IRRI GATED RICE... HUMID 2 MONTHS; MANAGEMENT; SOIL FERTILITY; 4.0026

VARIETAL EXPERIMENTS WITH RICE... BREEDING & GENETICS; Eutric Fluvisols; Humid 2 MONTHS; Multiple Cropping... 4.0027

IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION)... Back Cross; Breeding & Genetics; CLAY; HUMID 3 MONTHS; MALE STERILITY; SORGHUM VULGARE (GRAIN); 8.0033

VARIETAL EXPERIMENTS ON COTTON IN IRRI GATED CULTIVATION... Eutric Fluvisols; Humid 1 Month; Luvic ARENOSOLS; MANAGEMENT; 8.0041

IRRIGATION SYSTEM DESIGN - HYDROLOGIC CHARACTERIZATION OF SMALL WATERSHEDS IN THE HUMID TROPICS... FERTILIZER LOSSES; LYMETERS; SUBSURFACE RUNOFF; WATER CYCLE; WATERSHEDS; 9.0160

SOIL MOISTURE AND THE GROWTH OF THE OIL PALM... IN THE ACID SAND SOILS OF SOUTHERN NIGERIA... CLAY; MANAGEMENT; PASSM; SAND; 9.0294

EXPERIMENT 765-1: FIELD IRRIGATION OF OIL PALMS... IRRIGATION; MANAGEMENT; MOISTURE LEVELS; Muiches... 9.0308

THE OIL PALM BLAST DISEASE AND ITS CONTROL... BENITE; BREEDING & GENETICS; FUNGAL RESISTANCE; RHIZOCTONIA; TERRACHLOR; VAPAM... 9.07

AGROMONIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE... BENITANZ, D 2.4; Drought... 341
Irrigation

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance; Grass -nonspecific; Pesticides -other; Rain; ...</td>
</tr>
<tr>
<td>IDENTIFICATION AND ALEVIATION OF ON-FARM CONSTRAINTS TO INCREASED RICE PRODUCTION ... Cereal Crops; Management; Rain; Technological Development; ...10.0002</td>
</tr>
<tr>
<td>DEVELOPMENT OF IMPROVED CROPPING PATTERNS FOR SMALL ASIAN RICE FARMS ... Cereal Crops; Intercropping; Management; Phasedsus; Rain; ...10.011</td>
</tr>
<tr>
<td>STUDY OF WATER REQUIREMENTS OF COTTON UNDER IRRIGATION ... Hot Equatorial or Hot Tropical; Irrigation; Management; ...11.0004</td>
</tr>
<tr>
<td>EXPERIMENTS WITH MAIZE AND SORGHUM ... Hot Equatorial or Hot Tropical; Irrigation; Management; Sorghum Vulgare (Grain); ...11.0005</td>
</tr>
<tr>
<td>RESEARCH ON WHEAT AND BARLEY ... Baking Food; Hordeum Vulgare; Irrigation; Management; Triticum; ...11.0006</td>
</tr>
<tr>
<td>IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY ... Hot Equatorial or Hot Tropical; Irrigation; Management; ...11.0007</td>
</tr>
<tr>
<td>WATER REQUIREMENTS OF IRRIGATED CROPS ... Irrigation; Lysimeters; Management; Nuclear Moisture Meters; Soil Moisture; Sorghum Vulgare (Grain); ...11.0010</td>
</tr>
<tr>
<td>FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS ... Glycine Max; Lime; Management; Nitrogen; Nitrogen Fixation; Phosphorus; ...11.0074</td>
</tr>
<tr>
<td>CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRRIGATED RICE ... Cereal Crops; Economics of Chemical Control; Humid 2 Months; Insects; Insecticides -nonspecific; ...11.0135</td>
</tr>
<tr>
<td>INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER ... Humidity; Irrigation; Shelter Belts, Windbreaks; Soil Moisture; Temperature -air; Wind or Air Movement; ...14.0005</td>
</tr>
<tr>
<td>UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS ... Glycine Max; Lycopersicum; Management; Multiple Cropping; Sesamum; ...14.0011</td>
</tr>
<tr>
<td>Mist Irrigation</td>
</tr>
<tr>
<td>GROWING EUCALYPTUS FROM CUTTINGS ... Eucalyptus; Humid 1 Month; Light Quantity or Intensity; Luvic Arenosols; Silviculture; Soil Environment -other; ...8.0019</td>
</tr>
<tr>
<td>Sprinkler Irrigation</td>
</tr>
<tr>
<td>ADAPTATION TRIAL ON VEGETABLE CROPS ... Brassica Oleracea; Cucurbita; Lactuca; Management; ...7.0005</td>
</tr>
<tr>
<td>NURSERY EXPERIMENT WITH FOREST TREES ... Humid 1 Month; Luvic Arenosols; Nursery Observational Plots; Silviculture; ...8.0018</td>
</tr>
<tr>
<td>EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE (CANNA) ... Eutric Cambisols; Humid 1 Month; Management; Saccharum; Vertic Cambisols; ...8.0022</td>
</tr>
<tr>
<td>Surface Irrigation -general</td>
</tr>
<tr>
<td>VARIETAL EXPERIMENTS WITH IRRIGATED COTTON ... Lodging; Management; Space Competition; Timing of Planting Procedures; ...4.0258</td>
</tr>
<tr>
<td>ADAPTATION TRIAL ON VEGETABLE CROPS ... Brassica Oleracea; Cucurbita; Lactuca; Management; Sprinkler Irrigation; ...7.0005</td>
</tr>
<tr>
<td>CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING ... Humidity; Management; Sand; Seedbed Preparation; Soil Preparation & Renovation; Soil-waterplant Relationships; ...11.0042</td>
</tr>
</tbody>
</table>

Isolation of Viruses

<table>
<thead>
<tr>
<th>See Viral and Rickettsial Studies</th>
</tr>
</thead>
</table>

Isoptera

<table>
<thead>
<tr>
<th>See Insecta</th>
</tr>
</thead>
</table>

Isotopes

<table>
<thead>
<tr>
<th>COFFEE NUTRITION STUDIES ... Management; Removal of Nutrients from Soil; Timing of Application -other; ...9.0147</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKING INSECT PREDATORS OF FOOD COMMODITIES ... Cereal Crops; Dermestidae; Oilseed Crops; Population Dynamics; Pulse Crops; Surveys; ...8.0010</td>
</tr>
</tbody>
</table>

Radioactive Isotopes

<table>
<thead>
<tr>
<th>THE FATE AND POSSIBLE NUTRITIONAL AND TOXICOLOGICAL SIGNIFICANCE OF METHYL BROMIDE RESIDUES IN FUMIGATED COCOA BEANS ... Beverage Crops; Industrial, Structural Insects; Methyl Bromide; Persistence of Residues; Storage; ...3.0216</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGICAL CONTROL OF GLOSSINA SPECIES ... Muscidae; Sterile Release; Veterinary Entomology; ...14.0043</td>
</tr>
<tr>
<td>TOMATO BREEDING ... Breeding & Genetics; Continuous Humid 7 Months; Plus; Disease Resistance; Lycopersicum; Mutation; ...3.0150</td>
</tr>
<tr>
<td>IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS ... Breeding & Genetics; Eutric Gleysols; Humid 4 Months; Mutation; Pincuslaw; ...14.0045</td>
</tr>
<tr>
<td>EVOLUTION OF NITROGEN IN CULTIVATED SOILS ... Continuous Humid; Plant Residues -other; ...4.0197</td>
</tr>
<tr>
<td>ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE) ... C/N Ratio; Ferralic Cambisols; Management; Plant Residues -other; Two Humid Seasons -7 Month; Plus; ...4.0214</td>
</tr>
<tr>
<td>EVOLUTION OF NITROGEN IN CULTIVATED SOILS ... C/N Ratio; Ferralic Cambisols; Nitrogen Cycle; Plant Residues -other; Two Humid Seasons -7 Month; Plus; ...4.0215</td>
</tr>
<tr>
<td>THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NIGERIA GRASS-LAND ASSOCIATIONS ... Management; Placement; ...9.0026</td>
</tr>
<tr>
<td>IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN ... C/N Ratio; Lysimeters; Manure; Plant Residues -other; Soil pH; ...9.0057</td>
</tr>
<tr>
<td>NITROGENOUS NUTRITION OF CEREALS ... C/N Ratio; Humid 3 Months; Management; ...11.0060</td>
</tr>
<tr>
<td>FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS ... Glycine Max; Irrigation -general; Lime; Management; Nitrogen Fixation; Phosphorus; ...11.0074</td>
</tr>
<tr>
<td>THE DISTRIBUTION AND ACTIVITY OF ROOT SYSTEMS OF COCOA ... Management; Placement; Sand - Loam Soil; Seasonal Application; Soil Depth; ...3.0217</td>
</tr>
<tr>
<td>FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA ... Irrigation -general; Management; Nitrogen Fixation; Soil pH; Timing of Application -other; ...3.0218</td>
</tr>
<tr>
<td>THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NIGERIA GRASS-LAND ASSOCIATIONS ... Management; Nitrogen; Placement; ...9.0026</td>
</tr>
<tr>
<td>APPLICATION OF RADIOTRACER TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS ... Continuous Humid 7 Months; Plus; Ferric Acrisols; Ferric Luvisols; Management; Movement; Availability; ...9.0253</td>
</tr>
<tr>
<td>EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM ... Management; Placement; Rubidium; Soil Types; ...9.0311</td>
</tr>
<tr>
<td>FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS ... Glycine Max; Irrigation -general; Lime; Management; Nitrogen; Nitrogen Fixation; ...11.0074</td>
</tr>
<tr>
<td>EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM ... Management; Placement; Phosphorus; Placement; Soil Types; ...9.0311</td>
</tr>
<tr>
<td>USE OF ISOTOPES IN STUDIES ON THE NUTRITION OF GROUNDNUTS ... Broadcast Application; Management; Nitrogen Fixation; ...3.0219</td>
</tr>
<tr>
<td>NITROGEN FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COWPEA ... Irrigation -general; Management; Nitrogen Fixation; Phosphorus; Soil pH; Timing of Application -other; ...3.0218</td>
</tr>
</tbody>
</table>

342
SUBJECT INDEX

Laureaceae

Latex

RUBBER CLONE MUSEUM ... Continuous Humid; Management; ... 3.0047
RUBBER CLONE TRIAL 1965 A AND 1965 B ... Continuous Humid; Disease Resistance; Management; Wind; Wind or Air Movement; ... 3.0049
STUDY OF THE ORGANIC MITOGENOUS CONSTITUENTS OF THE LATEX OF HEVEA BRASILIENSIS ... Chromatography; Cytoplasm; Industrial & New Crops; Laticifers; Nitrogen Metabolism; ... 4.0056
STUDY OF THE MECHANISM OF THE COAGULATION OF THE LATEX OF HEVEA BRASILIENSIS DURING TAPPING ... Industrial & New Crops; Nitrogen; Oxygen; Tyrosine, ... 4.0057
THE ROLE OF THE LUTOIDS IN THE PHYSIOLOGY AND THE FLOW OF THE LATEX OF HEVEA BRASILIENSIS ... Chromatography; Differential Centrifuge; Gel Electrophoresis; Industrial & New Crops; Membranes, Cellular; Ribonucleic Acid; ... 4.0058
STUDY THE LUTOIDS OF THE LATEX OF THE RUBBER TREE - HEVEA ... Breeding & Genetics; Laticifers; Membranes, Cellular; Quality and Utilization; Two Humid Seasons; ... 4.0223
REGENERATION OF THE LATEX OF THE RUBBER TREE AFTERTAPING ... Breeding & Genetics; Deficiencies; Harvest and Storage; Monosaccharides -nonspecific; Translocation; ... 4.0224
TAPPING OF THE RUBBER TREE - STUDY THE FLOW OF THE LATEX ... Breeding & Genetics; Harvest and Storage; Osmotic and Turgor Pressure; Soil Moisture; Solar Light; Two Humid Seasons; ... 4.0225
TAPPING OF THE RUBBER TREE - STUDY OF NEW PREPARATIONS FOR STIMULATION OF PRODUCTION ... Harvest and Storage; Two Humid Seasons; ... 4.0226
IMPROVEMENT OF HEVEA BRASILIENSIS - RESEARCH ON CRITERIA FOR SELECTION ... Breeding & Genetics; Laticifers; Plant Morphology; Two Humid Seasons; Wind; Wind or Air Movement; ... 4.0228
CUMULATIVE TAPPING OF RUBBER TREES ... Costs; Harvest and Storage; Management; Time & Motion Studies; Two Humid Seasons; ... 4.0247
Evaluation of the Properties of the Rubbers of the Ivory Coast - Specification of Rubber ... Composition; Mechanical Properties; Rubber -natural; Two Humid Seasons; ... 4.0253
TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Chemical Materials; Intraspecific Genetic Relations; Mechanical Properties; Processing -general; Two Humid Seasons; ... 4.0254
TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL ... Costs; Physical Properties; Rubber -natural; ... 4.0255
TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS ... Casein; Fillers; Extenders; Quality and Utilization; Rubber -natural; ... 4.0256
TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM ... Drying; Forms -other; Harvest and Storage; Instrumentation, Equipment; Rubber -natural; Two Humid Seasons; ... 4.0257
BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS ... Breeding & Genetics; Disease Resistance; Open Pollination; Tectona; Wind; Wind or Air Movement; ... 5.0003
PINK DISEASE CONTROL IN HEVEA BRASILIENSIS ... Corticium; Fungicides -nonspecific; Phytopathology; Time-release Capsules; ... 5.0007
BLACK THREAD CONTROL WITH DIFOLATAN AND ETHREL ... Black Thread; Difolatan; Ethrel; Phytopathology; Phytophthora; ... 5.0009

Laticifers

See Plant Tissues

Latitude

See Environments, Plant

Lauraceae

See Plants - Dicots

Ixonidae

See Arachnida

Acarina

Jars

See Packing & Container Types

Job Analysis

STRUCTURES FOR USE IN TEAM CULTIVATION ... Farm Enterprises -general; Labor Input; Production -other; Time & Motion Studies; ... 11.0051

Joining & Bolting

See Materials

Kaolinite

See Mineralogy

Khaya

See Plants - Dicots

Meliacae

Klendusidity

See Pest Control Measures

Biological Control

Kocide 101

See Pesticides

Fungicides

Labor Input

See Economics

Production and Processing

Lactuca

See Plants - Dicots

Compositae

Lakes & Reservoirs

AGRICULTURE RESEARCH IN DRAWDOWN AREAS ... Floods; Soil Types; ... 3.0037
STUDY THE PISCICULTURAL MANAGEMENT OF ARTIFICIAL WATER RESERVES ... Construction Land Use Effects; Fish & Shellfish Biology; ... 4.0330
DETERMINATION OF PRODUCTION OF FISH OF CONTINENTAL WATERS ... Commercial Fishing; Fish; Population Dynamics; Streams; ... 11.0073
GENERAL ECOLOGY OF ESTUARINE AND FRESH WATERS ... Estuaries; Growth Rate; Population Dynamics; Streams; Water Quality; ... 12.0005

Lamellibranchiata

See Mollusca

Laminates

See Materials

Land Use -agriculture

See Economics
Leaching
See Water Movement

Leaf Spot
See Plant Diseases

Leaf Streak
See Plant Diseases

Leafy & Fruit-type Vegetables
See Horticulture

Leather
See Materials

Legume Forage & Hay Crops
See Weeds
Control of Weeds in ...

Legume-grass Mixtures
See Agronomy
Forage Legumes

Legumes
See Feed Science and Technology

Leguminosae
See Plants - Dicots

Lepidoptera
See Insects

Leptoporus
See Fungi

Leptospira
See Spirochetes

Leptospirosis
See Animal Pathology

Leucine
See Amino Acids

Leucosis
See Animal Pathology

Ligase
See Enzymes

Light
See Environments, Animal

Light Competition
See Environments, Plant
Competition

Light Quantity or Intensity
See Environments, Plant

Light Traps
See Pest Control Measures
Physical Control

Lignin
See Carbohydrates

Liliaceae
See Plants - Monocots

Lime
See Soil Nutrients/Fertilizers

Lindane
See Pesticides
Insecticides

Lithosols
See Soil Unit Classification

Litter or Bedding
See Environments, Animal

Loam
See Environments, Plant
Soil Composition

Lodging
See Plant Resistance

Losses or Benefits from ...
See Economics

Low Cost Housing
See Buildings & Land Development

Low Fat Foods
See Food Science and Technology
Dietetic Foods

Low Intensity Light
See Environments, Plant
Light Quantity or Intensity

Low Temp. Above 0 C
See Environments, Plant
Temperature -air
Temperature -soil
Temperature -water

Lubricants
See Materials

Lumbering
See Forestry

Luvic Arenosols
See Soil Unit Classification
Arenosols
Mammals

LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY ... Epidemiology of Disease; Histology and Cytology; Leptospiroses; Pathology - mammal; Veterinary Medicine; ... 11.0104

Rodentia - other
ECOLOGY OF RODENTS OF THE SAVANNAH - ADAPTATION OF THESE RODENTS TO THE CULTIVATED ENVIRONMENT ... Habitat Studies; Population Dynamics; Rodenticides; ... 4.0059

BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT ... Breeding & Genetics; Hormones; Pregnancy; Sexual Cycle; Vagina; ... 4.0060

STUDY OF RICE PESTS ... Barriers & Weirs; Cereal Crops; Insects; Management; ... 5.0014

Mammals - Wildlife Studies
See Fish & Wildlife Biology

Management
See Agronomy
Beverage Crops
Cereal Crops
Fiber Crops
Forage Grasses
Forage Legumes
Industrial & New Crops
Oilseed Crops
Pulse Crops
Range Management
Seed Production
Sugar Crops
Tobacco Crops

See Animal Husbandry
Beef Husbandry
Dairy Husbandry
Goat Husbandry
Poultry Husbandry
Sheep Husbandry
Swine Husbandry

See Economics
Production and Processing

See Fish & Wildlife Biology
Mammals - Wildlife Studies

See Horticulture
Condiment, Spice & Herb Crops
Fruits and Berries
Leafy & Fruit-type Vegetables
Nut Crops
Root Crops
Vine, Shrub, Bramble Fruit Crop

See Social Sciences

Management Effects on Soils
See Soil Physical Properties

Manganese
See Soil Nutrients/Fertilizers

Mangifera
See Plants - Dicots
Anacardiaceae

SUBJECT INDEX

Manihot
See Plants - Dicots
Euphorbiaceae

Mantidae
See Insecta
Orthoptera

Manure
See Organic Fertility

Mapping
See Ecology, Plant

Marine Animals
SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS ... Crustacea; Factors Affecting Insect Pop.; Insect Resistance; Lamellibranchiata; Maturity & Growth Stages; Wood Preservatives; ... 3.0095

ECOLOGICAL PARASITOLOGY ... Fish; Population Dynamics; Taxonomy, Animal; ... 12.0002

Market Structure
See Economics

Marketing
See Economics

Marketing Organizations
See Ag Industries & Agribusiness

Marsh
See Environments, Plant

Mass Communication
See Communication

Mastitis
See Veterinary Medicine

Materials
Cellulosic Fiber
STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST ... Crop Production, Harvesting; Fiber Cleaning; Humidity; ... 4.0283

Chemical Materials

EFFICACY OF PRESERVATIVES UNDER GHANAIAN CONDITIONS ... Wood; Wood Preservation & Seasoning; Wood Preservatives; ... 3.0097

TANNIN EXTRACTION ... Extract Composition; Finishes of Textiles; Forest Product Development; Leather; Tannin; ... 3.0102

PROTECTION OF WOOD AGAINST FIRE ... Borax; Finishes of Textiles; Meliaceae -other; Sapotaceae; ... 3.0110

TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Intraspec. Genetic Relations; Mechanical Properties; Processing -general; Two Humid Seasons; ... 4.0254

THE SUITABILITY OF NIGERIAN TIMBERS FOR RAILWAY SLEEPERS ... Corrosion, Deterioration; Mechanical Properties; Railroads; Wood; Wood Preservatives; ... 9.0104

Composition

EVALUATION OF THE PROPERTIES OF THE RUBBERS OF THE IVORY COAST - SPECIFICATION OF RUBBER ...
SUBJECT INDEX

Construction Materials		Materials	
TIMBER SPECIES FOR WOOD WOOL CEMENT SLABS		Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylen;	9.0096
Forest Product Development; Forms -other; Setting, Curing; Wood;		THE PERFORMANCE OF TIMBER JOINTS AND FASTENINGS FOR INDUSTRIAL APPLICATION; Construction, Farm; Wood;	9.0097
WOOD WOOL LOW COST HOUSES; ... Buildings, Farm; Construction, Farm; Low Cost; Housing; Sheet;			
STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS; Joining & Bolting; Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylene;			
FABRICATION AND TESTING OF TIMBER STRUCTURES AND COMPONENTS; Codes and Standards; Construction, Farm; Laminites; Mechanical Properties; Processing Forest Products; Wood;			
NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES; ... Electric Power Transmission; Terminalia; Wood; Wood Structure & Properties;			
Corrosion, Deterioration			
STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST; ... Cellulose Fiber; Crop Production, Harvesting; Fiber Cleaning; Humidity;			
THE SUITABILITY OF NIGERIAN TIMBERS FOR RAILWAY SLEEPERS; ... Chemical Materials; Mechanical Properties; Railroads; Wood; Wood Preservatives;			
Fencing			
FIELD TEST OF TREATED ROUND POSTS FOR FENCING; ... Eucalyptus; Tectona; Wood Preservation & Seasoning;			
Lamination			
TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL; ... Costs; Latex; Physical Properties; Rubber -natural;			
TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS; ... Casein; Latex; Quality and Utilization; Rubber -natural;			
Finishes of Textiles			
TANNIN EXTRACTION; Chemical Materials; Extract Composition; Forest Product Development; Leather;			
PROTECTION OF WOOD AGAINST FIRE; ... Borax; Chemical Materials; Meliaceae -other; Sapotaceae;			
Forms -other			
TIMBER SPECIES FOR WOOD WOOL CEMENT SLABS; Construction Materials; Forest Product Development; Setting, Curing; Wood;			
WOOD WOOL LOW COST HOUSES; ... Buildings, Farm; Construction, Farm; Low Cost; Housing; Sheet;			
TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM; ... Drying; Harvest and Storage; Instrumentation, Equipment; Latex; Rubber -natural;			
Instrumentation, Equipment			
TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM; ... Drying; Forms -other; Harvest and Storage; Latex; Rubber -natural; Two Humid Seasons;			
CONVERSION STUDIES ON A HORIZONTAL BANDSAW; Forest Industry; Instrumentation, Equipment; Lumbering; Wood; Xylene;			
Joining & Bolting			
STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS; Construction Materials;			
Lubricants			
TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL; ... Costs; Latex; Physical Properties; Rubber -natural;			
Maching			
STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN TIMBER SPECIES; Drying; Fungal Resistance; Pathology; Forest; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties;			
CONVERSION STUDIES ON A HORIZONTAL BANDSAW; Forest Industry; Instrumentation, Equipment; Lumbering; Wood; Xylene;			
Mechanical Cleaning -other			
STUDY THE DIFFERENT FACTORS WHICH INFLUENCE THE INDUSTRIAL PICKING YIELD OF COTTON IN THE IVORY COAST; ... Cellulose Fiber; Crop Production, Harvesting; Fiber Cleaning; Humidity;			
Mechanical Properties			
PROPERTIES OF GHANAIAN TIMBERS; Physical Properties; Wood; Wood Structure & Properties;			
EVALUATION OF THE PROPERTIES OF THE RUBBERS OF THE IVORY COAST - SPECIFICATION OF RUBBER; Composition; Latex; Rubber -natural; Two Humid Seasons;			
TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING; Chemical Materials; Intraspec. Genetic Relations; Processing -general; Two Humid Seasons;			
STUDY OF PROPERTIES AND CHARACTERISTICS OF WOOD WOOL LOW COST HOUSES; ... Electric Power Transmission; Terminalia; Wood; Wood Structure & Properties;			
FABRICATION AND TESTING OF TIMBER STRUCTURES AND COMPONENTS; Codes and Standards; Construction Materials; Construction, Farm; Laminites; Processing Forest Products; Wood;			
NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES; Construction Materials; Electric Power Transmission; Terminalia; Wood; Wood Structure & Properties;			
Minerals			
TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS; ... Casein; Fillers, Extenders; Latex; Quality and Utilization; Rubber -natural;			
Packaging Materials			
TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK; Eucalyptus; Nursery Observational Plots; Physical Properties; Radiation Effects; Silviculture;			
Materials

Physical Properties

PROPERTIES OF GHANAIAN TIMBERS ... Mechanical Properties; Wood; Wood Structure & Properties; ... 3.0104
TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Chemical Materials; Intraspec. Genetic Relations; Mechanical Properties; Processing - general; Two Humid Seasons; ... 4.0254
TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL ... Costs; Latex; Rubber - natural; ... 4.0255
STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES ... Drying; Fungal Resistance; Machining; Pathology; Forest; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties; ... 3.0095
STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS ... Construction Materials; Joining & Bolting; Terminalia; Wood Preservation & Seasoning; Xylem; ... 9.0096
SURVEY OF THE MOISTURE CONTENT OF WOOD IN SERVICE IN NIGERIA ... Composition; Khaya; Nauclea; Triplochiton; Wood Preservation & Seasoning; ... 9.0106
TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK ... Eucalyptus; Nursery Observational Plots; Packaging Materials; Radiation Effects; Silviculture; ... 9.0346

Processing - general

TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Chemical Materials; Intraspec. Genetic Relations; Mechanical Properties; Two Humid Seasons; ... 4.0254
RADIATION EFFECTS

TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK ... Eucalyptus; Nursery Observational Plots; Packaging Materials; Physical Properties; Silviculture; ... 9.0346

Recycled and Secondary Mtls.

TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS ... Casein; Fillers, Extenders; Latex; Quality and Utilization; Rubber - natural; ... 4.0256

Residential

WOOD WOOL LOW COST HOUSES ... Buildings, Farm; Construction, Farm; Low Cost Housing; Sheet; ... 3.0106

Rubber - natural

EVALUATION OF THE PROPERTIES OF THE RUBBERS OF THE IVORY COAST - SPECIFICATION OF RUBBER ... Composition; Latex; Mechanical Properties; Two Humid Seasons; ... 4.0253
TECHNOLOGY OF NATURAL RUBBER - RUBBER FROM CUMULATIVE TAPPING ... Chemical Materials; Intraspec. Genetic Relations; Mechanical Properties; Processing - general; Two Humid Seasons; ... 4.0254
TECHNOLOGY OF NATURAL RUBBER - RUBBERS STRETCHED BY OIL ... Costs; Latex; Physical Properties; ... 4.0255
TECHNOLOGY OF NATURAL RUBBER - MASTER-MIXTURES BASED ON LOCAL PRODUCTS ... Casein; Fillers, Extenders; Latex; Quality and Utilization; ... 4.0256
TECHNOLOGY OF NATURAL RUBBER - PROCESSING OF THE RUBBER IN A GRANULAR FORM ... Drying; Forms - other; Harvest and Storage; Instrumentation, Equipment; Latex; Two Humid Seasons; ... 4.0257

Sheet

WOOD WOOL LOW COST HOUSES ... Buildings, Farm; Construction, Farm; Low Cost Housing; ... 3.0106

Solar Processes

SOLAR AND AIR DRYING OF TIMBER ... Chlorophora; Costs; Energy Conversion; Instrumentation, Equipment; Ulmaceae - other; Wood Preservation & Seasoning; ... 9.0105

Wood

DIFFUSION-IMPREGNATION OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS ... 348
MCPA
See Pesticides
Herbicides

Measurement of Trees & Stands
See Forestry

Meats and Meat Products
See Food Science and Technology

Mechanical Cleaning -other
See Materials

Mechanical Control
See Pest Control Measures
Physical Control

Mechanical Power

Engines
DESIGN AND DEVELOPMENT OF A TRACTOR AND RELATED IMPLEMENTS FOR LOCAL MANUFACTURE
... Design, Modify, Develop of Equip; Gearing and Power; Soil Preparation & Renovation; Tractors and Accessories; 9.0052

Gearing and Power
DESIGN AND DEVELOPMENT OF A TRACTOR AND RELATED IMPLEMENTS FOR LOCAL MANUFACTURE
... Design, Modify, Develop of Equip; Engines; Soil Preparation & Renovation; Tractors and Accessories; 9.0052

Heat and Cooling Devices
DEVELOPMENT OF A LOW COST INCUBATOR FOR LOCAL USE... Buildings & Land Development; Construction; Farm; Costs; Poultry Equipment; 9.0047

Mechanical Properties
See Materials

Medicago
See Plants - Dicots
Leguminosae

Medicine/Psyc.- General Topics

Diagnosis
TRYPANOSOMIASIS - IMMUNOLOGY... Epidemiology of Disease; Immunology; Trypanosoma; Trypanosomiasis; Veterinary Medicine; 11.0091

THE OBTAINING OF CELL LINES NECESSARY TO SUPPLY THE REQUIREMENTS FOR THE PRODUCTION OF VACCINES AND FOR DIAGNOSTIC PURPOSES... Bovine Foetal Hepatocytes; Fetus; Urogenital System; Viral Vaccines; 11.0102

INFECTIONS AND INTOXICATIONS (TOXI-INFECIONS) CAUSED BY ANEROBIC BACTERIA - BOTULISM
... Bacterial Toxins; Clostridia; Etiology; Pathology -mammal; Toxoid Vaccine; Water Environment; 11.0109

AVIAN DISEASES - EPIDEMIOLOGY - PROPHYLAXIS AND TREATMENT... Birds; Dairy Industry; Immunology; Newcastle Disease; Veterinary Medicine; 11.0114

Meiosis
See Genetics
Genetic Dup. & Transmission

Melilaceae
See Plants - Dicots

Melinidae
See Plants - Monocots
Gramineae

Melioidosis
See Animal Pathology
SUBJECT INDEX

Melliagris
See Birds

Membranes, Cellular
See Cellular Physiology

Mercuric Chloride
See Pesticides
Insecticide - Fungicide

Mercury
STUDY THE DISINFECTION OF SEEDS . . . Benlate; Phytotoxicity; Seed Treatment; Vitavax; . . . 4.0274

BOVINE OCULAR THELAZIOSIS - TREATMENTS . . . Blindness -nonspecific; Bovine Ocular Thelaaziosis; Cyanides; Muscidae; Tetramisole; Veterinary Medicine; . . . 11.0087

Meristems
See Plant Tissues

Mesic Environments
See Environments, Plant

Metabolic Efficiency
See Animal Characteristics

Metabolic Expression
See Genetics

Metabolism
See Plant Physiology
See Vertebrate Physiology

Meteorology

Climatology
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Evapotranspiration; Rain; Solar Light; Wind or Air Movement; . . . 6.0037

AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Energy Budgets; Humid 1 Month; Rain Patterns; Wind or Air Movement; . . . 7.0004

AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Energy Budgets; Hot Equatorial or Hot Tropical; Rain Patterns; Wind or Air Movement; . . . 11.0009

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED . . . Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgar (Grain); . . . 11.0029

AGRO-CLIMATIC KNOWLEDGE OF THE PRINCIPAL ZONES WHERE AGRONOMIC RESEARCH IS APPLIED . . . Evaporation; Moisture Budgets; Rain; Rain Amount; Transpiration; . . . 11.0056

Energy - Radiation
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Humid 1 Month; Rain Patterns; Wind or Air Movement; . . . 7.0004

AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Hot Equatorial or Hot Tropical; Rain Patterns; Wind or Air Movement; . . . 11.0009

Humidity
STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) . . . Chronic Cambisols; Consumptive Use; Irrigation; Luvic Arenosols; Soil-water-plant Relationships; . . . 8.0009

Precipitation Gages
STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST . . . Sediment Yield; Water Runoff; Water Table; . . . 4.0044

Rain Amount
STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KORHOGO WATERSHED . . . Rain; Rill Erosion; Soil Moisture; Soil Types; Watersheds; . . . 4.0045

RIVER OBUBA-OPA WATERSHED PROJECT - RUN OFF AND EROSION STUDIES . . . Erosion Control; Management Effects on Soils; Rain; Raindrop Impact; Soil-water-plant Relationships; . . . 9.0050

AGRO-CLIMATIC KNOWLEDGE OF THE PRINCIPAL ZONES WHERE AGRONOMIC RESEARCH IS APPLIED . . . Climatology; Evaporation; Moisture Budgets; Rain; Transpiration; . . . 11.0056

INDEX OF EROSION BY THE RAIN IN UPPER VOLTA . . . Erosion Control; Rain; Raindrop Impact; Water Runoff; Weather Charts, Maps; . . . 14.0004

Rain Patterns
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Humid 1 Month; Wind or Air Movement; . . . 7.0004

AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Hot Equatorial or Hot Tropical; Wind or Air Movement; . . . 11.0009

Raindrop Impact
RIVER OBUBA-OPA WATERSHED PROJECT - RUN OFF AND EROSION STUDIES . . . Erosion Control; Management Effects on Soils; Rain; Rain Amount; Soil-water-plant Relationships; . . . 9.0050

INDEX OF EROSION BY THE RAIN IN UPPER VOLTA . . . Erosion Control; Rain; Rain Amount; Water Runoff; Weather Charts, Maps; . . . 14.0004

Weather Charts, Maps
INDEX OF EROSION BY THE RAIN IN UPPER VOLTA . . . Erosion Control; Rain; Rain Amount; Raindrop Impact; Water Runoff; . . . 14.0004

Sediment

Methionine
See Amino Acids

Methyl Bromide
See Pesticides
Fumigant

Methyl Parathion
See Pesticides
Insecticides

Micrococcus
See Fungi

Microorganism Utilization

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES . . . Candida; Food Processing Wastes; Fruits; Organoleptic Studies of Food; Yeasts -nonspecific; . . . 9.0058

Microscopy

Electron Microscopy
STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST . . . Dorylaimoides; Interpathological Relationship; Panicum; Plant Virus -general; Vectors; . . . 4.0071

THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA . . . Mosaic Viruses; Phytopathology; Vectors; Viral Transmission; Virus Resistance; . . . 4.0075

350
SUBJECT INDEX

Migrant Farm Workers
See Farm Populations

Migration
See Ecology, Animal

Mildew Diseases
See Plant Diseases

Mineral Blocks, Salt Blocks
See Feed Science and Technology

Mineral Composition
See Plant Physiology
Metabolism

Mineral Excess & Deficiency
See Phytopathology

Mineralogy
See Also Soil Chemical Properties

Gibbsite
OPERATION OF RESEARCH IN GEODYNAMICS, GEOCHEMISTRY AND GEOMORPHOLOGY IN THE IVORY COAST... Geology; Infiltration; Soil Crusts; Soil Morphology; Profiles; ... 4.0036
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate: Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey; ... 4.0039

Goethite
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate: Humid Equatorial; Iron; Mineralogy; Soil Survey; ... 4.0039

Hematite
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate: Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey; ... 4.0039

Kaiolinite
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate: Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey; ... 4.0039

Minerals
See Materials

Minimum Tillage
See Soil Tillage

Miridae
See Insects
Hemiptera

Mist Irrigation
See Irrigation

Moisture Deficiency
See Environments, Plant
Soil Moisture

Moisture Levels
See Environments, Plant
Soil Moisture

351
SUBJECT INDEX

Molasses
See Feed Science and Technology
By-products--Plant(Vegetative)

Pesticides

- See Attractants
- See By-products--Plant(V egetative)
- See Molds
- See Molinate
- See Mollusca

Molds
See Plant Diseases

Molinate
See Pesticides
Herbicides

Mollusca

- Lamellibranchiata
 SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS
 ... Crustacea; Factors Affecting Insect Pop.; Insect Resistance; Marine Animals; Maturity & Growth Stages; Wood Preservatives;
 ... 3.0095

Molybdenum
See Soil Nutrients/Fertilizers

Monolinuron
See Pesticides
Herbicides

Monosaccharides
-nonspecific
See Carbohydrates

Moraceae
See Plants - Dicots

Mosaic Viruses
See Viruses, Plant

Movement, Availability
See Soil Chemical Properties

MSMA
See Pesticides
Herbicides

Mucuna
See Plants - Dicots
Leguminosae

Mulches

- STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM ... Cover Crops; Leguminosae; Soil Tillage Sequence / Method; 9.0120
- COFFEE AGRONOMY PROJECT ... Beverage Crops; Ethrel; Fruit-set or Fruit-thinning; Management; Shade; Space Competition; 9.0145
- EXPERIMENT 17-2. MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTATIONS ... Cultcontrol -other; Equipment; Pest, Disease & Weed Control; 9.0302
- EXPERIMENT 768-1 - FIELD IRRIGATION OF OIL PALMS ... Irrigation; Irrigation -general; Management; Moisture Levels; 9.0308
- CULTIVATION AND WEEDING METHODS IN PLANTATIONS ... Costs; Eucalyptus; Hand Tillage; Mechanical Control; Pinus; 9.0356

Multiple Cropping
See Cropping Practices

Muridae
See Mammals
Rodentia

Musa
See Plants - Monocots
Musaceae

Muscidae
See Insects
Diptera

Mutation
See Genetics

Mycobacterium Tuberculosis
See Actinomycetes

Mycorrhiza
See Ecology, Plant
See Fungi

Mycosis
See Animal Pathology

Myocardial Edema
See Animal Pathology

Myristicaceae
See Plants - Dicots

Myrtaceae
See Plants - Dicots

Myxoviruses, True
See Viruses, Animal
RNA Viruses, Enveloped

Natural Resources Economics
See Economics

Nauclea
See Plants - Dicots
Rubiaceae

352
SUBJECT INDEX

Network Project - national

ENCY FOR TILLERING ... Breeding & Genetics; Continuous Humid; Drought Resistance ... 4.0164

MAINTENANCE OF A WORKING COLLECTION FOR INUNDATED RICE-FIELDS ... Breeding & Genetics; Continuous Humid; Plant Morphology; Plant Parts Bank ... 4.0165

MAINTENANCE OF A WORKING COLLECTION FOR IRRIGATED RICE ... Breeding & Genetics; Continuous Humid; Plant Morphology; Plant Parts Bank ... 4.0166

VARIETAL EXPERIMENTAL WORK FOR PLUVIAL RICE ... Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piriculariosis ... 4.0167

VARIETAL EXPERIMENTAL WORK FOR IRRIGATED RICE ... Breeding & Genetics; Continuous Humid; Fungal Resistance; Irrigation - general; Phytopathology; Piriculariosis; Piriculariosis ... 4.0168

VARIETAL EXPERIMENTAL WORK FOR UNINUNATED RICE ... Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resistance; Phytopathology; Piriculariosis; ... 4.0169

TECHNIQUES FOR PRODUCTION OF RICE SEEDS OF GOOD GERMINATIVE QUALITY ... Cereal Crops; Continuous Humid; Drought; Management ... 4.0170

DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT ... Cereal Crops; Continuous Humid; Drought; Drought Resistance; Epidermis; Hydrolytic Enzymes - general; Transpiration & Evaporation ... 4.0171

FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO DROUGHT IN THE GENUS ORYZA ... Breeding & Genetics; Continuous Humid; Drought Resistance; Humidity; Oryza - other; Plant Parts Bank ... 4.0172

SPECIFIC EFFECTS OF THE FACTORS OF RESISTANCE TO DROUGHT IN RICE ... Cereal Crops; Continuous Humid; Drought; Drought Resistance; Moisture Deficiency ... 4.0173

VARIETAL COLLECTION OF MAIZE ... Breeding & Genetics; Continuous Humid; Harvest & Storage; Management ... 4.0175

VARIETAL IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY RECURSIVE TO COMPOSITES ... Breeding & Genetics; Continuous Humid; Heterosis; Recurrent Selection ... 4.0176

VARIETAL COLLECTION OF YAMS ... Breeding & Genetics; Continuous Humid; Intraspec. Genetic Relations; Plant Parts Bank ... 4.0178

STUDY OF THE PHYSIOLOGICAL AGE OF THE TUBERS OF YAMS AND OF THEIR BUDDING ... Continuous Humid; Harvest and Storage; Management; 4.0179

VARIETAL COLLECTION MANIOC ... Breeding & Genetics; Continuous Humid; Manihot; Plant Parts Bank ... 4.0180

STUDY OF THE PECCITY AND OF THE PRODUCTIVITY OF THE VARIETIES OF MANIOC ... Continuous Humid; Harvest and Storage; Management; Manihot; Timing of Planting Procedures ... 4.0181

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid; Glycine Max; Management; 4.0182

CHEMICAL DESTRUCTION OF WEEDS ON A PLOT OF YAMS (DIOSCOREA) ... Continuous Humid; Diuron; Horticultural Crops; Management; Paraquat; Preemerge Application; Selectivity of Pesticides ... 4.0183

MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS ... Cereal Crops; Continuous Humid; Fiber Crops; Hand Tillage; Herbicides - nonspecific; Phenology; Life Cycle; Soil Tillage Sequence / Method; 4.0184

WEEDING OF PLUVIAL RICE, COMBining CULTIVATION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS ... Cereal Crops; Herbicides - nonspecific; Management; Placement ... 4.0185

STUDY OF THE DORMANCY OF WHEAT SEEDS ... Continuous Humid; Dormancy; Physiology of Seeds; Scarification ... 4.0186

DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES ... Continuous Humid; Handbooks; Phenology; Life Cycle; Photography; Taxonomy; Plant ... 4.0187

STUDY OF THE BIOLOGICAL CYCLES OF WEEDS ... Cereal Crops; Competition; Continuous Humid; Management; Phenology; Life Cycle; Soil Tillage Sequence / Method ... 4.0188

STUDY THE INFLUENCE OF THE DROUGHT FACTOR ON THE RESISTANCE OF RICE TO PIRICULARIOSIS ... Env. Plant Dis. Relation; Management; Phytopathology; Piriculariosis; ... 4.0189
CHEMICAL CONTROL MEASURES AGAINST PIRICULARIA ORYZAE ... Continuous Humid; Inoculation; Phytopathology; Piriculariosis; . . . 4.0190

STUDY OF THE GENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PIRICULARIA ORYZAE ... Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piricularia; Piriculariosis; . . . 4.0191

RESEARCH IN CULTIVATED RICE FOR SIREs HAVING HORIZONTAL RESISTANCE TO PIRICULARIA ... Breeding & Genetics; Continuous Humid; Fungal Resistance; Inoculation; Phytopathology; Piricularia; Piriculariosis; . . . 4.0192

ANALYSIS OF THE RELATIVE INCIDENCE OF STRAINS OF PIRICULARIA ORYZAE IN RICE-FIELDS ... Continuous Humid; Env. Plant Dis. Relation; Inoculation; Phytopathology; Piricularia; Piriculariosis; . . . 4.0193

CREATION OF A DIFFERENTIAL SCALE OF STRAINS OF PIRICULARIA ORYZAE ... Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piricularia; Piriculariosis; . . . 4.0194

EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING ... Chemical Tillage or No tillage; Continuous Humid; Deep Plowing; Ferralic Cambisols; Minimum Tillage; Plowing; Soils; 4.0195

STUDY OF INOCULATIONS OF RHIZOBLUM ON SOYA ... Continuous Humid; Inoculation; Nitrogen Fixation; Rhizobium; Soils Microbiology; 4.0198

EVOLOVITION OF SOILS UNDER CULTIVATION ... Continuous Humid; Ferric Acridosol; Management; Management Effects on Soils; Rhodic Ferralsols; Soi Fertility; 4.0201

ACIDIFICATION DUE TO THE INTENSIVE USE OF FERTILIZERS ... Continuous Humid; Formulation; Fertilizer; Soil pH; Soil Chemical Properties; 4.0203

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; D. 2,4-D; Management; Propanil; Silvex; 4.0204

CHEMICAL WEED DESTRUCTION ON IRREGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; 4.0205

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRREGATED RICE-FIELDS ... Cereal Crops; Continuous Humid; Cultural Control; Irrigation -general; Management; Phenology, Life Cycle; 4.0206

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Management; Propanil; Silvex; 4.0207

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRREGATED RICE-FIELDS ... Cereal Crops; Humid 5 Months; Irrigation -general; Management; Phenology, Life Cycle; Physical Control; 4.0209

CHEMICAL WEED DESTRUCTION ON IRREGATED RICE ... Cereal Crops; Humid 5 Months; Pricking Out; Selectivity of Pesticides; 4.0210

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRREGATED RICE-FIELDS ... Cereal Crops; Humid 7 Months; Cultural Control; Ferralic Cambisols; Irrigation -general; Management; Phenology, Life Cycle; Two Humid 4 Months-7 Month, Plus; 4.0211

CHEMICAL WEED DESTRUCTION ON IRREGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; Two Humid 7 Months-Plus; 4.0212

VARIETAL EXPERIMENT WORK ON SOYA ... Ferralic Cambisols; Glycine Max; Management; Multiple Cropping; Two Humid Seaso ns-7 Month, Plus; 4.0211

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; 4.0219

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRREGATED RICE-FIELDS ... Cereal Crops; Humid 7 Months, Plus; Cultural Control; Irrigation -general; Management; Phenology, Life Cycle; 4.0220

CHEMICAL WEED DESTRUCTION ON IRREGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; 4.0221

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid 7 Months, Plus; Glycine Max; Management; Multiple Cropping; 4.0222

STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS ... Calcaric Regosols; Fallowing; Management; Sorghum Vulgare (Grain); 4.0023

EVOLOVITION OF SOILS UNDER CULTIVATION ... Calcaric Regosols; Cambic Arenosols; Humid 1 Month; Management; Management Effects on Soils; Soil Chemical Properties; Soil Tillage; 4.0025

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS ... Fallowing; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Management; Sorghum Vulgare (Grain); 4.0026

EVOLOVITION OF SOILS UNDER CULTIVATION ... Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Management; Management Effects on Soils; Soil Analysis; 4.0027

INTRODUCTION AND BEHAVIOUR TESTS OF PLUVIAL RICE ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Management; Piricularia; 4.0028

INTRODUCTION AND TESTS OF BEHAVIOUR OF RICE ON LOW LYING INUNDATED LAND - STUDY OF THE TECHNIQUES OF CULTIVATION FOR THE SIKASSO REGION ... Excessive Moisture; Humid 4 Months; Management; 4.0029

RESEARCH ON FERTILIZATION OF GROUNDNUTS ... Humid 4 Months; Management; Plant Residues; Humid, Poddu; Sorghum Vulgare (Grain); 4.0046

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY ... Breeding & Genetics; Elevational Levels, Altitude; Humid 1 Month; Sorghum Vulgare (Grain); 4.0047

CONTROL OF WEEDS ON IRREGATED RICE-FIELDS, PARTICULARLY ISCHAEMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS ... Grasses or Sedges; Humid 1 Month; Oryza -other; 4.0050

COLLECTION AND INTRODUCTION OF VARIETIES OF RICE FOR IRRIGATED CULTIVATION TEST FOR ADAPTATION ... Humid 1 Month; Management; 4.0051

STUDY THE CROSSINGS WITH SOME IRRI VARIETIES FROM VARIETIES OF IRRIGATED RICE WITH LONG STRAW ... Breeding & Genetics; Humid 1 Month; Insect Resistance; Pedigrees; 4.0052

MULTILOCAL EXPERIMENTS WITH FLOATING RICE PLANTS ... Depth; Water Level Fluctuation; Management; Non-dry 3 Months, Plus; 4.0055

SELECTION OF LATE VARIETIES OF FLOATING RICE AFTER IRRADIATION ... Breeding & Genetics; Harvest and Storage; Management; Moisture Deficiency; Mutation; Non-dry 3 Months, Plus; 4.0057

INVENTORY OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES ... Cereal Crops; Insecticides -insecticide; Festa; Rearing of Insects; 4.0058

STUDY OF CROSSINGS BETWEEN FLOATING RICE AND ERECT RICE ... Breeding & Genetics; Non-dry 3 Months, Plus; Pedigrees; 4.0059

COLLECTION OF THE FLOATING VARIETIES OF RICE GLACERRIMS AND SATIVA ... Breeding & Genetics; Drought Resistance; Insect Resistance; Non-dry 3 Months, Plus; Seed Bank; 4.0060

STUDY OF DIFFERENT TYPES OF PLoughING FOR THE CULTIVATION OF FLOATING RICE ... Deep Plowing; Management; Non-dry 3 Months, Plus; Plowing; Soil Depth; 4.0061

STUDY OF THE PREPARATION OF THE SEED BED AND OF TEAM-CULTIVATION IMPLEMENTS FOR THE CULTIVATION OF FLOATING RICE ... Management; Non-dry 3 Months, Plus; Rotary Tillage, Rotary Hoe; Soil Preparation & Renovation; 4.0062

ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGIGASTRINATA) ... Cereal Crops; Cutting Sequence; Diuron; Grasses or Sedges; Management; Oryza -other; 4.0063

STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVIGILULATA AND O. LONGIGASTRINATA ... Dormancy; Non-dry 3 Months, Plus; Physiology of Weeds; Soil Depth; 4.0064

CREATION OF VARIETIES OF SORGHUM WITH SHORTENED STRAW ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Sorghum Vulgare (Grain); 4.0065

CREATION OF SYNTHETIC, HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months, Synthetic Varieties & Blends; Top Cross; 4.0066
SUBJECT INDEX

CREATION OF PENNISETUM - MILLET HYBRID WITH SHORT STRAW... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Costs...

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED... Back Cross; Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Costs... 6.0065

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILLESI (MALI) ON ANNUAL CROPS... Fallowing; Ferric Luvisols; Humid 4 Months; Management; Rain; Sorghum Vulgare (Grain); 6.0070

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOSYSTEM... Breeding & Genetics; Elevational Levels; Altitude; Ferric Luvisols; Humid 4 Months; Sorghum Vulgare (Grain); 6.0071

CROPPING TECHNIQUES FOR IRRIGATED RICE... Drill Application; Hot Equatorial or Hot Tropical; Management; Planting Methods -other; Pricking Out; 8.0001

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY)... Chromic Cambisols; Consumptive Use; Humidity; Irrigation; Avunc Luvisols; Soil-water-plant Relationships; 8.0009

IMPROVEMENT OF TILLAGE IN IRRIGATED RICE-FIELDS... Humid 3 Months; Irrigation -general; Management; Soil Tillage; 8.0025

FERTILIZATION OF IRRIGATED RICE... Humid 2 Months; Irrigation -general; Management; Soil Fertility; 8.0026

VARIETAL EXPERIMENTS WITH RICE... Breeding & Genetics; Eutric Fluvisols; Humid 3 Months; Irrigation -general; Multiple Cropping; 8.0027

IMPROVEMENT OF SORGHUM GROWN ON SAND DUNES... Back Cross; Breeding & Genetics; Humid 3 Months; Male Sterility; Sand; Sorghum Vulgare (Grain); 8.0018

IMPROVEMENT OF VIGNA UNGUICULATA UNUSUSCEPTIBLE TO FATALITY... Breeding & Genetics; Drought Resistance; Management; Moisture Deficiency; Drought Resistance; Management; Moisture Deficiency; Flowing; Subsoiling; Surface -soil; 11.0027

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED... Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain); 8.0009

INOCULATION OF SOYA BEAN SEEDS... Glycine Max; Inoculation; Management; 11.0011

THE MOST FAVOURABLE CROPPING TECHNIQUES FOR THE NODULATION OF GROUNDNUTS... Fats - Lipids & Oils; Inoculation; Lime; Management; Proteins; Yellow Dwarfing; 11.0031

HYDROCYANIC TOXICITY OF 63-18 (A DWARF VARIETY OF SORGHUM)... Cereal Crops; Sorghum Vulgare (Grain); Straw; 11.0012

UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS... By-products- Plant(vegetative); Concentrates; Grain; In Vivo- see Also Feed Rations; Management; Nutritive Values -plant; Processing Feeds; 11.0033

THE FRUIT OF FAIHERBIA ALBIDA IN THE NUTRITION OF CATTLE... Grains; Humid 2 Months; In Vivo-see Also Feed Rations; Management; Nutritive Values -plant; 11.0034

EXPLOITATION OF GROUNDNUTS AS A FORAGE CROP... Forage; Pasture or Range; Humid 2 Months; Management; 11.0035

STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES... Costs; Farm Enterprises -general; Management; Peanut Shells; Production and Processing; Sorghum Vulgare (Grain); Straw; 11.0036

RESISTANCE TO TRYPANOSOMIASIS IN CATTLE (METIS DE BAMBEBY) BRED... Beef Husbandry; Parasite Resistance; Trypanosoma; Trypanosomiasis; Veterinary Medicine; 11.0037

DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS... Forage; Pasture or Range; Grains; Hay; Management; 11.0038

ADAPTATION OF MATERIAL FOR A POLYCLITIVATOR FOR ANIMAL TRACTION... Design,Modify,Develop.of Equip; Mammals; Soil Preparation & Renovation; 11.0039

STUDY OF A SOWING CYCLE OF GREAT BREADTH, FOR ANIMAL TRACTION... Design,Modify,Develop.of Equip; Soil Preparation & Renovation; 11.0040

TESTS IN TRUE SIZE OF A PROTOTYPE FOR A MILLET THRESHING MACHINE... Design,Modify,Develop.of Equip; Harvest and Storage; 11.0041

CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING... Humidity; Management; Sand; Seedbed Preparation; Soil Preparation & Renovation; Soil-water-plant Relationships; Surface Irrigation -general; 11.0042

IMPROVEMENT OF THE TECHNOLOGICAL CHARACTERS OF ARAKIS FOR OIL PRODUCTION... Breeding & Genetics; Fats - Lipids & Oils; Harvest and Storage; Synthetic Varieties & Blends; 11.0043

CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (105 DAYS)... Breeding & Genetics; Hot Equatorial or Hot Tropical; Intraspecific Cross; Synthetical Varieties & Blends; 11.0044

GROWTH AND MATURATION OF GROUNDNUTS IN SANDY SOIL... Management; Phenology, Life Cycle; Sand; 11.0045

STUDY OF VARIETIES OF TOMATO RESISTANT TO NEMATODES... Lycopersicum; Nematode Resistance; Phytopathology; Soil Environment; Surveys; Tylechoidea; 11.0046

Economics of Chemical Control; Herbicides -nonspecific; Selectivity of Pesticides; 11.0021

IMPROVEMENT OF STORAGE FACILITIES FOR AGRICULTURAL PRODUCE IN THE SAHEL-SOUDANESE ZONE... Costs; Storage; 11.0022

PROJECT F.E.D. 215... Breeding & Genetics; Disease Resistance; Intraspecific Cross; Phytopathology; Sclerotinia; Synthetic Varieties & Blends; 11.0023

CREATION OF HYBRID VARIETIES OF MAIZE... Breeding & Genetics; Heterosis; Intraspecific Cross; Recurrent Selection; Synthetic Varieties & Blends; 11.0024

IMPROVEMENT OF SORGHUM... Breeding & Genetics; Heterosis; Intraspecific Cross; Sorghum Vulgare (Grain); Synthetic Varieties & Blends; 11.0025

MILLET - CREATION OF A DWARF COMPOSITE... Breeding & Genetics; Disease Resistance; 11.0026

EFFECT OF TILLAGE ON THE MINERAL NUTRITION AND THE SUPPLY OF MOISTURE TO CROPS... Drought Resistance; Management; Moisture Deficiency; Flowing; Subsoiling; Surface -soil; 11.0027

STUDY OF THE HARDSERENING OF SANDY SOILS WHEN DESSICATED... Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain); 8.0009

INOCULATION OF SOYA BEAN SEEDS... Glycine Max; Inoculation; Management; 11.0011

THE MOST FAVOURABLE CROPPING TECHNIQUES FOR THE NODULATION OF GROUNDNUTS... Fats - Lipids & Oils; Inoculation; Lime; Management; Proteins; Yellow Dwarfing; 11.0031

HYDROCYANIC TOXICITY OF 63-18 (A DWARF VARIETY OF SORGHUM)... Cereal Crops; Sorghum Vulgare (Grain); Straw; 11.0012

UTILIZATION OF COTTON-SEED IN THE NUTRITION OF FARM ANIMALS... By-products- Plant(vegetative); Concentrates; Grain; In Vivo- see Also Feed Rations; Management; Nutritive Values -plant; Processing Feeds; 11.0033

THE FRUIT OF FAIHERBIA ALBIDA IN THE NUTRITION OF CATTLE... Grains; Humid 2 Months; In Vivo- see Also Feed Rations; Management; Nutritive Values -plant; 11.0034

EXPLOITATION OF GROUNDNUTS AS A FORAGE CROP... Forage; Pasture or Range; Humid 2 Months; Management; 11.0035

STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES... Costs; Farm Enterprises -general; Management; Peanut Shells; Production and Processing; Sorghum Vulgare (Grain); Straw; 11.0036

RESISTANCE TO TRYPANOSOMIASIS IN CATTLE (METIS DE BAMBEBY) BRED... Beef Husbandry; Parasite Resistance; Trypanosoma; Trypanosomiasis; Veterinary Medicine; 11.0037

DEPRESSIVE EFFECT OF TURNING OUT TO GRASS ON THE GROWTH OF BOVINE ANIMALS... Forage, Pasture or Range; Grains; Hay; Management; 11.0038

ADAPTATION OF MATERIAL FOR A POLYCLITIVATOR FOR ANIMAL TRACTION... Design,Modify,Develop.of Equip; Mammals; Soil Preparation & Renovation; 11.0039

STUDY OF A SOWING CYCLE OF GREAT BREADTH, FOR ANIMAL TRACTION... Design,Modify,Develop.of Equip; Soil Preparation & Renovation; 11.0040

TESTS IN TRUE SIZE OF A PROTOTYPE FOR A MILLET THRESHING MACHINE... Design,Modify,Develop.of Equip; Harvest and Storage; 11.0041

CROPPING TECHNIQUES FOR SANDY SOILS DRYING OUT AFTER FLOODING... Humidity; Management; Sand; Seedbed Preparation; Soil Preparation & Renovation; Soil-water-plant Relationships; Surface Irrigation -general; 11.0042

IMPROVEMENT OF THE TECHNOLOGICAL CHARACTERS OF ARAKIS FOR OIL PRODUCTION... Breeding & Genetics; Fats - Lipids & Oils; Harvest and Storage; Synthetic Varieties & Blends; 11.0043

CREATION OF VARIETIES OF DORMANT GROUNDNUTS HAVING A SHORT CYCLE (90 DAYS) OR A SEMI-SHORT CYCLE (105 DAYS)... Breeding & Genetics; Hot Equatorial or Hot Tropical; Intraspecific Cross; Synthetical Varieties & Blends; 11.0044

GROWTH AND MATURATION OF GROUNDNUTS IN SANDY SOIL... Management; Phenology, Life Cycle; Sand; 11.0045

STUDY OF VARIETIES OF TOMATO RESISTANT TO NEMATODES... Lycopersicum; Nematode Resistance; Phytopathology; Soil Environment; Surveys; Tylechoidea; 11.0046
STUDY OF BEHAVIOUR OF VARIETIES OF POTATO... Hot Equatorial or Hot Tropical; Management; Solanum; ... 11.0048

BEHAVIOUR STUDY WITH VARIETIES OF EGGPLANT... Hot Equatorial or Hot Tropical; Management; Solanum; ... 11.0049

STUDY OF STUNTING OF GROUNDNUTS (CLUMP)... Phytopathology; Plant Nematodes -nonspecific; Soil-borne; Stunt Diseases; ... 11.0050

STRUCTURES FOR USE IN TEAM CULTIVATION... Farm Enterprises -general; Job Analysis; Labor Input; Production -other; Time & Motion Studies; ... 11.0051

DETAILED SOCIO-ECONOMIC SURVEYS OF INTENSIVE PRODUCTION CONCERNS... Labor Input; Production -other; Time & Motion Studies; ... 11.0052

STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES (OF PLANTS)... Labor Input; Management; Soil Tillage Methods -other; Sorghum Vulgare (Grain); Time & Motion Studies; ... 11.0053

CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE... Breeding & Genetics; Disease Resistance; Roots & Tubers; ... 11.0055

AGRO-CLIMATIC KNOWLEDGE OF THE PRINCIPAL ZONES WHERE AGRONOMIC RESEARCH IS APPLIED... Climatology; Evaporation; Moisture Budgets; Rain; Rain Amounts; Transpiration; ... 11.0056

IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN... C/N Ratio; Lysimeters; Manure; Plant Products -other; Soil pH; ... 11.0057

ANALYSIS OF SAP... Deficiencies; Management; Nitrogen; Phosphorus; Sand; ... 11.0058

MEASUREMENT OF THE MINERAL UPTAKE OF EACH... Paddy (Grain); Wheat (Grain); Barley (Grain); Rye (Grain); Sorghum (Grain); ... 11.0059

NITROGENOUS NUTRITION OF CEREALS... C/N Ratio; Humid 3 Months; Management; Nitrogen; ... 11.0060

MOISTURE BALANCE BENEATH CUT CROPS, BARE SOIL AND FALL-OVER... Crop Crops; Fallowing; Humidity; Management; Soil - Bare; Soil-water-plant Relationships; ... 11.0061

MOISTURE NUTRITION OF PLUVIAL RICE... Resistance to Drought; Evapotranspiration; Irrigation; Management; Moisture Deficiency; ... 11.0062

LEACHING OF THE MINERAL ELEMENTS FROM SANDY SOILS CULTIVATED AS INTENSIVE SYSTEMS... Fallowing; Fertilizer Losses; Lonic Arenosols; Sand; Soil and Rock Leaching; Soil Moisture; ... 11.0063

DETERMINATION OF THE AVAILABILITY OF POTASSIUM IN SOME SANDY SOILS IN SENEGAL... Fertilizer Losses, Fixation, Fertilizer; Lonic Arenosols; Movement, Availability; Placement; Sand; ... 11.0064

STUDY OF THE ACIDIFICATION OF CULTIVATED SOILS IN SENEGAL AND DETERMINATION OF THE REQUIREMENTS IN LIME... Cambic Arenosols; Lime; Management; Soil pH; ... 11.0065

STUDY OF CONTINUOUS CULTIVATION... Climate- Semiarid Tropical; Continuous Cropping; Fallowing; Field Crops -nonspecific; Removal of Nutrients from Soil; ... 11.0066

STUDY OF SEED-DISTRIBUTORS FOR RICE... Design; Modify, Develop of Equip; Fertilizing, Planting & Cult; Management; Pregeneration of Seeds; ... 11.0067

COMPARISON OF METHODS OF APPLICATION OF FERTILIZERS ON RICE... Humid 2 Months; Management; Placement; Side Dressing; Subsoil Application; ... 11.0068

INTRODUCTION OF NEW VARIETIES OF RICE FOR THE FRESH-WATER RICE FIELDS OF CASAMANCE... Cereal Products; Disease Resistance; Humid 2 Months; Phytopathology; Pirciricaria; Pirciricaria; ... 11.0069

INTRODUCTION OF NEW VARIETIES OF PLUVIAL RICE... Cereal Products; Disease Resistance; Drought Resistance; Humid 2 Months; Phytopathology; Pirciricaria; Pirciricaria; ... 11.0070

VARIETAL IMPROVEMENT OF RICE BY HYBRIDATION... For the Improved Fresh-Water Rice Fields of Casamance... Breeding & Genetics; Disease Resistance; Phytopathology; Pirciricaria; Soil Resistance; ... 11.0071

VARIETAL IMPROVEMENT OF RICE BY HYBRIDIZATION FOR THE SALT-WATER RICE-FIELDS OF LOWER CASAMANCE... Breeding & Genetics; Cereal Products; Humid 2 Months, Saline Soils; Soil Resistance; ... 11.0072

VARIETAL IMPROVEMENT OF PLUVIAL RICE BY HYBRIDIZATION... For the Improved Fresh-Water Rice Fields of Casamance... Breeding & Genetics; Disease Resistance; Phytopathology; Pirciricaria; Soil Resistance; ... 11.0073

STUDY OF THE DYNAMICS OF THE SOILS OF RICE-FIELDS IN LOWER CASAMANCE... Excessive Moisture; Humid 2 Months; Soil Chemical Properties; Soil Types; ... 11.0074

ACTION OF BURIED STRAW ON THE DYNAMICS OF SOIL... Clay; Humid 2 Months; Soil Management; Organic Fertility; Soil Amendments; ... 11.0075

ACTION OF LIME AND OF MANGANESE DIOXIDE ON THE DYNAMICS OF AN ACID CLAYEY SOIL... Deficiencies; Iron; Management; Soil pH; ... 11.0076

IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE... Management; Soil Amendments; Sulfor... ... 11.0077

FERTILIZATION OF RICE FIELDS... Humid 2 Months; Management; ... 11.0078

BURIAL OF STRAW IN A RICE FIELD... C/N Ratio; Humid 2 Months; Management; Soil Amendments; ... 11.0079

CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRREGULATED RICE... Cereal Crops; Economics of Chemical Control; Humid 2 Months; Insects; Insecticides -nonspecific; Irrigation -general; ... 11.0080

STUDY OF THE POSSIBILITIES OF BIOLOGICAL CONTROL OF RICE PESTS... Bacillus; Disease -biocontrol; Insects; Population Dynamics; Thuricide; ... 11.0081

STUDY OF THE VARIETAL RESISTANCE OF RICE TO HARMFUL INSECTS... Breeding & Genetics; Cereal Crops; Humid 2 Months; Insect Resistance; Insects; Seed Bank; ... 11.0082

STUDY OF THE INSECTS THAT ARE HARMFUL TO RICE IN CASAMANCE... Cereal Crops; Humid 2 Months; Insects; Light Traps; Population Dynamics; Rearing of Insects; Surveys; ... 11.0083

THE RESIDUAL EFFECTS OF HERBICIDES... Environment Accumulation Rates; Ferric Luvosols; Field Crops -nonspecific; Herbicides -nonspecific; Humid 3 Months; Persistence of Residues; ... 11.0084

STUDY OF HERBICIDE PREPARATIONS ON SORGHUM... Cereal Crops; Ferric Luvosols; Humid 3 Months; Propachlor; Sorghum Vulgare (Grain); ... 11.0085

STUDY OF HERBICIDE PREPARATIONS ON GROUNDNUTS ON SANDY SOILS... Ferric Luvosols; Humid 3 Months; Olseds Crops; Preemergence Application; Prometryne; Sand; ... 11.0086

STUDY OF THE CHEMICAL WEEDING OF GROUNDNUTS... Ferric Luvosols; Herbicides -nonspecific; Humid 3 Months; Olseds Crops; ... 11.0087

STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE... Cereal Crops; Ferric Luvosols; Ferric Luvisols; Ferric Gleysols; Hot Equatorial or Hot Tropical; Management; Pregeneration of Seeds; ... 11.0088

TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION... Crop Production; Harvesting; Eutric Fluvisols; Eutric Gleysols; Hot Equatorial or Hot Tropical; Management; Seedbed Preparation; ... 11.0089

EPIDEMIOLOGY OF PIRICULARIA CRYZAE - METHODS OF CONTROL... Disease Resistance; Disease -nonspecific; Manihot; Moist Monsoon ... 11.0090

EPIEpidemiology of Piricularia cyzae - Methods of Control... Disease Resistance; Environment; Ferric Luvisols; Humid 3 Months, Plus; Ferric Luvisols; ... 11.0091
PRODUCTION OF IMPROVEMENT OF SEMI-LATE IMPORTATION OF IMPROVEMENT OF LOCAL SHORTENING THE IMPROVEMENT OF EXPERIMENT BEHAVIOUR OF PLUVIAL CULTIVATION

Genetics; Fungal Resistance; Lodging; Recombination; Breeding

SMALL MILLETS FROM SELECTION, Sclerospora; ... Breeding

mid 3 Months; Hybrid Breeding

Vulgare (Grain); . Sorghum

Luvisols; Fungal Resistance; Humid 3 Months; Light Quantity or Intensity; Rain; 14.0033

Genetics; Drought Resistance; Eutric Cambisols; Humid 3 Months; Management; Sorghum Vulgare (Grain); . 14.0036

THE SELECTION OF CEREAL CROPS; Fiber Crops; Oilseed Crops; ... Breeding

FERTILIZATION BETWEEN DETERMINATION OF SYNTHETIC VARIETIES RESISTANT TO PIRICULARIOSIS ADAPTED TO CULTIVATION ON FOREIGN EARLY SORGHUMS BY PROVOKING MUTATIONS Sorghum Vulgare (Grain); ... Breeding

Luvisols; Fungal Resistance; Humid 3 Months; Management; Sorghum Vulgare (Grain); . 14.0037

THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE ... Eutric Gleysols; Flood Irrigation; Management; 14.0009

IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES ... Breeding & Genetics; Fungal Resistance; Lodging; Seta; . 14.0029

IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDIZATION BETWEEN LOCAL MATERIAL AND FOREIGN MATERIAL. ... Back Cross; Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Light Quantity or Intensity; Rain; Sorghum Vulgare (Grain); . 14.0030

SHORTENING THE STRAW OF A LOCAL VARIETY OF SORGHUM BY PROVOKING MUTATIONS ... Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Mutation; Sorghum Vulgare (Grain); . 14.0032

SHORTENING THE STRAW OF THE LOCAL MATERIAL ... Back Cross; Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 3 Months; Seta; . 14.0033

IMPROVEMENT OF LOCAL SMALL MILLET BY RECURRENT SELECTION ... Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 3 Months; Lodging; Recurrent Selection; Seta; . 14.0034

IMPORTATION OF FOREIGN LATE AND SEMI-LATE SMALL MILLETS ... Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Light Quantity or Intensity; Rain; Sorghum Vulgare (Grain); . 14.0035

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION ... Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Hybrid Breeding -nonspecific; Sorghum Vulgare (Grain); . 14.0057

FABRICATION OF EXPERIMENTAL F1 HYBRIDS OF SORGHUM ... Breeding & Genetics; Ferric Luvisols; Heterosis; Male Sterility; Sorghum Vulgare (Grain); . 14.0058

IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL ... Breeding & Genetics; Fungal Resistance; Humid 4 Months; Molds; Sorghum Vulgare (Grain); . 14.0059

STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE ... Eutric Gleysols; Flood Irrigation; Management; 14.0060

NITROGENOUS FERTILIZATION FOR AQUATIC RICE ... Eutric Gleysols; Growth Stage of Plant; Humid 4 Months; Management; . 14.0061

VARIEL IMPROVEMENT OF AQUATIC RICE BY INTRODUCTION ... Eutric Gleysols; Humid 4 Months; Management; . 14.0062

RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PIRICULARIOSIS, BY INTRODUCTION ... Blast; Chromic Vertisols; Fungal Resistance; Phytopathology; Phytophthora; . 14.0063

INTRODUCTION OF PLUVIAL RICE INTO THE CROPPING SYSTEM ... Chromic Vertisols; Ferric Luvisols; Humid 4 Months; Management; Time & Motion Studies; . 14.0064

DETERMINATION OF THE APPROPRIATE TECHNIQUES FOR CULTIVATION OF PLUVIAL RICE ... Chromic Vertisols; Ferric Luvisols; Humid 4 Months; Management Effects on Soils; Seedbed Preparation; . 14.0065

I.R.C.T.

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON ... Continuous Humid; Eutric Planosols; Fiber Crops; Gleyic Luvisols; Insecticides -nonspecific; Management; ... 1.0016

EXPERIMENTATION WITH VARIETIES OF COTTON ... Climate- Continental Sav.Trop.; Dystric Nitosols; Fiber Crops; Gleyic Luvisols; Insecticides -nonspecific; Management; Plinthic Luvisols; ... 1.0018

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON ... Eutric Cambisols; Ferric Luvisols; Insecticides -nonspecific; Management; Massue; Moist Monsoon; ... 1.0023

INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS ... Ferric Luvisols; Fertilizer Losses; Humid 6 Months; Management; Mineralogy; Soil Testing; Timing of Planting Procedures; ... 1.0024

EXPERIMENTATION WITH VARIETIES OF COTTON ... Dry Monsoon 5 Months, Plus; Eutric Cambisols; Ferric Luvisols; Fiber Crops; Insecticides -nonspecific; Management; Most Monsoon; ... 1.0025

EXPERIMENTATION WITH VARIETIES OF COTTON ... Fiber Crops; Insecticides -nonspecific; Management; ... 1.0030
STUDY OF THE PARASITISM OF THE COTTON PLANT...Fiber Crops; Habitation Studies; Insecta; Population Dynamics; 1.0045

STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW...Fallowing; Ferric Luvisols; Humid 6 Months; Management; 1.0052

EXPERIMENTS WITH VARIETIES OF HIBISCUS, COR- CHORUS AND URENA...Corchorus; Environments, Plant; Humid 6 M.or Less; Management; Two Humid Seasons; 1.0053

STUDY OF THE ACTION OF THE ELEMENTS N, S, P, K, B, O APPLIED AS A FERTILIZER ON HIBISCUS SAB- DARIFFA...Fallowing; Management; Sulfur; 1.0057

EXPERIMENT ON TECHNIQUES OF RETTING FOR HIBIS- SUBS SABDARIFFA...Ferric Luvisols; Harvest and Storage; Humid 6 Months; Retting; 1.0059

SELECTION OF KENAF CRYSTAL MILL....Dystric Gleysols; Humid 3 Months; Luvisols; Methyl Parathion; Planting Methods - other; 11.0017

STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE Field...Dystric Gleysols; Humid 3 Months; Management; Soil Moisture; 11.0051

EXPERIMENTAL TRIALS TO CORRECT THE POTAS- SIUM DEFICIENCY IN COTTON PLANTATIONS IN SINE-SALOUM...Dystric Gleysols; Ferric Luvisols; Humid 3 Months; Luvic Arenosols; Management; 11.0052

WITHDRAWAL EXPERIMENTS FOR THE STUDY OF MIN- ERAL DEFICIENCIES OF THE SOIL IN RELATION TO THE COTTON PLANT...Fertilizer Technology; Mapping; 11.0165

PLURIANNUAL MINERAL FERTILIZATION EXPERI- MENTS, SO-CALLED 'WITHDRAWAL' EXPERIMENTS, IN A CROP ROTATION WITH COTTON...Dystric Gleys- ols; Humid 3 Months; Luvisols; Sorghum Vulgare (Grain); 11.0166

EXPERIMENTS COMPARING IN TIME THE EFFICIENCY OF DIFFERENT RECOMMENDED FORMULATIONS FOR MANURE APPLIED TO COTTON CROPS...Management; Sulfur; 11.0167

EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION...Dilron; Ferric Luvisols; Humid 3 Months; Preemerge Application; Surface -soil; 11.0170

EXPERIMENTS TO TEST THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS...DDT; Endrin; Fiber Crops; Methyl Parathion; Peprothion; Thiodan; 11.0171

EXPERIMENTS ON RATES OF APPLICATION FOR INSEC- TICIDE PREPARATIONS IN CULTIVATIONS OF COT- TON...DDT; Fiber Crops; Methyl Parathion; Peprothion; Triazophos; 11.0173

VARIELTAL EXPERIMENTS ON HIBISCUS...Management; 14.0076

VARIELTAL EXPERIMENTS WITH COTTON...Ferric Luvi- sols; Fiber Crops; Humid 6 Months; Insecta; Insecticides - non-specific; Management; Plinthic Luvisols; 14.0078

RESEARCH ON MINERAL DEFICIENCY IN COTTON...Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; Sulfur; 14.0079

EXPERIMENT - SYSTEMS OF CULTIVATION AND FER- TILIZATION...Humid 6 Months; Management; 14.0080

TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON...Ferric Luvisols; Formulation, Fertilizer; Humid 6 Months; Management; Plinthic Luvisols; Sulfur; 14.0081

COMBINED EXPERIMENT - METHOD OF PLOUGHING- FERTILIZATION...Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; Plowing; Sorghum Vulgare (Grain); 14.0082

STUDY OF NITROGENOUS NUTRITION ON COTTON...Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvis- ols; 14.0083

POLIAR ANALYSIS ON THE COTTON PLANT...Boron; Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvisols; Sulfur; 14.0084

STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FER- TILIZERS...Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvisols; Sorghum Vulgare (Grain); Timing of Application - other; 14.0085

LEVEL OF PHYTOSANITARY PROJECTION ON COTTON...Ferric Luvisols; Humid 6 Months; Pest Control Measures; Phytopathology; Plant Diseases; Plinthic Luvisols; 14.0087

TRIALS OF INSECTICIDE PREPARATIONS IN THE COT- TON PLANT...Endrin; Fiber Crops; Insecta; Plinthic Luvisols; 14.0088

EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP...DDT; Endrin; Fiber Crops; Insecta; Sequence; Daily; Weekly; 14.0089

VARIELTAL EXPERIMENTS ON HIBISCUS...Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvisols; 14.0090

Ministre Au Develop. Rural

STUDY OF LAND TENURE AND LAND CONSOLIDATION...Land Use -agriculture; Natural Resources Economics; 11.0054

INVESTIGATIONS OF REVENUES AND EXPENDITURE OF FARMS...Capital & Financial Management; Costs; 11.0067

MANAGEMENT COUNCIL FOR FARMS...Management; Production and Processing; Technological Development; 11.0068

DETERMINATION OF THE PRODUCTIVITY (OF FISH) OF CONTINENTAL WATERS...Fish; Fish Farming; Fishing Methods and Equipment; Water Environment; 11.0071

STUDIES ON THE FAUNA OF CONTINENTAL WATERS...Commercial Fishing; Population Dynamics; 11.0072

DETERMINATION OF PRODUCTION OF FISH OF CONTI- NENTAL WATERS...Commercial Fishing; Fish; Lakes & Reservoirs; Population Dynamics; Streams; 11.0073

STUDY OF THE POSSIBILITIES OF REPLANTING WOOD- LAND IN THE WESTERN CENTRE OF SENEGAL UTILIZ- ING EXOTIC SPECIES OF RAPID GROWTH...Chronic Vertisol; Eucalyptus; Fuel -wood; Planting Methods - other; Shelter Belts, Windbreaks; Soil Depth; 11.0078

STUDY OF THE POSSIBILITIES OF REPLANTING OF WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES...Chronic Vertisol; Fuel -wood; Humid 3 Months; Planting Methods; Silviculture; 11.0079

STUDY OF THE GROWTH OF TEAK...Humid 2 Months; Measurement of Trees & Stands; Silviculture; Tectona; 11.0128

EXPERIMENT ON THE INTRODUCTION OF TROPICAL RESINOUS SPECIES...Humid 2 Months; Pinus; Silviculture; 11.0129

STUDY THE POSSIBILITIES OF REPLANTING WOOD- LAND IN THE DELTA OF THE SENEGAL RIVER...Costs; Eucalyptus; Luvic Arenosols; Prosopis; Soil Types; 11.0140

SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - SILVICULTURE OF THE LOCAL SPECIES...Gums and Resins; Luvic Arenosols; Planting Methods; 11.0141

SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - EXPERIMENT ON THE INTRODUCTION OF EXOTIC SPECIES...Eucalyptus; Fuel -wood; Humid 1 Month; Luvic Arenosols; Moisture Deficiency; Silviculture; Wind Erosion; 11.0142

National Network -general

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COT- TON...Dystric Nitosols; Management; Two Humid Seasons; 1.0014

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COT- TON...Ferric Luvisols; Humid 4 Months; Management; 1.0021

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COT- TON...Dystric Nitosols; Management; Two Humid Seasons; 1.0028

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTI- CIDE PREPARATIONS IN COTTON PLANTATIONS...Endrin; Insecta; Methyl Parathion; Pelethion; Thiodan; 1.0046

TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS...DDT; Fiber Crops; Insecta; Pelethion; Phosvel; Thiodan; Zectran; 1.0047

RESEARCH INTO METHODS FOR THE INTEGRATED CON- TROL OF COTTON PESTS IN DAHOMEY...Behavioral Ecology; Dystric Nitosols; Fiber Crops; Insecta - other; Integrated Control; Olethebrotus; 1.0048

INSECTICIDE EVALUATION TEST IN COTTON PLANTA- TIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS...Dystric Nitosols; Endrin; Gardona; Hu- mid 6 M.or Less; Pesticides - other; Synergism and Synergists; 1.0049

EXPERIMENT ON STARTING INSECTICIDAL TREAT- ME∋NT OF THE COTTON PLANTS AT A WARNING SIGN... Fiber Crops; Insecta; Insecticides - non-specific; Timing - other; 1.0050
CANNABINUS L. ... Fibers; Humid 7 Months; Management; Timing of Planting Procedures; ... 3.0069

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... 3.0070

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... Damping Off; Fungicides - nonspecific; Humid 7 Months; Phytopathology; Timing of Treatment; Soil-borne; ... 3.0071

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Fibers; Humid 7 Months; Management; Timing of Planting Procedures; Urena; ... 3.0072

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORchorus Capsularis ... Corchorus; Fibers; Humid 7 Months; Management; Timing of Planting Procedures; ... 3.0073

THE DEVELOPMENT OF TRADITIONAL FISH PROCESSING ... Fermentation; Fish Product Development; Osteichthyes - other; Shelf Life & Storage of Food; ... 3.0074

THE CHEMICAL COMPOSITION OF COMMERCIALLY IMPORTANT GHANAIAN FISHES ... Chemical Analysis of Food; Commercial Fishing; Fish; Fish and Shellfish; Nutritive Value of Food; Nutritive Values - animals; ... 3.0077

THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Dehydration; Fermentation; Organic Acids; Organoleptic Studies of Food; Spoilage of Food; ... 3.0079

FOOD COMPOSITION TABLES ... Catalogs, Tables, Compilations; Chemical Analysis of Foods; Edible Nuts & Nutmeats; Vegetable & Vegetable Products; ... 3.0080

STUDIES ON AMBROSIA BEEETLE POPULATIONS IN THE FOREST ZONE OF GHANA ... Coleoptera - other; Forestry Insects; Population Dynamics; Scolytidae; Surveys; ... 3.0092

STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXOTIC TIMBER SPECIES ... Chlorophora; Forests; Population Dynamics; Pyralidae; Terminaria; ... 3.0093

STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA ... Curculioidei; Dieneza; Forestry Insects; Surveys; Terminaria; Triplochiton; ... 3.0094

DIFFUSION-IMPERMEABILITY OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS ... Boron; Wood; Wood Preservation & Seasoning; Wood Preservatives; ... 3.0096

INVESTIGATIONS ON THE CAPE ST. PAUL WILT DISEASE OF COCONUT ... Coco; Disease Resistance; Forecast Outbreak - Plant Dis.; Moist Monsoon 0 to 3 Months; Surveys; Wilts; ... 3.0111

N.P.K. FACTORIALS - FERTILIZER TRIAL IN SUGARCANE ... Formulation, Fertilizer; Irrigation; Irrigation - general; Management; Saccharum; Two Humid Seasons-7 Month,Plus; ... 3.0112

TREATMENT OF SUGARCANE PLANTING METHOD ... Dip Application; Management; Pesticides - other; Saccharum; Two Humid Seasons-7 Month,Plus; ... 3.0114

SUGARCANE VARIETY STUDIES ... Excessive Moisture; Management; Saccharum; Sucrose; Two Humid Seasons-7 Month,Plus; ... 3.0115

TYPE OF PLANTING MATERIAL AND SPACING TRIALS IN SUGAR CANE ... Management; Saccharum; Space Competition; Two Humid Seasons-7 Month,Plus; ... 3.0116

CHEMICAL WEED CONTROL IN SUGARCANE ... Fenac; Grasses or Sedges; Pesticides - other; Saccharum; Sugar Crops; ... 3.0116

WEED CONTROL IN YOUNG AND MATURE OIL PALMS (ELAEIS GUINEENSIS) USING HERBICIDES ... Biofix; Continuous Humid 7 Months,Plus; Epam; MSMA; Oilseed Crops; Pararquat; ... 3.0117

RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERY AND NURSERY PLANTS ... Biscus; Continuous Humid 7 Months,Plus; Management; Nursery Observational Plots; Planting Methods - other; ... 3.0118

PODER CROP IMPROVEMENT ... Breeding & Genetics; Continuous Humid 7 Months,Plus; F Generation (F1, F2, F3, Etc); Recurrent Selection; Seed Production; ... 3.0119

OIL PALM FERTILIZER TRIALS IN THE GHANA ... Calcium - other than Lime; Continuous Humid 7 Months,Plus; Magnesium; Management; Sand; ... 3.0120

IMPROVEMENT OF OIL PALM SEED GERMINATION ... Continuous Humid 7 Months,Plus; Dip Application; Germination; Management; Moisture Content - plants; ... 3.0121

ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM ... Continuous Humid 7 Months,Plus; Drought Resistance; Epidemics; Management; Moisture Deficiency; Photoperiod; Soil Depth; ... 3.0122

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES ... Continuous Humid 7 Months,Plus; Drought Resistance; Evapotranspiration; Management; Oilseed Crops; Soil-water-plant Relationships; ... 3.0123

REMOVAL OF INFLORESCENCES IN YOUNG OIL PALM FIELDS ... Continuous Humid 7 Months,Plus; Crop Production; Harvesting; Harvest and Storage; Management; ... 3.0124

FRUITICIDE SPRAYING TRIALS IN OIL PALM ... Cercopora; Economics of Chemical Control; Fortitude; Mode of Action; Photophathy; ... 3.0125

OIL PALM SPACING AND DENSITY TRIALS ... Intercropping; Management; Space Competition; ... 3.0126

STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA ... Coco; Mangifera; Nicotiana; Saccharum; ... 3.0127

INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS ... Continuous Humid 7 Months,Plus; Culturing Techniques; DD; Nemagon; Nicotiana; Population Dynamics; ... 3.0128

INVESTIGATIONS INTO THE CONTROL OF SUGAR CANE NEMATODES ... Burning or Molasses; Phytopathology; Soil-water-plant Relationships; ... 3.0129

INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA ... Continuous Humid 7 Months,Plus; Env. Plant Dis. Relation; Light Quantity or Intensity; Phytopathology; Seasonality; Weather; ... 3.0130

EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLFSII ON VEGETABLES AND LEGUMES ... Continuous Humid 7 Months,Plus; Lycoper­scum; Sclerotium; Selectivity of Pesticides; Wilts; ... 3.0131

INVESTIGATIONS INTO BIOINOCOMICS AND CONTROL OF INSECT PESTS ON COTTON ... Continuous Humid 7 Months,Plus; Economics of Chemical Control; Gelechiidae; Nociuidae; Surveys; Trap Crops; ... 3.0132

VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL ... Continuous Humid 7 Months,Plus; Lycopersicum; Pulse Crops; Solanum; Surveys; ... 3.0133

INVESTIGATION INTO THE INSECT PESTS OF BAST FIBRES AND THEIR CONTROL ... Continuous Humid 7 Months,Plus; Corchorus; Fiber Crops; Insecticides - nonspecific; Surveys; Urena; ... 3.0134

INVESTIGATIONS INTO THE BIOINOCOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE ... CRABESCHIDAE; Dip Application; Isoperta; Saccharum; Toxaphene; ... 3.0135

BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA) ... Continuous Humid 7 Months,Plus; Economics of Chemical Control; Multiple Croping; Parasites - biocontrol; Sevin; ... 3.0136

EFFECTS OF FERTILIZER PLACEMENT ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS L. ... Band Application; Continuous Humid 7 Months,Plus; Management; Subsoil Application; ... 3.0137

EFFECTS OF FERTILIZER PLACEMENT ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS L. ... Continuous Humid 7 Months,Plus; Growth Stage of Plant; Management; Urena; ... 3.0138

REPRODUCTIVE BIOLOGY OF KENAF ... Back Cross; Continuous Humid 7 Months,Plus; Management; Pollens; ... 3.0139

NATURAL CROSSING IN KENAF IN GHANA ... Breeding & Genetics; Continuous Humid 7 Months,Plus; Halictid; ... 3.0140

EFFECTS OF AGE AT HARVEST ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS, CANNABINUS, L. ... Continuous Humid 7 Months,Plus; Harvest and Storage; Retention; ... 3.0141

EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, HIBISCUS, CANNABINUS, L. ... Continuous Humid 7 Months,Plus; Germination; Low Temperature; ... 3.0142

FERTILIZER TRIALS ON FLUE, FIRE AND AIR CURED TOBACCO ... Continuous Humid 7 Months,Plus; Cost; Curing Technique; Management; Nicotiana; Placement; ... 3.0143

AIR CURED TOBACCO VARIETY TRIALS IN GHANA ... Continuous Humid 7 Months,Plus; Curing Technique; Management; Nicotiana; ... 3.0144

EFFECT OF TIME OF LAND PREPARATION AND PLANTING ON YIELD QUALITY OF FLUE CURED TOBACCO ... Continuous Humid 7 Months,Plus; Management; Nicotiana; ...
CANNABINUS L. ... Dry Monsoon 5 Months, Plus; Fibers; Management; ... 3.0193

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Dry Monsoon 5 Months, Plus; Fibers; Management; Surface -sol-; ... 3.0194

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Dry Monsoon 5 Months, Plus; Fibers; Management; Timing of Planting Procedures; ... 3.0195

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Dry Monsoon 5 Months, Plus; Insect Resistance; Photoperiod; Seed Bank; ... 3.0196

INVESTIGATIONS OF FUNGICIDAL SEED DRESSING ... Damping Off; Dry Monsoon 5 Months, Plus; Fungicides -nonspecific; Phytopathology; Seed Treatment; Soil-borne; ... 3.0197

EFFECTS OF DIFFERENT DATE OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Dry Monsoon 5 Months, Plus; Fibers; Management; Timing of Planting Procedures; Urena; ... 3.0198

EFFECTS OF DIFFERENT DATES OF PLANTING OF THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Dry Monsoon 5 Months, Plus; Fibers; Management; Timing of Planting Procedures; ... 3.0199

CROPS SEQUENCE TRIAL ... Disease Resistance; Fallowing; Management; Moist Monsoon 0 to 3 Months; ... 3.0200

EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0201

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH FIBRE AND SEED YIELDS OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0202

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0203

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Insect Resistance; Nematode Resistance; Plant Nematodes -nonspecific; Selfing; ... 3.0204

INVESTIGATIONS OF FUNGICIDAL SEED DRESSINGS ... BHC; Eutric Nitosols; Moist Monsoon 0 to 3 Months; Phytopathology; Soil-borne; ... 3.0205

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; Urena; ... 3.0206

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0207

INTRODUCTION OF EXOTIC PLANTS ... Cocoa; Disease Resistance; Insect Resistance; Phenology, Life Cycle; Plant Parts Bank; Trichium; ... 3.0208

PLANT EXPLOREATION AND COLLECTION ... Breeding & Genetics; Continuous Humid 7 Months,Plus; Cyclamate; Mutation; Plant Parts Bank; Plant Resistance; Sugar -nonspecific; ... 3.0209

INSECT INFESTATION AND DAMAGE OF MAIZE AND COWPEAS ON SALE IN SOME MARKETS IN GHANA ... Cereal Crops; Grain Industries; Moisture Content -plants; Price and Value; ... 3.0210

THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS ... Barriers & Weeds; Control of Nuisance Species; DVP; Phosphorhodioate Cpsd; Storage; Tenebroidae; ... 3.0211

STORAGE OF MAIZE IN A CONCRETE SILO ... Buildings; Farm; Fumigation; Photox; Storage; Temperature -air-; ... 3.0212

THE PRESERVATION OF PALM FRUIT AS DEFIBRED MESOCARP PASTE ... Fruits; Heating; Phoenix; Shelf Life & Storage of Foods; ... 3.0213

MOISTURE CONTENT ... RELATIVE HUMIDITY EQUILIBRIUM OF SOME GHANAIAN FOODSTUFFS ... Cereal Production Crops; Fruits; Heating; Piperaceae; ... 3.0214

SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK ... Bruchidae; Cereal Crops; Curculionidae; Insect Resistance; Pulse Crops; Stored Grain Insects; ... 3.0215

FIXATION OF APPLIED PHOSPHORUS IN SOME GHANA SOILS ... Soil Testing; Temperature -sol-; ... 3.0230

LIVESTOCK DISEASE INVESTIGATION ... Histology and Cytology; ... 3.0232

HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN ... Behavioral Ecology; Fish Food Supply; Plankton; Water Environment; ... 3.0233

IMPROVEMENT OF THE COFFEE-SHRUB (C. CAREPHORA) BY VEGETATIVE MEANS ... Breeding & Genetics, Spice&Bev; Management; ... 4.0005

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANEPHORA) BY GENERATIVE MEANS ... Breeding & Genetics, Spice&Bev; Fertilic Cambisols; Ferie Acrosols; Genetics; Management; Two Humid Seasons-7 Month,Plus; Weathering Resistance; ... 4.0012

INDUSTRIAL PROCESSING OF COFFEE ... Beverage Crops; Coffee; Food Engineering & Technology; Plant Industries -other; Processing of Food; ... 4.0031

INDUSTRIAL PROCESSING OF COCOA ... Chocolate & Cocoa; Drying; Fermentation; Food Engineering & Technology; Harvest and Storage; Sacks & Bags; ... 4.0032

COCOA PROCESSING AT THE FARM LEVEL ... Crop Production; Harvesting; Design,Modify,Develop.of Equity; Drying; Harvest and Storage; ... 4.0033

STORAGE AND CONSERVATION OF COFFEE ... Harvest and Storage; Storage; ... 4.0034

STORAGE AND CONSERVATION OF COCOA ... Harvest and Storage; Storage; ... 4.0035

MINERAL FERTILIZATION ON COCOA ... Calcium - Other Than Lime; Eutric Fluvisols; Magnesium; Nursery Observational Plots; Soil Analysis -other; ... 4.0090

IMPROVEMENT OF THE COLA TREE - COLA NITIDA ... Breeding & Genetics, Spice&Bev; Cola; Ferie Acrosols; Interspecific Genetic Relations; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus; ... 4.0114

GENERATIVE IMPROVEMENT OF THE CACAO-TREE ... Breeding & Genetics, Spice&Bev; Interspecific Cross; Intraspecific Genetic Relations; Management; Plant Resistance; ... 4.0120

IMPROVEMENT OF THE COFFEE-SHRUB (C.CANE-PHORA) BY VEGETATIVE MEANS ... Breeding & Genetics, Spice&Bev; Interspecific Cross; Intraspecific Genetic Relations; Management; ... 4.0122

IMPROVEMENT OF THE COFFEE-SHRUB (C.CANE-PHORA) BY GENERATIVE MEANS ... Breeding & Genetics, Spice&Bev; Management; Seed Production; Weathering Resistance; ... 4.0123

IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION ... Breeding & Genetics, Spice&Bev; Elevational Levels, Altitude; Intraspecific Genetic Relations; Intraspecific Cross; ... 4.0124

STUDY ON THE UTILIZATION OF GROWTH SUBSTANCES IN COFFEE GROWING ... Ethal; Feriei Acrosols; Fruit-set or Fruit-thinning; Growth Retardation of Plants; Management; Two Humid Seasons; ... 4.0133

VARIELT IMPROVEMENT OF THE PRODUCTIVITY OF MAIZE BY UTILIZING HYBRID FORMULAS ... Breeding & Genetics; Continuous Humid; ... 4.0174

VARIELT EXPERIMENT WORK ON SOYA ... Glycine Max; Humid 5 Months; Management; Multiple Cropping; ... 4.0111

STUDY THE LUTOIDS OF THE LATEX OF THE RUBBER TREE - HEVEA ... Breeding & Genetics; Latex; Laticifers; Membranes, Cellular; Quality and Utilization; Two Humid Seasons; ... 4.0223

REGENERATION OF THE LATEX OF THE RUBBER TREE AFTER TAPPING ... Breeding & Genetics; Deficiencies; Harvest and Storage; Monosaccharides -nonspecific; Translocation; ... 4.0224

TAPPING OF THE RUBBER TREE - STUDY THE FLOW OF THE LATEX ... Breeding & Genetics; Harvest and Storage; Latex; Osmotic and Turgor Pressure; Soil Moisture; Solar Light; Two Humid Seasons; ... 4.0225

TAPPING OF THE RUBBER TREE - STUDY OF NEW PREPARATIONS FOR STIMULATION OF PRODUCTION ... Harvest and Storage; Latex; Two Humid Seasons; ... 4.0226

IMPROVEMENT OF THE RUBBER TREE - VEGETATIVE IMPROVEMENT OF THE PLANTING MATERIAL ... Breeding & Genetics, Intraspecific Genetic Relations; Plant Resistance; Two Humid Seasons; Wind or Air Movement; ... 4.0217

IMPROVEMENT OF HEVEA BRAZILIENSIS - RESEARCH ON CRITERIA FOR SELECTION ... Breeding & Genetics;
INTRODUCTION AND ESTABLISHMENT OF COCOA GERMPLASM. . . Black Pod; Breeding & Genetics, Spic&Bev; Fungal Resistance; Pathogenesis; Phytophthora; Swollen Shoot Virus; Virus Resistance; . . . 9.0107

CYTOGENETIC STUDIES IN COCOA . . . Breeding & Genetics, Spic&Bev; Histology and Cytology; Interspecific Cross; Mitosis; Mitotic Wild Type Genotype; . . . 9.0108

DIALEE CROSSING PROGRAMME IN COCOA . . . Breeding & Genetics, Spic&Bev; Disease Resistance; Hybrid Breeding -nonspecific; . . . 9.0109

BREEDING FOR ESTABLISHMENT ABILITY AND DROUGHT RESISTANCE IN COCOA . . . Breeding & Genetics, Spic&Bev; Drought Resistance; Management; . . . 9.0110

BREEDING FOR BLACKPOD RESISTANCE IN CACAO . . . Black Pod; Breeding & Genetics, Spic&Bev; Fungal Resistance; Inoculation; Intraspec. Genetic Relations; Phytopathology; Phytophthora; . . . 9.0111

BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO . . . Breeding & Genetics, Spic&Bev; Double Cross; Phytopathology; Swollen Shoot Virus; Top Cross; . . . 9.0113

GERMINATION AND GROWTH STUDIES IN COCOA . . . Germination; Management; Nursery Observational Plots; . . . 9.0116

INCREASING COCOA YIELDS BY PHYSIO-AGRONOMIC TECHNIQUES . . . Cherelle Witt; Management; Phytopathology; . . . 9.0117

STUDIES ON FIELD ESTABLISHMENT OF COCOA . . . Management; Shade; . . . 9.0118

STUDIES ON TREE CROP REHABILITATION . . . Cacao; Insects; Management; Phytopathology; Planting Methods; . . . 9.0119

WEED STUDIES IN TREE CROPS . . . Cover Crops; Field Crops -nonspecific; Leguminosae; Mulches; Soil Tillage Sequence; / Method; . . . 9.0128

COCOA FERTILIZER TRIALS. . . Calcium - Other Than Lime; Management; . . . 9.0121

SOIL PHOSPHORUS STUDIES . . . Management; Movement; Availability; Soil Profile Study; Testing; . . . 9.0122

STUDIES ON SOIL ORGANIC MATTER . . . Fertilizer, Nutrient; Deficiencies; Management; Organic Fertility; Sulfate; . . . 9.0123

MICRONUTRIENTS IN TREE CROP NUTRITION . . . Boron; Cacao; Foliar Application; Iron; Management; Soil Testing; Zinc; . . . 9.0124

ROOT STUDIES ON COCOA, CASHEW AND KOLA . . . Cacao; Management; Soil Environment -other; . . . 9.0125

STUDIES ON THE EPIDEMIOLOGY OF PHYTOPHthora PALMIVORA . . . Black Pod; Cankers; Pathology, Life Cycle; Phytophthora; . . . 9.0126

FIELD CONTROL OF PHYTOPHthora PALMIVORA ON COCOA . . . Black Pod; Fungi; Petroleum Costs -nonspecific; Petroleum Cpd. -nonspecific; Phytophthora; . . . 9.0128

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT . . . Breeding; Crops; Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity; . . . 9.0129

BIO-ECOLOGY OF THE COCOA MIRID . . . Breeding Crops; Entomology; Physiology; Factors Affecting Insect Pop.; Miridae; Moisture Deficiency; Population Dynamics; Sex Ratio; . . . 9.0130

CONTROL OF MIRIDS ON COCOA . . . Breeding Crops; BHC; Insecticides -nonspecific; Miridae; Selectivity of Pesticides; . . . 9.0131

BATHYCOELIAL THALASSINA (HETEROPTERA) ON CACAO . . . Breeding Crops; Hemiptera -other; Maturity & Growth Stages; Parasites -biocontrol; Population Dynamics; Tachinidae; . . . 9.0132

COLLECTION AND ESTABLISHMENT OF KOLA GERMPLASM . . . Cacao; Intraspec. Genetic Relations; Management; Plant Parts Bank; Sex Ratio; Taxonomy, Plant; . . . 9.0133

CYTOGENETIC STUDIES IN KOLA . . . Breeding & Genetics, Spic&Bev; Cacao; Interspecific Cross; . . . 9.0134

BREEDING FOR SUPERIOR GENOTYPES OF COLA NATITDA AND COLA ACUMINATA . . . Breeding & Genetics, Spic&Bev; Cacao; . . . 9.0135

DIALEE CROSSING PROGRAMME IN KOLA . . . Breeding & Genetics, Spic&Bev; Cacao; . . . 9.0136

STUDIES ON VARIOUS YIELD AND QUALITY FACTORS IN KOLA. . . Cacao; Cover Crops; Intraspec. Genetic Relations; Management; . . . 9.0137

STUDIES ON GERMINATION, GROWTH AND ESTABLISHMENT OF KOLA . . . Cacao; Cover Crops; Dormancy; Germination; Management; Space Competition; . . . 9.0138

STUDIES ON FLOWERING AND POD PRODUCTION IN KOLA (C. NITITDA) . . . Cacao; Management; Plant Growth Regulators; Timing of Application; . . . 9.0139

VEGETATIVE PROPAGATION OF KOLA . . . Bins; Cacao; Hormones; Management; . . . 9.0140

KOLA NUTRIENT PROJECT . . . Cola; Management; Soil Analysis; . . . 9.0141

DISEASES OF KOLA IN NIGERIA . . . Cacao; Fomes; Phytopathology; Preemergence Application; . . . 9.0142

PESTS OF KOLA IN NIGERIA . . . Breeding Crops; BHC; Cacao; Curculionidae; Insect Utilization; Phytosanitary Measures; . . . 9.0143

STUDIES ON YIELD IMPROVEMENT IN COFFEE . . . Breeding & Genetics, Spic&Bev; . . . 9.0144

COFFEE AGRONOMY PROJECT . . . Breeding Crops; Ethrel; Fruit-set or Fruit-thinning; Management; Mulches; Shade; Space Competition; . . . 9.0145

USE OF GROWTH REGULATORS IN COFFEE HUSBANDRY . . . Ethrel; Germination; Management; Preharvest Application; Theiaurea; . . . 9.0146

COFFEE NUTRIENT STUDIES . . . Isotopes; Management; Removal of Nutrients from Soil; Timing of Application -other; . . . 9.0147

DISEASES OF COFFEE IN NIGERIA . . . Culturing Techniques; Fungicides -nonspecific; Phytopathology; Rusts; Screening Potential Pesticides; Seed borne; Surveys; . . . 9.0148

INSECT PESTS OF COFFEE IN NIGERIA . . . Breeding Crops; Insects -other; Surveys; . . . 9.0149

SELECTION AND BREEDING OF CASHEW FOR HIGH YIELD AND DESIRABLE NUT CHARACTERISTICS . . . Breeding & Genetics; Top Cross; . . . 9.0150

MINERAL NUTRITION OF CASHEW . . . Deficiencies; Fertilizer Toxicity; Management; . . . 9.0151

INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA . . . Insects -other; Nuts; Pests; Surveys; Taxonomy, Animal; Thysanoptera; . . . 9.0152

ECONOMICS OF PRODUCTION IN TREE CROP AGRICULTURE . . . Capital & Financial Management; Cacao; Costs; Management; Plant Industries -other; Savings and Investment; . . . 9.0153

CROP UTILIZATION PROJECT . . . By-products; Plant (Vegetative); Chocolate; Cocoa; Compots; Food Processing Wastes; Nuts; Nutmeats; Preserves & Jellies; . . . 9.0154

SEED GARDEN RESEARCH PROJECT . . . Cacao; Intraspec. Genetic Relations; Management; Space Competition; . . . 9.0155

INTERCROPPING WITH SORGHUM . . . Competition; Intercropping; Light Quantity or Intensity; Management; Multiple Cropping; Sorghum Vulgaris (Grain); . . . 9.0158

COLLECTION, CHARACTERIZATION AND EVALUATION OF COFFEE GERMPLASM IN NIGERIA . . . Breeding & Genetics, Spic&Bev; Disease Resistance; Seed Bank; . . . 9.0159

MAIZE HERBICIDE TRIALS . . . Cereal Crops; Continuous Humid 7 Months, Plus; Simazine; . . . 9.0199

MAIZE POPULATION STUDIES . . . Cereal Crops; Continuous Humid 7 Months, Plus; Management; Placement; Space Competition; . . . 9.0203

HERBICIDE SCREENING . . . Cereal Crops; Continuous Humid 7 Months, Plus; Herbicides -nonspecific; Postemergence Application; . . . 9.0204

EVALUATION OF NUTRITIVE VALUE OF SOME LOCAL AND INTRODUCED RICE . . . Breeding & Genetics; Nutritive Values -plant; Proteins; Starch; Sugar -nonspecific; Vitamins; . . . 9.0206

EVALUATION OF THE NUTRITIVE QUALITY OF BEANS . . . Food Proteins & Amino Acids; Management; Nutritive Value of Food, Phascolus; Vegetable & Vegetable Products; . . . 9.0207

THE EFFECT OF GRASS -LEGUME MIXTURES ON HERBAGE PRODUCTION AND CHEMICAL COMPOSITION AS COMPARED WITH APPLICATION OF NITROGEN PERT IN CYModon; In Vitro Feed Studies; Management; Proteins; . . . 9.0208

SEED RATE TRIAL WITH UPLAND RICE . . . Continuous Humid 7 Months, Plus; Crop Production, Harvesting; Drill Application; Management; Seeding or Planting Rate; . . . 9.0209

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES . . . Centrosema; Legume-grass Mixtures; Management; Proteins; Rhizobium; . . . 9.0214

STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L) WALP) & . . . Blight Diseases; Diptaera; Pulse Crops; Vectors; Xanthomonas; . . . 9.0215

THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL . . . Continuous Humid 7 Months, Plus; Ni-
SUBJECT INDEX

Network Project - national

Max; Inoculation; Plant Virus - general; Virus Resistance; ... 9.0244

REDUCTION OF SUGARCANE MOSAIC VIRUS ... Detection & Diagnosis; Indicator Organisms; Mosaic Viruses; Phytopathology; ... 9.0245

STUDIES ON BEAN (COWPEA) VIRUS DISEASES AND THE COLLECTION AND RE-ESTABLISHMENT OF INFECTIOUS CULTURES ... Isolation of Viruses; Phytopathology; Plant Virus - general; Virus Resistance; ... 9.0246

PHOSPHATE PLACEMENT TRIAL ... Broadcast Application; Ferric Acetate; Management; Rain; ... 9.0251

BASIC SLAG AND SINGLE PHOSPHATE AS PHOSPHATIC FERTILIZERS ... Continuous Humid 7 Months, Plus; Ferric Acetate; Management; Soil pH; ... 9.0252

RESEARCH AND DEVELOPMENT IN GENERAL HORTICULTURE, ESPECIALLY FRUITS AND VEGETABLES ... Fruits and Berries; Vegetables - other; Vine, Shrub, Bramble Fruit Crop; ... 9.0267

THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COWPEAS BY THE LEAFHOPPER EMPOASCA DOLICHI ... Chlorosis; Insecticides - nonspecific; Pea; Pulse Crops; Stunt Diseases; Undesired Results; ... 9.0268

SURVEY OF PARASITES AND PREDATORS OF MARUCA TESTULARIS AND LAMECA REVERSA ... Formicidae; Coleothedidae; Parasites - biocontrol; Predators - biocontrol; Pulse Crops; ... 9.0269

INSECTICIDAL CONTROL OF COWPEA PESTS ... Lindane; Maturity or Growth Stage; Ophionidae; Pulse Crops; Sequential; Daily, Weekly, Etc; ... 9.0270

SURVEY OF MAIZE NEMATODES ... Decline; Phytopathology; Plant Nematodes - nonspecific; Surveys; Tylennoides ... 9.0271

HOST STATUS OF PRATYLENCHUS SPECIES ... Leguminosae - other; Nematode Resistance; Phytopathology; Tylennoides ... 9.0273

POPULATION DYNAMICS ... Continuous Humid 7 Months, Plus; Phytopathology; Plant Nematodes - nonspecific; Population Dynamics; Surveys; ... 9.0274

CHEMICAL CONTROL ... DD; Nemagon; Phytopathology; Plant Nematodes - nonspecific; ... 9.0274

EXPERIMENT 180-1 ... FACTORIAL FERTILIZER EXPERIMENT ... Magnesium; Management; Seasonal Application; ... 9.0306

EXPERIMENT 508-2 ... Magnesium; Management; Seasonal Application; ... 9.0307

IMPROVEMENT OF MILK PRODUCTION BY CROSSING THE LOCAL ZEBU BREED WITH IMPORTED SIRES ... Breeding & Genetics; Humid 1 Month; Interspecific Cross; ... 11.0001

IMPROVEMENT OF THE PRODUCTION OF BEEF - EXTERIORIZATION OF THE GENETIC POTENTIALITIES OF SENECA FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; Cereal Evaluation; Cattle Rations; ... 11.0075

IMPROVEMENT OF THE PRODUCTION OF BEEF - SELECTION OF SENECA FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; ... 11.0076

IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENECA FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; ... 11.0077

IMPROVEMENT OF MILK AND REARING OF THE CALF ... Calves Rations, Starter Rations; Management; ... 11.0078

STUDY OF NATURAL PASTURES - EVOLUTION ... Management; Productivity; Rain; ... 11.0079

STUDY OF NATURAL PASTURES - CARTOGRAPHY ... Forage Grassland Mapping; Remote Sensing; River Basins; ... 11.0080

CULTIVATION OF FORAGE CROPS ... Forage Grasses; Forage, Pasteur or Range; Grass - nonspecific; Leguminosae ... 11.0081

STUDY OF MINERAL DEFICIENCY COMPLEXES ... Calcium; Forage, Pasteur or Range; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilisation - animal; ... 11.0082

BIOCHEMICAL DETERMINATION ON HERDS OF CATTLE AT THE DIFFERENT PERIODS OF THE YEAR ... Environments, Animal; Inorganic Elements in Feeds; Management; Metabolism; Water Utilization - animal; ... 11.0083

IMPROVING THE PRODUCTION OF BEEF - INTENSIVE FEEDING ... By-products - Industrial; Cattle Rations; Management; Peanut Shells; Straw; ... 11.0084

SEASONAL VARIATIONS OF THE PASTURES AND NUTRITION OF CATTLE ... Forage, Pasteur or Range; In Vivo-see
SUBJECT INDEX

Nitrogen Cycle

Ammonia
- Cotton Agronomy on the Black Soils, Accra Plains; DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; ... 3.0005
- Sugarcane Agronomy on the Black Soils of the Accra Plains; Bladex; Growth Stage of Plant; Saccharum; Simazine; Space Competition; Sulfates; ... 3.0006

Ammonium
- Use of isotopes in studies on the nutrition of groundnuts ... broadcast application; Management; Nitrogen Fixation; Sulfur; ... 3.0029
- Soil genesis study of upland drift soils and associated residual soil ... Clay; Silt; Soil Chemical Properties; Soil Types; ... 3.0021
- Study forms of nitrogenous fertilizers for the coconut palm ... Cocos; Management; Nursery Observational Flots; ... 4.0020
- Sugar cane nitrogen fertilizer trial ... Management; Saccharum; Sulfates; ... 9.0001
- Nitrogen fertilization in flooded fields ... broadcast application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; ... 9.0011
- Evaluation of nitrogen fertilizers ... Formulation; Fertilizer; Soil pH; Sulfates; ... 9.0049
- Physico-chemical and biochemical studies on the starch and protein of rice ... Child Developmental Stages; Ligase; Nitrites; Proteins; Starch; ... 10.0009
- Experiments with fertilizers in plantations of eucalyptus camaldulensis ... Eucalyptus; Phosphates; Potassium; Silviculture; Sulfates; Sulfur; ... 13.0019

Nitrites
- Study of the role of the anions SO4 and Cl in the fertilization of the coconut palm ... Chlorine; Deficiencies; Sulfates; ... 4.0029
- Study forms of nitrogenous fertilizers for the coconut palm ... Cocos; Management; Nursery Observational Flots; ... 4.0020
- Physico-chemical and biochemical studies on the starch and protein of rice ... Child Developmental Stages; Ligase; Proteins; Starch; ... 10.0009
- Balance favourable to the efficacy of rations for cattle intended for beef or for milk production ... Cattle Rations; In Vivo -see Also Feed Rations; Nutritive Values -plant; Peanut Shells; Straw; ... 11.0086
- Mixture studies of the cotton-growing soils of Sine Saloum ... Management; Soil Moisture; Soil-water-plant Relationships; ... 11.0168

Nitrogen Gas
- Studies on the role of soil microbes in soil fertility and rice culture ... BHC; Management; Nitrogen Fixation; Organic Fertility; Soil Microbiology; ... 10.0006

Nitrogen Cycle
- Evolution of nitrogen in cultivated soils ... Continuous Humid; Nitrogen; Plant Residues -other; ... 4.0017
- Evolution of nitrogen in cultivated soils ... C/N Ratio; Ferralic Cambisols; Nitrogen; Plant Residues -other; Two Humid Seasons -7 Months; Plant; ... 4.0025

Nitrification
- To study the microbial contribution to the nitrogen economy of fallows ... Fallowing; Management; Soil Microbiology; ... 9.0029

Nitrogen Fixation
- Fertilizer efficiency studies on beans (Phaseolus vulgaris) and cowpea ... Irrigation -general; Management; Phosphorus; Soil pH; Timing of Application -other; ... 3.0018
- Use of isotopes in studies on the nutrition of groundnuts ... Broadcast Application; Management; Sulfur; ... 3.0019
- Study of inoculations of rhizobia on soy ... Continuous Humid; Inoculation; Rhizobium; Soil Microbiology; ... 4.0018

N.S.I.
- Effect of ploughing and fertilizer application on the yield of crops (maize, cassava and cowpeas) ... Deep Plowing; Management; Management Effects on Soils; Manihot; Plowing; Soil Depth; ... 3.0026
- The effects of planting date on the efficiency of fertilizer nitrogen and phosphorus in maize production in selected areas in Ghana ... Management; Timing of Planting Procedures; ... 3.0027
- Response of lowland rice to nitrogen, phosphorus and potassium ... Management; ... 3.0029
- Response of maize to NP in selected maize growing areas ... Management; ... 3.0031

U.S.F.
- Selected economic aspects of expanding rice production in Liberia, mainly in upper lofa and Bong counties ... Grain Industries; Social Class; Supply; ... 5.0024

New and Unconventional Foods
- See Food Science and Technology

Newcastle Disease
- See Animal Pathology

Nicotiana
- See Plants - Dicots
 Solanaceae

Niram
- See Pesticides
 Insecticides

Nitrosols
- See Soil Unit Classification

Nitrites
- See Nitrogen

Nitrates
- See Nitrogen Cycle

Nitrogen
- See Also Isotopes
 Radioactive Isotopes
 Stable Isotopes
 Study of the mechanism of the coagulation of the latex of Hevea brasiliensis during tapping ... Industrial & New Crops; Latex; Oxygen; Tyrosinase; ... 4.0057
 Study the mineral nutrition of oil palm according to the plant material ... Calcium; Deficiencies; Management; Phosphorus; Sulfur; ... 5.0004
 Fertilization of hevea brasiliensis and its effect on growth ... Calcium; Growth Stage of Plant; Magnesium; Management; Phosphorus; Potassium; ... 5.0005
 Fertilization of hevea brasiliensis and its effect on yield ... Calcium; Magnesium; Management; Phosphorus; Potassium; ... 5.0005
 Analysis of SAP ... Deficiencies; Management; Phosphorus; Sand; ... 11.0058
 Measurement of the mineral uptake of each of the principal food crops of senegal (millet, maize, rice, groundnuts, sorghum) ... Calcium; Magnesium; Potassium; Sorgothum vulgare (Grain); ... 11.0059
 The uptake and distribution of nutrients by the rice plant ... Deficiencies; Management; Translocation; ... 12.0008

373
Nitrogen Cycle

Nitrogen Fixation

See Nitrogen Cycle

Nitrogen Gas

See Nitrogen

Nitrogen Metabolism

See Plant Physiology

Noctuidae

See Insecta

Nucleic Acids & Precursors

Ribonucleic Acid

Chromatography; Differential Centrifuge; Gel Electrophoresis; Industrial & New Crops, Lacte; Membranes, Cellular; ... 4.0058

Numidia

See Birds

Nursery Observational Plots

PROVENANCE TRIAL OF TEAK AND TERMINALIA IVO-RENSIS...

Silviculture; Tectona; Terminalia; Variation and Selection; ... 3.0083

RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERY AND NURSERIES...

Disease Studies; Inoculation; Planting Methods; Planting Methods; ... 3.0089

FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD...

Cercospora; Economics of Chemical Control; Forturf; Mode of Action; Phytopathology; ... 3.0125

MINERAL FERTILIZATION ON COFFEE...

Continuous Humid; Ferric Acrisols; Geology; Growth Stage of Plant; Management; Soil Types; ... 4.0001
Oilseed Product Development
See Utilization of Ag Wastes

Oleaceae
See Plants - Dicots

Olea
See Plants - Dicots

Olethreutidae
See Insecta - Lepidoptera

Open Pollination
See Genetics - Genetic & Breeding Methods

Orange Tree Quick Decline
See Viruses, Plant

Orchidaceae
See Plants - Monocots

Organic Acids
THE DEVELOPMENT OF SEMI-FINISHED, FERMENTED, AND DEHYDRATED MAIZE MEAL ... Cereal Products; Dehydration; Fermentation; Organoleptic Studies of Food; Spoilage of Food; ... 3.0079
THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES ... Chemical Analysis of Food; Fruits; Hydrogen Cyanide; Manihot; Root Crops; Starch; ... 9.0213
CATION-ANION RELATIONSHIP IN THE OIL PALM ... Deficiencies; Movement; Availability; Oilseed Crops; Soil Analysis; Soil Types; ... 9.0297
CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES (2) ... Bacterial Resistance; Fruit Rot; Lycopersicum; Phytopathology; ... 14.0054

Organic Fertility
SUITABILITY FOR RICE OF THE SOILS OF THE MARSHYLANDS OF NORTH DAHOMEY ... Continuous Humid; Humic Gleysols; Humid 4 Months; Management; Marsh; Timing of Application -other; ... 1.0001
MAINTENANCE AND REGENERATION OF FERTILITY OF THE DEGRADED 'TERRE DE BARRE' SOILS ... Dystric Nitosols; Humid 6 M. or Less; Soil Fertility; Source of Fertilizer; ... 1.0010
TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTIUTION OF ORGANIC MATTER ... Dystric Nitosols; Management; Organic Soils; Soil Fertility; ... 1.0029
STUDIES ON YAMS WITH A VIEW TO THE INTEGRATION OF THIS CROP INTO AN INTENSIVE ROTATION ... Ferric Luvisols; Fertilizer Accumulation; Humid 5 Months; Management; ... 1.0031
SUITABILITY FOR RICE OF THE SOILS OF THE MARSHYLANDS OF NORTH DAHOMEY ... Ferric Luvisols; Humid 5 Months; Management; Marsh; ... 1.0033
STUDY OF THE MECHANISMS OF THE EVOLUTION OF SOILS AFTER CLEARING AND PUTTING UNDER CULTIVATION IN AN EQUATORIAL CLIMATE ... Dry Monsoon 4 M. or Less; Fallowing; Soil Genesis; ... 4.0040
FOREST ECOLOGY IN THE LOWER IVORY COAST CLIMATE - Humid Equatorial; Rain; Soil Minerals -natural; Surveys; ... 4.0050
EQUILIBRATION OF THE SOILS OF BANANA PLANTATIONS. CULTIVATION IN ORGANIC SOILS ... Env. Plant Dis. Relation; Musa; Orthic Acrosols; Soil - Alkaline; Soil Drainage; ... 4.0153
BALANCE OF MINERAL ELEMENTS UNDER CULTIVA-
TION - MAINTENANCE FERTILIZATION ... Continuous

C/N Ratio
SPECIFIC ROLE OF ORGANIC MATTER ... Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Humid 4 Months; Plowing; Soil Fertility; ... 1.0002
NITROGEN BALANCE IN TROPICAL SOILS ... Management; Sorghum Vulgare (Grain); ... 1.0004
SPECIFIC ROLE OF ORGANIC MATTER ... Ferric Luvisols; Humid 5 Months; Plowing; Soil Fertility; ... 1.0034
NITROGEN BALANCE IN TROPICAL SOILS ... Ferric Luvisols; Humid 5 Months; Management; Sorghum Vulgare (Grain); ... 1.0040
COMPOSTING OF SAWDUST ... Compost; Lycopersicum; Management; Organic Soils; Sawdust Utilization; ... 5.0100
ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE - MAIZE) ... Deficiencies; Irrigation -general; Nitrogen Metabolism; Proteins; ... 4.0196
EQUILIBRATION OF NITROGEN IN CULTIVATED SOILS ... Continuous Humid; Nitrogen; Plant Residues -other; ... 4.0197
SPECIFIC ROLE OF ORGANIC MATTER IN TROPICAL SOILS ... Ferralic Cambisols; Management; Sorghum Vulgare (Grain); ... 4.0212
ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE) ... Ferralic Cambisols; Management; Plant Residues -other; Two Humid Seasons-7 Month;Plus; ... 4.0214
EQUILIBRATION OF NITROGEN IN CULTIVATED SOILS ... Ferralic Cambisols; Nitrogen; Nitrogen Cycle; Plant Residues -other; Two Humid Seasons-7 Month;Plus; ... 4.0215
SOIL ANALYSIS AND CLASSIFICATION ... Soil Analysis; ... 5.0023
SPECIFIC ROLE OF ORGANIC MATTER IN SOILS, FERTILITY ... Humid 1 Month; Management; ... 6.0054
STUDY OF THE NITROGENOUS FERTILIZATION OF CEREALS ... Humid 3 Months; Management; Sand; ... 8.0039
RICE STRAW COMPOST TRIAL ... Compost; Humid 6 Months; ... 9.0005
BIOLOGY AND PHYSIOLOGY OF PHYTOTHRORA PALMIVORA ... Black Pod; Carbon; Nutrition in Disease; Phytopathology; Sterculiaceae -other; ... 9.0127
SOIL MICROBIOLOGY ... Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides -nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; ... 9.0179
IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN ... Lysemeters; Manure; Plant Residues -other; Soil pH; ... 11.0057
NITROGENOUS NUTRITION OF CEREALS ... Humid 3 Months; Management; Nitrogen; ... 11.0060
BURLI. STRAW IN A RICE FIELD ... Humid 2 Months; Management; Soil Amendments; ... 11.0134
NITROGEN BALANCE - NITROGENOUS FERTILIZATION AND ORGANIC MANURING ... Dystic Nitosols; Moist Monsoon 0 to 3 Months; Plant Residues - other; Soil Types; ... 13.0009
SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS ... Moist Monsoon 0 to 3 Months; Plant Residues - other; ... 13.0010
NITROGEN BALANCE - MINERAL FERTILIZATION AND ORGANIC MANURING ... Dry Monsoon 5 Months; Plus; Fergic Luvisols; Management; Plant Residues - other; Sorghum Vulgare (Grain); ... 13.0026
SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS ... Dry Monsoon 3 Months; Plus; Ferric Luvisols; Plant Residues - other; ... 13.0027

Compost

COMPOSTING OF SAWDUST ... C/N Ratio; Lycopersicon; Management; Organic Soils; Sawdust Utilization; ... 3.0100
RICE STRAW COMPOST TRIAL ... C/N Ratio; Humid 6 Months; ... 9.0005
CROP UTILIZATION PROJECT ... By-products; Plant(Vegetables); Chocolate & Cocoa; Food Processing Wastes; Nuts & Nuts -meats; Preserves & Jellies; ... 9.0154
LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FARMING SYSTEMS ... Continuous Humid 7 Months, Plus; Ferric Acrisols; Management; Maure; ... 9.0254

Green Manure

RUBBER INTERCROPPING EXPERIMENT ... Continuous Humid; Fomes; Intercropping; Management; Manihot; ... 3.0050
STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB ROBUSTA ... Cover Crops; Ferric Acrisols; Leguminosae - other; Management; Competition; Two Humid Seasons-7 Month, Plus; ... 4.0106
STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB ROBUSTA ... Cover Crops; Leguminosae - other; Management; Space Competition; ... 4.0125
STUDY OF NITROGENOUS NUTRITION ON ALLUVIALLY DISTRIBUTED SOILS ... Fallowing; Formulation, Fertilizer; Manure; Timing of Application - other; ... 8.0046

Manure

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATION, ON COTTON ... Eutric Cambisols; Ferric Luvisols; Insecticides - non specific; Management; Moist Monsoon; ... 1.0023
IMPROVEMENT OF SORGHUM, MILLET AND MAIZE PRODUCTION ... Management; Sorghum Vulgare (Grain); Space Competition; ... 2.0001
COMPARISON OF COW MANURE, POULTRY MANURE AND CHEMICAL FERTILIZER ON MAIZE YIELD ... Formulation, Fertilizer; Management; ... 3.0167
ROLE OF ORGANIC MATTER IN RELATION TO MINERAL FERTILIZATION IN THE PRODUCTION OF CROPS - MAIZE-COTTON ... Management; Mineralogy; Soil Analysis; ... 4.0270
STUDY OF MINERAL DEFICIENCIES ON TROPICAL FERRuginous Soils ... Sulfur; ... 8.0044
STUDY OF THE PROFITABILITY OF AN APPLICATION OF MINERAL FERTILIZER TO TROPICAL FERRUGINOUS Soils ... Boron; Fertilizer Accumulation; Management; Rain; Sorghum Vulgare (Grain); ... 8.0045
STUDY OF NITROGENOUS NUTRITION ON ALLUVIALLY DISTRIBUTED SOILS ... Fallowing; Formulation, Fertilizer; Green Manure; Timing of Application - other; ... 8.0046
LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FARMING SYSTEMS ... Compost; Continuous Humid 7 Months, Plus; Ferric Acrisols; Management; ... 9.0254
COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK ... Dovfume Cpd.; Inoculation; Mycorrhiza; Nursery Observational Plots; Sand; Soil Potting Mixture; ... 9.0345
RESEARCH ON WHEAT AND BARLEY ... Baking Food; Hordeum Vulgare; Irrigation; Management; Triticum; ... 11.0006
IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN ... C/N Ratio; Lysimeters; Plant Residues - other; Soil pH; ... 11.0057
CONTINUOUS CROP ROTATION WITH MANURE ... Cereopsis; Chlorosis; Fallowing; Leaf Spot; Management; Phytopathology; ... 14.0014

Plant Residues - other

ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE- MAIZE) ... C/N Ratio; Deficiencies; Irrigation - general; Nitrogen Metabolism; Proteins; ... 4.0196
EVOLUTION OF NITROGEN IN CULTIVATED SOILS ... Continuous Humid; Nitrogen; ... 4.0197
SPECIFIC ROLE OF ORGANIC MATTER IN TROPICAL SOILS ... C/N Ratio; Ferralic Cambisols; Management; Sulfur; ... 4.0212
ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE) ... C/N Ratio; Ferralic Cambisols; Management; Two Humid Seasons-7 Month, Plus; ... 4.0214
EVOLUTION OF NITROGEN IN CULTIVATED SOILS ... C/N Ratio; Ferralic Cambisols; Nitrogen; Nitrogen Cycle; Two Humid Seasons-7 Month, Plus; ... 4.0215
POTENTIALITY OF TROPICAL SOILS - RESPONSE TO K ... Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Management; Sorghum Vulgare (Grain); ... 6.0018
RESEARCH ON FERTILIZATION OF GROUNDNUTS ... Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Management; Sorghum Vulgare (Grain); ... 6.0021
RESEARCH ON FERTILIZATION OF GROUNDNUTS ... Humid 4 Months; Management; Sorghum Vulgare (Grain); ... 6.0048
UTILIZATION AS A MINERAL FERTILIZER OF THE NATURAL PHOSPHATES OF MALI ... Management; ... 6.0077
IMPROVEMENT OF THE NITROGENOUS FERTILITY OF THE SOIL BY APPLICATION OF ORGANIC NITROGEN ... C/N Ratio; Lysimeters; Management; Soil pH; ... 11.0057
NITROGEN BALANCE - NITROGENOUS FERTILIZATION AND ORGANIC MANURING ... C/N Ratio; Dystric Nitosols; Moist Monsoon 0 to 3 Months; Soil Types; ... 13.0009
SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS ... C/N Ratio; Moist Monsoon 0 to 3 Months; ... 13.0010
NITROGEN BALANCE - MINERAL FERTILIZATION AND ORGANIC MANURING ... C/N Ratio; Dry Monsoon 5 Months, Plus; Ferric Luvisols; Management; Sorghum Vulgare (Grain); ... 13.0027
SPECIFIC ROLE OF ORGANIC MATTER ON YIELDS ... C/N Ratio; Humid 4 Months; MANAGEMENT; Sorghum Vulgare (Grain); ... 13.0072
INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE ROTATION SYSTEM ... Ferric Luvisols; Management; Panicaceae - other; Production and Processing; Sorghum Vulgare (Grain); ... 14.0052
STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS ... Management; Sorghum Vulgare (Grain); ... 14.0073

Organic Soils

See Environments, Plant Soil Composition

Organoleptic Studies of Food

See Food Science and Technology Food Quality

Ornamentals

See Entomology, Applied Horticulture Insects on

Orthic Acrisols

See Soil Unit Classification Acrisols

377
SUBJECT INDEX

- **Orthic Ferralsols**
 - See Soil Unit Classification
 - Ferralsols

- **Orthic Solonchaks**
 - See Soil Unit Classification
 - Solonchaks

- **Orthic Solonetz**
 - See Soil Unit Classification
 - Solonetz

- **Orthoptera**
 - See Insects

- **Oryza -other**
 - See Plants - Monocots
 - Gramineae

- **Osmosalts**
 - See Pesticides
 - Wood Preservatives

- **Osmotic and Turgor Pressure**
 - See Plant Physiology
 - Metabolism

- **Outbreaks of Insects**
 - See Entomology, Applied

- **Outdoor Recreation**
 - NIGERIAN TIMBERS FOR SPORTS GOODS... Forest Product Development; Holoptelea; Ulmaceae -other; Wood; Wood Structure & Properties; ... 9.0101

- **Oviposition**
 - See Reproductive Physiology

- **Oxthioquinox**
 - See Pesticides
 - Insecticide - Fungicide

- **Oxygen**
 - STUDY OF THE MECHANISM OF THE COAGULATION OF THE LATEX OF HAVEA BRASILIENSIS DURING TAPPING... Industrial & New Crops; Latex; Nitrogen; Tyrosinase; ... 4.0057

- **Packaging Materials**
 - See Materials

- **Packing & Container Types**
 - Bins
 - IMPROVEMENT OF THE PROCEDURES FOR STORAGE AND CONSERVATION OF MAIZE IN A RURAL ENVIRONMENT... Bins; Humidity; Jars; Storage; ... 1.0059
 - INDUSTRIAL PROCESSING OF COCOA... Chocolate & Cocoa; Drying; Fermentation; Food Engineering & Technology; Harvest and Storage; ... 4.0032
 - Jars
 - IMPROVEMENT OF THE PROCEDURES FOR STORAGE AND CONSERVATION OF MAIZE IN A RURAL ENVIRONMENT... Bins; Humidity; Storage; ... 1.0059

- **Paleoecology**
 - See Ecology, Plant

- **Palmae**
 - See Plants - Monocots

- **Paniceae -other**
 - See Plants - Monocots
 - Gramineae

- **Panicon**
 - See Plants - Monocots
 - Gramineae

- **Parakou Virus**
 - See Viruses, Plant

- **Paraquat**
 - See Pesticides
 - Herbicides

- **Parasite -other**
 - See Plant Resistance

- **Parasite Resistance**
 - See Animal Resistance

- **Parasites -biocontrol**
 - See Pest Control Measures
 - Biological Control

- **Parathion**
 - See Pesticides
 - Insecticide - Acaricide

- **Parenchyma**
 - See Plant Tissues

- **Parthenocarpy**
 - See Plant Physiology
 - Reproductive Physiology

- **Paspalum**
 - See Plants - Monocots
 - Gramineae

- **Passiflora**
 - See Plants - Dicots
 - Passifloraceae

- **Pasteurella**
 - See Bacteria
Pest Control Measures

SUBJECT INDEX

Consumer Attitudes, Awareness,
CHEMICAL CONTROL OF WEEDS OF THE SORGHUM CROP . . . Cereal Crops; Costs; Economics of Chemical Control; Herbicides - non-specific; Selectivity of Pesticides; Sorghum Vulgare (Grain); . . . 11.0020
CHEMICAL CONTROL OF THE WEEDS OF THE MILLET CROP . . . Cereal Crops; Costs; Economics of Chemical Control; Herbicides - non-specific; Selectivity of Pesticides; . . . 11.0021
INTRODUCTION OF CHEMICAL WEED DESTRUCTION INTO THE PRODUCTION STRUCTURE . . . Cereal Crops; Herbicides - non-specific; Oilseed Crops; . . . 11.0070

Cultural Control
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cereal Crops; Continuous Humid; Irrigation - general; Management; Phenology; Life Cycle; . . . 11.0002
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cereal Crops; Ferralic Cambisols; Irrigation - general; Management; Phenology; Life Cycle: Two Humid Seasons- 7 Month; Plus . . . 11.0016
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cereal Crops; Continuous Humid 7 Months; Plus; Irrigation - general; Management; Phenology; Life Cycle; . . . 11.0020

Crop Rotation, Cropping System
VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING . . . Freezing; Lycopersicum; Phaseolus; Vegetable & Vegetable Products; . . . 2.0002
TOMATO - COWPEA ROTATION . . . Continuous Humid 7 Month; Plus; Lycopersicum; Management; Plant Nematodes - non-specific; . . . 3.0151
NEMATOLOGICAL STUDIES ON THE PARASITES OF YAMS, NOTABLY SCUTELLONEMA BRADYS . . . Phytophagy - other, Phytopathology; Surveys; Tylenchoides; . . . 4.0070
DEVELOPMENT OF IMPROVED CROPPING PATTERNS FOR SMALL ASIAN RICE FARMS . . . Cereal Crops; Inter-cropping; Management; Phaseolus; Rain; . . . 10.0011

Saltcontrol -other
EXPERIMENT 17-2. MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTATIONS . . . Equipment; Mulches; Pest; Disease & Weed Control; . . . 9.0302

Cutting Sequence
ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA) . . . Cereal Crops; D.uro; Grasses & Sedges; Management; Orzya - other; . . . 6.0063
WEED STUDIES IN TREE CROPS . . . Cover Crops; Field Crops - non-specific; Leguminosae; Mulches; Soil Tillage Sequence / Method; . . . 9.0120

Nutritional Regulation (Host)
STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD . . . Black Pod; Deficiencies; Moisture Content- plants; Phytopathology; Potassium; . . . 4.0137
INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERY PLANTS OF OIL PALMS . . . Blast; Interaction with Environment; Management; Pricking Out; Temperature - air; . . . 4.0300
EFFECT OF PLANT NUTRITION ON RESISTANCE AGAINST THE BROWN SPOT OF RICE CAUSED BY H. ORYZAE . . . Brown Spot; Continuous Humid 7 Month,Plus; Fungal Resistance; Helminthosporium; Nutrition in Disease; Phytopathology; . . . 9.0281

Planting Sequence or Method
STUDY THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION . . . Fungal Resistance; Knees- dustry; Management; Phytopathology; Rota. Timing of Planting Procedures; . . . 4.0275

Soil Tillage Sequence / Method
UTILIZATION OF HERBICIDES IN COFFEE CROPPING . . . Fiscar Acrisol; Field Crops - non-specific; Hand Tillage; Herbicides - non-specific; Management; Two Humid Seasons- 7 Month- Plus; . . . 4.0115

380
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>Pest Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS</td>
<td>Endogenous Biological Extracts</td>
</tr>
<tr>
<td>Cereals; Continuous Humid; Fiber Crops; Hand Tillage; Herbicides - nonspecific; Phenology; Life Cycle</td>
<td>SCREENING OF GHANAIAN PLANTS FOR ALLERGIC PATHOGENIC SUBSTANCES</td>
</tr>
<tr>
<td>WEEDING OF PLUVIAL RICE, COMBINING CULTIVATION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS</td>
<td>Environment Accumulation Rates</td>
</tr>
<tr>
<td>Cereal Crops; Herbicides - nonspecific; Management; Placement</td>
<td>THE RESIDUAL EFFECTS OF HERBICIDES</td>
</tr>
<tr>
<td>WEED CONTROL OF BILATERAL CYCLES OF WEEDS</td>
<td>Equipment</td>
</tr>
<tr>
<td>Cereal Crops; Competition; Continuous Humid; Management; Phenology; Life Cycle</td>
<td>EXPERIMENT 17.1: WEED CONTROL IN OIL PALM PLANTATIONS</td>
</tr>
<tr>
<td>ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES</td>
<td>Fruit-set or Fruit-thinning</td>
</tr>
<tr>
<td>(O. LONGISTAMINATA)</td>
<td>STUDY ON THE UTILIZATION OF GROWING SUBSTANCES IN COCOA CROPPING</td>
</tr>
<tr>
<td>Cereal Crops; Cutting Sequence; Diuron; Grasses or Sedges; Management; Oryza - other</td>
<td>TOBACCO SUCKER CONTROL WITH CHEMICALS</td>
</tr>
<tr>
<td>WEED CONTROL IN COWPEAS - VIGNA UNGUICULATA</td>
<td>CONTINUOUS HUMID; Fiber Crops; Hand Tillage; Herbicides - nonspecific; Humid 3 Months; Persistence of Residues</td>
</tr>
<tr>
<td>Sweet Potato Entomology</td>
<td>Growth Retardation of Plants</td>
</tr>
<tr>
<td>Curculionidae; Ferric Luvisolis; Vectors</td>
<td>TOBACCO Sucker Control with Chemicals</td>
</tr>
<tr>
<td>MAIZE HERBICIDE TRIAL</td>
<td>INSECT ATTRACTIONS</td>
</tr>
<tr>
<td>Bladex; Cereals Crops; Management; Simazine</td>
<td>CONTROL OF ORYCTES IN THE IVORY COAST</td>
</tr>
<tr>
<td>INSECTICIDE TESTING PROGRAM</td>
<td>Integrated Control</td>
</tr>
<tr>
<td>Baytea; C 949; Pesticides</td>
<td>RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY</td>
</tr>
<tr>
<td>CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LINES</td>
<td>Behavioral Ecology; Dysmic Nitosols; Fiber Crops; Insect Viruses - other; Oletteurethias;</td>
</tr>
<tr>
<td>Dalapon; Forbs (Broadleaf Herbs); Grasses or Sedges; Nursery Observational Plots; Triazines - nonspecific</td>
<td>INTEGRATED CONTROL OF CRYPTOPLHLEIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES</td>
</tr>
<tr>
<td>MAIZE HERBICIDE TRIAL</td>
<td>WEEDING OF PLUVIAL RICE, COMBINING CULTIVATION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS</td>
</tr>
<tr>
<td>Bladex; Cereals; Continuous Humid 7 Months, Plus; Maleic Hydrazide; Management; Nicotiana, Off-shoot T;</td>
<td>HERBICIDE TREATMENTS</td>
</tr>
<tr>
<td>MAIZE HERBICIDE TRIAL</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>Bladex; Cereals Crops; Management</td>
<td>Cereals; Continuous Humid 7 Months, Plus</td>
</tr>
<tr>
<td>INSECTICIDE CONTROL OF THE WEEDS OF THE MILLET CROP</td>
<td>CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRREGULATED RICE</td>
</tr>
<tr>
<td>Cereal Crops; Consumer Attitudes, Awareness, Costs; Herbicides - nonspecific; Selectivity of Pesticides; Sorghum Vulgar (Grain)</td>
<td>TO CONTROL FIELD PESTS OF RICE (1) EVALUATION OF DIFFERENT INSECTICIDES</td>
</tr>
<tr>
<td>CHEMICAL CONTROL OF THE WEEDS OF THE SORGHUM CROP</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>Cereal Crops; Consumer Attitudes, Awareness, Costs; Herbicides - nonspecific; Selectivity of Pesticides</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>Bladex; Cereals; Consumer Attitudes, Awareness, Costs; Herbicides - nonspecific; Selectivity of Pesticides</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>Insecta: Sequential, Daily, Weekly, Etc</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
<tr>
<td>Behavioral Ecology; Dysmic Nitosols; Fiber Crops; Insect Viruses - other; Oletteurethias</td>
<td>INTEGRATED CONTROL OF RICE INSECT PESTS</td>
</tr>
</tbody>
</table>
Pest Control Measures

Interaction with Environment
- STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK POD DISEASE TO PHYTOPHthora PALMIVORA: Biof. Pod; Env. Plant. Dis. Relation; Phytophthora: Shade;4.0139

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERIES OF OIL PALMS IN BAGS . . . Blast; Management; Nutritional Regulation (Host); Pricking Out; Temperature -air;4.0360

THE OIL PALM BLAST DISEASE AND ITS CONTROL . . . Benlate; Breeding & Genetics; Fungal Resistance; Irrigation -general; Rhizoctonia; Terrachlor; Vapam;9.0327

STUDY CHEMICAL WEEDING OF RICE GROWN IN THE RAINY SEASON . . . Cereal Crops; Forbs (Broadleaf Herbs); Grasses or Sedges; Herbicides -non-specific; Humid 4 Months;11.0153

Mode of Action
- INTEGRATED CONTROL OF CRYPTOPTHELEIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES . . . Disease -biocontrol; Fiber Crops; Humid 6 M.or Less; Propothion;1.0051

FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD . . . Cercospora; Economics of Chemical Control; Fortuit; Phytopathology;3.0125

BIOLOGICAL CONTROL OF DISEASES OF THE ROOTS . . . Cover Crops; Fomes; Ganoderma; Phytopathology; Two Humid Seasons;4.0250

STUDY THE DISINFECTION OF SEEDS . . . Benlate; Mercury; Phytotoxicity; Seed Treatment; Vitavax;4.0274

ACTION OF GROWTH-REGULATORS ON THE COTTON PLANT - SUBSTANCES WHICH INHIBIT GIBBERELLINS . . . Growth Retardation of Plants; Irrigation -general; Management; Parasite -other; Plant Growth Regulators;4.0276

Persistence of Residues
- THE PATE AND POSSIBLE NUTRITIONAL, AND TOXICOLOGICAL SIGNIFICANCE OF METHYL BROMIDE RESIDUES IN FUMIGATED COCOA BEANS . . . Beverage Crops; Carbon; Industrial, Structural Insects; Methyl Bromide; Storage;3.0216

UTILIZATION OF HERBICIDES IN THE CULTIVATION OF COTTON . . . Fiber Crops; Herbicides -non-specific;6.0078

STUDIES ON THE ROLE OF SOIL MICROBES IN SOIL FERTILITY AND RICE CULTURE BHC, Management; Nitrogen Fixation; Organic Fertility; Soil Microbiology;10.0006

THE RESIDUAL EFFECTS OF HERBICIDES . . . Environment Accumulation Rates; Ferric Luvisols; Field Crops -non-specific; Herbicides -non-specific; Humid 3 Months;11.0145

EXPERIMENT ON CHEMICAL WEEDING OF A COTTON PLANTATION WITH 3 HERBICIDE PREPARATIONS . . . Cotonan; Fiber Crops; Pesticides -other; Preemergence Application; Surface -soil;13.0049

Pesticidal Interaction -other
- THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL . . . Continuous Humid 7 Months,Plus; Nitrogen Fixation; Pulse Crops; Simazine; Toxicity to Microorganisms;9.0216

Physical Control
- INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cereal Crops; Irrigation -general; Management; Phenology, Life Cycle, Two Humid Seasons;4.0093

INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cereal Crops; Humid 5 Months; Irrigation -general; Management; Phenology, Life Cycle;4.0209

Attractants -physical
- CONTROL OF ORYCTES IN THE IVORY COAST . . . Entomology, Physiology; Insect Attractants; Population Dynamics; Pueraria;4.0327

Bait Traps
- SEXUAL ATTRACTION IN CRYPTOPTHELEIA LEUCOTRETA . . . Entomology, Applied; Insect Phenornes; Olethreutidae;4.0380

Barriers & Weirs
- THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS . . . Control of Nuisance Species; DDVP; Phos­phorothionate Cpd.; Storage: Tenebrionidae;3.0211

STUDY OF RICE PESTS . . . Cereal Crops; Insecta; Management; Rodentia -other;5.0014

CONTROL CAMPAIGN AGAINST TSETSE FLIES AND ANIMAL TRYPANOSOMIASIS . . . DJT; Muscidae; Trypanosomiasis; Veterinary Entomology; Veterinary Medicine;8.0021

Burning or Flaming
- INVESTIGATIONS INTO THE CONTROL OF SUGAR CANE NEMATODES . . . Molasses; Phytopathology; Saccharum; Sugar Derivatives;3.0129

Habitat Manipulation-eradicarte
- CONTROL OF BLAST OF THE OIL PALM TREE . . . Blast; Phytopathology; Rhizoctonia;4.0096

Light Traps
- INVESTIGATIONS INTO BIOMONIC AND CONTROL OF INSECT PESTS ON COTTON . . . Economics of Chemical Control; Gelsechidæa; Noctuidae; Surveys; Trap Crops;3.0132

STUDY OF THE INSECTS THAT ARE HARMFUL TO RICE IN CAMASANE . . . Cereal Crops; Humid 2 Months; Insecta; Population Dynamics; Rearing of Insects; Surveys;11.0138

Mechanical Control
- WEEDING OF PLUVIAL RICE, COMBINING CULTIVA­TION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS . . . Cereal Crops; Herbicides -non-specific; Management; Placement;4.0018

DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS . . . Biocontrol -other; Fomes; Humidity; Phytopathology; Soil Moisture;4.0249

STUDY OF WEEDS IN IRRIGATED RICE . . . Cereal Crops; Economics of Chemical Control; Herbicides -non-specific; Management;5.0016

EXPERIMENT 17- 1 WEED CONTROL IN OIL PALM PLAN­TATIONS . . . Diuron; Hand Tillage; Olspeed Crops; Pest; Disease & Weed Control;9.0301

EXPERIMENT 17-2, MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTA­TIONS . . . Cultcontrol -other; Equipment; Mulches; Pest, Disease & Weed Control;9.0302

CULTIVATION AND WEEDING METHODS IN PLANTA­TIONS . . . Costs; Eucalyptus; Hand Tillage; Pines;9.0356

Physcontrol -other
- ECOLOGY OF RODENTS OF THE SAVANNAH . . . ADAPTA­TION OF THESE RODENTS TO THE CULTIVATED ENVI­RONMENT . . . Habitat Studies; Population Dynamics; Rodenticides;4.0059

NEMATOLOGICAL STUDIES ON THE PARASITES OF YAMS, NOTABLY SCUTELLONEMA BRADYS . . . Crop Rotation, Cropping System; Phytopathology; Surveys; Tylen­choidea;4.0070

STUDY OF RICE PESTS . . . Barriers & Weirs; Cereal Crops; Insecta; Management; Rodentia -other;5.0014

Water
- TREATMENT OF SUGARCANE PLANTING METHOD . . . Dip Application; Management; Pesticides -other; Saccharum; Two Humid Seasons- 7 Month,Plus;3.0113

Phytotoxicity
- CONTROL OF WEEDS IN RICE . . . Cereal Crops; Irrigation -general; Moisture Deficiency; Postemergence Application; Propa­nil;3.0004

WEED CONTROL IN CWPEA . . . Management; Preforan; Pulse Crops; RP 17623; Trifluralin;3.0008

STUDY OF THE ACTION OF HERBICIDES IN THE CULTI­VATION OF COTTON . . . Fiber Crops; Herbicides -non­specific; Management;4.0267

STUDY THE DISINFECTION OF SEEDS . . . Benlate; Mercury; Seed Treatment; Vitavax;4.0274

OIL PALM - STUDY OF MINERAL BALANCES . . . Greenthouses; Management; Mineralogy; Pesticides;4.0296

PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass -non-specific; Humid 6 Months; Planavin;9.0004
Subject Index

Pest Control Measures

CONTROL OF MIRIDS ON COCOA... Beverage Crops; BHC; Insecticides - nonspecific; Miridids; ... 9.0131

ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS... Forests; Infection; Time & Motion Studies; ... 9.0058

CHEMICAL CONTROL OF WEEDS OF THE SORGHUM CROP... Cereal Crops; Consumer Attitudes, Awareness; Costs; Economics of Chemical Control; Herbicides - nonspecific; Sorghum Vulgare (Owana); ... 11.005

CHEMICAL CONTROL OF THE WEEDS OF THE MILLET CROP... Cereal Crops; Consumer Attitudes, Awareness; Costs; Economics of Chemical Control; Herbicides - nonspecific; ... 11.0021

Synergism and Synergists

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS... Endrin; Insecta; Pesticides; Phosvel; Thiadon; ... 1.0046

TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS... DDT; Fiber Crops; Insecta; Pesticides; ... 1.0047

INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS... DDT; Formulation, Fertilizer; Preformamid; Soil Moisture; ... 0.0055

TESTING OF PREPARATIONS FOR PHYTOSANITARY PROTECTION ON COTTON... DDT; Fiber Crops; Insecta; Parathion; ... 8.0051

Systemic Action (Plant)

INTEGRATED CONTROL OF THE PARASITES AND MA-RAUDERS OF THE BANANA PLANT... Chaidsoopia; Fungicides - nonspecific; Nematocides; Phytopathology; ... 4.0154

STUDY THE DISINFECTION OF SEEDS... Benlate; Mercury; Phytotoxicity; Seed Treatment; Vitavax; ... 4.0274

Timing of Application

EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM)... Crops; Humid 6 M.or Less; Oxothioquinoxaline; ... 1.0074

CHEMICAL CONTROL OF THE LEPIDOPTERA PARASITIC ON THE COTTON POD IN THE IVORY COAST... Gelechiidae; Lepidoptera - other; Olethreutidae; ... 4.0281

THE DISINFECTION OF SEEDS... Cereal Crops; Consumer Attitudes, Awareness; Costs; Economics of Chemical Control; Herbicides - nonspecific; ... 11.0021

Maturity or Growth Stage

WEED CONTROL BY HERBICIDES IN HEVEA PLANTATIONS... Competition; Economics of Chemical Control; Field Crops - nonspecific; Herbicides - nonspecific; Sand; Soil Fertility; ... 4.0238

APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELENOMENODERMA ELAELIS FOR OIL PALM PROTECTION... Foliar Application; Maturity & Growth Stages; Olieseed Crops; Parasites - biocutrol; Predators - biocutrol; ... 4.0205

CHEMICAL CONTROL OF COWPEA PESTS... Lindane; Olethreutidae; Pulse Crops; Sequential, Daily, Weekly, Etc; ... 9.0270

FIELD CONTROL OF THE BROWN SPOT OF RICE USING FUNGICIDES... Brown Spet; Continuous Humid 7 Months- Plus; Fungicides - nonspecific; Phytopathology; ... 9.0280

ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS... Forests; Infection; Selectivity of Pesticides; Time & Motion Studies; ... 9.0058

EXPERIMENTS WITH RHYTHMS IN INSECTICIDAL TREATMENTS... Fiber Crops; Insecticides - nonspecific; ... 11.0074

INSECTICIDE EVALUATIONS ON SOYBEANS... (GLYCINE MAX) ... Eucria Cambogia; Piper Longissima; Glycine Max; Insecta; Insecticides - nonspecific; Olieseed Crops; ... 9.0169

TO SCREEN SULPHUR-FREE FUNGICIDES FOR EFFECTIVENESS IN CONTROLLING MILDEWS IN CUCURBITACEAE... Cucurbita; Fungicides - nonspecific; Mildew Diseases; Phytopathology; Sulfur; ... 9.0283

TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY... Cotonan; Fiber Crops; Preemerge Application; ... 13.0050

Plant Absorption

STUDY THE DISINFECTION OF SEEDS... Benlate; Mercury; Phytotoxicity; Seed Treatment; Vitavax; ... 4.0274

Quarantine &/or Inspection

INSECT PESTS ON FLOWERS, SEEDS AND SEEDLING OF FOREST TREES... Forestry Insects; Insecta; Khaya; Management; Surveys; ... 9.0094

COLLECTION, QUARANTINE, AND VARIETAL EXPERIMENTATION ON COTTON... Breeding & Genetics; ... 11.0158

Residue Analysis - pesticides

Bioassay

CHEMICAL CONTROL OF THE LEPIDOPTERA PARASITIC ON THE COTTON POD IN THE IVORY COAST... Gelechiidae; Lepidoptera - other; Olethreutidae; ... 4.0281

Resistance & Tolerance

Animal Resistance

ACQUIRED RESISTANCE OF PREDATORS TO INSECTICIDES... Fiber Crops; Insecta - other; ... 6.0081

Safety Measures

INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON... Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Trap Crops; ... 0.0132

Screening Potential Pesticides

EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLFSI ON VEGETABLES AND LEGUMES... Continuous Humid 7 Months,Plus; Lycoper- sicum; Sclerotium; Selectivity of Pesticides; Wits; ... 6.0091

DISEASES OF COFFEE IN NIGERIA... Culturing Techniques; Fungicides - nonspecific; Phytopathology; Rusta; Seed-borne; Surveys; ... 9.0148

Selectivity of Pesticides

EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLFSI ON VEGETABLES AND LEGUMES... Continuous Humid 7 Months,Plus; Lycoper- sicum; Sclerotium; Wits; ... 3.0131

CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE... Cereal Crops; Irrigation - general; Propanil; Silvex; ... 4.0204

CHEMICAL DESTRUCTION OF WILDS ON A PLANT OF YAMS (DIOSCOREA)... Continuous Humid; Diuron; Horticultural Crops; Management; Paracquat; Preemerge Application; ... 4.0183

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE... Cereal Crops; D, 2-Acetyl; Management; Propanil; Silvex; ... 4.0204

CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE... Cereal Crops; Hand Tillage; Management; Propanil; Silvex; ... 4.0208

CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE... Cereal Crops; Humid 5 Months; Pricking Out; ... 4.0210

CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE... Cereal Crops; IRR; Humid 5 Months; Pricking Out; Two Humid Seasons; 7 Months; ... 4.0217

CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE... Cereal Crops; Hand Tillage; Pricking Out; ... 4.0219

CHEMICAL WEED DESTRUCTION ON IRIGATED RICE... Cereal Crops; Hand Tillage; Pricking Out; ... 4.0221

383
SUBJECT INDEX

NEMATODES OF VEGETABLES... Capucin; DD; Lycopersicum; Nematode Resistance; Phytopathology; Tylenchoides... 9.0265

CHEMICAL CONTROL... DD; Phytopathology; Plant Nematodes -nonspecific... 9.0274

COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK... Dowfname CPds; Inoculation; Mycorrhiza; Nursery Observational Plants; Sand; Soil Potting Mixture... 9.0345

CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS... Cajana; Chlorosis; Glycine Max; Phytopathology; Tephrosia; Tylenchoides... 14.0015

CONTROL OF STUNTING OF THE GROUNDNUT PLANT - CLUMP... Humid 3 Months; Phytopathology; Plant Nematodes -nonspecific; Stunt Diseases... 14.0022

Fungicides

Benlate
FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD... Cercospora; Economics of Chemical Control; Forturf; Mode of Action; Phytopathology... 3.0125

STUDY THE DISINFECTION OF SEEDS... Mercury; Phytotoxicity; Seed Treatment; Vitavax... 4.0274

SOIL MICROBIOLOGY... Chlorinated hydrocarbons; Ferralic Carbonate, Herbicides -nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms... 9.0179

DETERMINATION OF THE MODE OF FUNGICIDAL YAM TUBER PROTECTION... Captan; Phytopathology; Plant Pathogenic Fungi; Storage Rot; Tuber Rot; TBZ... 9.0248

CONTROL OF YAM STORAGE ROTS... Captan; Harvest and Storage; Phytopathology; Storage Rot; Tuber Rot; TBZ... 9.0249

THE OIL PALM BLOT DISEASE AND ITS CONTROL... Breeding & Genetics; Fungal Resistance; Irrigation -general; Rhizoctonia; Terrachlor; Vapam... 9.0327

Borax
PROTECTION OF WOOD AGAINST FIRE... Chemical Materials; Finishes of Textiles; Melaleuca -other; Sapotaeces... 3.0110

Bordeaux Mixture
FIELD CONTROL OF PHYTOPTHRORA PALMIVORA ON COCOA... Black Pod; Fungicides -nonspecific; Petroleum CPds. -nonspecific; Phytophthora... 9.0128

Captain
DETERMINATION OF THE MODE OF FUNGICIDAL YAM TUBER PROTECTION... Benlate; Phytopathology; Plant Pathogenic Fungi; Storage Rot; Tuber Rot; TBZ... 9.0248

CONTROL OF YAM STORAGE ROTS... Benlate; Harvest and Storage; Phytopathology; Storage Rot; Tuber Rot; TBZ... 9.0249

Chloranb
STUDY THE DISINFECTION OF SEEDS... Benlate; Mercury; Phytotoxicity; Seed Treatment; Vitavax... 4.0274

Dezox
THE OIL PALM BLOT DISEASE AND ITS CONTROL... Benlate; Breeding & Genetics; Fungal Resistance; Irrigation -general; Rhizoctonia; Terrachlor; Vapam... 9.0327

Difolatan
BLACK THREAD CONTROL WITH DIFOLATAN AND ETHREL... Black Thread; Ethrel; Latex; Phytopathology; Phytophthora... 5.0009

Fore
FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD... Cercospora; Economics of Chemical Control; Forturf; Mode of Action; Phytopathology... 3.0125

FUNGICIDAL CONTROL OF THE RICE BLAST DISEASE... Blast; Humid 6 Months; Phytopathology... 9.0010

CONTROL OF CERCOSPORA LEAF SPOT OF THE OIL PALM... Breeding & Genetics; Cercospora; Fungal Resistance; Leaf Spot; Phytopathology... 9.0326

Forturf
FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD... Cercospora; Economics of Chemical Control; Mode of Action; Phytopathology... 3.0125

Fungicides -nonspecific
INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... Damping Off; Humid 7 Months; Phytopathology; Seed Treatment; Soil-borne... 3.0125

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... BHC; Damping Off; Phytotoxicity -other; Seed Treatment... 9.0376

INVESTIGATIONS OF FUNGICIDAL SEED DRESSINGS... Damping Off; Dry Monsoon 5 Months; Plus; Phytopathology; Seed Treatment; Soil-borne... 9.0197

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS... BHC; Eutric Nitosols; Moist Monsoon 0 to 3 Months; Phytopathology; Soil-borne... 3.0265

STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA... Fungal Resistance; Hyphomycetes; Marsh; Surveys... 4.0066

CONTROL OF BLAST OF THE OIL PALM TREE... Blast; Habitat Manipulation; eradicant; Phytopathology; Rhizoctonia... 9.0096

CERCOSPORIOSIS OF THE OIL PALM TREE... Cercospora; Inoculation; Phytopathology; Systemic Application... 4.0097

INTEGRATED CONTROL OF THE PARASITES AND MA RAUDERS OF THE BANANA PLANT... Cladosporium; Nematodes; Phytopathology; Systemic Action (Plant)... 4.0154

CHEMICAL CONTROL MEASURES AGAINST PARICULARIA ORYZAE... Continuous Humid; Inoculation; Phytopathology; Pariculiriasis... 4.0190

DISEASES OF THE ROOTS OF RUBBER TREES - CONTROL MEASURES AGAINST FOMES LIGNOSUS... Biocontrol -other; Fomes; Humidity; Phytopathology; Soil Moisture... 4.0249

DISEASES OF LEAVES OF HEVEA IN NURSERY... Foliation Diseases -nonspecific; Glomeripore; Helminthosporium Nursery Observational Plants; Phytopathology; Two Humid Seasons... 4.0251

CONTROL OF DISEASES OF THE TAPPING PANEL OF HEVEA... Envi. Plant Dis. Relation; Management; Phytopathology; Phytophthora; Plant Growth Regulators; Two Humid Seasons... 4.0252

PINK DISEASE CONTROL IN HEVEA BRASILIENSIS... Cucurbit; Latex; Phytopathology; Time-release Capsules... 5.0007

COLLAR CANKER CONTROL IN HEVEA BRASILIENSIS... Cankers; Phytopathology; Pythium... 9.0016

EXPERIMENTS ON PHYTOSANITARY TREATMENTS ON COTTON AT THREE LEVELS... Economics of Chemical Control; Phytopathology... 8.0050

RICE CROP LOSS - DISEASE INTENSITY CORRELATION EXPERIMENT... Blast; Diseases; Humid 6 Months; Marsh; Phytopathology... 9.0097

FIELD CONTROL OF PHYTOPHTHRORA PALMIVORA ON COCOA... Black Pod; Petroleum CPds. -nonspecific; Phytophthora... 9.0128

DISEASES OF COFFEE IN NIGERIA... Culturing Techniques; Phytopathology; Rusts; Screening Potential Pesticides; Seed-borne; Surveys... 9.0168

GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS... Cercospora; Disease Resistance; Diseases; Phytopathology; Plant Nematodes -nonspecific... 9.0168

FIELD CONTROL OF THE BROWN SPOT OF RICE USING FUNGICIDES... Brown Spot; Continuous Humid 7 Months; Plus; Maturity or Growth Stage; Phytopathology... 9.0208

TO SCREEN SULPHUR-FREE FUNGICIDES FOR EFFECTIVENESS IN CONTROL OF MILDEWS ON CUCURBITS... Cucurbita; Mildew Diseases; Phytopathology; Phytotoxicity; Sulfur... 9.0283

STUDIES ON THE CHOANEPHORA CUCURBITARUM WET ROT OF AMARANTHUS VIRIDIS... Choanephora; Envi. Plant Dis. Relation; Environments; Plant; Fungal Resistance; Wet Rot... 9.0284

FUNGICIDAL SPRAYING AND LEAF PRUNING TRIAL FOR THE CONTROL OF CERCOSPORA LEAF SPOT... Cercospora; Leaf Spot; Phytopathology... 9.0325
Pesticides

Kocide 101
FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD . . . Corn; potatoes; Economy of Chemical Control; Fortuit; Mode of Action; Phytopathology; . . . 3.0125

Terralchlor
THE OIL PALM BLAST DISEASE AND ITS CONTROL . . . Benlate; Breeding & Genetics; Fungal Resistance; Irrigation - general; Rhizoctonia; Vapam; . . . 9.0327

Vitavax
STUDY THE DISINFECTION OF SEEDS . . . Benlate; Mercury; Phytotoxicity; Seed Treatment; . . . 4.0274

Herbicides

Alachlor
SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS . . . Bladex; Growth Stage of Plant; Saccharum; Simazine; Space Competition; Sulfates; . . . 3.0006
CHEMICAL WEED CONTROL IN SUGARCANE . . . Fenc; Grasses or Sedges; Pesticides -other; Saccharum; Sugar Crops; . . . 3.0116
TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY . . . Coton; Fiber Crops; Preemerge Application; . . . 13.0050
EXPERIMENT WITH TRIAZINE HERBICIDES ON SORG-HUM . . . Cereal Crops; Fiber Crops; Oilseed Crops; Preemerge Application; Pulse Crops; Sorghum Vulgare (Grain); . . . 14.0027

Ametryn
EXPERIMENTAL USE OF HERBICIDES . . . Bladex; Continuous Humid 7 Months, Plus; Eptam; MSMA; Oilseed Crops; Paraquat; . . . 3.0017
SORGHUM CROP PROTECTION . . . Cereal Crops; Rearing of Insects; Scrophulariaceae; Seedling Diseases -non-specific; Smuts; Tetigoniidae; . . . 3.0115
STUDY OF HERBICIDE PREPARATIONS ON GROUND-NUTS ON SANDY SOILS . . . Ferric Luvioso; Humid 3 Months; Oilseed Crops; Preemerge Application; Prometryne; Sand; . . . 11.0147
EXPERIMENTAL USE OF HERBICIDES IN A COTTON PLANTATION . . . Diuron; Ferric Luvioso; Humid 3 Months; Preemerge Application; Surface-soil; . . . 11.0170
TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY . . . Coton; Fiber Crops; Preemerge Application; . . . 13.0050
COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS . . . Ferric Luvioso; Hand Tillage; Pesticides -other; Prometryne; . . . 14.0086

Amiben
WEED CONTROL OF UPLAND RICE . . . CP 53619; Management; Timing -other; . . . 3.0186

Amino Triazole
PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass -non-specific; Humid 6 Months; Planavin; . . . 9.0004

Atrazine
MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Herbicides -non-specific; Humid 6 Months; Simazine; . . . 9.0018
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Continuous Humid 7 Months, Plus; Simazine; . . . 9.0199
MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Economics of Chemical Control; Management; Simazine; . . . 9.0276
EMPERIMENT 17-1 WEED CONTROL IN OIL PALM PLANTATIONS . . . Diuron; Hand Tillage; Oilseed Crops, Pest, Disease & Weed Control; . . . 9.0301
MAIZE HERBICIDE TRIAL . . . Cereal Crops, Economics of Chemical Control; Management; . . . 9.0367
MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Continuous Humid 7 Months, Plus; Economics of Chemical Control; Management; Simazine; . . . 9.0368
MAIZE HERBICIDE TRIAL . . . Bladex; Cereal Crops; Economics of Chemical Control; F.G.N.; Simazine; . . . 9.0370

Bentazon
AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE . . . D, 2,4-D, Drought Resistance; Grass -non-specific; Irrigation -general; Pesticides -other; Rain; . . . 10.0001

Bladex
SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS . . . Growth Stage of Plant; Saccharum; Simazine; Space Competition; Sulfates; . . . 3.0006
CHEMICAL WEED CONTROL IN SUGARCANE . . . Fenc; Grasses or Sedges; Pesticides -other; Saccharum; Sugar Crops; . . . 3.0116
WEED CONTROL IN YOUNG AND MATURE OIL PALMS (ELAES GUINEENSIS), USING HERBICIDES . . . Continuous Humid 7 Months, Plus; Eptam; MSMA; Oilseed Crops; Paraquat; . . . 3.0017
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Herbicides -non-specific; Humid 6 Months; Simazine; . . . 9.0198
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Economics of Chemical Control; Management; Simazine; . . . 9.0276
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Economics of Chemical Control; Management; Simazine; . . . 9.0367
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Continuous Humid 7 Months, Plus; Economics of Chemical Control; Management; Simazine; . . . 9.0368
MAIZE HERBICIDE TRIAL . . . Cereal Crops; Economics of Chemical Control; F.G.N.; Simazine; . . . 9.0370

Cotoran
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; . . . 3.0005
INFLUENCE OF COTORAN AND PLANAVIN HERBICIDES ON THE YIELD OF COTTON . . . Fiber Crops; National Network -general; Planavin; . . . 3.0162
EXPERIMENT ON CHEMICAL WEEDING OF A COTTON PLANTATION WITH 3 HERBICIDE PREPARATIONS . . . Fiber Crops; Persistence of Residues; Pesticides -other; Preemerge Application; Surface-soil; . . . 13.0049
TEST OF POSSIBLE PHYTOTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY . . . Fiber Crops; Preemerge Application; . . . 13.0050

CP 53619
CONTROL OF WEEDS IN RICE . . . Cereal Crops; Irrigation -general; Moisture Deficiency; Postemerge Application; Propam; . . . 3.0004
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; . . . 3.0005
WEED CONTROL OF UPLAND RICE . . . Management; Timing -other; . . . 3.0188

D, 2,4-
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . Cereal Crops; Management; Propam; Silvex; . . . 4.0204
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . Cereal Crops; Hand Tillage; Management; Propam; Silvex; . . . 4.0208
ETHREL STIMULATION OF HEVEA VARIETIES . . . Ethrel; Management; . . . 5.0002
SUGAR CANE HERBICIDE TRIAL . . . Diuron; Management; Preemerge Application; Preplant Application; Sugar Crops; . . . 9.0002
AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE . . . Bentazon; Drought Resistance; Grass -non-specific; Irrigation -general; Pesticides -other; Rain; . . . 10.0001
STUDIES ON THE ROLE OF SOIL MICROBES IN SOIL FERTILITY AND RICE CULTURE . . . BHC; Management; Nitrogen Fixation; Organic Fertility; Soil Microbiology; . . . 10.0006

Dauchal
TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS . . . Fiber Crops; Monolinuron; Trifluralin; . . . 1.0055
<table>
<thead>
<tr>
<th>Pesticides</th>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motinate</td>
<td>POST-PLANTING HERBICIDE TRIAL FOR RICE ... Cereal</td>
</tr>
<tr>
<td></td>
<td>Crops; Humid 6 Months; Marsh; Preemerge Application; Timing -other; ...</td>
</tr>
<tr>
<td>Mosolinuron</td>
<td>TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS ... Dalchali; Fiber Crops; Trifuralin; ...</td>
</tr>
<tr>
<td>MCPA</td>
<td>CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal</td>
</tr>
<tr>
<td></td>
<td>Crops; D, 2, 4-, Management; Propanil; Silvex; ...</td>
</tr>
<tr>
<td></td>
<td>CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal</td>
</tr>
<tr>
<td></td>
<td>Crops; Hand Tillage; Management; Propanil; Silvex; ...</td>
</tr>
<tr>
<td>MSMA</td>
<td>HERBICIDE EXPERIMENTATION ON COTTON ... Continuous</td>
</tr>
<tr>
<td></td>
<td>Humid; ER 5461; GS 1606; Postemerge Application; ...</td>
</tr>
<tr>
<td></td>
<td>HERBICIDE EXPERIMENTATION ON COTTON ... Dystric</td>
</tr>
<tr>
<td></td>
<td>Nitosida; Fiber Crops; Humid 4 Months; Management; Pesticides -other; Preemerge Application; ...</td>
</tr>
<tr>
<td></td>
<td>WEEED CONTROL IN YOUNG AND MATURE OIL PALMS</td>
</tr>
<tr>
<td></td>
<td>(ELAEIS GUINEENSIS), USING HERBICIDES ... Bladex;</td>
</tr>
<tr>
<td></td>
<td>Continuous Humid 7 Months; Plus; Eptam; Olsied Crops; Paraquat; ...</td>
</tr>
<tr>
<td>Parquat</td>
<td>WEEED CONTROL IN YOUNG AND MATURE OIL PALMS</td>
</tr>
<tr>
<td></td>
<td>(ELAEIS GUINEENSIS), USING HERBICIDES ... Bladex;</td>
</tr>
<tr>
<td></td>
<td>Continuous Humid 7 Months; Plus; Eptam; MSMA; Olsied Crops; ...</td>
</tr>
<tr>
<td></td>
<td>CHEMICAL DESTRUCTION OF WEEDS ON A PLOT OF YAMS</td>
</tr>
<tr>
<td></td>
<td>(BISOSCROBIA) ... Continuous Humid; Diuron; Horticultural Crops; Management; Preemerge Application; Selectivity of Pesticides; ...</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENT 17-1 WEEED CONTROL IN OIL PALM</td>
</tr>
<tr>
<td></td>
<td>PLANTATIONS ... Diuron; Hand Tillage; Olsied Crops; Pest, Disease & Weed Control; ...</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENT WITH TRIAZINE HERBICIDES ON SORGHUM</td>
</tr>
<tr>
<td></td>
<td>... Cereal Crops; Fiber Crops; Olsied Crops; Preemerge Application; Pulse Crops; Sorghum Vulgaris (Grain); ...</td>
</tr>
<tr>
<td>Patacon</td>
<td>THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES</td>
</tr>
<tr>
<td></td>
<td>IN THE SOIL ... Continuous Humid 7 Months; Plus; Nitrogen Fixation; Pesticidal Interaction -other; Pulse Crops; Simazine; Toxicity to Microorganisms; ...</td>
</tr>
<tr>
<td>Planavon</td>
<td>INFLUENCE OF COTORAN AND PLANAVIN HERBICIDES ON THE</td>
</tr>
<tr>
<td></td>
<td>YIELD OF COTTON ... Cotornan; Fiber Crops; National Network -general; ...</td>
</tr>
<tr>
<td></td>
<td>PRE-PLANTING HERBICIDE TRIAL ON RICE ... Dalapon;</td>
</tr>
<tr>
<td></td>
<td>Grass -nonspecific; Humid 6 Months; ...</td>
</tr>
<tr>
<td>Preforan</td>
<td>CONTROL OF WEEDS IN RICE ... Cereal Crops; Irrigation -general; Moisture Deficiency; Postemerge Application; Propanil; ...</td>
</tr>
<tr>
<td></td>
<td>COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Soil Moisture; Synergism and Synergists; ...</td>
</tr>
<tr>
<td></td>
<td>WEED CONTROL IN COWPEA ... Management; Phytotoxicity; Pulse Crops; RP 17623; Trifuralin; ...</td>
</tr>
<tr>
<td></td>
<td>POST-PLANTING HERBICIDE TRIAL FOR RICE ... Cereal</td>
</tr>
<tr>
<td></td>
<td>Crops; Humid 6 Months; Marsh; Preemerge Application; Timing -other; ...</td>
</tr>
<tr>
<td></td>
<td>THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES</td>
</tr>
<tr>
<td></td>
<td>IN THE SOIL ... Continuous Humid 7 Months; Plus; Nitrogen Fixation; Pesticidal Interaction -other; Pulse Crops; Simazine; Toxicity to Microorganisms; ...</td>
</tr>
<tr>
<td>Prometryne</td>
<td>STUDY OF HERBICIDE PREPARATIONS ON GROUND- NUTS ON</td>
</tr>
<tr>
<td></td>
<td>SANDY SOILS ... Ferric Luvisols; Humid 3 Months;</td>
</tr>
<tr>
<td></td>
<td>Olsied Crops; Preemerge Application; Sand; ...</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A</td>
</tr>
<tr>
<td></td>
<td>COTTON PLANTATION ... Diuron; Ferric Luvisols; Humid 3 Months; Preemerge Application; Surface -soil; ...</td>
</tr>
</tbody>
</table>

Propachlor	STUDY OF HERBICIDE PREPARATIONS ON SORGHUM ... Cereal	
	Crops; Ferric Luvisols; Humid 3 Months; Sorghum Vulgaris (Grain); ...	11.0146
Propalan	CONTROL OF WEEDS IN RICE ... Cereal Crops; Irrigation -general; Moisture Deficiency; Postemerge Application; ...	3.0004
	WEED CONTROL OF UPLAND RICE ... CP 53619; Management; Timing -other; ...	3.0188
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal	
	Crops; Irrigation -general; Silvex; ...	4.0094
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal	
	Crops; D, 2, 4-, Management; Silvex; ...	4.0204
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ...	4.0205
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Management; Silvex; ...	4.0208
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Humid 5 Months; Pricking Out, Selectivity of Pesticides; ...	4.0210
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; Two Humid Seasons; 7 Month,Plus; ...	4.0217
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ...	4.0219
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ...	4.0221
	RP 17623 ... WEED CONTROL IN COWPEA ... Management; Phytotoxicity; Preforan; Pulse Crops; Trifuralin; ...	3.0008
Silvex	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Irrigation -general; Propanil; ...	4.0094
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal	
	Crops; D, 2, 4-, Management; Propanil; ...	4.0204
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ...	4.0205
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Management; ...	4.0208
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Humid 5 Months; Pricking Out, Selectivity of Pesticides; ...	4.0210
	CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; Two Humid Seasons; 7 Month,Plus; ...	4.0217
	CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesticides; ...	4.0221
	RELATION OF FLOWERING TO YIELD IN THE OIL PALM ... Growth and Differentiation; Olsied Crops; Reproductive Physiology; Sex Ratio; ...	9.0331
Simazine	SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE	
	ACCRA PLAINS ... Bladex; Growth Stage of Plant; Saccharum; Space Competition; Sulfates; ...	3.0006
	CHEMICAL WEED CONTROL IN SUGARCANE ... Fenc ...	3.0116
	MAIZE HERBICIDE TRIAL ... Bladex; Cereal Crops; Herbicides -nonspecific; Humid 6 Months; ...	9.0198

388
SUBJECT INDEX

MAIZE HERBICIDE TRIAL... Cereal Crops; Continuous Humid 7 Months; Plus;09199
THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL... Continuous Humid 7 Months, Plus; Nitrigen Fixation; Pesticidal Interaction -other; Pulse Crops; Toxicity to Microorganisms; .09216
MAIZE HERBICIDE TRIAL... Bladex; Cereal Crops; Economics of Chemical Control; Management; .092076
CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LANELS... Dalapon; Economics of Chemical Control; Forbs (Broadleaf Herbs); Grasses or Sedges; Nursery Observational Plots; Triazines -nonspecific; .09357
MAIZE HERBICIDE TRIAL... Cereal Crops; Economics of Chemical Control; Management; .093067
MAIZE HERBICIDE TRIAL... Bladex; Cereal Crops; Continuous Humid 7 Months, Plus; Economics of Chemical Control; Management; .093068
MAIZE HERBICIDE TRIAL... Bladex; Cereal Crops; Economics of Chemical Control; F.G.N.; .093070

T. 2,4,5-
TECHNIQUES OF CLEARING IN TEAK POPULATIONS OF EQUAL AGE... Forests; Lumbering; Silviculture; Tectona; .13.0017

Trifluralin
TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS... Daclath; Fiber Crops; Monolinuron; .1.0055
WEED CONTROL IN COWPEA... Management; Phytoxotoxicity; Preboran; Pulse Crops; RP 17623; .3.0008
POST-PLANTING HERBICIDE TRIAL FOR RICE... Cereal Crops; Humid 6 Months; Marsh; Preemerge Application; Timing -other; .9.0008
EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION... Diuron; Ferriic Luviosols; Humid 3 Months; Preemerge Application; Surface -soil; .11.0170

TOK
TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS... Daclath; Fiber Crops; Monolinuron; Trifluralin; .1.0055
WEED CONTROL OF UPLAND RICE... CP 53619; Management; Timing -other; .3.0188

Insecticide - Acaricide
Baytex
INSECTICIDE TESTING PROGRAM... C 9491; Pesticides -other; Rainfall Surplus; Tebendoridane; .9.0339

Bromophos
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS CRIBS... Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd.s; Storage; Tebendoridane; .3.0211
INSECTICIDE TESTING PROGRAM... Baytex; C 9491; Pesticides -other; Rainfall Surplus; Tebendoridane; .9.0339

Parathon
APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELEANAEMONOCHERA ELAEISIS FOR OIL PALM PROTECTION... Foliar Application; Maturity & Growth Stages; Oiled Seed Crops; Parasites -biocontrol; Predators -biocontrol; .4.0305
TESTING OF PREPARATIONS FOR PHYTOSANITARY PROTECTION ON COTTON... DDT; Fiber Crops; Insecta; Synergism and Synergists; .8.0051

Phosalone
CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALAY... DDT; Endrin; Fiber Crops; Insecta; Sequential, Daily, Weekly, Etc; .6.0080
Phoxim
INSECTICIDE TESTING PROGRAM... Baytex; C 9491; Pesticides -other; Rainfall Surplus; Tebendoridane; .9.0339

Insecticide - Antihelminth
Pesticides
Tetramisole
BOVINE OCULAR THELAZIOSIS - TREATMENTS... Blindness -nonspecific; Bovine Ocular Thelaziosis; Cyanides; Muscidae; Veterinary Medicine; .11.0087

Insecticide - Fumigant
Phostoxin
STORAGE OF MAIZE IN A CONCRETE SILO... Buildings, Farm; Fumigant; Storage; Temperature -air; .3.0212
PESTS OF KOLA IN NIGERIA... Beverage Crops; BHC; Cola; Curculionidae; Insect Utilization; .9.0143

Insecticide - Fungicide
Aldrin
DISEASES OF KOLA IN NIGERIA... Cola; Fomes; Phytopathology; Preemerge Application; .9.0142

Boric Acid
PROTECTION OF WOOD AGAINST FIRE... Borax; Chemical Materials; Finishes of Textiles; Melaleucae -other; Sapotaceae; .3.0110

Mercuric Chloride
EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM WILT DISEASE CAUSED BY SCLEROTIUM ROLLISI ON VEGETABLES AND LEGUMES... Continuous Humid 7 Months, Plus; Lycoper­sicum; Sclerotium; Selectivity of Pesticides; Wilts; .9.0131

Oxthioquinone
EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM)... Cocona; Humid 6 M.or Less; .1.0074

Sulfur
BIOLICAL CONTROL OF DISEASES OF THE ROOTS... Cover Crops; Fomes; Ganoderma; Phytopathology; Two Humid Seasons; .4.0250

TBZ
DETERMINATION OF THE MODE OF FUNGICIDAL YAM TUBER PROTECTION... Benlate; Captan; Phytopathology; Plant Pathogenic Fungi; Storage Rot; Tuber Rot; .9.0248

CONTRL OF YAM STORAGE ROTS... Benlate; Captan; Harvest and Storage; Phytopathology; Storage Rot; Tuber Rot; .9.0249

Insecticides
Aldrin
PRESERVATION OF SMALL SIZED TIMBER AGAINST FUNGAL AND TERMITE ATTACK... Fences; Osmunals; Pesticides -other; Wood Preservation & Seasoning; .3.0109
INVESTIGATIONS INTO THE BIOMONICS AND CONTROL OF INSECT PESTS ON SUGAR CANE... Cranloidae; Dip Application; Isoptera; Scolarum; Toxaphene; .3.0135

INSECTICIDAL CONTROL OF YAM BEETLE... Coleoptera -other; Timing of Application; Vegetables; .9.0262

Azodrin
EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS... Endrin; Insecta; Pepsin; Pesosel; Thiodan; .1.0046
EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM)... Cocona; Humid 6 M.or Less; Oxthioquinone; .1.0074
INVESTIGATIONS INTO BIOMONICS AND CONTROL OF INSECT PESTS ON COTTON... Economics of Chemical Control; Gelechiidae; Nocutidae; Surveys; Trap Crops; .3.0132
VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL... Continuous Humid 7 Months, Plus; Lycoper­sicum; Pulse Crops; Solarium; Surveys; .3.0133
INSECTICIDAL CONTROL OF COWPEA PESTS... Lindane; Maturity or Growth Stage; Oiledseed Crops; Pulse Crops; Sequential, Daily, Weekly, Etc; .9.0270
Pesticides

SUBJECT INDEX

TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS . . . Endrin; Humid 3 Months; Pethrophen; Thiodan; . . . 11.0172
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Fiber Crops; Insecta; Methyl Parathion; Thiodan; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Fiber Crops; Insecta; Methyl Parathion; Thiodan; . . . 11.0172
EXPERIMENTS ON RATES OF APPLICATION FOR INSECTICIDE PREPARATIONS IN CULTIVATIONS OF COTTON . . . Fiber Crops; Methyl Parathion; Pethrophen; Thiodan; . . . 11.0172
EXPERIMENT ON INSECTICIDAL PROTECTION OF COTTON PLANTS . . . Endrin; Fiber Crops; Hoe 2960; Insecta; Pethrophen; . . . 13.0040
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Fiber Crops; Insecta; Methyl Parathion; Thiodan; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Endrin; Fiber Crops; Insecta; Plinthic Luviosols; . . . 14.0088
EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . Endrin; Fiber Crops; Insecta; Sequential, Daily, Weekly, Etc; . . . 14.0089

DDVP
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS . . . Barriers & Weirs; Control of Nuisance Species; Phosphorothioate Cpd.s; Storage, Tenebrionidae; . . . 3.0211

Endrin
EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS . . . Insecta; Pethrophen; Phosvel; Thiodan; . . . 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DDT; Fiber Crops; Insecta; Pethrophen; Phosvel; Thiodan; Zectran; . . . 1.0047
INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Dystric Nitosols; Gardona; Humid 6 Mor Less; Pesticides -other; Synergism and Synergists; . . . 1.0049
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; . . . 3.0005
INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON . . . Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Trap Crops; . . . 3.0132
BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA) . . . Continuous Humid 7 Months; Plus; Economics of Chemical Control; Multiple Cropping; Parasites - biocidal; Sevin; . . . 3.0136
CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALI . . . DDT; Fiber Crops; Insecta; Phosvelone; Sequential, Daily, Weekly, Etc; . . . 6.0080
EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS . . . DDT; Fiber Crops; Methyl Parathion; Pethrophen; Thiodan; . . . 11.0171
TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS . . . Humid 3 Months; Pethrophen; Thiodan; . . . 11.0172
TESTING OF INSECTICIDAL PREPARATIONS IN COTTON PLANTATIONS . . . DDT; Fiber Crops; Hoe 2960; Insecta; Pethrophen; . . . 13.0040
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . DDT; Fiber Crops; Insecta; Methyl Parathion; Thiodan; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Fiber Crops; Insecta; Plinthic Luviosols; . . . 14.0088
EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . DDT; Fiber Crops; Insecta; Sequential, Daily, Weekly, Etc; . . . 14.0089

Gardona
INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Dystric Nitosols; Endrin; Humid 6 Mor Less; Pesticides -other; Synergism and Synergists; . . . 1.0049

Hoe 2960
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DDT; Fiber Crops; Insecta; Pethrophen; Phosvel; Thiodan; Zectran; . . . 1.0047

C 9491
INSECTICIDE TESTING PROGRAM . . Baytex; Pesticides -other; Rainfall Surplus; Tenebrionidae; . . . 9.0339

Didigam
INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE . . . Cambridae; Dip Application; Isoperta; Saccharum; Toxaphene; . . . 3.0135

Dieldrin
INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE . . . Cambridae; Dip Application; Isoperta; Saccharum; Toxaphene; . . . 3.0135

TRYPANOSOMIASIS - CONTROL CAMPAIGN AGAINST THE VECTORS . . . Muscidae; Surveys; Trypanosoma; Trypanosomiasis; Veterinary Entomology; Veterinary Medicine; . . . 11.0092

DDT
EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS . . . Endrin; Insecta; Pethrophen; Phosvel; Thiodan; . . . 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . Fiber Crops; Insecta; Pethrophen; Phosvel; Thiodan; Zectran; . . . 1.0047
INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Dystric Nitosols; Endrin; Gardona; Humid 6 Mor Less; Pesticides -other; Synergism and Synergists; . . . 1.0049
COTTON IMPROVEMENT . . Fiber Crops; Management; Sevin; . . . 2.0002
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; . . . 3.0005
INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON . . . Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Trap Crops; . . . 3.0132
INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE . . . Cambridae; Dip Application; Isoperta; Saccharum; Toxaphene; . . . 3.0135
BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA) . . . Continuous Humid 7 Months; Plus; Economics of Chemical Control; Multiple Cropping; Parasites - biocidal; Sevin; . . . 3.0136
CHEMICAL CONTROL OF THE INSECT PARASITES OF COTTON PLANTS IN MALI . . . DDT; Fiber Crops; Insecta; Phosvelone; Sequential, Daily, Weekly, Etc; . . . 6.0080
EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS . . . DDT; Fiber Crops; Methyl Parathion; Pethrophen; Thiodan; . . . 11.0171
TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS . . . Humid 3 Months; Pethrophen; Thiodan; . . . 11.0172
TESTING OF INSECTICIDAL PREPARATIONS IN COTTON PLANTATIONS . . . DDT; Fiber Crops; Hoe 2960; Insecta; Pethrophen; . . . 13.0040
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . DDT; Fiber Crops; Insecta; Methyl Parathion; Thiodan; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . Fiber Crops; Insecta; Plinthic Luviosols; . . . 14.0088
EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . DDT; Fiber Crops; Insecta; Sequential, Daily, Weekly, Etc; . . . 14.0089

390
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Insecticides -nonspecific</th>
<th>Pesticides</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATION, ON COTTON</td>
<td>SWEET POTATO ENTOMOLOGY</td>
</tr>
<tr>
<td>TO CONTROL SOIL MICROBIOLOGY</td>
<td>- Curculionidae; Econonecroses of Chemical Control; Ferric Luvisols; Ipomea; Vectors</td>
</tr>
<tr>
<td>INSECTICIDE MANAGEMENT</td>
<td>PESTS OF OKRA, TOMATOES AND PEPPERS</td>
</tr>
<tr>
<td>CONTROL OF COSMOPHILIA</td>
<td>THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COWPEAS BY THE LEAFHOPPER EMPOASCA DOLICHIU</td>
</tr>
<tr>
<td>CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRREGULAR RICE</td>
<td>FIELD TESTING OF NEW RICE TECHNOLOGY AND ADOPTION OF THE NEW TECHNOLOGY THROUGH A PILOT EXTENSION PROGRAM</td>
</tr>
<tr>
<td>INSECTICIDES -nonspecific</td>
<td>CHEMICAL CONTROL OF INSECTS DESTRUCTIVE TO IRREGULAR RICE</td>
</tr>
<tr>
<td>COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATION, ON COTTON</td>
<td>VARIETAL EXPERIMENTATION, COTTON</td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td>EXPERIMENTS WITH RHYTHMS IN INSECTICIDAL TREATMENTS</td>
</tr>
<tr>
<td>CONTROL OF INSECTS DESTRUCTIVE TO IRREGULAR RICE</td>
<td>STUDY THE PARASITIC FAUNA OF THE COTTON PLANT IN SENEGAL AND THE OPTIMAL NUMBER OF TREATMENTS</td>
</tr>
<tr>
<td>OF CEREAL CROPS</td>
<td>VARIETAL EXPERIMENTS WITH COTTON</td>
</tr>
<tr>
<td>AND ACARID PARASITES</td>
<td>VARIETAL EXPERIMENTS WITH COTTON</td>
</tr>
<tr>
<td>OF COTTON PLANTS AT A WARNING SIGN</td>
<td>INSECTICIDAL CONTROL OF COWPEA PESTS</td>
</tr>
<tr>
<td>IMPROVEMENT OF THE PROCEDURES FOR STORAGE AND CONSERVATION OF MAIZE IN A RURAL ENVIRONMENT</td>
<td>TOXICITY TO MICROORGANISMS; ...</td>
</tr>
<tr>
<td>DRY MONSOON</td>
<td>EXPERIMENTATION WITH VARIETIES OF COTTON</td>
</tr>
<tr>
<td>RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY</td>
<td>A STUDY OF THE ECOLOGY, BIOLOGY, & CONTROL OF THE GROUNDNUT SEED BEETLE</td>
</tr>
<tr>
<td>OF COTTON</td>
<td>INSECTICIDAL TOXICITY TO MICROORGANISMS; ...</td>
</tr>
<tr>
<td>CHEMICAL CONTROL OF LEPIDOPTERA PARASITIC ON THE COTTON POD</td>
<td>STUDY OF RICE PESTS</td>
</tr>
<tr>
<td>INSECT PROTECTION IN COTTON</td>
<td>INVESTIGATIONS INTO THE BIOINOCULATION AND CONTROL OF INSECT PESTS ON SUGAR CANE</td>
</tr>
<tr>
<td>AND ACARID PARASITES</td>
<td>INSECTICIDAL CONTROL OF COTTON</td>
</tr>
<tr>
<td>OF COTTON CROPS</td>
<td>THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS</td>
</tr>
<tr>
<td>METHYL PARATHION</td>
<td>EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDAL PREPARATIONS IN COTTON PLANTATIONS</td>
</tr>
<tr>
<td>INSECTICIDE TREATMENT OF COTTON CROPS AFTER WEED CONTROL</td>
<td>TESTING OF NEW INSECTICIDAL PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS</td>
</tr>
<tr>
<td>USE OF THE INSECTS HARMFUL TO RICE IN MALI AND EVALUATION OF THE LOSSES</td>
<td>TESTING OF INSECTICIDAL PREPARATIONS FOR COTTON PLANTS</td>
</tr>
<tr>
<td>CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES</td>
<td>INSECTICIDAL CONTROL OF SWEET POTATO ENTOMOLOGY</td>
</tr>
<tr>
<td>FOR SACKING</td>
<td>INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS</td>
</tr>
<tr>
<td>PROJECT ADAPTED CONTROL MEASURES AGAINST THE INSECT AND ACARID PESTS OF FRUIT CROPS</td>
<td>INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS</td>
</tr>
<tr>
<td>CAMBIC ARENOSOL; DIASPIDIACEAE; POPULATION DYNAMICS; REARING</td>
<td>H. SCLETHRODERMA; HYPODERMA</td>
</tr>
<tr>
<td>OF INSECTICIDES -nonspecific</td>
<td>INSECTICIDAL PREPARATIONS IN CULTIVATIONS OF COTTON</td>
</tr>
<tr>
<td>OF COTTON PLANTS</td>
<td>TRIALS OF INSECTICIDAL PREPARATIONS ON THE COTTON PLANT</td>
</tr>
<tr>
<td>OF COTTON PLANTS</td>
<td>INSECTICIDAL PREPARATIONS ON THE COTTON PLANT</td>
</tr>
<tr>
<td>OF COTTON PLANTS</td>
<td>BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA)</td>
</tr>
</tbody>
</table>
Pesticides

Peprothion

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS . . . Endrin; Insects; Phosvel; Thiodan; . . . 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DD; Fiber Crops; Insects; Phosvel; Thiodan; Zectran; . . . 1.0047
INTEGRATED CONTROL OF CYTOMEGALIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES . . . Disease -biocontrol; Fiber Crops; Humid 6 M. or Less; Mode of Action; . . . 1.0051
EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS . . . DD; Endrin; Fiber Crops; Methyl Parathion; Thiodan; . . . 11.0171
TESTING OF INSECTICIDE PREPARATIONS ON GROWING COTTON PLANTS . . . DD; Endrin; Fiber Crops; Methyl Parathion; Parathion; . . . 4.0144
EXPERIMENTS ON RATES OF APPLICATION FOR INSECTICIDE PREPARATIONS IN CULTIVATIONS OF COTTON . . . DD; Endrin; Fiber Crops; Insects; Methyl Parathion; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . DD; Endrin; Fiber Crops; Insects; Methyl Parathion; Thiodan; . . . 11.0173

Phosvel

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS . . . Endrin; Insects; Peprothion; Thiodan; . . . 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DD; Fiber Crops; Insects; Peprothion; Thiodan; Zectran; . . . 1.0047

Pyrethrum

THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS . . . Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd.; Storage; Tenebrionidae; . . . 3.0211

Sevin

COTTON IMPROVEMENT . . . DD; Fiber Crops; Management; . . . 2.0002
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DD; Formulation; Fertilizer; Preparan; Soil Moisture; Synergism and Synergists; . . . 3.0005
VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL . . . Continuous Humid 7 Months,Plus; Lycopersicum; Pulse Crops; Solanum; Surveys; . . . 3.0133
BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA) . . . Continuous Humid 7 Months,Plus; Economics of Chemical Control; Multiple Cropping; Parasites -biocontrol; . . . 3.0136
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS . . . Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd.; Storage; Tenebrionidae; . . . 3.0211
SORGHUM CROP PROTECTION . . . Cereal Crops; Rearing of Insects; Scrophulariaceae; Seedling Diseases -nonspecific; Smuts; Tettigoniidae; . . . 9.0159

Sumithion

VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL . . . Continuous Humid 7 Months,Plus; Lycopersicum; Pulse Crops; Solanum; Surveys; . . . 3.0133
THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS . . . Barriers & Weirs; Control of Nuisance Species; DDVP; Phosphorothioate Cpd.; Storage; Tenebrionidae; . . . 3.0211

Thiodan

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS . . . Endrin; Insects; Peprothion; Phosvel; . . . 1.0046
TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DD; Fiber Crops; Insects; Peprothion; Phosvel; Zectran; . . . 1.0047
INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Dysmic Nitosoles; Endrin; Gardona; Humid 6 M. or Less; Pesticides -other; Synergism and Synergists; . . . 1.0049

FIELD TRIALS ON PESTICIDES AGAINST COCOA MIRIDS . . . Beverage Crops; Feralic Arenosols; Foliar Application; Management; Mirids; Two Humid Seasons; . . . 4.0144
EXPERIMENTS TO CONFIRM THE INSECTICIDAL VALUE OF A PREPARATION BEFORE RECOMMENDING IT FOR COTTON PLANTATIONS . . . DD; Endrin; Fiber Crops; Methyl Parathion; Parathion; . . . 11.0171
TESTING OF INSECTICIDE PREPARATIONS ON GROWING COTTON PLANTS . . . DD; Endrin; Fiber Crops; Methyl Parathion; Preparan; . . . 11.0172
EXPERIMENTS ON RATES OF APPLICATION FOR INSECTICIDE PREPARATIONS IN CULTIVATIONS OF COTTON . . . DD; Fiber Crops; Methyl Parathion; . . . 14.0075
TRIALS OF INSECTICIDE PREPARATIONS ON THE COTTON PLANT . . . DD; Endrin; Fiber Crops; Insects; Methyl Parathion; . . . 11.0173

Thuricide

CONTROL OF COSMOPHILIA FLAVA . . . Bacillus; Disease -biocontrol; Fiber Crops; Insecticides -nonspecific; . . . 4.0279
STUDY OF THE POSSIBILITIES OF BIOLOGICAL CONTROL OF RICE PESTS . . . Bacillus; Disease -biocontrol; Insecta; Population Dynamics; . . . 11.0136

Toxaphene

TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DD; Fiber Crops; Insecta; Peprothion; Phosvel; Thiodan; Zectran; . . . 1.0047
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS . . . DD; Formulation; Fertilizer; Preparan; Soil Moisture; Synergism and Synergists; . . . 3.0005
INVESTIGATIONS INTO BIONOMICS AND CONTROL OF INSECT PESTS ON COTTON . . . Economics of Chemical Control; Gelechiidae; Nautucidae; Surveys; Trap Crops; . . . 3.0132
INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE . . . Cambiidae; Dip Application; Isopera; Saccharum; . . . 3.0135

Vapam

THE OIL PALM BLAST DISEASE AND ITS CONTROL . . . Benlate; Breeding & Genetics; Fungal Resistance; Irrigation -general; Rhizoctonia; Terrachlor; . . . 9.0327

Zectran

TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS . . . DD; Fiber Crops; Insecta; Peprothion; Phosvel; Thiodan; . . . 1.0047

Multiple Usage Cpas.

DD

INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS . . . Continuous Humid 7 Months,Plus; Culturing Techniques; Nemagon; Nicotiana; Population Dynamics; . . . 3.0128
NEMATODES OF VEGETABLES . . . Capsicum; Lycopersicum; Nemagon; Nematode Resistance; Phytophathology; Tylenchidae; . . . 9.0265
CHEMICAL CONTROL . . . Nemagon; Phytopathology; Plant Nematodes -nonspecific; . . . 9.0274

Pentachlorophenol

PRESERVATION OF SMALL SIZED TIMBER AGAINST FUNGAL AND TERMINATE ATTACK . . . Fences; Osmosalts; Pesticides -other; Wood Preservation & Seasoning; . . . 3.0109

Sodium Arsenite

REGENERATION OF NATURAL MOIST FOREST . . . Forests; Silviculture; . . . 9.0605

Nematocides

INTEGRATED CONTROL OF THE PARASITES AND MAKERS OF THE BANANA PLANT . . . Cladosporium; Fungicides -nonspecific; Phytopathology; Systemic Action (Plant); . . . 4.0154
Pesticides - other

HERBICIDE EXPERIMENTATION ON COTTON ... Continuous Humid, ER 5461; GS 16068; MSMA; Postemerge Application; ... 1.0012

HERBICIDE EXPERIMENTATION ON COTTON ... Dystic Nitosols; Fiber Crops; Humid 4 Months; Management; Preemerge Application; ... 1.0026

EXPERIMENTS TO CONFIRM THE EFFICACY OF INSECTICIDE PREPARATIONS IN COTTON PLANTATIONS ... Endrin, Insects; Preenorthion; Phosvel; Thiodan; ... 3.0046

TESTING OF NEW INSECTICIDE PREPARATIONS IN THE PROTECTION OF COTTON PLANTATIONS ... DDT; Fiber Crops; Insecta; Preenorthion; Phosvel; Thiodan; Zecatran; ... 5.0047

INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS ... Dystic Nitosols; Endrin, Gardens; Humid 6 M. or Less; Synergism and Synergists; ... 10.0049

TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS ... Decidal; Fiber Crops; Molonolinuron; Trifluralin; ... 1.0055

THE STIMULATION OF TRYPAHOSOMIASIS ...辗转体对牛的刺激

Agronomic studies on irrigated, rainfed lowland and upland rice ... Bentazon; D, 2,4; Drought Resistance; Grass - nonspecific; Irrigation - general; Rain; ... 10.0061

TRYPTANOSOMIASIS - Treatment ... Treatment; Trypanosoma; Trypanosomiasi; Veterinary Medicine; ... 11.0093

TESTING OF INSECTICIDAL PREPARATIONS ON GROWING COTTON PLANTS ... Endrin, Humid 3 Months, Preenorthion; Thiodan; ... 11.0112

EXPERIMENT ON CHEMICAL WEEDING OF A COTTON FIELD CONTROL OF PHYTOPHTHORA ... Cottonan; Fiber Crops; Persistence of Residues; Preemerge Application; Surf - soil; ... 13.0049

COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS ... Ferric Lutisoles; Hand Tillage; Prometryne; ... 14.0086

Petroleum Cpsds nonspecific

FIELD CONTROL OF PHYTOPHTHORA PALMIVORA ON COCOA ... Black Pod; Fungicides - nonspecific; Phytophthora; ... 9.0128

Phosphorothioate Cpsds.

THE PRESERVATION OF MAIZE ON THE COB IN FARMERS' CRIBS ... Barriers & Weirs; Control of Nuisance Species; DDVP; Storage; Tenebrioidea; ... 3.0211

Plant Growth Regulators

FERTILIZATION OF SMOOTH CAYENNE PINEAPPLE IN GHANA ... Bromeliaceae; Deficiencies; Magnesium; Management; Somatostatin; Space Competition; ... 3.0217

STIMULATION OF RUBBER TREES FOR EARLY PRODUCTION ... Growth Retardation of Plants; Harvest and Storage; Management; Sequential; Daily, Weekly, Etc; Two Humid Seasons; ... 4.0243

TAPPING OF RUBBER TREES - RESEARCH ON THE EQUILIBRIUM BETWEEN YIELD BY THE HECTARE AND YIELD BY WORKER ... Costs; Harvest and Storage; Management; Supply; Time & Motion Studies; Two Humid Seasons; ... 4.0245

CONTROL OF DISEASES OF THE TAPPING PANEL OF HEVEA ... Env. Plant Dis. Relation; Fungicides - nonspecific; Management; Phytopathology; Phytophthora; Two Humid Seasons; ... 4.0252

ACTION OF GROWTH-REGULATORS ON THE COTTON PLANT ... SUBSTANCES WHICH INHIBIT GIBBERELLINS ... Growth Retardation of Plants; Irrigation - general; Management; Mode of Action; Parasite - others; ... 4.0276

STUDIES ON FLOWERING AND POD PRODUCTION IN KOLA (C. NITIDA) ... Cola; Management; Timing of Application; ... 9.0139

MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM ... Dormancy; Germination; Growth Substances; Management; Scarification; ... 9.0328

B9

STUDY ON THE UTILIZATION OF GROWING SUBSTANCES IN COCOA CROPPING ... Ferralic Arenosols; Fruit-set or Fruit-thinning; Growth Retardation of Plants; Management; Two Humid Seasons; ... 4.0112

Ethrel

STUDY ON THE UTILIZATION OF GROWTH SUBSTANCES IN COFFEE CROPPING ... Ferralic Arenosols; Fruit-set or Fruit-thinning; Growth Retardation of Plants; Management; Two Humid Seasons; ... 4.0133

ETHREL STIMULATION OF HEVEA VARIETIES ... D, 2,4; Management; ... 5.0002

BLACK THREAD CONTROL WITH DIFOLATAN AND ETHREL ... Black Thread; Difolatan; Latex; Phytopathology; Phytophthora; ... 5.0009

COFFEE AGRONOMY PROJECT ... Beverage Crops; Fruit-set or Fruit-thinning; Management; Mulches; Shade; Space Competition; ... 9.0145

USE OF GROWTH REGULATORS IN COFFEE HUSBANDRY ... Germination; Management; Preharvest Application; Thiorures; ... 9.0146

IBA

PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES ... Breeding & Genetics; Growth and Differentiation; Growth Substances; Hormones; Management; Two Humid Seasons; ... 4.0237

Maleic Hydrazide

TOBACCO SUCKER CONTROL WITH CHEMICALS ... Continuous Humid 7 Months, Plus; Growth Retardation of Plants; Management; Nicotiana; Offshoot T; ... 3.0148

Offshoot T

TOBACCO SUGAR CONTROL WITH CHEMICALS ... Continuous Humid 7 Months, Plus; Growth Retardation of Plants; Maleic Hydrazide; Management; Nicotiana; ... 3.0148

Rodenticides

ECOLOGY OF RODENTS OF THE SAVANNAH - ADAPTATION OF THESE RODENTS TO THE CULTIVATED ENVIRONMENT ... Habitat Studies; Population Dynamics; ... 4.0059

Triazines - nonspecific

CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LINES ... Dalapon; Economics of Chemical Control; Forbs (Broadleaf Herbs); Grasses or Sedges; Nursery Observational Plots; ... 9.0307

Wood Preservatives

SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS ... Crustaceans; Factors Affecting Insect Pop.; Insect Resistance; Lamellibranchiata; Marine Animals; Maturity & Growth Stages; ... 3.0095

DIFFUSION-IMPREGNATION OF BUILDING TIMBER IN BORON-BASED PRESERVATIVE FORMULATIONS ... Boron; Wood; Wood Preservation & Seasoning; ... 3.0096
Pesticides

SUBJECT INDEX

Efficacy of Preservatives Under Ghanaian Conditions… Chemical Materials; Wood; Wood Preservation & Seasoning; 3.0097

Testing New Species for Use as Rail Sleepers… Railroads; Wood; 3.0098

Field Test of Treated Round Posts for Fencing… Eucalyptus; Fencing, Teak; Wood Preservation & Seasoning; 3.0099

Study of Properties and Characteristics of Nigerian Forest Timber Species… Drying; Fungal Resistance; Machining; Pathology, Forests; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties; 9.0095

Study of Properties and Characteristics of Plantation Grown Timbers… Construction Materials; Joining & Bolting; Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylem; 9.0096

The Suitability of Nigerian Timbers for Railway Sleepers… Chemical Materials; Corrosion, Deterioration; Mechanical Properties; Railroads; Wood; 9.0104

Creosote

Preservation of Small Sized Timber Against Fungal and Termite Attack… Fences; Osmosalts; Pesticides - other; Wood Preservation & Seasoning; 3.0109

Osmosalts

Preservation of Small Sized Timber Against Fungal and Termite Attack… Fences; Pesticides - other; Wood Preservation & Seasoning; 3.0109

Pests

See Economics

Losses or Benefits from…

Petroleum Cpd.s. - nonspecific

See Pesticides

Pests

See Animal Husbandry

Phaseolus

See Plants - Dicots

Leguminosae

Phenology, Life Cycle

See Ecology, Plant

See Seeds

Phenotypes

See Genetics

Pheromones & Sex Attractants

Insect Pheromones

Sexual Attraction in Cryptophlebia Leucotreta… Bait Traps; Entomology, Applied; Olethreutidae; 4.0280

Phoenix

See Plants - Monocots

Palmae

Phosalone

See Pesticides

Insecticide - Acaricide

Phosphatase - nonspecific

See Enzymes

Phosphates

See Phosphorus

Phosphorothioate Cpd.s.

See Pesticides

Phosphorus

See Also Isotopes

Radioactive Isotopes

StudY THE MINERAL NUTRITION OF OIL PALM ACCORDING TO THE PLANT MATERIAL… Calcium; Deficiencies; Management; Sulfur; 4.0299

Fertilization of Hevea Brasiliensis and its Effect on Growth… Calcium; Growth Stage of Plant; Magnesium; Management; Nitrogen; Potassium; 5.0004

Fertilization of Hevea Brasiliensis and its Effect on Yield… Calcium; Magnesium; Management; Nitrogen; Potassium; 5.0005

The Calcium and Phosphorus Requirements of the Laying Hen… Calcium; Chicken, Domestic; Egg Production; Inorganic Elements in Foods; Management; Poultry Rations; 9.0021

Rhizosphere Microflora Contribution to Phosphate Dissolution… Continuous Humid 7 Months, Plus; Removal of Nutrients from Soil; Rhizosphere; Soil Bacteria; Soil Microbiology; 9.0255

Analysis of SAP… Deficiencies; Management; Nitrogen; Sand; 11.0058

Measurement of the Mineral Uptake of Each of the Principal Food Crops of Senegal (Millet, Maize, Rice, Groundnuds, Sorghum)… Calcium; Magnesium; Nitrogen; Potassium; Sorghum Vulgare (Grain); 11.0059

Study of Mineral Deficiency Complexes… Calcium; Forage, Pasture or Range; Inorganic Elements in Foods; Management; Water Utilization - animal; 11.0082

Phosphates

Experiments with Natural Phosphates of Ancho (Togo)… Calcium, Seasonal Application; Source of Fertilizer; 1.0022

Study Forms of Phosphate Fertilizers for the Coconut Palm… Calcium; Cocos; Fertilizer Toxicity, Fluorine; Formulation, Fertilizer; Management; 4.0221

Infections and Intoxications ("Toxi-Infections") Caused by Anaerobic Bacteria - Botulism… Bacterial Toxins; Clostridia; Etymology, Pathology - mammal; Toxoid Vaccine; Water Environment; 11.0109

Experiments with Fertilizers in Plantations of Eucalyptus Camaldulensis… Eucalyptus; Potassium; Silviculture; Sulfates; Sulfur; 13.0019

Phostoxin

See Pesticides

Insecticide - Fumigant

Phosvel

See Pesticides

Insecticides

Photography

Determination of Weeds at the Seedling and Young Plant Stages… Continuous Humid; Handbooks; Phenology, Life Cycle; Taxonomy, Plant; 4.0187

Aerial Photography

Map of the Natural Vegetation of Nigeria… Flora; Mapping; Silviculture; Surveys; 9.0081

Study of Natural Pastures - Cartography… Forest; Grasses; Mapping; Remote Sensing; Rivers; Basins; 11.0080

Cartography of the Agrarian Activities of Togo… Geology; Remote Sensing; Soil Survey; Topographical Parameters - other; 13.0014

Reconnaissance and Evaluation of the Soils of Togo… Geology; Soil Survey; 13.0016
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Phytopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETERMINATION OF THE RESISTANCE OF ORANGE RUST OF THE COFFEE-SHRUB IN THE IVORY COAST - CHARACTERIZATION OF THE RESISTANCE OF COFFEE-SHRUBS ...</td>
</tr>
<tr>
<td>PHOTOPERIODISM - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA OF RICE IN THE IVORY COAST ... Hatchability; Phytopathology; Tylenchoidae; ...</td>
</tr>
<tr>
<td>STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA ... Fungal Resistance; Hyphomycetes; Marsh; Surveys; ...</td>
</tr>
<tr>
<td>STUDY OF THE BIOSYSTEM OF HETERODERA ORYZAE: A TROPICAL NEMATODE PARASITE OF INUNDATED RICE IN THE IVORY COAST ... Inoculation; Nematodes; Phytopathology; Selfing; ...</td>
</tr>
<tr>
<td>STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Oryzae; Phytophthora; Panicles of Oryzae ...</td>
</tr>
<tr>
<td>PINEAPPLES - PHYTOSANITARY PROTECTION ... Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons; ...</td>
</tr>
<tr>
<td>STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Dorylainoides; Panicles; Plant Virus; NEW; ...</td>
</tr>
<tr>
<td>STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Dorylainoides; Panicles; Plant Virus; ...</td>
</tr>
<tr>
<td>STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Dorylainoides; Panicles; Plant Virus; ...</td>
</tr>
<tr>
<td>PINEAPPLES - PHYTOSANITARY PROTECTION ... Bromeliaceae; Fruits and Berries; Horticultural Crops; Phytopathology; Two Humid Seasons; ...</td>
</tr>
</tbody>
</table>

Photoperiod

See Environments, Plant

Photoperiodism

See Plant Physiology

Photosynthesis

See Plant Physiology

Phoxim

See Pesticides

Phytodetidae

See Insecta

Physical Control

See Pest Control Measures

Physical Properties

See Materials

Phytopathology

See Also Agronomy

- Beverage Crops
- Cereal Crops
- Fiber Crops
- Forage Grasses
- Forage Legumes
- Industrial & New Crops
- Oilseed Crops
- Pulses Crops
- Sugar Crops
- Tobacco Crops

See Also Horticulture

- Condiment, Spice & Herb Crops
- Fruits and Berries
- Leafy & Fruit-type Vegetables
- Root Crops
- Vine, Shrub, Bramble Fruit Crop

Alternate Hosts

- Identification of Diseases of Food Crops - MANIOC (CASSAVA) AND YAMS... Electron Microscopy; Manihot; Phytopathology; Vectors; Viral Transmission; ... 4.0076
- SWEET POTATO ENTOMOLOGY ... Curculionidae; Economics of Chemical Control; Ferric Luviosols; Ipomoea; Vectors; ... 9.0186
- STUDIES ON THE HOST RANGE OF HELMINTHOSPORIUM ORYZAE ... Grass -nonspecific; Helminthosporium; Pathology of Weeds; ... 9.0278

Environ. Plant Dis. Relation

INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA ... Continuous Humid 7 Months; Plus; Light Quantity or Intensity; Phytopathology; Seed-borne; Temperature -air; ... 3.0130

Forecast Outbreak - Plant Dis.

INVESTIGATIONS ON THE CAPE ST. PAUL WILT DISEASE OF COCONUT ... Cocos; Disease Resistance; Moist Monsoon 0 to 3 Months; Surveys; Wilts; ... 3.0111

**Identification of Races of Puccinia polysora and Helminthosporium Maydis that May be Virulent to NCRRB ... Blight Diseases; Fungal Resistance; Phytopathology; Rusts; ... 9.0241

Interpathological Relationship

STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Dorylainoides; Panicles; Plant Virus; ... 4.0071

Phytopathology

Phytophthora

Physiology of Weeds

See Weeds
Phytopathology

Mineral Excess & Deficiency

THE FERTILIZATION OF RICE ... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Management; Soil Minerals -natural; ... 6.0009

Nutrition in Disease

STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD ... Black Pod; Deficiencies; Moisture Content-plants; Nutritional Regulation (Host); Phytopathology; Potassium; ... 4.0137

YAM STORAGE TRIAL ... Harvest and Storage; Soft Rot; Trace Metals; ... 9.0042

BIOLOGY AND PHYSIOLOGY OF PHYTOPHORA PALMIVORA ... Black Pod; Carbon; Phytopathology; Sterculiaceae -other; ... 9.0127

INVESTIGATION INTO THE CAUSES OF YAM-TUBER ROTS ... Harvest and Storage; Mineralogy; Phytopathology; Storage Rot; Taxonomy, Plant; Tuber Rot; ... 9.0247

EFFECT OF PLANT NUTRITION ON RESISTANCE AGAINST THE BROWN SPOT OF RICE CAUSED BY H. ORYZAE ... Brown Spot; Continuous Humid 7 Months,Plus; Fungal Resistance; Helminthosporium; Nutritional Regulation (Host); Phytopathology; ... 9.0281

Plant Disease Transmission

STUDY THE RESISTANCE OF THE COCONUT PALM TO HELMINTHOSPORIOPSIS ... Breeding & Genetics; Fungal Resistance; Inoculation; Phytopathology; Selfing; ... 4.0328

Seed-borne

INVESTIGATIONS INTO THE SEED-BORNE MICROFLORA OF ECONOMIC CROPS OF GHANA ... Continuous Humid 7 Months,Plus; Env. Plant Dis. Relation; Light Quantity or Intensity; Phytopathology; Temperature -air; ... 3.0130

FUNGAL DISEASE OF SEEDS AND SEEDLINGS ... Pathology, Forest; Silviculture; Storage; Surveys; Viability; ... 9.0088

DISEASES OF COFFEE IN NIGERIA ... Culturing Techniques; Fungicides -nonspecific; Phytopathology; Rusks; Screening Potential Pesticides; Surveys; ... 9.0148

DETERMINATION OF SAProphytic SURVIVAL OF HELMINTHOSPORIUM ORYZAE IN RICE SEEDS AND STRAW ... Continuous Humid 7 Months,Plus; Helminthosporium; Phytopathology; ... 9.0279

Soil-borne

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... Damping Off; Fungicides -nonspecific; Humid 7 Months; Phytopathology; Seed Treatment; ... 3.0071

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... BHC; Damping Off; Pesticides -nonspecific; Seed Treatment; ... 3.0178

INVESTIGATIONS OF FUNGICIDAL SEED DRESSING ... Damping Off; Dry Monsoon 5 Months, Plus; Fungicides -nonspecific; Phytopathology; Seed Treatment; ... 3.0197

IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM ... Damping Off; Fungicides; Panz; Phytopathology; Plant Virus -general; Vectors; Viral Transmission; ... 4.0074

POPULATION DYNAMICS OF PLANT PARASITIC NEMATODES IN CULTIVATED SOIL ... Plant Nematodes -nonspecific; Population Dynamics; Taxonomy, Animal; ... 9.0044

CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES ... Cucunim; Management; Plant Pathogenetic Fungi; Root Rot; Space Competition; Terminalia; ... 9.0066

YAM BREEDING ... Breeding & Genetics; Disease Resistance; Ferric Luvisols; Nematode Resistance; Proteins; Starch; ... 9.0186

YAMS PATHOLOGY ... Breeding & Genetics; Continuous Humid 7 Months,Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes -nonspecific; Shoe String; Storage Rot; ... 9.0192

BIOLOGICAL CONTROL OF THE BROWN LEAF SPOT DISEASE OF RICE USING ORGANISMS ANTAGONISTIC TO THE PATHOGEN ... Brown Spot; Helminthosporium; Phytopathology; ... 9.0217

RESISTANCE TO DISEASE IN THE OIL PALM ... Basal Rot; Breeding & Genetics; Disease Resistance; Fusarium; Phy topathology; Rhizoctonia; Vascular Wilt; ... 9.0314

CONTROL OF THE OIL PALM VASCULAR WILT DISEASE ... Fungal Resistance; Fusarium; Inoculation; Phytopathology; ... 9.0324

STUDY OF THE STUNTING OF GROUNDNUTS (CLUMP) ... Phytopathology; Plant Nematodes -nonspecific; Stunt Disease; ... 11.0050

Vectors

STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Duoryzamoideas; Interpathological Relationship; Panicum; Plant Virus -general; ... 4.0071

NEMATOLOGICAL STUDIES ON COTTON PLANTS AND DIFFERENT FIBRE PLANTS IN DAHOMEY ... Cochorus; Parakou Virus; Phytopathology; Surveys; Tyleynchronoides; ... 4.0072

IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM ... Panicum; Phytopathology; Plant Virus -general; Soil-borne; Viral Transmission; ... 4.0074

THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA ... Electron Microscopy; Mosaic Viruses; Phytopathology; Viral Transmission; Virus Resistance; ... 4.0075

IDENTIFICATION OF DISEASES OF FOOD CROPS - MANIOC (CASSAVA) AND YAMS ... Electron Microscopy; Manihot; Phytopathology; Viral Transmission; ... 4.0076

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), FASHION-FRUIT AND PEPPER ... Capsicum; Mosaic Viruses; Passiflora; Phytopathology; Plant Virus -general; Viral Transmission; ... 4.0077

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate- Continental Sav.Trop.; Fats & Oils; Fruits and Berries; Quality and Utilization; ... 4.0156

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT ... Beverage Crops; Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity; ... 9.0129

CASSAVA ENTEOMOLOGY ... Continuous Humid 7 Months, Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Psuedococcidae; ... 9.0187

SWEET POTATO ENTEOMOLOGY ... Curculionidae; Economics of Chemical Control; Ferric Luvisols; Ipomeoae; ... 9.0188

CASSAVA PATHOLOGY ... Bacterial Resistance; Breeding & Genetics; Diseases; Environments, Plant; Ferric Luvisols; Mosaic Viruses; ... 9.0190

STUDIES ON THE BACTERIAL LEAF BLIGHT OF COCPWA (VIGA UNCICULATLA (L) WALP) ... Blight Diseases; Dipers; Pulse Crops; Xanthomonas; ... 9.0215

STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT ESculenta) ... Bacterial Wilt; Insects; Manihot; Phytopathology; Taxonomy, Plant; Xanthomonas; ... 9.0220

BIOLOGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE ... Bacterial Resistance; Blight Diseases; Nursery Observational Plots; Strains; Virus Resistance; ... 10.0010

VIRESCEENCE (A DISEASE) OF THE COTTON PLANT ... Fiber Crops; Insects -other; Phytopathology; Pleurotbumenia Group; Taxonomy, Animal; Virescence; ... 14.0077

Surveys

INVESTIGATIONS ON THE CAPE ST. PAUL WILT DISEASE OF COCONUT ... Cocoa; Disease Resistance; Forecast Outlook - Plant Dis.; Moist Monsoon 0 to 3 Months; Wilts; ... 3.0111

STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA ... Fungal Resistance; Hyphomycetes; Marsh; ... 4.0066

NEMATOLOGICAL STUDIES ON THE PARASITES OF YAMS, NOTABLY SCUTELLONEMA BRADYS ... Crop Rotation, Crop System, Phytophagous Insects -other; Phytopathology; Tylechronoides; ... 4.0070

NEMATOLOGICAL STUDIES OF COTTON PLANTS AND DIFFERENT FIBRE PLANTS IN DAHOMEY ... Carchora; Parakou Virus; Phytopathology; Tylechronoides; Vectors; ... 4.0072

COMPUTERIZATION OF ROUTINE DISEASE CONTROL WORK RECORDS - HEVEA PLANTATION ... Computer Usage; Phytopathology; ... 5.0008
SUBJECT INDEX

CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES...Cucumis; Management; Plant Pathogenic Fungi; Root Rot; Space Competition; Terminalia;...9.0086
FUNGAL DISEASE OF SEEDS AND SEEDLINGS...Pathology; Forest; Seed-borne; Silviculture; Storage; Viability;...9.0088
DISEASES OF COFFEE IN NIGERIA...Culturing Techniques; Fungicides -nonspecific; Phytopathology; Rusts; Screening Potential Pesticides; Seed-borne;...9.0148
STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L.) WALP)...Blight Diseases; Dipetera; Pulse Cropps; Vectors; Xanthomonas;...9.0215
SURVEY AND ASSESSMENT OF THE SMUT AND BLAST DISEASES OF SUGARCANE...Blast; Fungal Resistance; Phytopathology; Saccharum, Smuts; Ustilaginaceae;...9.0240
SURVEY OF MAIZE NEMATODES...Decline; Phytopathology; Plant Nematodes -nonspecific; Tylenchoidea;...9.0271
POPULATION DYNAMICS...Continuous Humid 7 Months; Plus; Phytopathology; Plant Nematodes -nonspecific; Population Dynamics;...9.0273
SURVEY OF THE DISEASES OF THE IMPORTANT VEGETABLES IN NIGERIA...Bacteria; Fungi; Phytopathology;...9.0282
STUDY OF THE MOLD DISEASES OF THE PANICLES OF SORGHUM...Env. Plant Dis. Relation; Humidity; Molds; Plant Pathogenic Fungi;...11.0013
STUDY OF VARIETIES OF TOMATO RESISTANT TO NEMATODES...Lycopericum; Nematode Resistance; Phytopathology; Soil Environment; Tylenchoidea;...11.0046
STUDY OF CRYPTOMIC DISEASES AND OF ROTTING DISEASES OF COTTON PODS IN SENEGAL...Phytopathology; Pod Rot;...11.0176

Symbionts, Plant Diseases
ESTABLISHMENT OF PINE MUCORRHIZAS...Basidiomycetes; Inoculation; Mycorrhiza; Pinus; Silviculture;...9.0069
THE EFFECT OF HERBICIDES ON RHIZOBIUM ACTIVITIES IN THE SOIL...Continuous Humid 7 Months,Plus; Nitrogen Fixation; Pesticidal Interaction -other; Pulse Cropps; Simazine; Toxicity to Microorganisms;...9.0216

Virulence and Pathogenicity
STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA...Cocos; Mangifera; Nicotiana; Saccharum;...3.0127
VARIABILITY OF THE PATHOGENIC CAPACITY OF PARASITIC FUNGI...Ceratocephalas; Mitosis; Recombination;...4.0067
STUDIES ON THE BACTERIAL LEAF BLIGHT OF COWPEA (VIGNA UNGUICULATA (L.) WALP)...Blight Diseases; Dipetera; Pulse Cropps; Vectors; Xanthomonas;...9.0215
STUDIES ON THE BACTERIAL WILTS OF SOLANACEOUS VEGETABLES...Bacterial Wilt; Phytopathology; Pseudomonas -nonspecific; Solanaceae -other;...9.0221
NEMATODES OF SUGARCANE...Diseases; Phytopathology; Tylenchoidea;...9.0264
BIOLOGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE...Bacterial Resistance; Blight Diseases; Nursery Observational Plots; Streaks; Vectors; Virus Resistance;...10.0010

Phytophthora
See Fungi

Phytotoxicity
See Pest Control Measures

Picornaviruses
See Viruses, Animal RNA Viruses, Naked

Pinus
See Plants - Gymnosperms

Plant Diseases

Piperaceae
See Plants - Dicots

Piperazine
See Pesticides

Antihelmint

Piricularia
See Fungi

Piriculariosis
See Plant Diseases

Placement
See Fertilizer Technology

See Planting Methods

Planavin
See Pesticides

Herbicides

Plankton

HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN...Behavioral Ecology; Fish Food Supply; Water Environment;...3.0236

Planosols
See Soil Unit Classification

Plant Absorption
See Pest Control Measures

Plant Disease Transmission
See Phytopathology

Anthracnose

FUNGICIDE SPRAYING TRIALS IN NURSERY AND FIELD...Cercospora; Economics of Chemical Control; Forturf; Mode of Action; Phytopathology;...3.0125
STUDY OF ANTHRACNOSIS OF KENAF - HIBISCUS CANNABINUS...Breeding & Genetics; Colletotrichum; Fungal Resistance; Phytopathology;...4.0273
IMPROVEMENT OF VARIETIES OF HIBISCUS CANNABINUS...Breeding & Genetics; Disease Resistance; Inoculation; Phytopathology;...6.0084
INHERITANCE STUDIES IN COWPEA (VIGNA VIN- GUICULATA)...Breeding & Genetics; Colletotrichum; Fungal Resistance; Metabolic Expression; Recessive Trait;...9.0039
GRAIN LEGUME DISEASE AND NEMATODE INVESTIGATIONS...Cercospora; Disease Resistance; Diseases; Fungicides -nonspecific; Phytopathology; Plant Nematodes -nonspecific;...9.0168

Black Pod

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A "DISTINCT" TOLERANCE TO PHYTOPHTORA PALMIVORA...F Generation (F1, F2, F3, Etc); Fungal Resistance; Phytopathology;...4.0110
Plant Diseases

SUBJECT INDEX

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA ... Breeding & Genetics; Spic&Bev; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations; Phytopathology; ... 4.0129

ECOLOGICAL STUDY OF THE CACAO-TREE IN RELATION TO BLACK-POD ... Env. Plant Dis. Relation; Humidity; Phytopathology; ... 4.0136

STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD ... Deficiencies; Moisture Content -plants; Nutritional Regulation (Host); Phytopathology; Potassium; ... 4.0137

STRENGTHENING THE CACAO-TREES TO THE BLACK-PODS DUE TO PHYTOPHTHORA PALMIVORA ... Env. Plant Dis. Relation; Interaction with Environment; Phytopathology; Shade; ... 4.0139

RESEARCH ON CACAO CLONES OR INTERCLONAL HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA ... Breeding & Genetics; Spic&Bev; F Generation (F1, F2, F3, Etc); Fungal Resistance; Intraspec. Genetic Relations; Phytopathology; ... 4.0343

INTRODUCTION AND ESTABLISHMENT OF COCOA GERMPLASM ... Breeding & Genetics, Spic&Bev; Fungal Resistance; Phytopathology; Phytophthora; Swollen Shoot Virus; Virus Resistance; ... 9.0110

BREEDING FOR BLACKPOD RESISTANCE IN CACAO ... Breeding & Genetics, Spic&Bev; Fungal Resistance; Inoculation; Intraspec. Genetic Relations; Phytopathology; Phytophthora; ... 9.0111

MUTATION BREEDING IN CACAO AND KOLA ... Breeding & Genetics, Spic&Bev; Coba; Fungal Resistance; Mutation; Phytophthora; ... 9.0114

STUDIES ON THE EPIDEMIOLOGY OF PHYTOPHTHORA PALMIVORA ... Cankers; Phenology, Life Cycle; Phytopathology; Phytophthora; ... 9.0126

BIOLOGY AND PHYSIOLOGY OF PHYTOPHTHORA PALMIVORA ... Carbon; Nutrition in Disease; Phytopathology; Sterculiaceae -other; ... 9.0127

FIELD CONTROL OF PHYTOPHTHORA PALMIVORA ON COCOA ... Fungicides -nonspecific; Petroleum Cpd -nonspecific; Phytophthora; ... 9.0128

Black Thread

BLACK THREAD CONTROL WITH DIFOLATAN AND ETHREL ... Diflutan; Ethrel; Late; Phytopathology; Phytophthora; ... 5.0009

Blast

RAISING OF OIL PALM SEEDLINGS IN PRE-NURSERIES AND NURSERIES ... Continuous Humid 7 Months; Plus; Management; Nursery Observational Plots; Planting Methods -other; ... 3.0118

CONTROL OF BLAST OF THE OIL PALM TREE ... Habitat Manipulation-eradicant; Phytopathology; Rhizoctonia; ... 4.0056

INFLUENCE OF THE MICROCLIMATE AND OF MINERAL FERTILIZATION ON NURSERY OF OIL PALMS IN BAGS ... Interaction with Environment; Management; Nutritional Regulation (Host); Pricking Out; Temperature -air; ... 6.0306

STUDY OF RICE DISEASES ... Bronzing; Deficiencies; Disease Resistance; Iron; Phytopathology; ... 5.0013

VARIETAL TRIALS ON IRRIGATED RICE ... Breeding & Genetics; Disease Resistance; Phytopathology; ... 5.0015

RICE CROP LOSS - DISEASE INTENSITY CORRELATION EXPERIMENT ... Diseases; Fungicides -nonspecific; Humid 6 Months; Marsh; Phytopathology; ... 9.0009

FUNGICIDAL CONTROL OF THE RICE BLAST DISEASE ... Foire; Humid 6 Months; Phytopathology; ... 9.0010

IDENTIFICATION OF RACES OF PYRICULARIA ORYZAE ... Fungal Resistance; Phytopathology; Piricularia; Piriculariosis; Taxonomy, Plant; ... 9.0037

DIURNAL AND SEASONAL PERIODICITY OF PYRICULARIA SPORES IN AIR ... Env. Plant Dis. Relation; Humidity; Low Temp. Above 0 C; Moisture Budgets; Piricularia; Piriculariosis; ... 9.0038

SELECTION OF RICE VARIETIES FOR RESISTANCE TO THE RICE BLAST DISEASE (PYRICULARIA ORYZAE) ... Fungal Resistance; Inoculation; Phytopathology; Phytophthora; Piricularia; ... 9.0039

SURVEY AND ASSESSMENT OF THE SMUT AND BLAST DISEASES OF SUGARCANE ... Fungal Resistance; Phytopathology; Saccharum; Smuts; Surveys; Ustilaginaceae; ... 9.0040

RESISTANCE TO DISEASE IN THE OIL PALM ... Basal Rot; Breeding & Genetics; Disease Resistance; Fusarium; Phytopathology; Rhizoctonia; Vascular Wilts; ... 9.0041

THE OIL PALM BLAST DISEASE AND ITS CONTROL ... Baseline; Breeding & Genetics; Fungal Resistance; Irrigation - general; Rice; THAILAND; YAPAN; ... 9.0042

DEVELOPMENT OF IMPROVED RICE VARIETIES ... Breeding & Genetics; Cold Resistance; Homoptera -other; Phytopathology; Seed Bank; ... 10.0007

BIOLGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE ... Bacterial Resistance; Blast Diseases; Nursery Observational Plots; Strreaks; Vectors; Virus Resistance; ... 10.0010

RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PIRICULARIOSIS, BY INTRODUCTION ... Chronic Verticillium; Fungal Resistance; Phytopathology; Piriculariosis; ... 14.0063

Blight Diseases

SOUTH AMERICAN LEAF BLIGHT RESISTANCE SCREENING ... Chromatography; Fungal Resistance; Microcylus; Phytopathology; Plant Pathogenic Fungi; ... 5.0006

STUDIES ON THE BACTERIAL LEAF BLIGHT OF COCPWEA (VIGNA UNGUICULATA (L) WALP) ... Diptera; Pulse Crops; Vectors; Xanthomonas; ... 9.0025

IDENTIFICATION OF RACES OF PUCINIA POLYSORA AND HELMINTHOSPORIUM MAYDIS THAT MAY BE VIRULENT TO NCBRB ... Fungal Resistance; Phytopathology; Rutes; ... 9.0041

ASSESSMENT OF THE LOSS IN YIELD ATTRIBUTABLE TO MAIZE RUST AND MAIZE BLIGHT ... Fungal Resistance; Helminthosporium; Phytopathology; Puccinia; Rutes; ... 9.0042

DEVELOPMENT OF IMPROVED RICE VARIETIES ... Blast; Breeding & Genetics; Cold Resistance; Homoptera -other; Phytopathology; Seed Bank; ... 10.0007

BIOLGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE ... Bacterial Resistance; Nursery Observational Plots; Strreaks; Vectors; Virus Resistance; ... 10.0010

Bronzing

STUDY OF RICE DISEASES ... Blast; Deficiencies; Disease Resistance; Iron; Phytopathology; ... 5.0013

Cankers

COLLAR CANKER CONTROL IN HEVEA BRASILIENSIS ... Fungicides -nonspecific; Phytopathology; Pythium; ... 5.0010

STUDIES ON THE EPIDEMIOLOGY OF PHYTOPHTHORA PALMIVORA ... Cankers; Phenology, Life Cycle; Phytopathology; Phytophthora; ... 9.0126

Chlorosis

NEMATOLOGICAL STUDY OF CHLOROSIS OF LEGUMINOUS PLANTS AND OF STUNTING ("CLUMP") OF GROUNDNUTS IN UPPER VOLTA ... Cajanus; Leguminosae -other; Phytopathology; Stunt Diseases; Tylchenoides; ... 4.0073

THE INCIDENCE AND EXTENT OF DAMAGE DONE TO COPEWEAS BY THE LEAFHOPPER EMPOASCA DOLICHLI ... Insecticides -nonspecific; Pests; Pulse Crops; Stunt Diseases; Undesired Results; ... 9.0026

CONTINUOUS CROP ROTATION WITH MANURE ... Cercopora; Falling; Leaf Spot; Management; Manure; Phytopathology; ... 14.0014

CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS ... Cajanus; Glycine Max; Nemagon; Phytopathology; Tephrosia; Tylchenoides; ... 14.0015

Damping Off

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... Fungicides -nonspecific; Humid 7 Months; Phytopathology; Seed Treatment; Soil-borne; ... 3.0017

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... BHC; Pesticides -other; Seed Treatment; ... 3.0017

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... Dry Monsoon 5 Months; Plus; Fungicides -nonspecific; Phytopathology; Seed Treatment; Soil-borne; ... 3.0019

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... BHC; Eutic Nicotools; Monsoon 0 to 3 Months; Phytopathology; Soil-borne; ... 3.0020

398
SUBJECT INDEX

Decline
SURVEY OF MAIZE NEMATODES . . . Phytopathology; Plant Nematodes -nonspecific; Surveys; Tylenchoidae; . . . 9.0271

Dieback
YAMS PATHOLOGY . . . Breeding & Genetics; Continuous Humid 7 Months,Plus; Disease Resistance; Ferric Luvisols; Plant Nematodes -nonspecific; Shoe String; Storage Rot; . . . 9.0192

Ergot
CEREAL BREEDING - PEARL MILLET . . . Breeding & Genetics; Humid 3 Months; Phytopathology; Smuts; . . . 6.0040

Folliage Diseases -nonspecific
DISEASES OF LEAVES OF HEVEA IN NURSERY . . . Fungi­cides -nonspecific; Gloeosporum; Helminthosporium; Nursery Observational Plots; Phytopathology; Two Humid Seasons; . . . 4.0251

Gummosis
CITRUS ROOTSTOCK TRIAL . . . Citrus; Entomology; Applied; Fungal Resistance; Management; Orange Tree Quick Decline; Virus Resistance; . . . 2.0008

Leaf Streak
STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST . . . Dorylaimoidea; Interpathological Relationship; Panicum; Plant Virus -general; Vectors; . . . 4.0071

Mildew Diseases
CEREAL BREEDING - PEARL MILLET . . . Breeding & Genetics; Ergot; Humid 3 Months; Phytopathology; Smuts; . . . 6.0040
TO SCREEN SULPHUR-FREE FUNGICIDES FOR EFFECTIVENESS IN CONTROLLING MILDEW IN CUCURBITS . . . Cucurbits; Fungi­cides -nonspecific; Phytopathology; Phytotoxicity; Sulfur; . . . 9.0283
STUDY OF THE MILDEW OF MILLET DUE TO SCLEROSPORA GRAMINICOLA . . . Breeding & Genetics; Phenology; Life Cycle; Phytopathology; Scirropora; . . . 11.0014

Molds
ORIGINS OF MOULD ATTACK ON STORED COCOA BEANS . . . Chocolate & Cocoa; Fermentation; Spoilage of Food; . . . 9.0335
ORIGIN OF MOULD DETERIORATION OF PALM KERNELS . . . Continuous Humid 7 Months,Plus; Phytopathology; Storage; . . . 9.0317
STUDY OF THE MOLD DISEASES OF THE PANICLES OF SORGHUM . . . Env. Plant Dis. Relation; Humidity; Plant Pathogenetic Fungi; Surveys; . . . 11.0013
IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Breeding & Genetics; Fungal Resistance; Humid 3 Months; Sorg­hum Vulgare (Grain); . . . 14.0038
IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL . . . Breeding & Genetics; Fungal Resistance; Humid 4 Months; Sorg­hum Vulgare (Grain); . . . 14.0059

Piriculariosis
IMPROVEMENT OF RICE (INDICA GROUP) . . . Breeding & Genetics; Continuous Humid; Drought Resistance; Fungal Resis­tance; Phytopathology; Piriculi­riac; . . . 4.0159
COLLECTION OF VARIETIES FOR THE PLUVIAL RICEFIELDS . . . Breeder Stock; Cereal Crops; Gramineae; Insect Resistance; Piriculir; Seed Bank; . . . 4.0160
VARIETAL EXPERIMENTAL WORK FOR PLUVIAL RICE . . . Breeding & Genetics; Continuous Humid; Drought Resis­tance; Fungal Resistance; Phytopathology; Piriculir; . . . 4.0167
VARIETAL EXPERIMENTAL WORK FOR IRRIGATED RICE . . . Breeding & Genetics; Continuous Humid; Fungal Resis­tance; Irrigation -general; Phytopathology; Piriculir; . . . 4.0168
VARIETAL EXPERIMENTAL WORK FOR INUNDATED RICE . . . Breeding & Genetics; Continuous Humid; Drought Resistance; Phytopathology; Piriculir; . . . 4.0169

Plant Diseases
Resistance; Fungal Resistance; Phytopathology; Piriculir; . . . 4.0169
STUDY THE INFLUENCE OF THE DROUGHT FACTOR ON THE RESISTANCE OF RICE TO PYRICULARIOsis . . . Env. Plant Dis. Relation; Management; Phytopathology; . . . 4.0189
CHEMICAL CONTROL MEASURES AGAINST PYRiCULARIA ORYZAE . . . Continuous Humid; Inoculation; Phytopathology; Piriculir; . . . 4.0190
STUDY OF THE GENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PYRiCULARIA ORYZAE . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculir; . . . 4.0191
RESEARCH IN CULTIVATED RICE FOR SIREs HAVING HORIZONTAL RESISTANCE TO PYRICULARIOsis . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Inoculation; Phytopathology; Piriculir; . . . 4.0192
ANALYSIS OF THE RELATIVE INCIDENCE OF STRAINS OF PYRICULARIA ORYZAE IN RICE-FIELDS . . . Continuous Humid; Env. Plant Dis. Relation; Inoculation; Phytopathology; Piriculir; . . . 4.0193
CREATION OF A DIFFERENTIAL SCALE OF STRAINS OF PYRICULARIA ORYZAE . . . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculir; . . . 4.0194
INNRODUCTIONS AND BEHAVIOUR TESTS OF PLUVIAL RICE . . . Breeding & Genetics; Ferric Luvisols; Humid 4 Months; Management; Piriculir; . . . 6.0032
IDENTIFICATION OF RACES OF PYRICULARIA ORYZAE . . . Blast; Fungal Resistance; Phytopathology; Piriculir; Tax­onomy, Plant; . . . 9.0237
DIURNAL AND SEASONAL PERIODICITY OF PYRICULARIA SPORES IN AIR . . . Blast; Env. Plant Dis. Relation; Humidity; Low Temp. Above 0 C; Moisture Budgets; Piriculir; . . . 9.0238
SELECTION OF RICE VARIETIES FOR RESISTANCE TO THE RICE BLAST DISEASE (PYRICULARIA ORYZAE) . . . Blast; Fungal Resistance; Inoculation; Phytopathology; Piriculir; . . . 9.0239
INTRODUCTION OF NEW VARIETIES OF RICE FOR THE FRESH-WATER RICE FIELDS OF CASAMANCE . . . Cereal Products; Disease Resistance; Humid 2 Months; Phytopathology; Piriculir; Soil pH; . . . 11.0124
INTRODUCTION OF NEW VARIETIES OF PLUVIAL RICE . . . Cereal Products; Disease Resistance; Drought Resistance; Humid 2 Months; Phytopathology; Piriculir; . . . 11.0125
VARIETAL IMPROVEMENT OF RICE BY HYBRIDATION FOR THE IMPROVEMENT OF FRESH-WATER RICE FIELDS OF CASAMANCE . . . Breeding & Genetics; Disease Resistance; Phytopathology; Soil Resistance; . . . 11.0126
VARIETAL IMPROVEMENT OF PLUVIAL RICE BY HYBRIDATION . . . Breeding & Genetics; Disease Resistance; Humid 2 Months; Piriculir; . . . 11.0128
EPIDEMIOLOGY OF PYRICULARIA ORYZAE - METHODS OF CONTROL . . . Disease Resistance; Env. Plant Dis. Relation; Humid 4 Months; Phytopathology; Piriculir; Soil Environment -other; . . . 11.0152
RESEARCH FOR SHORT-CYCLE VARIETIES OF RICE ADAPTED TO CULTIVATION ON MARSHY LAND AROUND CASAMANCE RESISTANT TO PYRICULARIOsis . . . Humid 3 Months; Phytopathology; Soil Moisture; . . . 14.0028
IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS . . . Breeding & Genetics; Eutric Gleysols; Space Radiation; . . . 14.0045
RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PYRICULARIOsis, BY INNRODUCTION . . . Blast; Chronic Verticils; Fungal Resistance; Phytopathology; . . . 14.0063

Rosette Disease
THE PRODUCTION OF HIGH YIELDING VARIETIES OF GROUNDNUTS . . . Continuous Humid 7 Months,Plus; Fats -Lipids & Oils; Oliseed Crops; Orthic Acrisols; Space Competi­tion; . . . 3.0152
THE INTRODUCTION AND SELECTION OF HIGH-YIELDING VARIETIES OF GROUNDNUTS PROCESSING HIGH OIL CONTENT FOR NORTHERN GHANA . . . Breeding & Genetics; Cercospora; Dorylaimoidea; Dry Months; Fats - Lipids & Oils; Leaf Spot; Management; . . . 3.0185
CREATION OF EATING VARIETIES OF GROUNDNUTS FOR CASAMANCE . . . Breeding & Genetics; Disease Resistance; . . . 11.0055
Plant Diseases

SUBJECT INDEX

Rots
- STUDY THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION... Fungal Resistance; Klen; Disease Resistance; Fusarium; Phytopathology; Rhi-... .0425

Basal Rot
- RESISTANCE TO DISEASE IN THE OIL PALM... Breeding & Genetics; Disease Resistance; Fusarium; Phytopathology; Rhi-... .0314

- THE CONTROL OF THE OIL PALM DRY BASAL ROT DISEASE... Ceratocystis; Inoculation; Phytopathology;0323

Butt Rot
- BUTT AND ROOT ROT OF TEAK (TECTONA GRANDIS)... Fomes; Pathology; Forest; Root Rot; Tectona;0361

Fruit Rot
- CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES (2)... Bacterial Resistance; Lycopersicum; Phytopathology;14.0054

Pod Rot
- STUDY OF CRYPTOGRAMIC DISEASES AND OF ROTTING DISEASES OF COTTON PODS IN SENEGAL... Phytopathology; Surveys;11.0176

Soft Rot
- YAM STORAGE TRIAL... Harvest and Storage; Nutrition in Disease; Trace Metals;09.0042

Storage Rot
- SWEET POTATO PATHOLOGY... Breeding & Genetics; Ferric Lvuisols; Plant Parts Bank;09.0191

- YAMS PATHOLOGY... Breeding & Genetics; Continuous Humid 7 Months, Plus; Disease Resistance; Ferric Lvuisols; Plant Nematodes -nonspecific; Shoe String;09.0192

- INVESTIGATION INTO THE CAUSES OF YAM-TUBER ROTS... Harvest and Storage; Mineralogy; Nutrition in Disease; Phytopathology; Taxonomy; Plant; Tuber Rot;09.0247

Scald
- IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL... Breeding & Genetics; Fungal Resistance; Humid 4 Months; Lodging;09.0049

Seedling Diseases -nonspecific
- SORGHUM CROP PROTECTION... Cereal Crops; Rearing of Insects; Scrophulariaceae; Smuts; Tetigoniidae;09.0159

Smuts
- DEVELOPMENT OF MEDIUM MATURING, SHORT STAT- TURE, HIGH YIELDING SORGHUM VARIETIES OF AC-CEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE... Breeding & Genetics; Cereal Crops; Scrophulariaceae; Disease Resistance; Dry Monsoon 5 Months, Plus; Insect Resistance; Sorghum Vulgar (Grain);09.0179

- THE DEVELOPMENT OF LATE MATURING, SHORT VARI- ETIES OF ACCEPTABLE PALATABILITY & RESISTANT TO PESTS & DISEASE... Breeding & Genetics; Cereal Crops; Scrophulariaceae; Disease Resistance; Dry Monsoon 5 Months, Plus; Insect Resistance; Sorghum Vulgar (Grain);09.0184

- CEREAL BREEDING - PEARL MILLET... Breeding & Genet- ics; Ergot; Humid 3 Months; Phytopathology;09.0040

- SORGHUM CROP PROTECTION... Cereal Crops; Rearing of Insects; Scrophulariaceae; Seedling Diseases -nonspecific; Tetigoniidae;09.0159

- SURVEY AND ASSESSMENT OF THE SMUT AND BLAST DISEASES OF SUGARCANE... Blast; Fungal Resistance; Phytopathology; Saccharum; Surveys;09.0240

Wet Rot
- STUDIES ON THE CHOANEPHORA CUCURBITARUM WET ROT OF AMARANTHUS VIRIDIS... Choanephora; Env. Plant Dis. Relation; Environments; Plant; Fungal Resistance; Fungicides -nonspecific;09.0284
Plant Morphology

SUBJECT INDEX

MAINTENANCE OF A WORKING COLLECTION FOR IRRIGATED RICE ... Breeding & Genetics; Continuous Humid; Plant Parts Bank; ... 4.0.0166

IMPROVEMENT OF HEVEA BRASILIENSIS - RESEARCH ON CRITERIA FOR SELECTION ... Breeding & Genetics; Latex; Laticifers; Two Humid Seasons; Wind; Wind or Air Movement; ... 4.0.0228

STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES ... Drying; Fungal Resistance; Machining; Pathology; Forest; Wood Preservation & Seasoning; Wood Structure & Properties; ... 9.0.095

STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS ... Construction Materials; Joining & Bonding; Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylem; ... 9.0.096

PHYSIOLOGY OF ROOT, TUBER CROPS AND VEGETABLES ... Breeding & Genetics; Ferralic Cambisols; Ipomoea; ... 9.0.162

IDOLATRICA CHARACTER (OIL PALM) ... Breeding & Genetics; Hybrid Breeding -nonspecific; Phenotypes; ... 9.0.0287

Plant Nematodes -other

See Aschelminthes

Nematoda

Plant Parts Bank

See Banks and Reference Standards

Plant Pathogenetic Fungi

See Fungi

Plant Physiology

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM ... Catalase; Drought Resistance; Management; Two Humid Seasons; ... 1.0.0679

Absorption

STUDIES ON THE NUTRITION OF GROUNDSNAPES (ARA-C/HIS HYPOGEA L) ... Deficiencies; Management; Nitrogen; Placement; ... 3.0.325

OIL PALM - STUDY OF MINERAL BALANCES ... Greenhouses; Management; Mineralogy; Pesticides; ... 4.0.026

STUDY THE ROOT SYSTEM OF THE OIL PALM ... Breeding & Genetics; Cell Wall; Extract Composition; Management; Plant Resistance; Tannin; ... 4.0.027

THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NIGERIA GRASS-LAND ASSOCIATIONS ... Management; Nitrogen; Placement; ... 9.0.026

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptophane; ... 9.0.077

APPLICATION OF RADIOTRACER TECHNIQUE IN THE DETERMINATION OF SOIL AVAILABLE PHOSPHORUS ... Continuous Humid 7 Months;Plus; Ferric Acrisols; Ferric Luvisols; Management; Movement; Availability; Phosphorus; ... 9.0.025

RHIZOSPHERE MICROFLORA CONTRIBUTION TO PHOSPHATE DISSOLUTION ... Continuous Humid 7 Months;Plus; Phosphorus; Removal of Nutrients from Soil; Rhizosphere; Soil Bacteria; Soil Microbiology; ... 9.0.025

EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM ... Management; Phosphorus; Placement; Rubidium; Soil Types; ... 9.0.031

PHYSIOLOGICAL BASIS FOR YIELD IN THE OIL PALM ... Carbon Dioxide; Oilseed Crops; Sugar -nonspecific; ... 9.0.030

THE UPTAKE AND DISTRIBUTION OF NUTRIENTS BY THE RICE PLANT ... Deficiencies, Management; Nitrogen; Translocation; ... 12.0.008

Aging

STUDY OF THE PHYSIOLOGICAL AGE OF THE TUBERS OF YAMS AND OF THEIR BUDDING ... Continuous Humid; Harvest and Storage; Management; ... 4.0.0179

Biological Rhythms

STUDY OF GROWTH AND OF RHYTHMIC DEVELOPMENT IN JOINTED PLANTS AND FLUSH PLANTS ... Environments, Plant; Growth and Differentiation; Phenology; Life Cycle; Plant Morphology; ... 4.0.048

Dormancy

STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT ... Deficiencies; Growth and Differentiation; Orchidaceae; Photoperiod; Root Crops; Thermoperiod; ... 9.0.049

STUDY OF THE DORMANCY OF WEED SEEDS ... Continuous Humid; Physiology of Weeds; Scarification; ... 4.0.048

STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVIGULATA AND O. LONGISTAMINATA ... Non-dry 3 Months, Plus; Physiology of Weeds; Soil Depth; ... 6.0.001

MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM ... Germination; Growth Substances; Management; Plant Growth Regulators; Scarification; ... 9.0.0328

Drought

BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT ... Breeding & Genetics; Drought Resistance; Moisture Deficiency; ... 4.0.055

DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT ... Cereal Crops; Continuous Humid; Drought Resistance; Epidermis; Hydrolytic Enzymes -general; Transpiration & Evaporation; ... 4.0.071

SPECIFIC EFFECTS OF THE FACTORS OF RESISTANCE TO DROUGHT IN RICE ... Cereal Crops; Continuous Humid; Drought Resistance; Moisture Deficiency; ... 4.0.0173

Grafting

VEGETATIVE IMPROVEMENT OF HEVEA - REDUCTION OF THE INTERCLONAL VARIABILITY ... Breeding & Genetics; Two Humid Seasons; ... 4.0.029

Growth and Differentiation

STUDY OF GROWTH AND OF RHYTHMIC DEVELOPMENT IN JOINTED PLANTS AND FLUSH PLANTS ... Biological Rhythms; Environments; Plant; Phenology; Life Cycle; Plant Morphology; ... 4.0.048

STUDY OF THE PHYSIOLOGICAL MECHANISM OF TUBER FORMATION IN A TROPICAL ENVIRONMENT ... Deficiencies; Dormancy; Orchidaceae; Photoperiod; Root Crops; Thermoperiod; ... 4.0.049

IMPROVEMENT OF HEVEA BRASILIENSIS - EARLY FLOWERING ... Breeding & Genetics; Management; Two Humid Seasons; ... 4.0.023

PREPARATION OF PLANT MATERIAL FROM HEVEA FOR PROPAGATION - UTILIZATION OF GROWTH SUBSTANCES ... Breeding & Genetics; Growth Substances; Hormones; IBA; Management; Two Humid Seasons; ... 4.0.027

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS ... Breeding & Genetics; Glycine Max; Management; Seed Bank; ... 9.0.0167

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Fats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptophane; ... 9.0.177

SEEDLING SELECTION EXPERIMENT 33-13 (PLANTED 1966) ... Oilseed Crops; Sex Ratio; ... 9.0.029

EFFECT OF THE SIZE OF SEEDS ON SUBSEQUENT GROWTH AND YIELD - EXPERIMENT 9-8 (PLANTED 1970) ... Phytopathology; ... 9.0.030

RELATION OF FLOWERING TO YIELD IN THE OIL PALM ... Oilseed Crops; Reproductive Physiology; Sex Ratio; Silvex; ... 9.0.0331

Metabolism

Carbohydrates

REGENERATION OF THE LATEX OF THE RUBBER TREE AFTER TAPPING ... Breeding & Genetics; Deficiencies; Harvest and Storage; Monoaccharides -nonspecific; Translocation; ... 4.0.024

SUGAR CONTENT OF PALM SAP ... Fermentation; Food Quality; Palmase; Sugar -nonspecific; Wine; ... 9.0.0319
Plant Resistance

RESEARCH ON EARLY VARIETIES OF GROUNDNUTS RESISTANT TO ROSETTE . Breeding & Genetics; Lipids & Oils; Phytopathology; Rosette Disease; . . . 11.0025

Drought Resistance

STUDY OF THE RESISTANCE TO DROUGHT OF THE OIL PALM . Cattelae; Management; Plant Physiology; Two Humid Seasons; . . . 1.0079

ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM . Continuous Humid 7 Months; Plus; Epidermis; Management; Moisture Deficiency; Photosperiod; Soil Depth; . . . 3.0122

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES . Continuous Humid 7 Months; Plus; Evapotranspiration; Management; Oilseed Crops; Soil-water-plant Relationships; . . . 3.0123

BIOCHEMISTRY OF THE RESISTANCE OF THE COTTON PLANT TO DROUGHT . Breeding & Genetics; Moisture Deficiency; . . . 4.0055

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT . Breeding & Genetics; Spice&Bev; F Generation (F1, F2, F3, Etc); Intraspec. Genetic Relations; Shade; . . . 4.0167

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF TOLERANCE FOR DROUGHT . Breeding & Genetics; Spice&Bev; F Generation (F1, F2, F3, Etc); Intraspec. Genetic Relations; Moisture Deficiency; Mulches; Shade; . . . 4.0166

IMPROVEMENT OF RICE (INDICA GROUP) . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0159

SELECTION FOR A STRONG INITIAL GROWTH OF PLUVIAL RICE NOT LINKED WITH A STRONG TENDENCY FOR TILLING . Breeding & Genetics; Continuous Humid; . . . 4.0164

VARIETAL EXPERIMENTAL WORK FOR PLUVIAL RICE . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0167

VARIETAL EXPERIMENTAL WORK FOR INUNDATED RICE . Breeding & Genetics; Continuous Humid; Fungal Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0169

DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT . Cereal Crops; Continuous Humid; Drought; Epiderm; Hydrolytic Enzymes -general; Transpiration & Evaporation; . . . 4.0171

FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO DROUGHT IN THE GENUS ORYZA . Breeding & Genetics; Continuous Humid; Humidity; Oryza - other; Plant Parts Bank; . . . 4.0172

SPECIFIC EFFECTS OF THE FACTORS OF RESISTANCE TO DROUGHT IN RICE . Cereal Crops; Continuous Humid; Drought; Moisture Deficiency; . . . 4.0173

RESEARCH FOR HYBRID VARIETIES OF CACAO HAVING A GOOD APITUDE FOR SETTLING AND A HIGH DEGREE OF DROUGHT TOLERANCE . Breeding & Genetics, Spice&Bev; Ferric Acrosil; Two Humid Seasons-7 Month,Plus; . . . 4.0340

INTRODUCTIONS AND BEHAVIOUR TESTS OF PLUVIAL RICE . Breeding & Genetics; Ferric Luvisolos; Humid 4 Months; Management; Piriculira; . . . 6.0032

COLLECTION OF THE FLOATING VARIETIES OF RICE GLACERRIMS AND SATIVA . Breeding & Genetics; Insect Resistance; Non-dry 3 Months; Plus; Seed Bank; . . . 6.0060

IMPROVEMENT OF VIGNA UNGUICULATA UNSUSCEPTIBLE TO PHOTOPERIODICITY . Breeding & Genetics; Humid 3 Months; . . . 8.0029

BREEDING FOR ESTABLISHMENT ABILITY AND DROUGHT RESISTANCE IN COCOA . Breeding & Genetics; Spice&Bev; Management; . . . 9.0110

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS . Breeding & Genetics; Glycine Max; Management; Seed Bank; . . . 9.0167

SOIL CONSERVING CROPS . Cajanus; Continuous Humid 7 Months,Plus; Disease Resistance; Ferralic Cambisols; Forage Grasves; Pasture; Range; Insect Resistance; Panicle-either; Pastures; . . . 9.0186

AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE . Benason; D, 2,4; Grass-nonspecific; Irrigation -general; Pesticides -other; Rain; . . . 10.0001

Fungal Resistance

CITRUS Rootstock TRIAL . Citrus; Entomology; Applied; Gummosis; Management; Orange Tree Quick Decline; Virus Resistance; . . . 2.0008

DETERMINATION OF THE TRIBES OF ORANGE RUST OF THE COFFEE-SHRUB IN THE IVORY COAST - CHARACTERIZATION OF THE RESISTANCE OF COFFEE-SHRUBS . Env. Plant Dis; Relation; Hemistics; Light Quantity or Intensity; Rusts; . . . 4.0064

STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA . Hyphomycetes; Marsh; Surveys; . . . 4.0066

FUSARIOSIS OF THE OIL PALM TREE . SELECTION OF RESISTANT MATERIAL . Env. Plant Dis; Relation; Fusarium; Inoculation; Nursery Observational Plots; Phytopathology; SeIling; . . . 4.0095

RESEARCH ON CACAO CLONES OR INTERCROSS HYBRIDS PRESENTING A 'DISTINCT' TOLERANCE TO PHYTOPHTORA PALMIVORA . Black Pod; F Generation (F1, F2, F3, Etc); Phytopathology; . . . 4.0110

RESEARCH ON CACAO CLONES OR INTERCROSS HYBRIDS PRESENTING A DISTINCT TOLERANCE TO PHYTOPHTHORA PALMIVORA . Black Pod; Breeding & Genetics; Spice&Bev; F Generation (F1, F2, F3, Etc); Intraspec. Genetic Relations; Phytopathology; . . . 4.0129

STRENGTHENING THE RESISTANCE OF CACAO-TREES TO THE BLACK PODDLE DUE TO PHYTOPHTHORA PALMIVORA . Black Pod, Env. Plant Dis; Relation; Interaction with Environment; Phytophotora; Shade; . . . 4.0139

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST . Climate- continental; Equatorial; Management; Passiflora; Phytophthora; . . . 4.0155

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST . Breeding & Genetics; Climate- Continental; Sav.-Trop.; Fats & Oils; Fruits and Berries; Quality and Utilization; . . . 4.0156

IMPROVEMENT OF RICE (INDICA GROUP) . Breeding & Genetics; Continuous Humid; Drought Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0159

COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS . Breeder Stock; Cereal Crops; Cambisols; Insect Resistance; Piriculira; Seed Bank; . . . 4.0160

VARIETAL EXPERIMENTAL WORK FOR PLUVIAL RICE . Breeding & Genetics; Continuous Humid; Drought Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0167

VARIETAL EXPERIMENTAL WORK FOR IRRIGATED RICE . Breeding & Genetics; Continuous Humid; Irrigation -general; Phytophotology; Piriculira; Piriculariosis; . . . 4.0168

VARIETAL EXPERIMENTAL WORK FOR INUNDATED RICE . Breeding & Genetics; Continuous Humid; Drought Resistance; Phytopathology; Piriculira; Piriculariosis; . . . 4.0169

STUDY OF THE GENETIC STRUCTURES OF HORIZONTAL RESISTANCE OF RICE TO PIRICULIRA ORYZAE ...
Plant Resistance

SUBJECT INDEX

Insect Resistance

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Fibers; Photoperiod; Seed Bank;3.0070

SCREENING TEST OF SPECIES AND TWO PRESERVATIVES AGAINST MARINE BORERS ... Crustacea; Factors Affecting Insect Pop.; Lamellibranchiata; Marine Animals; Maturity & Growth Stages; Wood Preservatives;3.0095

COWPEA INVESTIGATION ... Continuous Humid 7 Months, Plus; Disease Resistance; Management; Orchid Acreols; Timing of Planting Procedures;3.0153

SUGARCANE AGRONOMIC INVESTIGATIONS ... Continuous Humid 7 Months; Planting Procedures;3.0156

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Disease Resistance; Photoperiod; Seed Bank;3.0175

DEVELOPMENT OF MEDIUM MATURING, SHORT STATURE, HIGH YIELDING SORGHUM VARIETIES OF PENNISETUM MILLI RESISTANT TO DISEASES, PESTS AND LODGING ... Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months, Plus; Seed Bank;3.0196

THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING, PALATABLE VARIETIES OF PENNISETUM MILLI RESISTANT TO DISEASES, PESTS AND LODGING ... Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months, Plus; Seed Bank;3.0196

THE DEVELOPMENT OF LATE MATURING, HIGH YIELDING, PALATABLE VARIETIES OF MILLET (PENNISETUM) RESISTANT TO DISEASES, PESTS AND LODGING ... Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months, Plus; Seed Bank;3.0196

THE DEVELOPMENT OF LARGE MATURING, SHORT STATURE, HIGH YIELDING, SORGHUM VARIETIES OF ACCEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE ... Breeding & Genetics; Cecidomyiidae; Disease Resistance; Dry Monsoon 5 Months, Plus; Smuts; Sorgum Vulgar (Grain);3.0196

THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING, SORGHUM VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months, Plus; Photoperiod; Seed Bank;3.0196

CROPS SEQUENCE TRIAL ... Disease Resistance; Fallowing; Management; Moist Monsoon 0 to 3 Months;3.0200

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Nemadrome Resistance; Plant Nemadromes-nonspecific; Selfing;3.0204

INTRODUCTION OF EXOTIC PLANTS ... Cocoa; Disease Resistance; Phenology; Life Cycle; Plant Paris Bank; Triticum;3.0208

SUSCEPTIBILITY OF VARIETIES OF MAIZE AND COWPEAS TO PRIMARY STORAGE INSECT ATTACK ... Bruchidae; Cereal Crops; Curculionidae; Pulse Crops; Stored Grain Insects;3.0215

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK ... Forestry Insects; Isoptera; Leguminosae -other; Gelseaceae;3.0223

A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK ... Forestry Insects; Isoptera; Parenchyma; Tensile Strength; Termites;3.0235

STUDY THE ATTRACTIVITY OF PLANT MATERIAL TO THE NOCTURNAL MOTH OF THE CACAO-TREE - EARIAS BIPLAGA ... Beverage Crops; Host Preference; Host- insect; Klendula; Noctuidae;4.0134

STUDY THE RESISTANCE OF 6 HIGH-AMAZONIAN HYBRIDS TO MESOHOMOTOMA TESSMANI - A JUMPING PLANT HOUSE OF THE CACAO-TREE ... Beverage Crops; Psyllidae;4.0135

COLLECTION OF VARIETIES FOR THE PLUVIAL RICE-FIELDS ... Breeder Stock; Cereal Crops; Crambidae; Friculatia; Seed Bank;4.0145

EXPERIMENTAL WORK WITH VARIETIES OF THE COTTON PLANT GOSYPHIUM BARBADENSE ... Breeding & Genetics; Disease Resistance; Insects -other; Irrigation -general; Timing of Planting Procedures;6.0001

EXPERIMENTAL CULTIVATION OF COTTON-PLANTS WITHOUT GOSYPOL ... Breeding & Genetics; Cereal Products; Gossypol;6.0002

STUDY THE CROSSINGS WITH SOME IRRI VARIETIES FROM VARIETIES OF IRRIGATED RICE WITH LONG STRAW ... Breeding & Genetics; Haldi 1 Months; Pedigree;6.0052

COLLECTION OF THE FLOATING VARIETIES OF RICE GLACERRAMS AND SATIVA ... Breeding & Genetics; Drought Resistance; Non-dry 3 Months, Plus; Seed Bank;6.0060

IMPROVEMENT OF VARIETIES OF THE COTTON PLANT FOR DRY CULTIVATION ... Breeding & Genetics; Moisture Deficiency;6.0073

VARIETAL RESISTANCE OF RICE TO THE MAJOR PESTS ... Breeding & Genetics; Insects;9.0106

BREEDING FOR RESISTANCE TO VARIOUS PESTS AND DISEASES ... Chlorophora; Nuclea; Terminalia;9.0076

TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE ... Forestry Insects; Insecta -other; Meliaceae -other; Taxonomy, Animal;9.0092

STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES ... Drying; Fungal Resistance; Machining; Pathology, Forest; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties;9.0095

PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA ... Chrysomelidae; Ferric Luvialis; Pests; Seed Bank; Systemic Application;9.0102

CASSAVA BREEDING ... Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvialis; Mosaic Viruses; Phytopathology;9.0102

SWEET POTATO BREEDING ... Breeding & Genetics; Curculionidae; Ipomoea; Nursery Observational Plots; Storage Changes;9.0103

SOIL CONSERVING CROPS ... Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferric Luvialis; Forage Grasses, Pasture, Range; Panicaceae -other; Pueraria;9.0105

YAM BREEDING ... Breeding & Genetics; Disease Resistance; Ferric Luvialis; Nemadrome Resistance; Proteins; Starch;9.0106

CASSAVA ENTOMOLOGY ... Continuous Humid 7 Months; Plus; Ferric Luvialis; Mosaic Viruses; Pseudococcidae; Vectors;9.0107

SCREENING OF MAIZE GERMLASM FOR RESISTANCE TO INSECT PESTS ... Breeding & Genetics; Cereal Crops; Crambidae;9.0257

SCREENING OF GERMLASM FOR INSECT RESISTANCE ... Breeding & Genetics; Olethreutidae; Phycitidae; Pulse Crops;9.0266

BIOLOGY, ECOLOGY AND CONTROL OF RICE INSECT PESTS ... Behavioral Ecology; Crambidae; Habitat Studies; Predators -biocontrol; Surveys;10.003

DEVELOPMENT OF IMPROVED RICE VARIETIES ... Blast; Breeding & Genetics; Cold Resistance; Homopera -other; Phytopathology; Seed Bank;10.0007

STUDY OF SORGHUM GALL-MIDGE - CONTARIA SORGHICOLLA ... Cereal Crops; Insecta -other; Phenology, Life Cycle; Sorgum Vulgar (Grain);11.0016

STUDY OF THE VARIETAL RESISTANCE OF RICE TO HARMFUL INSECTS ... Breeding & Genetics; Cereal Crops; Humid 2 Months; Insects; Seed Bank;11.0037

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY VEGETATIVE MEANS ... Disease Resistance; Intraspec. Genetic Relations; Management; Weathering Resistance;13.0023

IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS ... Breeding & Genetics; Eutric Glycoids; Humid 4 Months; Mutation; Pteridaria;14.0045

Lodging

OBTAINMENT OF SORGHUM HYBRIDS OF AMERICAN-DAROMEY TYPE WITH SHORT STRAW ... Breeding & Genetics; Ferric Luvialis; Humid 5 Months; Setting; Sorgum Vulgar (Grain);4.0101

THE OBTAINING OF PURE LINES FROM FOUR LOCAL POPULATIONS OF WHITE MAIZE ... Breeding & Genetics; Disease Resistance; Dysitic Nitosols; Two Humid Seasons;4.0162
INTRODUCTIONS AND TESTED COLLECTIONS OF FOREIGN VARIETIES OF MAIZE . Breeding & Genetics; Disease Resistance; Dystic Nitosols; Two Humid Seasons; . . . 1.0064
Sorghum Investigation in the Tropical Forest Zone . Continuous Humid 7 Months; Plus; Insect Resistance; Management; Sorghum Vulgare (Grain); Timing of Planting Procedures; . . . 3.0156
To Determine Whether Wheat Could Be Successfully Cultivated in Ghana . Disease Resistance; Management; Shattering Resistance; Space Competition; Timing of Planting; . . . 3.0057
Maize Improvement through Breeding . Back Cross; Breeding & Genetics; Lysine; Proteins; Recurrent Selection; Tryptophane; . . . 3.0161

THE DEVELOPMENT OF EARLY MATURING, HIGH YIELDING, PALATABLE VARIETIES OF PENNISETUM MILLET RESISTANT TO DISEASES, PESTS AND LODGING . Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Recurrent Selection; . . . 3.0180
The Development of Late Maturing, High Yielding, Palatable Varieties of Millet (Pennisetum) Resistant to Diseases, Pests and Lodging . Breeding & Genetics; Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Recurrent Selection; . . . 3.0183

VARIELT EXPERIMENTS WITH IRRIGATED COTTON . Management; Space Competition; Surface Irrigation - general; Timing of Fava Procedures; . . . 4.0258
Production of Short Stemed High Yielding Acceptable Maize Varieties . Back Cross; Breeding & Genetics; Continuous Humid 7 Months; Plus; Recurrent Selection; . . . 3.0002

Improvement of Early Sorghums by Selection of the Local Material . Breeding & Genetics; Drought Resistance; Utric Cambiophyllum; Humid 3 Months; Management; Sorghum Vulgare (Grain); . . . 14.0001
Improvement of the Local Small Millet by Production of Synthetic Varieties . Breeding & Genetics; Fungal Resistance; Setaria; . . . 14.0029
Improvement of Local Small Millet by Recurrent Selection . Breeding & Genetics; Ferrire Luvilos; Fungal Resistance; Humid 3 Months; Recurrent Selection; Sclerospora; . . . 14.0034

Improvement of Local Material by Cumulative Selection - Maize . Breeding & Genetics; Fungal Resistance; Recurrent Selection; Scalid; 14.0049

Production of a Local Composite of Maize with Broadened Genetic Variability . Breeding & Genetics; Fungal Resistance; Reconstitition; Scalid; 14.00494
Introduction of Foreign Varieties of Maize . Ferrire Luvilos; Fungal Resistance; Humid 4 Months; Management; Rusts; . . . 14.0050

Improvement of Local Small Millet by Recurrent Selection . Breeding & Genetics; Ferrire Luvilos; Fungal Resistance; Humid 4 Months; Recurrent Selection; Sclerospora; . . . 14.0055

Nematode Resistance

Development of Disease and Pest Resistant Kenaf Varieties with a High Yield of Good Quality Fibre . Breeding & Genetics; Fibers; Insect Resistance; Photoperiod; Seed Bank; . . . 3.0070
Investigation into the Biology and Control of Root-Knot Nematodes on Some Crops . Continuous Humid 7 Months; Plus; Culturing Techniques; DD; Nema- gon; Nicotiana; Population Dynamics; . . . 3.0128
Development of Disease and Pest Resistant Kenaf Varieties with a High Yield of Good Quality Fibre . Breeding & Genetics; Disease Resistance; Insect Resistance; Photoperiod; Seed Bank; . . . 3.0175
Development of Disease and Pest Resistant Kenaf High Yield with a High Yield of Good Quality Fibre . Breeding & Genetics; Dry Monsoon 5 Months; Plus; Insect Resistance; Photoperiod; Seed Bank; . . . 3.0196
Development of Disease and Pest Resistant Kenaf Varieties with a High Yield of Good Quality Fibre . Breeding & Genetics; Utric Nitosols; Insect Resistance; Plant Nematodes - nonspecific; Setaling; . . . 3.0204

SUBJECT INDEX

Yam Breeding . Breeding & Genetics; Disease Resistance; Ferrire Luvilos; Protein; Starch; . . . 9.0186
Nematodes of Vegetables . Capsicum; DD; Lycopersicium; Nematic; Phytopathology; Tylenuchoidea; . . . 9.0265
Host Status of Pratylenchus Species . Leguminosae; - others; Phytopathology; Tylenuchoidea; . . . 9.0272
Study of Varieties of Tomato Resistant to Nematodes . Lycopersicium; Phytopathology; Soil Environment; Surveys; Tylenuchoidea; . . . 11.0046
Improvement of Aquatic Rice by Mutagenesis . Breeding & Genetics; Eutric Gleysols; Humid 4 Months; Mutation; Picuriculariosis; . . . 14.0045

Parasite - other

Action of Growth-Regulators on the Cotton Plant . Substances Which Inhibit Gibberellins . . . Growth Retardation of Plants; Irrigation -general; Management; Mode of Action; Plant Growth Regulators; . . . 4.0276

Shattering Resistance

To Determine Whether Wheat Could Be Successfully Cultivated in Ghana . Disease Resistance; Lodging; Management; Space Competition; Timing of Planting Procedures; Triticum; . . . 3.0157

Soil Resistance

Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; . . . 9.0178
Chemical Kinetics of Rice Soils and Varietal Response to Adverse Soil Conditions . Deficiencies; Management; Saline Soils; Soil pH; Soil Types; . . . 10.0012
Varietal Improvement of Rice by Hybridization for the Improved Fresh-Water Rice Fields of Casamance . Breeding & Genetics; Disease Resistance; Phytopathology; Picuriculariosis; . . . 11.0126
Varietal Improvement of Rice by Hybridization for the Salt-Water Rice Fields of Lower Casamance . Breeding & Genetics; Cereal Products; Humid 2 Months; Saline Soils; . . . 11.0127

Storage Changes

Onion Improvement . Breeding & Genetics; Short Day; . . . 2.0004
Freeze-Drying the Pollen of the Oil Palm Tree . Breeding & Genetics; Freeze-dry Techniques; . . . 4.0286
Sweet Potato Breeding . Breeding & Genetics; Curcuta; Utric; Insect Resistance; Ipomoea; Nursery Observational Pots; . . . 9.0183

Virus Resistance

Creation of a Variety Hybrid of Yellow Maize Adapted to the North of Dahomey . Breeding & Genetics; Ferrire Luvilos; Humid 5 Months; Plant Virus - general; Streaks; . . . 1.0043
Introduction of Foreign Varieties of Manioc . Dystic Nitosols; Management; Manihot; Mosaic Viruses; Starch; Two Humid Seasons; . . . 1.0069
Citrus Rootstock Trial . Citrus; Entomology, Applied; Fungal Resistance; Gummnosis; Management; Orange Tree Quick Decline; . . . 2.0008
Cassava Improvement . Continuous Humid 7 Months; Plus; Manihot; Plant Virus -general; Timing of Planting Procedures; . . . 3.0155

The Virus Diseases of the Cotton Crop in West and Central Africa . Electron Microscopy; Mosaic Viruses; Phytopathology; Vectors; Viral Transmission; . . . 4.0075
Study of the Adaptation of Citrus Fruit Trees in the Different Climatic Zones of the Ivory Coast . Breeding & Genetics; Climate- Continental Savanna; Fats & Oils; Fruits and Berries; Quality and Utilization; . . . 4.0156
Improvement of Peppers (Piper Nigrum) . Breeding & Genetics; Spices & Beverages; Phytopathology; Piperaceae; Plant Virus - general; . . . 9.0036
Introduction and Establishment of Cocoa Germlasm . Black Pod; Breeding & Genetics; Spices & Beverages; Fungal Resistance; Phytopathology; Phytophthora; Swollen Shoot Virus; . . . 9.0107
BREEDING FOR CACAO SWOLLEN SHOOT VIRUS RESISTANCE OR TOLERANCE IN CACAO . Breeding & Genet-
Plant Resistance

SUBJECT INDEX

ics, Spice&Bev; Double Cross; Phytopathology; Swollen Shoot Virus; Top Cross... 9.0113
CASSAVA ENTOMOLOGY... Continuous Humid 7 Months-Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudococceae; Vectors... 9.0187
CASSAVA PATHOLOGY... Bacterial Resistance; Breeding & Genetics; Diseases; Environments; Plant; Ferric Luvisols; Mosaic Viruses; Vectors... 9.0190
THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES... Breeding & Genetics; Manihoti; Pedigrees... 9.0212
VIRUS DISEASES OF SOYA BEAN... Glycine Max; Phytopathology; Plant Viruses; Virulent Viruses... 9.0244
SELECTION OF BEAN VARIETIES RESISTANT TO BEAN VIRUSES IN THE FIELD... Breeding & Genetics; Glycine Max; Inoculation; Plant Virus... 9.0244
STUDIES ON BEAN (COWPEA) VIRUS DISEASES AND THE COLLECTION AND RE-ESTABLISHMENT OF INFECTIVE CULTURES... Isolation of Viruses; Phytopathology; Plant Virus... 9.0246
BIOLOGY, ECOLOGY AND CONTROL OF VIRUS, FUNGAL AND BACTERIAL DISEASES OF RICE... Bacterial Resistance; Blight Diseases; Nursery Observational Plots; Streaks; Vectors... 10.0010
GENERATIVE IMPROVEMENT OF THE CACAO-TREE (THEOBROMA CACAO L)... Breeding & Genetics; Spice&Bev; Hybrid Breeding -nonspecific; Intraspec. Genetic Relations; Swollen Shoot Virus... 13.0024

Weathering Resistance

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY GENERATIVE MEANS... Breeding & Genetics; Spice&Bev; Ferralic Cambisols; Ferric Acrisols; Genetics; Management; Two Humid Seasons-7 Month,Plus... 4.0012
IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY GENERATIVE MEANS... Breeding & Genetics; Spice&Bev; Ferric Acrisols; Genetics; Management; Seed Production; Two Humid Seasons-7 Month,Plus... 4.0014
IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY GENERATIVE MEANS... Breeding & Genetics; Spice&Bev; Management; Seed Production... 4.0013
IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY VEGETATIVE MEANS... Disease Resistance; Insect Resistance; Intraspec. Genetic Relations; Management... 13.0023

Wind

RUBBER CLONE TRIAL 1965 A AND 1965 B... Continuous Humid; Disease Resistance; Latex; Management; Wind or Air Movement... 4.0049
IMPROVEMENT OF HEVEA BRASILIENSIS - RESEARCH ON CRITERIA FOR SELECTION... Breeding & Genetics; Latex; Laticifers; Plant Morphology; Two Humid Seasons; Wind or Air Movement... 4.0028
BREEDING AND SELECTION OF HEVEA BRASILIENSIS FOR HIGH YIELD AND IMPROVED SECONDARY CHARACTERISTICS... Breeding & Genetics; Disease Resistance; Latex; Open Pollination; Teckons; Wind or Air Movement... 5.0003

Plant Responses

WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE... Evapotranspiration; Management; Moisture Levels... 9.0006
IRRIGATION

INFLUENCE OF IRRIGATION ON THE PRODUCTION OF THE HYBRID DWARF CROSSED WITH LARGE COCONUT PALMS... Cocoa; Humid 6 M or Less; Irrigation -general; Management... 1.0073
THE PRODUCTIVITY OF IRRIGATED PASTURES... Dry Monsoon 4 to 5 Months; Grass -nonspecific; Irrigation -general; Management... 3.0016
N.P.K. FACTORIALS - FERTILIZER TRIAL IN SUGARCANE... Formulation, Fertilizer; Irrigation -general; Management; Saccharum; Two Humid Seasons-7 Month,Plus... 3.0112
SUGARCANE AGRONOMIC INVESTIGATIONS... Continuous Humid 7 Month,Plus; Insect Resistance; Management; Saccharum... 3.0154

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION... Continuous Humid; Management; Puerto Rico... 4.0024
IRRIGATION OF THE CACAO-TREE... Irrigation -general; Management... 4.0087
IRRIGATION OF THE COFFEE-SHRUB... Irrigation -general; Management... 4.0088
DETERMINATION OF SOIL CHARACTERISTICS FOR IRRIGATION... Plant Requirements -water; Soil Types; Two Humid Seasons... 14.0005
STUDY THE NUTRITION OF THE OIL PALM IN WATER... Irrigation -general; Management; Moisture Deficiency... 4.0029
WATER REQUIREMENTS OF IRRIGATED CROPS... Humid 1 Month; Irrigation -general; Management; Soil Moisture... 7.0002
STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS... Irrigation -general; Management; Soil Moisture... 8.0009
EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE... Eutric Cambisols; Humid 1 Month; Management; Saccharum; Ferric Cambisols... 8.0022
EXPERIMENT 768-1: FIELD IRRIGATION OF OIL PALMS... Irrigation -general; Management; Moisture Levels; Mulches... 9.0038
FORAGE CROP EXPERIMENTATION... Chlorideae -other; Hot Equatorial or Hot Tropical; Management; Mucuna; Panicum; Sorghum Vulgare (Forage)... 11.0004
STUDY OF WATER REQUIREMENTS OF COTTON UNDER IRRIGATION... Hot Equatorial or Hot Tropical; Irrigation -general; Management... 11.0004
EXPERIMENTS WITH MAIZE AND SORGHUM... Hot Equatorial or Hot Tropical; Irrigation -general; Management; Sorghum Vulgare (Grain)... 11.0005
RESEARCH ON WHEAT AND BARLEY... Baking Food; Hordeum Vulgare; Management; Triticum... 11.0006
IMPROVEMENT OF IRRIGATED AGRICULTURE IN THE SENEGAL RIVER VALLEY... Hot Equatorial or Hot Tropical; Irrigation -general; Management... 11.0004
WATER REQUIREMENTS OF IRRIGATED CROPS... Irrigation -general; Lysimeters; Management; Nuclear Moisture Meters; Soil Moisture; Sorghum Vulgare (Grain)... 11.0010
MOISTURE BALANCE BENEATH CUT CROPS, BARE SOIL AND FALLOW... Cover Crops; Fallowing; Humidity; Management; Soil - Bare; Soil-water-plant Relationships... 11.0061
MOISTURE NUTRITION OF PLUVIAL RICE - RESISTANCE TO DROUGHT... Evapotranspiration; Management; Moisture Deficiency... 11.0062
INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER... Humidity; Irrigation -general; Shelter Belts, Windbreaks; Soil Moisture; Temperature -air; Wind or Air Movement... 14.0005

Plant Tissues

Endodermis

OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUI NEENSIS... Cercospora; Interspecific Cross; Tannin; Two Humid Seasons... 4.0087

Epidermis

ECOLOGICAL CONDITIONS AND YIELD VARIATION IN THE OIL PALM... Continuous Humid 7 Months,Plus; Drought Resistance; Management; Moisture Deficiency; Photoperiod; Soil Depth... 3.0122
WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES... Continuous Humid 7 Months,Plus; Drought Resistance; Evapotranspiration; Management; Oleaseed Crops; Soil-water-plant Relationships... 3.0123
DEMONSTRATION OF SOME FACTORS OF RESISTANCE TO DROUGHT... Cereal Crops; Continuous Humid; Drought Resistance; Hydrolytic Enzymes -general; Transpiration & Evaporation... 4.0171
STUDIES ON PHYSIOLOGICAL BASIS FOR FURTHER INCREASE OF GRAIN YIELD AND RESPONSE OF RICE TO SUB-NORMAL CLIMATIC ENVIRONMENT... Carbon Dioxide; Cold Resistance; Heat Resistance; Photoperiodism; Photosynthesis... 10.0013
SUBJECT INDEX

Laticifers
STUDY OF THE ORGANIC NITROGENOUS CONSTITUENTS OF THE LATEX OF HEVEA BRASILIENSIS
Chromatography; Cytoplasma; Industrial & New Crops; Latex; Nitrogen Metabolism; ... 4.0056
STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK ... Forestry Insects; Insect Resistance; Isoptera; Ten-nile Strength; Terminalia; ... 3.0215
STUDY OF THE COMPOSITION OF THE CORTEX OF THE PODS IN RELATION TO RESISTANCE TO BLACK-POD ... Black Pod; Deficiencies; Moisture Content -plants; Nutritional Regulation (Host); Phytopathology; Potassium; ... 4.0137

Parenchyma
A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK ... Forest Industry; Instrumentation, Equipment; Lumbering; Machining; Wood; ... 4.0043

Sclerenchyma
Fibers
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Humid 7 Months; Management; ... 3.0067
EFFECTS OF VESSELS ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Humid 7 Months; Management; ... 3.0067
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Humid 7 Months; Management; Seed Production; Surface -soil; ... 3.0068
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Humid 7 Months; Management; Timing of Planting Procedures; ... 3.0069
DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Management; Moist Monsoon ... 3.0070
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Humid 7 Months; Management; Timing of Planting Procedures; ... 3.0071
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Management; Retting; ... 3.0072
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Plus; Management; Retting; Surface -soil; ... 3.0073
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Humid 7 Months; Management; Timing of Planting Procedures; ... 3.0074
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Plus; Management; Timing of Planting Procedures; ... 3.0075
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Plus; Management; Timing of Planting Procedures; ... 3.0076
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Plus; Management; Timing of Planting Procedures; ... 3.0077
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Continuous Humid 7 Months; Plus; Management; Timing of Planting Procedures; ... 3.0078

Vascular Tissue
Xylem
TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE ... Forestry Insects; Insects -other; Meliaceae -other; Taxonomy, Animal; ... 9.0092
STUDY OF PROPERTIES AND CHARACTERISTICS OF NIGERIAN FOREST TIMBER SPECIES ... Drying, Fungal Resistance; Machining; Pathology, Forest; Plant Morphology; Wood Preservation & Seasoning; Wood Structure & Properties; ... 9.0093
STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWN TIMBERS ... Construction Materials; Joining & Bolting; Physical Properties; Terminalia; Wood Preservation & Seasoning; Wood Structure & Properties; ... 9.0094
NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES ... Construction Materials; Electric Power Transmission; Nauclea; Wood; Wood Structure & Properties; ... 9.0095
CONVERSION STUDIES ON A HORIZONTAL BANDSAW ... Forest Industry; Instrumentation, Equipment; Lumbering; Machining; Wood; ... 9.0100
SURVEY OF WOOD DENSITY VARIATION OF SOME NIGERIAN TREE CROPS ... Gamela; Moisture Content -plants; Tectona; Tree Breeding; Wood Structure & Properties; ... 9.0101

Plant Tissues
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH, FIBRE AND SEED YIELD OF KENAF, HIBISCUS CANNABINUS L ... Dry Monsoon 5 Months; Plus; Management; Surface -soil; ... 3.0194
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Dry Monsoon 5 Months; Plus; Management; Timing of Planting Procedures; ... 3.0195
DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Dry Monsoon 5 Months; Plus; Insect Resistance; Photoperiod; Seed Bank; ... 3.0196
EFFECTS OF DIFFERENT DATE OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Dry Monsoon 5 Months; Plus; Management; Timing of Planting Procedures; ... 3.0198
EFFECTS OF DIFFERENT DATES OF PLANTING OF THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Dry Monsoon 5 Months; Plus; Management; Timing of Planting Procedures; ... 3.0199
EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Eutric Nitosols; Management; Moist Monsoon 0 to 3 Months; ... 3.0201
EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH FIBRE AND SEED YIELDS OF KENAF, HIBISCUS CANNABINUS L ... Eutric Nitosols; Management; Moist Monsoon 0 to 3 Months; ... 3.0202
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Eutric Nitosols; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0203
DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Eutric Nitosols; Insect Resistance; Nematode Resistance; Plant Nematodes -non-specific; Selling; ... 3.0204
EFFECT OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Eutric Nitosols; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0205
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Eutric Nitosols; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0206
EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Humid 7 Months; Management; Timing of Planting Procedures; ... Urena; ... 3.0207
STUDY OF THE ACTION OF TRACE ELEMENTS ON THE COTTON PLANT ... Hydroponic Studies; Management; ... 4.0068
OBSESSION OF THE CHARACTERS OF PRODUCTION OF THE COCONUT PALM ... Coco; Copra; Fats - Lipids & Oils; Moisture Content -plants; ... 4.0072
INTRASPECIFIC HYBRIDATION OF COTTON (G. BARBADENSE) ... Back Cross; Breeding & Genetics; Intraspecific Cross; Pedigree; ... 13.0035

411
Plant Tissues

SUBJECT INDEX

CELLULOSE CONTENT OF NIGERIAN TIMBERS ... Cellulose; Gmelina; Terminalia; Triplochiton; Wood Structure & Properties; ... 9.0103

SOLAR AND AIR DRYING OF TIMBER ... Chlorophors; Costs; Energy Conversion; Instrumentation, Equipment; Solar Processes; Ullmano -other; Wood Preservation & Seasoning; ... 9.0105

SURVEY OF THE MOISTURE CONTENT OF WOOD IN SERVICE IN NIGERIA ... Composition; Khaya; Nauclea; Triplochiton; Wood Preservation & Seasoning; ... 9.0106

Planting Methods

EXPERIMENT WEEDING STUDY OF SURVEY OF STUDY OF DENSITIES COCONUT FOREST TREES SPECIES NURSERY TECHNIQUES INVESTIGATION AND IMPROVEMENT TISSUES Viruses, TREEATION TECHNIQUES TATION PLANTING PROCEDURES; ... Seedling or Planting Rate; ... Competition; ... Management; Nursery Observational Plots; Placement; Transplanting Methods; ... 9.0007

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH ... Chronic Vertisols; Eucalyptus; Fuel -wood; Shelter Belts, Windbreaks; Soil Depth; ... 11.118

PHYTOTECHNICAL STUDIES ON METHODS OF PLANTATION OF CACAO-TREES ... Companion Cropping; Leguminosae -other; Management; Mussa; Shade; ... 13.0022

CULTIVATION TECHNIQUES FOR SESAME ... Management; Row Application; Sesamin; Side Dressing; ... 14.0021

Pregeneration of Seeds

NURSERY TECHNIQUES TRIAL FOR RICE ... Broadcast Application; Humid 6 Months; Management; Nursery Observational Plots; Placement; Transplanting Methods; ... 9.0007

STUDY OF SEED-DISTRIBUTORS FOR RICE ... Design; Modify, Develop of Equip; Fertilizing, Planting & Cult; Management; ... 11.1122

STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE ... Eutric Fluviosols; Eutric Gleysols; Hot Equatorial or Hot Tropical; Management; ... 11.0149

Seeding or Planting Rate

CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES FOR SACKING ... Harvest and Storage; Insecticides -non-specific; Retting; Soil Tillage; ... 6.0086

TECHNIQUES FOR MULTIPLICATION OF THE SEEDS OF HIBISCUS SPECIES ... Crop; Fertilizer; Humid 7 Months, Plus; Management; Timing of Planting Procedures; ... 6.0088

CONTROL OF ROOT ROT OF SUSCEPTIBLE PLANTATION TREE SPECIES ... Cucumis; Management; Plant Pathogenetic Fungi; Root Rot; Space Competition; Terminalia; ... 9.0086

SEED RATE TRIAL WITH UPLAND RICE ... Continuous Humid 7 Months, Plus; Crop Production, Harvesting; Drill Application; Management; ... 3.0069

EXPERIMENT ON PLANTATION DENSITY ... Management; Placement; Space Competition; Timing of Planting Procedures; ... 13.0044

Timing of Planting Procedures

INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS ... Ferro Luvicos; Fertilizer Losses; Humid 6 Months; Management; Mineralogy; Soil Testing; ... 1.0024

COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Preferaros; Soil Moisture, Synergism and Synergists; ... 3.0005

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Fibers; Humid 7 Months; Management; Urena; ... 3.0072

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Fibers; Humid 7 Months; Management; Urena; ... 3.0069

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS CAPSULARIS ... Corchorus; Fibers; Humid 7 Months; Management; ... 3.0073

INVESTIGATIONS INTO BIOMIMICS AND CONTROL OF INSECT PESTS ON COTTON ... Economics of Chemical Control; Gelechiidae; Noctuidae; Surveys; Trap Crops; ... 3.0132

INVESTIGATIONS INTO THE BIOMIMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE ... Cambiades; Dip Application; Isopenta; Saccharum; Totaphene; ... 3.0135

EFFECT OF TIME OF LAND PREPARATION AND PLANTING ON YIELD QUALITY OF FLUE CURED TOBACCO ... Continuous Humid 7 Months, Plus; Management; Nicotiana; Plowing; Seedbed Preparation; Soil Tillage Methods -other; ... 3.0145

412
THE EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Continuous Humid 7 Months, Plus; Management; Urena; ... 3.0157

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Continuous Humid 7 Months, Plus; Management; Urena; ... 3.0157

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Continuous Humid 7 Months, Plus; Management; Urena; ... 3.0198

EFFECTS OF DIFFERENT DATES OF PLANTING OF THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Dry Monsoon 5 Months, Plus; Fibers; Management; ... 3.0199

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0203

EFFECT OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0206

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CORCHORUS, CAPSULARIS ... Corchorus; Eutric Nitosols; Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0207

THE EFFECTS OF PLANTING DATE ON THE EFFICIENCY OF FERTILIZER NITROGEN AND PHOSPHORUS IN MAIZE PRODUCTION IN SELECTED AREAS IN GHANA ... Management; ... 3.0227

STUDY OF THE PECCITY AND OF THE PRODUCTIVITY OF THE VARIETIES OF MANIOC ... Continuous Humid; Harvest and Storage; Management; Manihot; ... 4.0191

VARIETAL EXPERIMENTS WITH IRRIGATED COTTON ... Lodging; Management; Space Competition; Surface Irrigation - general; ... 4.0238

STUDY OF THE ROTTING DISEASES OF COTTON PODS IN IRRIGATED CULTIVATION ... Fungal Resistance; Klendusity; Management; Phytophathology; Planting Sequence or Method; Roots; ... 4.0273

TECHNOLOGICAL STUDY OF THE COTTONS OF THE IVORY COAST ... Fiber Crops; ... 4.0284

EXPERIMENTAL WORK WITH VARIETIES OF THE COTTON PLANTS ... Gossypium barbadense ... Breeding & Genetics; Disease Resistance; Insect Resistance; Insecta - other; [irrigation - general; ... 6.0001]

DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERSION ... Ferric Luvisols; Floods; Humid 3 Months; Humid 4 Months; Management; Soil Moisture; ... 6.0007

DATE OF SOWING OF CEREALS IN DRY CULTIVATION ... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Management; ... 6.0008

CULTURAL TECHNIQUES FOR PRODUCTION OF FIBRES FOR SACKING ... Harvest and Storage; Insecticides - non-specific; Retting; Soil Tillage; ... 6.0086

TECHNIQUES FOR MULTIPLICATION OF THE SEEDS OF HIBISCUS SPECIES ... Fiber Crops; Herbicides - non-specific; Management; Seedling or Planting Rate; ... 6.0088

COMPARISON OF NURSERY TECHNIQUES FOR DALBERGIA AZADIRACATA INDICA AND CASSIA SIAMEA ... Cassia; Dalbergia; Humid 1 Month; Lycopersicum; Nursery Observational Plots; Silviculture; ... 8.0016

THE INFLUENCE OF PLANTING DATE AND FERTILITY LEVEL ON THE PRODUCTION OF SEED YAMS FROM COTTON SEEDS ... Management; ... 9.0041

INVESTIGATION AND IMPROVEMENT OF NIGERIAN SEED MELON PRODUCTION ... Cucumis; Management; Placement; ... 9.0045

AGRONOMIC FACTORS INFLUENCING SORGHUM PRODUCTION ... Fallowing; Management; Sorghum Vulgare (Grain); Timing of Application - other; ... 9.0157

THE OIL PALM BLAST DISEASE AND ITS CONTROL ... Benlate; Breeding & Genetics; Fungal Resistance; Irrigation general; Rhizoconia; Terrachlor; Vapam; ... 9.0237

PRODUCTION OF MAIZE AND MANIOC IN ASSOCIATED CULTIVATION ... Companion Cropping; Competition; Dys­tric Nitosols; Management; Manihot; Moist Monsoon 0 to 3 Months; ... 13.0003

BEHAVIOUR OF PLUVIAL RICE (VARIETIES X FERTILIZATIONS) ... Dry Monsoon 5 Months, Plus; Ferric Luvisols; Management; ... 13.0031

MINERAL FERTILIZATION - DETERMINATION OF DEPIECIENCIES ... Dry Monsoon 5 Months, Plus; Ferric Luvisols; Management; ... 13.0032

EXPERIMENT ON PLANTATION DENSITY ... Management; Placement; Seedling or Planting Rate; Space Competition; ... 13.0044

GROUNDNUTS ADAPTED TO THE ALTITUDE ZONE OF 900 - 1100 MM OF ANNUAL RAINFALL ... Elevational Levels, Altitude; Harvest and Storage; Management; ... 14.0023

Transplanting Methods

NURSERY TECHNIQUES TRIAL FOR RICE ... Broadcast Application; Humid 6 Months; Management; Nursery Observa­tional Plots; Placement; Pregermination of Seeds; ... 9.0007

Planting Sequence or Method

See Pest Control Measures

Cultural Control

Plants - Dicots

Amaranthaceae

Amaranthus

STUDIES ON THE CHOANEPHORA CUCURBITARUM WET ROT OF AMARANTHUS VIRIDIS ... Choanephora; Env. Plant Dis. Relation; Environments; Plant; Fungal Resistance; Fungicides - non-specific; Wet Rot; ... 9.0284

Acanthaceae

THE NATURAL RESISTANCE OF GHANAIAIN TIMBERS TO TERMITE ATTACK ... Forestry Insects; Isoptera; Leguminosae - other; Diocaceae; ... 3.0023

Anacardiaceae

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE ... Dysrtic Nitosols; Mangifera; Persea; Psidium; Two Humid Seasons; ... 1.0011

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE ... Dysrtic Nitosols; Mangifera; Persea; Psidium; Two Humid Seasons; ... 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE ... Dysrtic Nitosols; Management; Passiflora; Plant Virus - general; Sapotaceae; ... 1.0071
Plants - Dicots

SUBJECT INDEX

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Bromeiiaceae; Dystric Nitosols; Environments, Plant; Management; Musa; Persea; ... 11.0144

Annonaceae

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST ... Climate- Humid Equatorial; Management; Passiflora; Phytophthora; ... 4.0155
GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae; ... 5.0020

Apocynaceae

STUDY OF GROWTH AND OF RHYTHMIC DEVELOPMENT IN JOINTED PLANTS AND FLOSH PLANTS ... Biological Rhythms; Environments, Plant; Growth and Differentiation; Phenology, Life Cycle; Plant Morphology; ... 4.0048

Bombaceae

Celba

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK ... Forestry Insects, Isoptera; Leguminosae -other; Olacaceae; ... 3.0233

Borraginaceae

FOREST TREES ESTABLISHMENT TRIALS ... Eucalyptus; Lime, Silviculture; ... 9.0043

Caricaceae

Carica

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST ... Climatic- Humid Equatorial; Management; Passiflora; Phytophthora; ... 4.0155
GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae; ... 5.0020
ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN) ... Humid 1 Month; Mangifera; Passiflora; ... 7.0060

Chenopodiaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Guttiferae; Olea; Psidium; Sapindaceae; ... 5.0020

Atriplex

STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOMON ... Chlorine; Humid 3 Months; Prosopis; Silviculture; ... 11.0139

Establishment of Clonal Seed Orchards ... Cedrela; Seed Production; Silviculture; Trial; Variation and Selection; ... 3.0083
ESTABLISHMENT OF CLONAL SEED ORCHARDS ... Cedrela; Seed Production; Silviculture; Trial; Variation and Selection; ... 3.0084

Combretaceae

Terminalia

SELECTION OF PROVISIONAL PLUS TREES ... Cedrela; Seed Production; Tree Breeding; Triplochiton; Variation and Selection; ... 3.0082
PROVENANCE TRIAL OF TEAK AND TERMINALIA IVORENSIS ... Nursery Observational Plots; Silviculture; Tectonia; Variation and Selection; ... 3.0083
ESTABLISHMENT OF CLONAL SEED ORCHARDS ... Cedrela; Seed Production; Silviculture; Trial; Variation and Selection; ... 3.0084

ESTABLISHMENT OF CLONE BANKS ... Cedrela; Leguminosae -other; Triplochiton; ... 3.0085
STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXPORT TIMBER SPECIES ... Chlorophora; Forests; Population Dynamics; Pyralidae; ... 3.0093
STUDIES ON PESTS OF FOREST TREE SEEDS IN GHANA ... Curculionidae; Dignea; Forestry Insects; Surveys, Triplochiton; ... 3.0094

A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE
SUBJECT INDEX

Plants - Dicots

Cucurbitaceae

- **Cucumis**
 - ADAPTATION TRIAL ON VEGETABLE CROPS... (Cucumis)
 - Lactuca; management; Sprinkler irrigation;... .7.0005

Euphorbiaceae

- **Manihot**
 - INTRODUCTION OF FOREIGN VARIETIES OF MANIOC... (Dysent Nitosola; Management; Mosaic Viruses; Starch; Two Humid Seasons; Virus Resistance;... .1.0069
 - LOCAL LEAFMEAL AS SOURCES OF EGG YOLK COLOUR... (Chicken, Domestic; Egg Production; Eggs; Management; Medicago; Processing Feeds;... .3.0033
 - COCONUT INTERCROPPING TRIAL... (Cocos; Continuous Humid; Intercropping; Management; Oiled Seed Crops;... .3.0044
 - RUBBER INTERCROPPING EXPERIMENT... (Continuous Humid; Fomes; Green Manure; Intercropping; Management;... .3.0050
 - THE USE OF BYPRODUCTS OF CASSAVA PROCESSING FOR LIVESTOCK FEEDING... (By-products; Plant(vegetative);... .3.0057
 - STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA... (Cocos; Mangifera; Nicotiana; Saccharum;... .3.0127
 - CASSAVA IMPROVEMENT... (Continuous Humid 7 Months; Plant Virus... .3.0155
 - CROPS SEQUENCE TRIAL... (Crop; Drying; Euphorbiaceae; Fomes; Fruits;... .3.0200
 - MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIMD FOODSTUFFS... (Cereal Products; Drying; Piperaceae;... .3.0214
 - EFFECT OF PLOUGHING AND FERTILIZER APPLICATION ON THE YIELD OF CROPS (MAIZE, CASSAVA AND COWPEAS)... (Deep Plowing; Management;... .3.0226
 - CROSSBREEDING JERSEY N'DAMA, FATTENING OF BEEF QUALITY JERSEY N'DAMA CROSSED BULL... (Carcass Evaluation; Cottonseed Oilmeal, Etc; In Vivo-see Also Feed Rations; Panican;... .4.0009
 - IDENTIFICATION OF DISEASES OF FOOD CROPS... (Soybean; Continuous Humid; Plant Pathogenetic; Phytopathology;... .4.0076
 - VARIETAL COLLECTION MANIOC... (Breeding & Genetics; Continuous Humid; Plant Virus... .4.0180
 - STUDY OF THE PELOCITY AND OF THE PRODUCTIVITY OF THE VARIETIES OF MANIOC... (Continuous Humid; Harvest and Storage; Management;... .4.0181
 - USE OF RADIATION FOR THE IMPROVEMENT OF FUNGAL STRAINS AS THE NUTRITIONAL ADDITIVE IN THE CARBOHYDRATE RICH ROOT CROPS OF NIGERIA... (Culturing Food; Food Proteins; Management; Mutation;... .9.0024
Plants - Dicots

SUBJECT INDEX

SOIL CHEMICAL AND PHYSICAL CHANGES UNDER CONTINUOUS CULTIVATION . . . Infiltration; Management; Sand; Trace Metals . . . 9.0048

SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES . . . Candida; Food Processing Wastes; Fruits; Microorganism Utilization; Organoleptic Studies of Food; Yeasts - non-specific . . . 9.0058

PHYSIOLOGY OF ROOT, Tuber CROPS AND VEGETABLES . . . Breeding & Genetics; Ferralic Cambisols; Ipomoea; Plant Morphology . . . 9.0162

CASSAVA BREEDING . . . Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Phytopathology . . . 9.0182

CASSAVA ENTOLOGY . . . Continuous Humid 7 Months, Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudo-coccidae; Vectors . . . 9.0187

CASSAVA PATHOLOGY . . . Bacterial Resistance; Breeding & Genetics; Diseases; Environments, Plant; Ferric Luvisols; Mosaic Viruses; Vectors . . . 9.0190

THE COLLECTION OF INDIGENOUS AND THE INTRODUCTION OF EXOTIC CASSAVA VARIETIES FOR THE BREEDING OF CASSAVA . . . Breeding & Genetics; Continuous Humid 7 Months, Plus; Disease Resistance . . . 9.0210

INVESTIGATIONS ON METHODS OF BREAKING CASSAVA SEED DORMANCY AND THE EFFECT OF AGE ON CASSAVA SEED GERMINATION . . . Continuous Humid 7 Months, Plus; Dormancy; Germination; Management; Scarcification . . . 9.0211

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES . . . Breeding & Genetics; Pedigree; Virus Resistance . . . 9.0212

THE ESTIMATION OF STARCH, DRY MATTER CONTENT AND HYDROGEN CYANIDE CONTENTS OF CASSAVA VARIETIES . . . Chemical Analysis of Food; Fruits; Hydrogen Cyanide; Organic Acids; Root Crops; Starch . . . 9.0213

STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT UTILISIMA) . . . Bacterial Wilt; Insects; Phytopathology; Taxonomy, Plant; Vectors; Xanthomonas . . . 9.0220

LONG TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY UNDER THREE FUNDAMENTALLY DIFFERENT FARMING SYSTEMS . . . Compost; Continuous Humid 7 Months, Plus; Ferric Acrisols; Management; Manure . . . 9.0254

LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOWS . . . Crop Contribution to Soil Fert; Fallowing; Orthic Ferralsols; Pueraria; Soil Analysis . . . 9.0366

MANIOC (CASSAVA) - PERIOD FOR PROPAGATION BY CUTTINGS AND DATE OF HARVEST . . . Carbohydrates; Dystic Nitosols; Harvest and Storage; Management; Moist Monsoon 0 to 3 Months; Starch . . . 9.0367

PRODUCTION OF MAIZE AND MANIOC IN ASSOCIATED CULTIVATION . . . Companion Cropping; Competition; Dystic Nitosols; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures . . . 13.0003

FERTILIZATION OF MANIOC . . . Dystic Nitosols; Management; Moist Monsoon 0 to 3 Months; Starch . . . 13.0004

Flacourtiaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS . . . Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae . . . 5.0020

Guttiferae

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST . . . Climate- Humid Equatorial; Management; Passiflora; Phytophthora . . . 4.0155

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS . . . Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae . . . 5.0020

Laureaceae

Persea

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE . . . Dystic Nitosols; Mangifera; Psidium; Two Humid Seasons . . . 1.0011

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE . . . Dystic Nitosols; Mangifera; Psidium; Two Humid Seasons . . . 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE . . . Dystic Nitosols; Mangifera; Psidium; Two Humid Seasons . . . 1.0071

INTERCROPPING OF SHEEP UNDER PLANTATION CROPS . . . Citrus; Intercropping; Management; Mangifera; Plant Virus - general; Sapotaceae . . . 1.0000

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST . . . Climate- Humid Equatorial; Management; Passiflora; Phytophthora . . . 4.0155

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS . . . Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae . . . 5.0020

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE . . . Eucric Fluviosols; Humid 4 Months; Mangifera; Passiflora; Psidium; 6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE . . . Bromeliaceae; Environments, Plant; Luvic Arenosols; Mangifera; Passiflora; Psidium . . . 11.0143

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE . . . Bromeliaceae; Dystic Nitosols; Environments, Plant; Management; Muss . . . 11.0144

Leguminosae

STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM . . . Cover Crops; Mosaic Deficiency; Paniceae - other; Two Humid Seasons . . . 1.0075

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES . . . Continuous Humid 7 Months, Plus; Drought Resistance; Evapotranspiration; Management; Oiled Crops; Soil-water-plant Relationships . . . 3.0123

WEED STUDIES IN TREE CROPS . . . Cover Crops; Field Crops - nonspecific; Mulches; Soil Tillage Sequence ; Method . . . 9.0126

VARIETAL IMPROVEMENT (BREEDING) OF GRAIN LEGUMES . . . Breeding & Genetics; Continuous Humid 7 Months, Plus; Nutritive Value - plans; Seed Bank . . . 9.0166

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES . . . Cooked Quality of Food; Fats - Lipids; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptophane . . . 9.0177

CULTIVATION OF FORAGE CROPS . . . Forage Grasses; Forage, Pasture or Range; Grass - nonspecific . . . 11.0081

Acacia

PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA . . . Forests; Measurement of Trees & Stands; Productivity; Silviculture; Swamps - Marshes; Wild Type Genotype . . . 9.0080

ESTABLISHMENT OF ACACIA NILOTICA AND ACACIA SENEGAL . . . Humid 4 Months; Planting Methods - other; Silviculture . . . 9.0352

STUDY OF THE POSSIBILITIES OF REPLANTING OF WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES . . . Chronic Vertisols; Fuel - wood; Humid 3 Months; Planting Methods; Silviculture . . . 11.0119

STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOUM . . . Chlorine; Humid 3 Months; Prosopis; Silviculture . . . 11.0139

SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - SILVICULTURE OF THE LOCAL SPECIES . . . Gums and Resin; Luvic Arenosols; Planting Methods . . . 11.0141

Cajanus

NEMATOLOGICAL STUDY OF CHLOROSIS OF LEGUMINOUS PLANTS AND OF STUNTING ("CLUMP") OF GROUNDNUTS IN UPPER VOLTA . . . Chlorosis; Leguminosae - other; PhytophAGMA; Stunt Diseases; Tylechoides . . . 4.0073

GRAIN LEGUME ENTOLOGICAL INVESTIGATIONS . . . Continuous Humid 7 Months, Plus; Ferric Luvisols; Insects; Oiled Crops; Phaseolus; Surveys . . . 9.0070

SOIL CONSERVING CROPS . . . Continuous Humid 7 Months, Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses; Pasture, Range; Insect Resistance; Paniceae - other; Pueraria . . . 9.0185

VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS . . . Fallowing; Management; Sesamum; Solanum . . . 14.0013

CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS . . . Chlorosis; Glycine Max; Nemagon; Phytopathology; Tephrosia; Tylechoides . . . 14.0015

416
Canavalia
GRAIN LEGUME ENZYMATOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months, Plus; Ferric Luvisols; Insecta; Oilseed Crops; Phaseolus; Surveys;9.0170

Cassia
COMPARISON OF NURSERY TECHNIQUES FOR D A L B E R G I A AZADIRACTA INDICA AND CASSIA SIAMEA ... Dalbergia; Humid 1 Month; Luvic Arenosols; Nursery Observational Plots; Silviculture; Timing of Planting Procedures; ... 8.0016

Centrosema
GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION ... Foundation Seed; Panicum; Seteria; ... 3.0022

Glycine
SOIL CONSERVING CROPS ... Cajanus; Continuous Humid 7 Months, Plus; Disease Crops; Forage Grasses, Pasture, Range; Insect Resistance; Panicaceae - other; Pueraria; ... 9.0185

Glycine Max
TRIALS WITH NEW CROPS ... Management; Sesamum; Sorghum Vulgare (Grain); Triticum; ... 3.0009

FIELD TRIALS OF SOYA BEAN PRODUCTION ... Dry Monsoon 4 to 5 Months; Management; ... 3.0020

INTRODUCTION OF EXOTIC PLANTS ... Cocos; Disease Resistance; Insect Resistance; Phenology, Life Cycle; Plant Parts Bank; Triticum; ... 3.0028

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid; Management; ... 4.0182

STUDY OF INOCULATIONS OF RHIZOBIUM ON SOYA ... Continuous Humid; Inoculation; Nitrogen Fixation; Rhizobium; Soil Microbiology; ... 4.0198

VARIETAL EXPERIMENT WORK ON SOYA ... Humid 5 Months; Management; Multiple Cropping; ... 4.0211

VARIETAL EXPERIMENT WORK ON SOYA ... Ferralic Cambisols; Management; Multiple Cropping; Two Humid Seasons-7 Month, Plus; ... 4.0218

VARIETAL EXPERIMENT WORK ON SOYA ... Continuous Humid 7 Months, Plus; Management; Multiple Cropping; ... 4.0222

GRAIN LEGUME PHYSIOLOGICAL INVESTIGATIONS ... Breeding & Genetics; Management; Seed Bank; ... 9.0167

INSECTICIDE EVALUATIONS ON SOYBEANS - (GLYCINE MAX) ... Eutric Cambisols; Ferric Luvisols; Insecta; Insecticides - nonspecific; Oilseed Crops; Phytotoxicity; ... 9.0169

GRAIN LEGUME ENZYMATOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months, Plus; Ferric Luvisols; Insecta; Oilseed Crops; Phaseolus; Surveys; ... 9.0170

COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS ... Chemical Tillage or Nontillage; Continuous Humid 7 Months-Plus; Ferralic Cambisols; Ferric Luvisols; Management; Minimum Tillage; ... 9.0173

COWPEA AND SOYBEAN FERTILIZATION ... Continuous Humid 7 Months, Plus; Ferric Cambisols; Ferric Luvisols; Management; ... 9.0174

PLANT DENSITY ON COWPEAS AND SOYBEANS ... Continuous Humid 7 Months, Plus; Ferralic Cambisols; Ferric Luvisols; Management; Space Competition; ... 9.0175

SOIL MICROBIOLOGY ... Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides - nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; ... 9.0179

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT BEANS) UNDER IBADAN CONDITIONS ... Continuous Humid 7 Months, Plus; Dolichos; Leguminosae - other; Management; Phaseolus; Seed Bank; ... 9.0226

HYBRIDIZATION METHOD FOR SOYA BEANS ... Breeding & Genetics; Continuous Humid 7 Months, Plus; Hybrid Breeding - nonspecific; Pollination & Fertilization; ... 9.0228

VIRUS DISEASES OF SOYA BEAN ... Breed & Genetics; Continuous Humid 7 Months, Plus; ... 9.0227

SELECTION OF BEAN VARIETIES RESISTANT TO BEAN VIRUSES IN THE FIELD ... Breeding & Genetics; Inoculation; Plant Virus - general; Virus Resistance; ... 9.0244

PHYSICAL EVOLUTION OF THE SOIL UNDER CULTIVATION ... Core Samples; Soil Genesis; Soil Permeability; Sorghum Vulgare (Grain); ... 3.0020

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED ... Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Forosity; Sorghum Vulgare (Grain); ... 11.0029

INOCULATION OF SOYA BEAN SEEDS ... Inoculation; Management; Rhizobium; ... 11.0030

FERTILIZER EFFICIENCY STUDIES ON SOYA BEAN AND GROUNDNUTS ... Irrigation - general; Lime; Management; Nitrogen; Nitrogen Fixation; Phosphorus; ... 11.0074

UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS ... Irrigation - general; Lycopersicum; Management; Multiple Cropping; ... 14.0011

CHLOROSIS ON GROUNDNUTS AND LEGUMINOUS PLANTS ... Cajanus; Chlorosis; Nemagon; Phytopathology; Tephrosia; Tylenchoidea; ... 14.0015

BEHAVIOUR OF GROUNDNUTS PRUNED WITH SOYA AND SESAME ON THE VIRGIN SOILS OF THE VALLEY

SUBJECT INDEX

Plants - Dicots

Canavalia
GRAIN LEGUME ENZYMATOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months, Plus; Ferric Luvisols; Insecta; Oilseed Crops; Phaseolus; Surveys; ... 9.0170

Cassia
COMPARISON OF NURSERY TECHNIQUES FOR D A L B E R G I A AZADIRAC...
Plants - Dicots

OF THE VOLTAS . . . Management; Sesamum; Soil Types; . . . 14.0019

Leguminosae . . .

ESTABLISHMENT OF CLONE BANKS . . . Cedrela; Terminalia; Triplodon; . . . 3.0085

ASSESSMENT OF REGENERATION OF PERICOPIS
ELATA . . . Forests; Measurement of Trees & Stands; Silviculture; . . . 3.0090

ENRICHMENT PLANTING IN THE HIGH FOREST. USING
INDIGENOUS SPECIES WHOSE RATES OF GROWTH
HAVE BEEN SLOW UNDER NATURAL FOREST
TREATMENTS . . . Khaya; Silviculture; . . . 3.0091

THERMAL DECOMPOSITION OF WOOD CHARCOAL .
Charcoal; Forest Product Development; Industrial Operation;
Scrub Timber Utilization; Thermal Decomposition; Wood Chemistry; . . . 3.0108

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS
TO TERMITE ATTACK . . . Forsteytae; Isopota; Olacaceae; . . . 3.0233

NEMATOLOGICAL STUDY OF CHLOROSIS OF LEGUMINOUS
PLANTS AND OF STUNTING ('CLUMP') OF
GROUNDNUTS IN UPPER VOLTA . . . Cajanus; Chlorosis;
Phytopathology; Stunt Diseases; Tylenchidae; . . . 4.0073

STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION
OF THE COFFEE-SHRUB ROUBSTA . . . Cover Crops; Ferric; Green Manure; Management; Space Competition; Two Humid Seasons-7 Month;Plus; . . . 4.0106

STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION
OF THE COFFEE-SHRUB ROUBSTA . . . Cover Crops; Green Manure; Management; Space Competition; . . . 4.0125

GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS . . .
Cajanus; Continuous Humid 7 Months;Plus; Ferric; Livestocks;
Insecta; Oiled Seeds Crop; Phacelosol; Surveys; . . . 9.0170

SOIL CONSERVING CROPS . . . Cajanus; Continuous Humid 7 Months;Plus; Disease Resistance; Ferric; Cambisols; Forage Grasses; Pasture; Range; Insect Resistance; Pancicaceae-other; Puevratea; . . . 9.0185

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME
COMPATIBILITY STUDIES . . . Centrosema; Legume-grass Mixtures; Management; Proteins; Rhizobium; . . . 9.0214

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT
BEANS) UNDER IBADAN CONDITIONS . . . Continuous
Humid 7 Months;Plus; Dolichos; Glycine Max; Management; Phacelosol; Seed Bank; . . . 9.0226

HOST STATUS OF PRATYLENCHUS SPECIES . . . Nematode
Resistance; Phytopathology; Tylenchidae; . . . 9.0272

PLANTATION TRIALS . . . Eucalyptus; Humid 4 Months; Pinus;
Tectona; . . . 9.0350

INCREMENT RATES IN NATURAL SAVANNA WOODLAND .
Humid 4 Months; Measurement of Trees & Stands; Silviculture; . . . 9.0353

STUDY OF THE POSSIBILITIES OF REPLANTING OF WOODLAND IN THE WESTERN CENTRE OF SENEGAL
UTILIZING LOCAL FOREST SPECIES . . . Chromic Vertisols;
Fuel -wood; Humid 3 Months; Planting Methods; Silviculture; . . . 11.0119

PHYTO TECHNICAL STUDIES ON METHODS OF PLANTATION OF CACAO-TREES . . . Companion Cropping; Management;
Musa; Planting Methods-other; Shade; . . . 13.0022

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE . . . Cover Crops; Humid 1 Month; Livic Arenosols; Orthic Solonet; Vertic Cambisols; . . . 14.0067

Medicago

LOCAL LEAFMEAL AS SOURCES OF EG YOLK COLOUR . . .
Chicken, Domestic; Eggs; Production; Eggs; Management; Processing Feeds; . . . 3.0023

Mucuna

FORAGE CROP EXPERIMENTATION . . . Chlorideae-other;
Hot Equatorial or Hot Tropical; Management; Panicum; Sorg-
hum Vulgar (Forage); . . . 11.0002

Phaseolus

VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST
FREEZING . . . Crop Rotation; Cropping System; Freezing; Freezing; Lycopersicaceae; Vegetables; . . . 2.0006

FERTILIZER EFFICIENCY STUDIES ON BEANS (PHASEOLUS VULGARIS) AND COPEWA . . . Irrigation -general;
Management; Nitrates; Phosphorus; Soil pH; Timing of Application -other; . . . 3.0218

FOSSER CROP IMPROVEMENT . . . Digitaria; Forage; Pasture
or Range; Management; Paspalum; . . . 6.0005

ADAPTATION TRIAL ON VEGETABLE CROPS . . . Brassica
Oleraceae; Cucurbita; Lactuca; Management; Sprinkler Irrigation;
. . . 7.0005

GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS .
Cajanus; Continuous Humid 7 Months;Plus; Ferric Livestocks;
Insecta; Oiled Seeds Surveys; . . . 9.0170

NUTRIENT DETERMINATION IN THE MA TURE SEEDS
OF DIFFERENT VARIETIES OF BEANS . . . Extract Composition;
Globulins; . . . 9.0200

EVALUATION OF THE NUTRITIVE QUALITY OF BEANS . .
Feed Proteins & Amino Acids; Management; Nutritive Value
Of Food; Vegetable & Vegetable Products; . . . 9.0207

THE EFFECT OF GRASS-LEGUME MIXTURES ON HERBAGE
PRODUCTION AND CHEMICAL COMPOSITION AS
COMPARED WITH APPLICATION OF NITROGEN FERT
. . . Cynodon; In vitro Feed Studies; Management; Proteins; . . . 9.0208

OBSERVATION OF OTHER EDIBLE LEGUMES (EXCEPT
BEANS) UNDER IBADAN CONDITIONS . . . Continuous
Humid 7 Months;Plus; Dolichos; Glycine Max; Leguminosae-
other; Management; Seed Bank; . . . 9.0226

DEVELOPMENT OF IMPROVED CROPPING PATTERNS
FOR SMALL ASIAN RICE FARMS . . . Cereal Crops; Inter-
cropping; Management; Rain; . . . 10.0011

EXPERIMENT DURATION OF FALLOW . . . Fallowing;
Management; Sand; . . . 13.0048

Prosopis

EXPERIMENTS WITH FORAGE SHRUBS . . . Management;
Moisture Deficiency; Sand; . . . 8.0008

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH . . . Chromic Vertisols; Eucalyptus; Fuel -wood; Planting Methods -other; Shelter Belts, Windbreaks; Soil Depth; . . . 11.0118

STUDY OF THE POSSIBILITIES OF REPLANTING OF WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES . . . Chromic Vertisols; Fuel -wood; Humid 3 Months; Planting Methods; Silviculture; . . . 11.0119

STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOUM . . . Chlorine; Humid 3 Months; Silviculture; . . . 11.0139

STUDY THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER . . . Costs; Eucalyptus; Livic Arenosols; Soil Types; . . . 11.0140

Pueraria

REGENERATION OF THE SOILS AND FERTILIZATION IN
REPLANTATION . . . Management; Panciceae- other; Soil Structure; Two Humid Seasons; . . . 11.0148

IMPROVEMENT OF FORAGE PRODUCTION BY ASSOCIATED CULTIVATION OF GRAMINEAE AND OF LEGUMINOUS CROPS . . . Centrosema; Continuous Humid; Legume-grass Mixtures; Management; Melinideae; Sylanoxanthae; . . . 4.0023

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION . . . Continuous Humid; Irrigation; Management; Tripscum; . . . 4.0024

MINERAL NUTRITION AND FERTILIZATION OF YOUNG PLANTATIONS OF RUBBER TREES . . . Management; Sand; Soil Fertility; Two Humid Seasons; . . . 4.0233

MINERAL NUTRITION OF HIVEA - IMPROVEMENT OF
THE TECHNIQUES FOR INSPECTION OF MINERAL NUTRI
. . . Management; Soil Analysis; Two Humid Seasons; . . . 4.0241

CONTROL OF ORYCTES IN THE IVORY COAST . . . En-
tomology; Physiology; Insect Attractants; Population Dynamics; . . . 4.0272

SOIL CONSERVING CROPS . . . Cajanus; Continuous Humid 7 Months;Plus; Disease Resistance; Ferric Cambisols; Forage Grasses; Pasture; Range; Insect Resistance; Pancicaceae- other; . . . 9.0185

A MICROBIOLOGICAL APPROACH TO GRASS/LEGUME COMPATIBILITY STUDIES . . . Centrosema; Legume-grass Mixtures; Management; Melinideae; Proteae; . . . 9.0214

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION FALLING SEASON . . . Cynodon; Ferric Acricods; Legume-grass Mixtures; Organic Fertility; . . . 9.0250

418
Plants - Dicots

SUBJECT INDEX

INSECT PESTS ON FLOWERS, SEEDS AND SEEDLING OF FOREST TREES. . . Foresty Insects; Insects; Management; Quarantine &/or Inspection; Surveys; . . . 9.0094

SOLAR AND AIR DRYING OF TIMBER. . . Chlorophora; Costs; Energy Conversion; Instrumentation; Equipment; Solar Processes; Ulmaceae -other; Wood Preservation & Seasoning; . . . 9.0105

SURVEY OF THE MOISTURE CONTENT OF WOOD IN SERVICE IN NIGERIA. . . Composition; Nauclea; Triplochiton; Wood Preservation & Seasoning; . . . 9.0106

Meliaceae -other

PROTECTION OF WOOD AGAINST FIRE. . . Borax; Chemical Materials; Finishes of Textiles; Sapotaceae; . . . 3.0110

PHENOLOGY AND ECOLOGY OF THE SIPO (ENTANDROPHRAGMA UTILIS) - RHYTHM OF GROWTH IN NATURAL FOREST. . . Climate; Humid Equatorial; Dendrochronology; Phrenology; Life Cycle; Plant Morphology; . . . 4.0083

EXPERIMENTS ON SOURCES OF ORIGIN OF DIFFERENT SPECIES OF TREES FOR PLANTATION. . . Eucalyptus; Pinus; Tectona; Terminalia; Tree Breeding; Variation and Selection; . . . 4.0084

TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE - . . Foresty Insects; Insects -other; Taxonomy; Animal; . . . 9.0092

Moraceae

Chlorophora

STUDIES ON THE BIONOMICS OF POTENTIALLY DANGEROUS INSECTS ATTACKING INDIGENOUS PLANTATIONS OF ACCEPTED EXPORT TIMBER SPECIES. . . Forests; Population Dynamics; Pyralidae; Terminalia; . . . 3.0093

PROTECTION OF WOOD AGAINST FIRE. . . Borax; Chemical Materials; Finishes of Textiles; Meliaceae -other; Sapotaceae; . . . 3.0110

BREEDING FOR RESISTANCE TO VARIOUS PESTS AND DISEASES. . . Insect Resistance; Nauclea; Terminalia; . . . 9.0076

SOLAR AND AIR DRYING OF TIMBER. . . Costs; Energy Conversion; Instrumentation; Equipment; Solar Processes; Ulmaceae -other; Wood Preservation & Seasoning; . . . 9.0105

Myristicaceae

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK. . . Foresty Insects; Isoptera; Leguminosae -other; Olacaceae; . . . 3.0233

Myrtaceae

Eucalyptus

FIELD TEST OF TREATED ROUND POSTS FOR FENCING. . . Fencing; Tectona; Wood Preservation & Seasoning; . . . 3.0099

EXPERIMENTS ON SOURCES OF ORIGIN OF DIFFERENT SPECIES OF TREES FOR PLANTATION. . . Meliaceae -other; Pinus; Tectona; Terminalia; Tree Breeding; Variation and Selection; . . . 4.0084

COMPARATIVE PLANTATION OF DIFFERENT SPECIES OF EUCALYPTUS OF DIFFERENT ORIGINS. . . Humid 1 Month; Luec Arenosols; Variation and Selection; . . . 8.0011

EXPERIMENT WITH EUCALYPTUS CAMALDULENSIS OF DIFFERENT ORIGINS. . . Humid 1 Month; Luec Arenosols; Variation and Selection; . . . 8.0012

EXPERIMENT ON MANUAL TILLAGE BEFORE PLANTATION. . . Hand Tillage; Humid 1 Month; Luec Arenosols; Silviculture; . . . 8.0013

EXPERIMENT ON THE SPACING OF EUCALYPTUS. . . Humid 1 Month; Luec Arenosols; Silviculture; Space Competition; . . . 8.0014

STUDY OF EUCALYPTUS - SOIL RELATIONSHIP. . . Humid 1 Month; Luec Arenosols; Silviculture; . . . 8.0015

INTRODUCTION OF EUCALYPTUS. . . Humid 1 Month; Luec Arenosols; Variation and Selection; . . . 8.0017

GROWING EUCALYPTUS FROM CUTTINGS. . . Humid 1 Month; Light Quantity or Intensity; Luec Arenosols; Mist Irrigation; Silviculture; Soil Environment -other; . . . 8.0019

FOREST TREES ESTABLISHMENT TRIALS. . . Boraginaceae; Lime; Silviculture; . . . 9.0063

GROWTH PATTERN OF IMPORTANT TIMBER TREE SPECIES. . . Cedrela; Gymelina; Measurement of Trees & Stands; Osmotic and Turgor Pressure; Rain; Soil Moisture; Tectona; . . . 9.0079

HYBRIDIZATION IN EUCALYPTUS. . . F Generation (F1, F2, F3, etc); Humid 4 Months; Pricking Out; Silviculture; Tree Breeding; . . . 9.0341

FOREST TREES PROVENANCE TRIALS. . . Humid 4 Months; Pinus; Tectona; Variation and Selection; Wood Structure & Properties; . . . 9.0342

COMPARISON OF POTTING MIXTURES FOR NURSERY STOCK. . . Dowltume Cphs; Inoculation; Mycorrhiza; Nursery Observational Plots; Sand; Soil Potting Mixture; . . . 9.0345

TYPE AND SIZE OF CONTAINERS FOR RAISING NURSERY STOCK. . . Nursery Observational Plots; Packaging Materials; Physical Properties; Radiation Effects; Silviculture; . . . 9.0346

EFFECT OF REMOVAL, PARTIAL REMOVAL AND NON-REMOVAL OF POLYTENE POTS ON PLANTATION SPECIES. . . Foresty Insects; Humid 4 Months; Isoptera; Pinus; Planting Methods -other; Silviculture; . . . 9.0348

PLANTATION TRIALS. . . Humid 4 Months; Pinus; Tectona; . . . 9.0350

ESTABLISHMENT OF SEED ORCHARDS. . . Humid 4 Months; Pinus; Seed Nurseries; Silviculture; Variation and Selection; . . . 9.0351

CULTIVATION AND WEEDING METHODS IN PLANTATIONS. . . Costs; Hand Tillage; Mechanical Control; Pinus; . . . 9.0356

WATER STRESS IN RELATION TO GROWTH AND SURVIVAL IN SEEDLINGS OF EUCALYPTUS AND SOME INDOGENOUS SAVANNA SPECIES. . . Humid 4 Months; Moisture Budgets; Moisture Deficiency; Passon; Plant Requirements -water; Silviculture; . . . 9.0359

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH. . . Chromic Vertisols; Fuel -wood; Planting Methods -other; Shelter Belts, Windbreaks; Soil Depth; . . . 11.0118

STUDY OF THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOM. . . Chlorine; Humid 3 Months; Prosopis; Silviculture; . . . 11.0139

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER. . . Costs; Luec Arenosols; Prosopis; Soil Types; . . . 11.0140

SILVICULTURAL RESEARCH WORK IN AN ARID ZONE - EXPERIMENT ON THE INTRODUCTION OF EXOTIC SPECIES. . . Fuel -wood; Humid 1 Month; Luec Arenosols; Moisture Deficiency; Silviculture; Wind Erosion; . . . 11.0142

EXPERIMENTS WITH FERTILIZERS IN PLANTATIONS OF EUCALYPTUS CAMALDULENSIS. . . Phosphates; Potassium; Silviculture; Sulfates; Sulfur; . . . 13.0019

TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS. . . Giecly Lucivos; Lithosols; Silviculture; . . . 14.0006

EXPERIMENT FOR SELECTION BY ELIMINATION OF SPECIES OF EUCALYPTUS. . . Dystic Nitosols; Ferric Lithosols; Giecly Lucivos; Humid 4 Months; Variation and Selection; . . . 14.0039

Paidium

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. . . Dystric Nitosols; Mangifer; Persca; Two Humid Seasons; . . . 1.0011

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. . . Dystric Nitosols; Mangifer; Persca; Two Humid Seasons; . . . 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. . . Dystric Nitosols; Management; Passiflora; Plant Virus -general; Sapotaceae; . . . 1.0071

STUDY OF THE POSSIBILITIES OF ORCHARD - SOUDANO-GUINEAN ZONE - Dystric Nitosols; Management; Passiflora; Plant Virus -general; Sapotaceae; . . . 1.0075

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS. . . Chenopodiaceae; Guttiferae; Olea; Sapindaceae; . . . 5.0030

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. . . Eutric Fluvisols; Humid 4 Months; Mangifer; Passiflora; . . . 6.0000

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHELO-SOUDANIAN). . . Eutric Cambisols; Management; Passiflora; Plant Virus -general; Soil Moisture; . . . 8.0024

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE. . . Bromeliaceae; Environments; Plant; Luec Arenosols; Mangifer; . . . 11.0143

420
SUBJECT INDEX

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Oleaceae; Dicots; Management; Mussa; Persea; . . . 11.0144

Olacaceae

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK... Forest Insects; Isoperta; Logmiinoae - other; . . . 3.0233

Oleaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS... Chenopodiaceae; Guttiferae; Psidium; Sapindaceae; . . . 3.0020

Passifloraceae

Passiflora

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Dystric Nitosols; Mangifera; Persea; Psidium; Two Humid Seasons; . . . 1.0011

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Dystric Nitosols; Mangifera; Psidium; Psidium; Two Humid Seasons; . . . 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Dystric Nitosols; Management; Plant Virus -general; Sapindaceae; . . . 1.0071

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSIFLORA... Capsicum; Mosaic Viruses; Phytopathology; Plant Virus -general; Vectors; Viral Transmission; . . . 4.0077

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST... Climate; Humid Equatorial; Management; Physiophthora; . . . 4.0155

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS... Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae; . . . 5.0020

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Eutric Fluvisols; Humid 4 Months; Mangifera; Psidium; . . . 6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Bremeliaceae; Dystric Nitosols; Environments; Plant; Management; Mussa; Persea; . . . 11.0144

Pedaliaceae

Seussam

TRIALS WITH NEW CROPS... Glycine Max; Management; Sorghum Vulgare (Grain); Triticum; . . . 3.0009

SESAME INVESTIGATION... Fats - Lipids & Oils; Management; Space Competition; Timing of Planting Procedures; . . . 3.0158

INTRODUCTION OF EXOTIC PLANTS... Cocoa; Disease Resistance; Insect Resistance; Phenology, Life Cycle; Plant Parts Bank; Triticum; . . . 3.0268

CULTIVATION OF GROUNDNUTS IN ANACARDIUM (CAWSH NUT) PLANTATION DURING THE FIRST FEW YEARS OF DEVELOPMENT OF THE TREE... Costis; Intercropping; Management; . . . 14.0010

UTILIZATION OF OLEAGINOUS ANNUALS ON IRRIGATED PERIMETERS... Glycine Max; Irrigation -general; Lycopersicon; Management; Multiple Cropping; . . . 14.0011

IMPROVEMENT OF SESAME BY HYBRIDATION... Breeding & Genetics; Fats - Lipids & Oils; Hybrid Breeding - non-specific; . . . 14.0012

VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS... Cajanus; Falling; Management; Solanum; . . . 14.0013

Plants - Dicots

BEHAVIOUR OF GROUNDNUTS ROTATED WITH SOYA AND SESAME ON THE VIRGIN SOILS OF THE VALLEY OF THE VOLTA... Glycine Max; Management; Soil Types; . . . 14.0019

CULTIVATION TECHNIQUES FOR SESAME... Management; Planting Methods - other; Row Application; Side Dressing; . . . 14.0021

Piperaceae

MOISTURE CONTENT - RELATIVE HUMIDITY EQUILIBRIA OF SOME GHANAIAN FOODSTUFFS... Cereal Products; Drying; Manihot; . . . 3.0214

IMPROVEMENT OF PEPPERS (PIPER NIGRUM)... Breeding & Genetics; Spices & Bever; Phytopathology; Plant Virus -general; Virus Resistance; . . . 9.0038

Punicaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS... Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae; . . . 5.0020

Rhamnaceae

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 4 Months; Mangifera; Psidium; . . . 6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

Rosaceae

LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLS... Crop Contribution to Soil Fert; Falling; Manihot; Orthic Ferralsols; Pueraria; Soil Analysis; . . . 9.0366

Fragaria

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE... Eutric Fluvisols; Humid 4 Months; Mangifera; Psidium; . . . 6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN)... Carica; Humid 1 Month; Mangifera; Psidium; . . . 7.0006

Rubiacae

THE NATURAL RESISTANCE OF GHANAIAN TIMBERS TO TERMITE ATTACK... Forest Insects; Isoperta; Logmiinoae - other; Oleacaceae; . . . 3.0233

Nauclea

FOREST TREES ESTABLISHMENT TRIALS... Boraginaceae; Eucalyptus; Lime; Silviculture; . . . 9.0063

SILVICULTURE - THINNING AND SPACING TRIALS... Gmelina; Silviculture; Space Competition; Tectona; Terminalia; . . . 9.0064

PREPARATION OF VOLUME TABLES FOR THE MAIN TIMBER CROP SPECIES... Gmelina; Measurement of Trees & Stands; Tectona; Terminalia; . . . 9.0068

CONSTRUCTION OF GROWTH AND YIELD TABLES FOR EVEN-AGED TREE CROPS... Gmelina; Site Index and Site Quality; Terminalia; . . . 9.0069

SELECTION AND TESTING OF OUTSTANDING TREES OF IMPORTANT PLANTATION SPECIES... Gmelina; Plant Parts Bank; Tectona; Variation and Selection; . . . 9.0074

BREEDING FOR RESISTANCE TO VARIOUS PESTS AND DISEASES... Chlorophora; Insect Resistance; Terminalia; . . . 9.0076

STUDY OF BIOLOGY AND CONTROL OF BORERS... Forest Insects; Lepidoptera - other; Population Dynamics; Surveys; Terminalia; Triplochiton; . . . 9.0093

STUDY OF PROPERTIES AND CHARACTERISTICS OF PLANTATION GROWTH... Gmelina; Joining & Bolting; Physical Properties; Terminalia; Wood Preservation & Seasoning; Xylem; . . . 9.0096

NIGERIAN GROWN SPECIES FOR TRANSMISSION POLES... Construction Materials; Electric Power Transmission; Wood; Wood Structure & Properties; . . . 9.0099
Plants - Dicots

SUBJECT INDEX

Scrophulariaceae

SORGHUM CROP PROTECTION ... Cereal Crops; Rearing of Insects; Seedling Diseases -nonspecific; Smuts; Tettigoniidae; ... 9.0159

Solanaceae

Capsicum

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSIFLORA; ... 1.0070

Lycopersicum

VEGETABLE VARIETY TRIALS FOR CANNING OR BLAST FREEZING ... Crop Rotation, Cropping System; Freezing; Phaseolus; Vegetable & Vegetable Products; ... 2.0066

COMPOSTING OF SAWDUST ... C/N Ratio; Compost; Management; Organic Soils; Sawdust Utilization; ... 3.0100

INVESTIGATION INTO THE BIOLOGY AND CONTROL OF ROOT-KNOT NEMATODES ON SOME CROPS ... Continuous Humid 7 Months,Plus; Culturing Techniques; DD; Nematodes; Population Dynamics; ... 3.0128

EVALUATION OF CERTAIN FUNGICIDES FOR THE CONTROL OF SCLEROTIUM ROLFSII ON VEGETABLES AND LEGUMES ... Continuous Humid 7 Months,Plus; Sclerotium; Selectivity of Pesticides; ... 3.0132

VEGETABLE PESTS AND EVALUATION OF INSECTICIDES FOR THEIR CONTROL ... Continuous Humid 7 Months,Plus; Pulse Crops; Surveys; ... 3.0133

TOMATO VARIETY TRIAL ... Continuous Humid 7 Months,Plus; Management; Rain; Timing of Planting Procedures; ... 3.0149

TOMATO BREEDING ... Breeding & Genetics; Cobalt; Continuous Humid 7 Months,Plus; Disease Resistance; Mutation; ... 3.0150

TOMATO - COWPEA ROTATION ... Continuous Humid 7 Months,Plus; Crop Rotation, Cropping System; Management; Plant Nematodes -nonspecific; ... 3.0151

STUDY OF THE PARASITIC FUNGI OF MARSHLAND CROPS - ANNUAL AND GEOGRAPHICAL VARIATION OF THE MYCOFLORA ... Fungal Resistance; Phytophthora; Marsh; Surveys; ... 4.0066

ADAPTATION TRIAL ON VEGETABLE CROPS ... Brassica Oleracea; Cucurbita; Lactuca; Management; Sprinkler Irrigation; ... 7.0008

LEAFY AND FRUIT VEGETABLE IMPROVEMENT ... Breeding & Genetics; Continuous Humid 7 Months,Plus; Disease Resistance; Ferralic Cambisols; ... 9.0164

INCORPORATION OF LEAFY AND FRUIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS ... Capsicum; Continuous Humid 7 Months,Plus; Ferralic Cambisols; ... 9.0165

PESTS OF OKRA, TOMATOES AND PEPPERS ... Insecticides -nonspecific; Surveys; Vegetables; ... 9.0261

NEMATODES OF VEGETABLES ... DD; Lycopersicum; Nemagon; Nematode Resistance; Phytopathology; Tylenchoidea; ... 9.0265

Psidium; Two Humid Seasons; ... 9.0267

CVALESCEAE

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Chenopodiaceae; Guttaefera; Olea; Psidium; ... 3.0127

INTRODUCTION OF EXOTIC PLANTS ... Cocos; Disease Resistance; Insect Resistance; Phenology; Life Cycle; Plant Parts; Bank; Triticum; ... 3.0208

STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate- Continental Savanna; Pests & Oils; Fruits and Berries; Quality and Utilization; ... 4.0156

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Dyrrch Nitosols; Management; Passiflora; Psidium; ... 3.0064

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Dyrrch Nitosols; Management; Psidium; ... 3.0114

ECOLOGICAL STUDY OF THE ORCHARD - Sub-Arid Zone (Saharo-Sahelian) ... Carica; Humid 1 Month; Mangifera; Psidium; ... 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - Sub-Arid Zone (Sahelo-Soudanian) ... Eutric Cambisols; Management; Psidium; Plant Virus -general; Soil Moisture; ... 8.0034

PESTS OF CITRUS ... Coccoidea; Ecology, Animal; Fruits and Berries; Nocuidae; ... 9.0259

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Rumex; Environment; Plant, Lycopersicum; Mangifera; Psidium; ... 11.0143

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Bromeliaceae; Dyrrch Nitosols; Environment; Plant, Management; Musa; Psidium; ... 11.0144

Sapindaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Chenopodiaceae; Guttaefera; Olea; Psidium; ... 5.0020

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Dyrrch Nitosols; Mangifera; Psidium; ... 1.0071

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Dyrrch Nitosols; Mangifera; Psidium; ... 1.0070

PROTECTION OF WOOD AGAINST FIRE ... Borax; Chemical Materials; Finishes of Textiles; Meliaceae -other; ... 3.0110

STUDY OF THE POSSIBILITIES OF FRUIT CROPS IN THE LOWER IVORY COAST ... Climate- Humid Equatorial; Management; Psidium; ... 4.0155

Rutaceae

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS ... Chenopodiaceae; Guttaefera; Olea; Psidium; ... 5.0020

CITRUS

ECOLOGICAL STUDY OF THE ORCHARD - Soudano-Sudanian Zone ... Dyrrch Nitosols; Management; Passiflora; Psidium; ... 3.0064
PHYTOSANITARY PROTECTION

SOUDANO-SUB-ARID SOIL PRODUCTION OF LEGUME MIXTURES ON HERBIMPROVEMENT

SOUDANIAN IMPROVEMENT

Cyperus Rotundus
Andropogoneae - other

STUDIES ON PLANT PARASITIC NEMATODES AS THE FEEDING

ECOLOGICAL STUDY OF

ECOLOGICAL STUDY OF

ECOLOGICAL STUDY OF

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. Eutric Fluvisols; Humid 4 Months; Mangifera; Passiflora; Paidium; ... 6.0004

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHARO-SAHLIAN) Carya; Humid 1 Month; Mangifera; Passiflora; ... 7.0006

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHELO-SOUDANIAN) Eutric Cambisols; Centrosema; Forage Grasses; Forage,... 8.0024

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. Environments, Plant; Luvic Arenosols; Mangifera; Passiflora; Paidium; ... 11.0143

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE. Dystric Nitosols; Environments, Plant; Management; Musa; Pteris; ... 11.0144

Cyperaceae

FLORA OF NIGERIA. Floras; Grass - nonspecific; Malvaceae; Publications; Taxonomy; Plant; ... 9.0084

Cyperus Rotundus

HERBICIDE EXPERIMENTS WITH COTTON ON ALLUVIALLY DISTRIBUTED SOILS ... Grass - nonspecific; Herbicides - nonspecific; ... 8.0048

Scirpus

AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOWLAND AND UPLAND RICE. Bentazon; D, 2, 4; Drought Resistance; Grass - nonspecific; Irrigation - general; Pesticides - other; Rice; ... 10.0001

Gramineae

Andropogon

GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION. Centrosema; Foundation Seed; Panicum; Centrosema; Digitaria; Forage Grasses; Forage, Pasture or Range; In Vitro Feed Studies; Legume-grass Mixtures; ... 3.0023

PRODUCTIVITY OF GRASS/LEGUME PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES Centrosema; Digitaria; Forage Grasses; Forage, Pasture or Range; In Vitro Feed Studies; Legume-grass Mixtures; ... 3.0025

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) ... Bran; Digitaria; In Vivo - see Also Feed Rations; Wheat; ... 3.0039

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION Continuous Humid; Irrigation; Management; Pueraria; Tripsacum; ... 4.0024

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION FALLOWING ... Centrosema; Cyanodon; Ferric Acrasil; Legume-grass Mixtures; Organic Fertility; Pueraria; ... 9.0020

Andropogoneae - other

FOOD CROP IMPROVEMENT ... Digitaria; Forage, Pasture or Range; Management; Paspalum; ... 6.0045

CONTROL OF WEEDS ON IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAEMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS ... Grasses or Sedges; Humid 1 Month; Oryza - other; ... 6.0050

Avena Sativa

STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA ... Coco; Mangifera; Nicotiana; Saccharum; ... 3.0127

Brachiaria

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION Continuous Humid; Irrigation; Management; Pueraria; Tripsacum; ... 4.0024

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND Depth: Water Level Fluctuation; Excessive Moisture; Marsh; Panicum; Stylosanthes; ... 4.0026

Chloridium -other

FOOD CROP EXPERIMENTATION ... Hot Equatorial or Hot Tropical; Management; Mucuna; Panicum; Sorghum Vulgare (Forage); ... 11.0002

Cynodon

NUTRITIVE VALUE OF DIGITARIA DECUMBENS AND CYNODON PLECTOSTACHYUS IN ADMIXTURE WITH CENTROSEMA PUBESCENTS Centrosema; Digitaria; Forage Legumes; In Vitro Feed Studies; ... 3.0023

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) Bran; Digitaria; In Vivo - see Also Feed Rations; Wheat; ... 3.0039

SOIL CONSERVING CROPS ... Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses, Pasture, Range; Insect Resistance; Paniceae - other; Pueraria; ... 9.0185

THE EFFECT OF GRASS - LEGUME MIXTURES ON HERBAGE PRODUCTION AND CHEMICAL COMPOSITION AS COMPARED WITH APPLICATION OF NITROGEN PERT ... In Vitro Feed Studies; Management; Proteins; ... 9.0020

MEDIUM TERM SOIL FERTILITY TRIAL - SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION FALLOWING ... Centrosema; Ferric Acrasil; Legume-grass Mixtures; Organic Fertility; Pueraria; ... 9.0025

BASIC SLAG AND SINGLE SUPERPHOSPHATE AS PHOSPHATIC FERTILIZERS ... Continuous Humid 7 Months, Plus; Ferric Acrasil; Management; Soil pH; ... 9.0025

Digitaria

GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION ... Centrosema; Foundation Seed; Panicum; Management; ... 3.0022

NUTRITIVE VALUE OF DIGITARIA DECUMBENS AND CYNODON PLECTOSTACHYUS IN ADMIXTURE WITH CENTROSEMA PUBESCENTS Centrosema; Forage Legumes; In Vitro Feed Studies; ... 3.0023

PRODUCTIVITY OF GRASS/LEGUME PASTURES AGAINST PURE STANDS OF GRASSES AND LEGUMES Centrosema; Forage Grasses; Forage, Pasture or Range; In Vitro Feed Studies; Legume-grass Mixtures; ... 3.0025

THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) ... Bran; In Vivo - see Also Feed Rations; Wheat; ... 3.0039

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND ... Brachiaria; Depth: Water Level Fluctuation; Excessive Moisture; Marsh; Panicum; Stylosanthes; ... 4.0026

FOOD CROP IMPROVEMENT ... Forage, Pasture or Range; Management; Paspalum; ... 6.0045

Echinocloa

CULTIVATION OF FORAGE CROPS ... Irrigation - general; Management; ... 8.0007

Grass - nonspecific

THE PRODUCTIVITY OF IRRIGATED PASTURES ... Dry Monsoon 4 to 5 Months; Irrigation; Irrigation - general; Management; ... 3.0016

DRIY MATTER YIELD ASSESSMENT OF LOCAL AND EXOTIC GRASS SPECIES ... Forage Grasses; Forage, Pasture or Range; In Vitro Feed Studies; ... 3.0026

STUDY OF THE GERMINATIVE CAPACITY OF WEED SEEDS ... Continuous Humid; Germination; Grasses or Sedges; Physiology of Weeds; ... 4.0157

HERBICIDE EXPERIMENTS WITH COTTON ON ALLUVIALLY DISTRIBUTED SOILS ... Cyperus Rotundus; Herbicides - nonspecific; ... 8.0048

PRE-PLANTING HERBICIDE TRIAL ON RICE ... Dalapon; Humid 6 Months; Planation; ... 9.0006

THE SOIL-PLANT SYSTEM IN RELATION TO THE INORGANIC NUTRITION OF HERBAGE GRASSES IN NI-
IMPROVEMENT AND 7 Month.Plus; ...
AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOW-LAND AND UPLAND RICE … Bentazon; D, 2,4; Drought Resistance; Irrigation -general; Pesticides -other; Rain; … 10.0010
CULTIVATION OF FORAGE CROPS … Forage Grasses; Forage, Pasture or Range; Leguminoseae; … 11.0081

Hordeum Vulgare
MALT PRODUCTION FROM LOCAL GRAINS … Beer; Cereal Crops; Enzyme Kinetics; Malting Food; Sorghum Vulgare (Grain); … .90.0057
RESEARCH ON WHEAT AND BARLEY … Baking Food; Irrigation; Management; Triticum; … .11.0006

Melinidiae
IMPROVEMENT OF FORAGE PRODUCTION BY ASSOCIATED CULTIVATION OF GRAMINIDAE AND OF LEGUMINOSA CROPS. … Centrosema; Continuous Humid; Legume-grass Mixtures; Management; Pueraria; Stylosanthes; … .4.0023
STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND … Brachiaria; Depth-Water Level Fluxuation; Excessive Moisture; Marsh; Panicum; Stylosanthes; … .4.0026
SOIL CONSERVING CROPS … Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses; Pasture, Range; Insect Resistance; Panicaceae -other; Pueraria; … .9.0185
FORAGE CROP EXPERIMENTATION … Chlorideae -other; Hot Equatorial or Hot Tropical; Management; Mucuna; Panicum; Sorghum Vulgare (Forage); … .11.0002

Oryza -other
FLUCTUATION AND VARIABILITY OF THE FACTORS OF RESISTANCE TO DROUGHT IN THE GENUS ORYZA … Breeding & Genetics; Continuous Humid; Drought Resistance; Humidity; Plant Parts Bank; … .4.0172
CONTROL OF WEEDS ON IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAEMUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS … Grasses or Sedges; Humid 1 Month; … .6.0050
ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA) … Cereal Crops; Cutting Sequences; Brachiaria; Grasses or Sedges; Management; … .6.0063
STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVILIGULATA AND O. LONGISTAMINATA … Dormancy. Non-dry 3 Months, Plus; Physiology of Weeds; Soil Depth; … .6.0064

Panicaceae -other
STUDY OF THE NUTRITION, IN WATER, OF THE OIL PALM … Cover Crops; Leguminoseae; Moisture Deficiency; Two Humid Seasons; … .1.0075
REGENERATION OF THE SOILS AND FERTILIZATION IN REPLANTATION … Management; Soil Structure; Two Humid Seasons; … .1.0076
SOIL CONSERVING CROPS … Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses, Pasture, Range; Insect Resistance; Pueraria; … .9.0185
FORAGE CROP EXPERIMENTATION … Chlorideae -other; Hot Equatorial or Hot Tropical; Management; Mucuna; Panicum; Sorghum Vulgare (Forage); … .11.0002
INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE ROTATION SYSTEM … Ferric Luvicelsols; Management; Production and Processing; Sorghum Vulgare (Grain); … .14.0052

Panicum
GRASS AND LEGUME SEED - IMPROVEMENT AND MULTIPLICATION … Centrosema; Foundation Seed, Setaria; … .3.0022
THE FEEDING OF WHEAT BRAN TO CATTLE (SOME OBSERVATIONS ON FATTENING MATURE CATTLE ON WHEAT BRAN AND BAGASSE) … Brac; Digitaria; In Vivo-see Also Feed Rations, Wheat; … .3.0039

CORRELATION OF SOIL TEST METHODS WITH CROP YIELDS (MILLET AND GUINEA CORN) … Extract Com­ position; Management; Soil Analysis; Soil Testing; … .3.0228
EXPERIMENT ON FATTENING N'DAMA STEERS IN THE KRAAL, STARTED AT DIFFERENT AGES ... Cattle Rations; Continuous Humid; Cottonseed Oilmeal, Etc; Management; … .4.0014
UTILIZATION OF MOLASSES FOR RAPID FATTENING OF 4-YEAR-OLD N'DAMA CATTLE … Carcass Evaluation; Concentrates; Cottonseed Oilmeal, Etc; Green-chop; Management; Stylosanthes; … .4.0016
CROSSBREEDING JERSEY N'DAMA, FATTENING OF BEEF QUALITY JERSEY N'DAMA CRossbred CATTLE … Carcass Evaluation; Cottonseed Oilmeal, Etc; In Vivo-see Also Feed Rations; Manihot; … .4.0019
EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION … Continuous Humid; Irrigation, Management; Pueraria; Tripsacum; … .4.0024
STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND … Brachiaria; Depth-Water Level Fluxuation; Excessive Moisture; Marsh; Panicum; Stylosanthes; … .4.0026
VARIATION IN THE FOOD VALUE OF FORAGE PLANTS ACCORDING TO THE RHYTHM OF PRODUCTION … Cellulesor; Irrigation -general; Stylosanthes; … .6.0028
STUDY OF THE ESTABLISHMENT OF PASTURES OF PANICUM MAXIMUM … Breeding & Genetics; Carrying Capacity -pasture; Ecotypes; Irrigation -general; … .4.0029
BIOLOGICAL PROBLEMS IN THE IMPROVEMENT OF PANICUM MAXIMUM … Breeding & Genetics; Interspecific Cross; Metabolic Expression; Parthenocarpy; … .4.0054
STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST … Dorylaimoidea; Interpathological Relationship; Plant Virus -general; Vectors; … .4.0057
IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM … Phytopathology; Plant Virus -general; Soilborne; Vectors; Viral Transmission; … .4.0074
FOOD CROP IMPROVEMENT … Digitaria; Forage, Pasture or Range; Management; Paspalum; … .6.0045
SOIL CONSERVING CROPS … Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses, Pasture, Range; Insect Resistance; Panicaceae -other; Pueraria; … .9.0185
TO STUDY THE MICRORIAL CONTRIBUTION TO THE NITROGEN ECONOMY OF FALLOWS … Fallowing; Management, Nitrification; Soil Microbes; … .9.0219
MEDIUM TERM SOIL FERTILITY TRIAL … SOIL PRODUCTIVITY RESTORATIVE POWERS OF MEDIUM DURATION FOLLOWING … Centrosema; Cynodon; Ferric Acitrivisols; Legume-grass Mixtures, Organo; Fertility; Pueraria; … .9.0250
LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL IRRI­ TIVE BRACHIARIA, GRASS AND LEGUME FALLOWS … Crop Contribution to Soil Fert; Fallowing; Manihot; Orthic Ferralsols; Pueraria; Soil Analysis; … .9.0366
FORAGE CROP EXPERIMENTATION … Chlorideae -other; Hot Equatorial or Hot Tropical; Management; Mucuna; Sorghum Vulgare (Forage); … .11.0002

Paspalum
FOOD CROP IMPROVEMENT … Digitaria; Forage, Pasture or Range; Management, Paspalum; … .6.0045
SOIL CONSERVING CROPS … Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferralic Cambisols; Forage Grasses, Pasture, Range; Insect Resistance; Panicaceae -other; Pueraria; … .9.0185

Saccharum
SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS … Blaeda; Growth Stage of Plant; Simazine; Space Competition; Sulfates; … .3.0006
NPK FACTORIALS - FERTILIZER TRIAL IN SUGARCANE … Formulation, Fertilizer, Irrigation; Irrigation -general; Management, Two Humid Seasons-7 Months,Plus; … .3.0112
TREATMENT OF SUGARCANE PLANTING METHOD … Dip Application; Management; Pesticides -other; Two Humid Seasons-7 Month,Plus; Water; … .3.0113
SUGARCANE VARIETY STUDIES … Excessive Moisture; Management; Sucrose; Two Humid Seasons-7 Month,Plus; … .3.0114

SUBJECT INDEX
Plants - Monocots

TYPE OF PLANTING MATERIAL AND SPACING TRIALS IN SUGAR CANE... Management; Space Competition; Two Humid Seasons 7 Month, Plus;... 3.0105

CHEMICAL WEED CONTROL IN SUGAR CANE... Pensac; Grasses or Sedges; Pesticides -other; Sugar Crops;... 3.0116

STUDIES ON PLANT PARASITIC NEMATODES ASSOCIATED WITH ECONOMIC CROPS IN GHANA... Cocot, Mangifera; Nicotiana;... 3.0127

INVESTIGATIONS INTO THE CONTROL OF SUGAR CANE NEMATODES... Burning or Flaming; Molasses; Phytopathology; Sugar Derivatives;... 3.0129

INVESTIGATIONS INTO THE BIOMONICS AND CONTROL OF INSECT PESTS ON SUGAR CANE... Cambidiae; Dip Application; Isopother; Toxaphene;... 3.0135

SUGARCANE AGRONOMIC INVESTIGATIONS... Continuous Humid 7 Month, Plus; Insect Resistance; Management;... 3.0154

EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE (Canna)... Eutric Cambisols; Humid 1 Month; Management;... 3.0168

VARIEL EXPERIMENTS ON SUGAR-CANE... Breeding & Genetics; Eutric Cambisols; Humid 1 Month; Vertic Cambisols,... 3.0171

SUGAR CANE NITROGEN FERTILIZER TRIAL... Management; Sulfates;... 9.0001

SURVEY AND ASSESSMENT OF SMUT AND BLAST DISEASES OF SUGAR CANE... Blast; Fungal Resistance; Phytopathology; Smuts; Surveys; Ustilaginales;... 9.0240

PESTS OF SUGAR CANE... Cambidiae; Outbreaks of Insects; Sugar Crops; Surveys;... 9.0263

Setaria

GRASS AND LEGUME SEED... Improvement and Multiplication... Centrosema; Foundation Seed; Panicum;... 3.0202

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND... Brachiaria; Depth; Water Level Fluctuation; Excessive Moisture; Marsh; Panicum; Styllosanthes;... 4.0026

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN... Humid 1 Month; Management;... 6.0053

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORGHUM... Cereal Crops; Fiber Crops; Oilseed Crops; Preemerge Application; Pulse Crops; Sorghum Vulgare (Grain);... 14.0027

IMPROVEMENT OF THE LOCAL SMALL MILLET BY PRODUCTION OF SYNTHETIC VARIETIES... Breeding & Genetics; Fungal Resistance; Lodging;... 14.0029

SHORTENING OF THE STRAW OF THE LOCAL MATERIAL... Small Millet... Back Cross; Breeding & Genetics; Ferric Luvisols; Fungal Resistance; Humid 3 Month;... 14.0033

Sorghum Vulgare (Forage)

PRODUCTION OF SORGHUM AS A GRAIN AND PODDER CROP FOR LIVESTOCK... Dry Monsoon 4 to 5 Months; Forage, Pasteure or Range; Grain Sorghum, Milo; Sorghum Vulgare (Grain);... 3.0018

FORAGE CROP EXPERIMENTATION... Chlorideae -other; Hot Equatorial or Hot Tropical; Management; Mucuna; Pani­cum;... 11.0002

Sorghum Vulgare (Grain)

NITROGEN BALANCE IN TROPICAL SOILS... C/N Ratio;... 3.0000

NITROGEN BALANCE IN TROPICAL SOILS... C/N Ratio; Ferric Luvisols; Humid 5 Months; Management;... 1.0040

OBTAINMENT OF SORGHUM HYBRIDS OF AMERICAN-DAHOMY TYPE WITH SHORT STRAW... Breeding & Genetics; Ferric Luvisols; Humid 5 Months; Lodging; Seling;... 1.0041

IMPROVEMENT OF SORGHUM, MILLET AND MAIZE PRODUCTION... Management; Manure; Space Competition;... 2.0001

TRIALS WITH NEW CROPS... Glycine Max; Management; Sesamum; Triticum;... 3.0009

PRODUCTION OF SORGHUM AS A GRAIN AND PODDER CROP FOR LIVESTOCK... Dry Monsoon 4 to 5 Months; Forage, Pasteure or Range; Grain Sorghum, Milo; Sorghum Vulgare (Forage);... 3.0018

BIOLOGY AND CONTROL OF CEREAL STEM BORERS (LEPIDOPTERA)... Continuous Humid 7 Months, Plus; Economics of Chemical Control; Multiple Croping; Parasites - biocontrol; Sevin;... 3.0136

POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS... Continuous Humid 7 Months, Plus; Fertilizer Losses; Management; Multiple Cropping; Production and Processing; Soil and Rock Leaching;... 3.0146

SORGHUM INVESTIGATION IN THE TROPICAL FOREST ZONE... Continuous Humid 7 Month, Plus; Insect Resistance; Management; Timing of Planting Procedures;... 3.0156

COMPARISON OF MONOCROPPING AND INTERCROP­PING OF SOME FIELD CROPS... Intercropping; Management; Space Competition;... 3.0168

DEVELOPMENT OF MEDIUM MATURING, SHORT STA­TURE, HIGH YIELDING SORGHUM VARIETIES OF AC­CEPTABLE PALATABILITY AND RESISTANT TO PESTS & DISEASE... Breeding & Genetics; Cecidomyiidae; Disease Resistance; Dry Monsoon 5 Months; Plus; Insect Resistance; Smuts;... 3.0184

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS... Dry Monsoon 5 Months; Plus; Management; Timing of Planting Procedures;... 3.0181

DEVELOPMENT OF LATE MATURING, SHORT VARI­ETIES OF ACCEPTABLE PALATABILITY & RESISTANT TO PESTS & DISEASE... Breeding & Genetics; Cecidomyiidae; Disease Resistance; Dry Monsoon 3 Months, Plus; Insect Resistance; Smuts;... 3.0184

POPULATION AND FERTILIZER STUDIES ON CEREALS... Dry Monsoon 5 Months, Plus; Management; Space Competi­tion;... 3.0191

STUDIES OF OPTIMUM PLANTING DATES OF FIELD CROPS... Dry Monsoon 5 Months; Plus; Management; Timing of Planting Procedures;... 3.0192

DATE OF SOWING OF CEREALS IN DRY CULTIVATION... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Manage­ment; Rain; Timing of Planting Procedures;... 6.0008

FERTILIZATION ON GROUNDNUTS AND ITS RESIDUAL EFFECTS... Ferric Luvisols; Fertilizer Accumulation; Humid 3 Month; Humid 4 Months; Management;... 6.0010

VARIEL EXPERIMENTAL WORK WITH SORGHUM... Ferric Luvisols; Humid 3 Months; Humid 4 Months; Manage­ment;... 6.0014

STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS... Fallowing; Humid 4 Months; Management;... 6.0017

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO K... Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Manage­ment; Plant Residues -other;... 6.0018

RESEARCH ON FERTILIZATION OF GROUNDNUTS... Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Manage­ment; Plant Residues -other;... 6.0021

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS... Carbonic Regosols; Fallowing; Management;... 6.0023

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS... Fallowing; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Manage­ment;... 6.0029

SELECTION OF THE BEST ECOTYPES OF LOCAL SOR­GHUM... Breeding & Genetics; Ecosystems; Humid 3 Months;... 6.0038

RESEARCH ON FERTILIZATION OF GROUNDNUTS... Humid 4 Months; Management; Plant Residues -other;... 6.0048

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY... Breeding & Genetics; Elevational Levels, Altitude; Humid 1 Month;... 6.0049

CREATION OF VARIETIES OF SORGHUM WITH SHORT­ENED STRAW... Breeding & Genetics; Ferric Luvisols; Humid 4 Months;... 6.0065

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS... Fallowing; Ferric Luvisols; Humid 4 Months; Management; Rain; Source of Fertilizer;... 6.0070

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY... Breeding & Genetics; Elevational Levels, Altitude; Ferric Luvisols; Humid 4 Months;... 6.0071

STUDY OF THE SYSTEM OF WORKING OF SOILS... Fallowing; Management; Management Effects on Soils; Organic Fertility;... 6.0076

WATER REQUIREMENTS OF IRRIGATED CROPS... Humid 1 Month; Irrigation -general; Management; Soil Moisture;... 7.0002

428
IMPROVEMENT OF SORGHUMS GROWN ON SAND DUNES... Back Cross; Breeding & Genetics; Humid 3 Months; Male Sterility; Sand... 8.0028

IMPROVEMENT OF VALLEY SORGHUMS (WITH OR WITHOUT IRRIGATION) ... Back Cross; Breeding & Genetics; Clay; Humid 3 Months; Irrigation -general; Male Sterility... 8.0033

STUDY OF THE NITROGENOUS FERTILIZATION OF CEReALs... C/N Ratio; Humid 3 Months; Management; Sand;... 8.0039

STUDY OF THE PROFITABILITY OF AN APPLICATION OF MINERAL FERTILIZER TO TROPICAL FERROUS SOILS ... Boron; Fertilizer Accumulation; Management; M... 8.0047

MALT PRODUCTION FROM LOCAL GRAINS... Beer; Cereal Crops; Enzyme Kinetics; Hordeum Vulgare; Malting Food;... 9.0057

SORGHUM BREEDING... Breeding & Genetics; Hybrid Breeding - nonspecific; Pedigree;... 9.0156

AGRONOMIC FACTORS INFLUENCING SORGHUM PRODUCTION... Fallowing; Management; Timing of Application - other; Timing of Planting Procedures;... 9.0157

INTERCROSSING WITH SORGHUM... Competition; Intercropping; Light Quantity or Intensity; Management; Multiple Cropping;... 9.0158

SORGHUM CROP PROTECTION... Cereal Crops; Rearin of Insects; Scrophulariaceae; Seeding Diseases - nonspecific; Smutts; Tettigonidae;... 9.0159

EXPERIMENTS WITH MAIZE AND SORGHUM... Hot Equatorial or Hot Tropical; Irrigation; Irrigation -general; Management;... 11.0005

WATER REQUIREMENTS OF IRRIGATED CROPS... Irrigation; Irrigation -general; Lysimeters; Management; Nuclear Moisture Meters; Soil Moisture;... 11.0010

STUDY OF THE MOLD DISEASES OF THE PANICLES OF SORGHUM... Env. Plant Dis. Relation; Humidity; Molds; Plant Pathogenetic Fungi; Surveys;... 11.0013

STUDY OF SORGHUM GALL-MIDGE - CONTAINING SOORGHICOLA... Cereal Crops; Insect Resistance; Insects - other; Phenology, Life Cycle;... 11.0016

CHEMICAL CONTROL OF WEEDS OF THE SORGHUM CROP... Cereal Crops; Consumer Attitudes, Awareness, Costs; Economics of Chemical Control; Herbicides - nonspecific; Selectivity of Pesticides;... 11.0020

IMPROVEMENT OF SORGHUMS... Breeding & Genetics; Heterosis, Intraspecific Cross; Synthetic Varieties & Blends;... 11.0025

PHYSICAL EVOLUTION OF THE SOIL UNDER CULTIVATION... Core Samples; Glycine Max; Soil Genesis; Soil Permeability;... 11.0028

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED... Clay; Forage Grasses; Loam; Sand; Soil Clays; Soil Porosity;... 11.0029

HYDROGENIC TOXICITY OF 63-18 (A DWARF VARIETY OF SORGHUM)... Cereal Crops; Straw;... 11.0032

STUDY OF A MODEL FOR EXPLOITATION FOR ZOO-TECHNICAL PURPOSES... Costs; Farm Enterprises - general; Management; Peanut Shells; Production and Processing, Straw;... 11.0036

STUDY OF THE MODALITIES FOR CULTIVATION OF THE NEW VARIETIES (OF PLANTS)... Labor Input; Management; Soil Tillage Methods - other; Time & Motion Studies;... 11.0053

MEASUREMENT OF THE MINERAL UPTAKE OF EACH OF THE PRINCIPAL FOOD CROPS OF SENEGAL (MILLET, MAIZE, RICE, GROUNDNUTS, SORGHUM)... Calcium; Magnesium; Nitrogen; Potassium;... 11.0059

STUDY OF HERBICIDE PREPARATIONS ON SORGHUM... Cereal Crops; Ferric Luvios; Humid 3 Months; Propachlor;... 11.0146

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS... SO-CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON... Dystric Gley- soils; Humid 3 Months; Luvios;... 11.0166

THE TOGO PHOSPHATE AS AN ANNUAL FERTILIZATION... Costs; Dry Monsoon 5 Months; Plus; Ferric Luvios; Management; Source of Fertilizer;... 13.0025

NITROGEN BALANCE - MINERAL FERTILIZATION AND ORGANIC MANURING... C/N Ratio; Dry Monsoon 5 Months; Plus; Ferric Luvios; Management; Plant Residues - other;... 13.0026

TILLAGE AND FERTILIZATION... Dry Monsoon 5 Months; Plus; Ferric Luvios; Management; Plowing;... 13.0028

STUDY THE POTENTIAL FERTILITY OF SOILS... Dry Monsoon 5 Months; Plus; Ferric Luvios; Management; Movement, Availability;... 13.0029

IMPROVEMENT OF EARLY SORGHUMS BY SELECTION OF THE LOCAL MATERIAL... Breeding & Genetics; Drought Resistance; Eutric Cambisols; Humid 3 Months; Lodging; Management;... 14.0001

INTRODUCTION OF FOREIGN EARLY SORGHUMS... Breeding & Genetics; Drought Resistance; Eutric Cambisols; Humid 3 Months; Plus;... 14.0002

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORGHUM... Cereal Crops; Fiber Crops; Gisised Crops; Preemergence Application; Pulse Crops;... 14.0052

IMPROVEMENT OF THE SEMI-LATE SORGHUMS BY HYBRIDIZATION BETWEEN LOCAL MATERIAL AND FOREIGN MATERIAL... Back Cross; Breeding & Genetics; Ferric Luvios; Humid 3 Months; Light Quantity or Intensity; Rain;... 14.0030

PRODUCTION OF A SORGHUM COMPOSITE WITH WIDE VARIABILITY BY UTILIZING THE GENETIC MALE STERILITY... Breeding & Genetics; Ferric Luvios; Humid 3 Months; Male Sterility; Synthetic Varieties & Blends;... 14.0031

SHORTENING THE SEASON OF A LOCAL VARIETY OF SORGHUM BY PROVOKING MUTATIONS... Breeding & Genetics; Ferric Luvios; Humid 3 Months; Mutation;... 14.0032

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION... Breeding & Genetics; Ferric Luvios; Humid 3 Months; Hybrid Breeding - nonspecific;... 14.0036

FABRICATION OF EXPERIMENTAL FI HYBRIDS OF SORGHUM... Breeding & Genetics; Ferric Luvios; Heterosis; Male Sterility;... 14.0037

IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL... Breeding & Genetics; Fungal Resistance; Humid 3 Months; Molds;... 14.0038

INTEGRATION OF FORAGE CROPS INTO AN INTENSIVE ROTATION SYSTEM... Ferric Luvios; Management; Panicaceae - other; Production and Processing;... 14.0052

IMPORTATION OF SEMI-LATE AND LATE SORGHUMS IN DISJUNCTION... Breeding & Genetics; Ferric Luvios; Humid 4 Months; Hybrid Breeding - nonspecific;... 14.0057

FABRICATION OF EXPERIMENTAL FI HYBRIDS OF SORGHUM... Breeding & Genetics; Ferric Luvios; Heterosis; Male Sterility;... 14.0059

IMPROVEMENT OF SEMI-LATE AND LATE SORGHUMS BY HYBRIDIZATION BETWEEN LINES DESCENDED FROM SELECTION, AND FOREIGN MATERIAL... Breeding & Genetics; Fungal Resistance; Humid 4 Months; Molds;... 14.0059

COMBINED EXPERIMENT - METHOD OF PLOUGHING - FERTILIZATION... Hand Tillage; Plowing;... 14.0070

STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS... Management; Plant Residues - other;... 14.0073

COMBINED EXPERIMENT - METHOD OF PLOUGHING-FERTILIZATION... Ferric Luvios; Humid 6 Months; Plinthic Luvios; Plowing;... 14.0082

STUDY OF THE RESIDUAL ACTIVITIES OF MINERAL FERTILIZERS... Ferric Luvios; Humid 6 Months; Management; Plinthic Luvios; Timing of Application - other;... 14.0085

Sorghum Vulgare (Syrup) CHICE OF THE BEST IMPORTED VARIETIES OF SORGHUM... Humid 3 Months; Management;... 6.0039

Tripsacaceae - other

REGENERATION OF SOILS AND FERTILIZATION IN RE-PLANTATION OF OIL PALMS... Cover Crops, Management; Organic Fertility;... 4.0301

Tripsacum

EXPERIMENTS WITH FORAGE PLANTS IN IRRIGATED CULTIVATION... Continuous Humid; Irrigation; Management; Pueraria;... 4.0324

STUDY OF SETTING UP ARTIFICIAL PASTURES ON MARSHY GROUND... Brachiaria; Depth-water Level Flue-
Plants - Monocots

SUBJECT INDEX

Cocos
- MINERAL NUTRITION OF HYBRID COCONUT PALMS
- Humid 6 M or Less; Magnesium; Management; ... 4.0026
- INFLUENCE OF IRRIGATION ON STAKING OF THE HYBRID DWARF CROSSED WITH LARGE COCONUT PALMS
- Humid 6 M or Less; Irrigation; ... General; Management; ... 1.0073
- EXPERIMENT ON CHEMICAL CONTROL OF ACERIA GUERRERONIS KEIFER (PARASITE OF THE COCONUT PALM)
- Copra; Humid 6 M or Less; Oxithioxan; ... 1.0074
- COCONUT FERTILIZER TRIAL NP (KMG)
- Continuous Humid; Magnesium; Management; ... 3.0040
- COCONUT FERTILIZER TRIAL NP (KMG)
- Continuous Humid; Management; ... 3.0041
- COCONUT SPACING
- Continuous Humid; Intercropping; Management; Reciprocal Recurrent Selection; ... 3.0044
- COCONUT DEPTH OF PLANTING TRIAL
- Continuous Humid; Management; Placement; Soil Depth; ... 3.0043
- COCONUT INTERCROPPING TRIAL
- Continuous Humid; Intercropping; Management; Nursery Management; ... 3.0045
- REQUIREMENTS IN WATER OF IRREGOTTED CROPS
- Bromeliaceae; Consumptive Use; Irrigation - general; Nuclear Moisture Meters; Two Humid Seasons; ... 4.0091
- IMPROVEMENT OF THE PRODUCTIVITY OF THE COCONUT PALM
- Breeding & Genetics; Copra; Fats - Lipids & Oils; Management; Reciprocal Recurrent Selection; ... 4.0310
- PROSPECTING FOR AND INTRODUCTION OF COCONUT PALM
- Breeding & Genetics; Plant Parts Bank; ... 4.0311
- IMPROVEMENT OF TECHNIQUES FOR PRODUCTION OF HYBRIDS OF COCONUT PALM
- Breeding & Genetics; Pollination by Bees; Seed Production; ... 4.0312
- FERTILIZATION OF THE COCONUT PALM - FERTILIZING SOILS ON TERTIARY SANDS
- Chlorine; Deficiencies; Growth Stage of Plant; Management; ... 4.0313
- FERTILIZATION OF THE COCONUT PALM ON LITTORAL FERRALYTIC SOILS
- Calcium - Other Than Lime; Chlorine; Ferralsols; Magnesium; Management; Sand; ... 4.0314
- FLORAL BIOLOGY OF THE COCONUT PALM
- Breeding & Genetics; Freeze-dry Techniques; Pollination & Fertilization; ... 4.0315
- STUDY OF K/MG BALANCE IN THE MANURING OF THE COCONUT PALM
- Fertilizer Toxicity; Magnesium; Management; ... 4.0316
- OBSERVATION OF THE CHARACTERS OF PRODUCTION OF THE COCONUT PALM
- Copra; Fats - Lipids & Oils; Fibers; Moisture Content - plants; ... 4.0317
- STUDY OF CALCIUM IN THE FERTILIZATION OF THE COCONUT PALM
- Calcium - Other Than Lime; Magnesium; Management; ... 4.0318
- Chlorine; Deficiencies; Nitrates; Sulfates; ... 4.0319
- STUDY FORMS OF NITROGENOUS FERTILIZERS FOR THE COCONUT PALM
- Management; Nursery Observational Plots; ... 4.0320
- STUDY FORMS OF PHOSPHATE FERTILIZERS FOR THE COCONUT PALM
- Calcium; Fertilizer Toxicity; Fluorine; Formulation; Fertilizer; Management; Phosphates; ... 4.0321
- STUDY THE TIME OF APPLICATION AND FRACTIONATION OF MANURINGS FOR THE COCONUT PALM
- Chlorine; Magnesium; Movement; Availability; Sulfur; ... 4.0322
- STUDY THE ROLE OF TRACE ELEMENTS IN THE NUTRITION OF THE COCONUT PALM
- Boron; Copper; Manganese; Sand; ... 4.0323
- STUDY THE ROOT SYSTEM OF THE COCONUT PALM
- Growth Stage of Plant; Management; ... 4.0324
- STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM
- Germination; Humidity; Management; Storage; Temperature - air; ... 4.0325

Plants

Orchidaceae

Musaceae

Orchidaceae

Plants

Orchidaceae

Muscaceae

Plants

Orchidaceae

Muscaceae

Orchidaceae

Plants

Orchidaceae
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry - nonspecific</td>
<td>See Birds</td>
</tr>
<tr>
<td>Poultry Equipment</td>
<td>See Farm Machinery, Equip & Power</td>
</tr>
<tr>
<td>Poultry Husbandry</td>
<td>See Animal Husbandry</td>
</tr>
<tr>
<td>Poultry Rations</td>
<td>See Feed Science and Technology</td>
</tr>
<tr>
<td>Poxyviruses</td>
<td>See Viruses, Animal DNA Viruses, Enveloped</td>
</tr>
<tr>
<td>Precipitation</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Precipitation Gages</td>
<td>See Meteorology</td>
</tr>
<tr>
<td>Predators - biocontrol</td>
<td>See Pest Control Measures</td>
</tr>
<tr>
<td>Preemerge Application</td>
<td>See Application Methods</td>
</tr>
<tr>
<td>Preferan</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Pregeration of Seeds</td>
<td>See Planting Methods</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>See Reproductive Physiology</td>
</tr>
<tr>
<td>Preharvest Application</td>
<td>See Application Methods</td>
</tr>
<tr>
<td>Preplant Application</td>
<td>See Application Methods</td>
</tr>
<tr>
<td>Preserves & Jelly</td>
<td>See Food Science and Technology</td>
</tr>
<tr>
<td>Price and Value</td>
<td>See Economics</td>
</tr>
<tr>
<td>Pricking Out</td>
<td>See Soil Tillage</td>
</tr>
<tr>
<td>Processing - general</td>
<td>See Materials</td>
</tr>
<tr>
<td>Processing of Food</td>
<td>See Food Science and Technology</td>
</tr>
<tr>
<td>Processing Feeds</td>
<td>See Feed Science and Technology</td>
</tr>
<tr>
<td>Processing Forest Products</td>
<td>See Forestry</td>
</tr>
<tr>
<td>Production and Processing</td>
<td>See Ecology, Plant</td>
</tr>
<tr>
<td>Productivity</td>
<td>See Economics</td>
</tr>
<tr>
<td>Proline</td>
<td>See Amino Acids</td>
</tr>
<tr>
<td>Prometryne</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Propachlor</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Propanil</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>See Medicine/Psyc.- General Topics</td>
</tr>
<tr>
<td>Prosopis</td>
<td>See Plants - Dicots Leguminosae</td>
</tr>
<tr>
<td>Proteins</td>
<td></td>
</tr>
<tr>
<td>Proteins</td>
<td></td>
</tr>
<tr>
<td>Germination and survival of sporangia and behaviour of zoospores of Phytophthora Palmivora</td>
<td>Clorides; Extract Composition; Glutamic Acid; Low Temp. Above 0 C; Phytophthora; Sulfates; .3.0061</td>
</tr>
<tr>
<td>Maize improvement through breeding . . . Back Cross; Breeding & Genetics; Lodging; Lysine; Recurrent Selection; Tryptophane; .3.0161</td>
<td></td>
</tr>
<tr>
<td>Variation in the food value of forage plants according to the rhythm of production . . . Cellulose; Irrigation - general; Panicum; Stylosanthes; .4.0028</td>
<td></td>
</tr>
<tr>
<td>Biochemistry of the resistance of the cotton plant to drought . . . Breeding & Genetics; Drought Resistance; Moisture Deficiency;4.0055</td>
<td></td>
</tr>
<tr>
<td>Absorption of mineral elements - nitrogen in particular . . . By cereals (rice - maize) . . . C/N Ratio; Deficiencies; Irrigation - general; Nitrogen Metabolism;4.0196</td>
<td></td>
</tr>
<tr>
<td>Absorption of mineral elements - nitrogen in particular . . . By cereals (rice-maize) . . . C/N Ratio; Ferralic Cambisols; Management; Plant Residues - other; Two Humid Seasons-7 Month,Plus;4.0214</td>
<td></td>
</tr>
<tr>
<td>Nutritive value of opaque-2 maize for the chick and rat in the tropics . . . Chicken, Domestic; In Vitro Feed Studies; Muridae; Poultry Rations; Supplements; Feed Additives; .9.0023</td>
<td></td>
</tr>
<tr>
<td>The use of discarded cocoa bean meal in livestock feeding . . . By-products- Plant(Vegetative); In Vivo-see Also Feed Rations; Nutritive Values - plant; .9.0030</td>
<td></td>
</tr>
<tr>
<td>Yam breeding . . . Breeding & Genetics; Disease Resistance; Ferric Luvicola; Nematode Resistance; Starch; .86186</td>
<td></td>
</tr>
<tr>
<td>To determine the crude protein lysine and tryptophan content of the recommended maize varieties . . . Cereal Crops; Lysine; Tryptophane;9.0121</td>
<td></td>
</tr>
</tbody>
</table>

432
Public Health

Epidemiology of Disease

BOVINE OCULAR THELAPIOSIS - AETIOLOGY... Blindness... nonspecific; Bovine Ocular Thelaziosis; Muscidae; Veterinary Medicine;... 11.0088

HELMINTHOSES OF FARM ANIMALS - EPIDEMIOLOGY... Pest Control Measures; Population Dynamics; Veterinary Medicine;... 11.0090

TRYPANOSOMIASIS - IMMUNOLOGY... Diagnosis; Immunology; Trypanosoma; Trypanosomiases; Veterinary Medicine;... 11.0091

POX OF SMALL Ruminants - EPIDEMIOLOGICAL AND PROPHYLACTIC RESEARCH... Poxviruses; Sheep Scab or Sheep Pox; Viral Vaccines;... 11.0098

African Horse Sickness - EPIDEMIOLOGICAL WORK... Horses; Pathology -mammal; Serology; Veterinary Medicine;... 11.0099

EQUINE ENCEPHALOMYELITIS - AETIOLOGY, EPIDEMIOLOGY... Equine Encephalomyelitis; Etiology; Horses; Picornaviruses; Veterinary Entomology;... 11.0100

LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY... Histology and Cytology; Leptospiroses; Pathology -mammal; Veterinary Medicine;... 11.0104

SALMONELLOSIS - EPIDEMIOLOGICAL SURVEY ON HEALTHY CARRIERS... Birds; Feces; Rodentia; Salmonelloses;... 11.0105

VIBRIOSES - EPIDEMIOLOGICAL SURVEY... Brucelloses; Globulins; Vagina; Veterinary Medicine; Vibrio Fetus; Vibrion;... 11.0106

BRUCELLOSIS - EPIDEMIOLOGICAL SURVEY... Brucelloses; Hygromas Bursitis;... 11.0108

PASTEURELLOSIS - EPIDEMIOLOGICAL SURVEY... Haemorrhagic Septicaemia; Hemorrhagic; Pasteurella; Pasteurelloses; Fets;... 11.0112

AVIAN DISEASES - EPIDEMIOLOGY - PROPHYLAXIS AND TREATMENT... Birds; Diagnosis; Treatment; Veterinary Medicine;... 11.0114

Publications

FLORA OF NIGERIA... Cyperaceae; Floras; Grass -nonspecific; Malvaceae; Taxonomy, Plant;... 9.0084

Art Work, Illustrations, Etc.

DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES... Continuous Humid; Handbooks; Phenology, Life Cycle; Photography; Taxonomy, Plant;... 4.0187

Catalogs, Tables, Compilations

FOOD COMPOSITION TABLES... Chemical Analysis of Food; Dairy Products; Fruits; Nuts & Nutmeats; Vegetable & Vegetable Products;... 3.0080

COMPILATION OF VERNACULAR NAMES OF NIGERIAN PLANTS... Taxonomy, Plant;... 9.0085

Handbooks

DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES... Continuous Humid; Phenology, Life Cycle; Photography; Taxonomy, Plant;... 4.0187

Puccinia

See Fungi

Pueraria

See Plants - Dicots

Leguminosae

Pulmonary Syndrome

See Animal Pathology

Pulse Crops

See Agronomy

See Entomology, Applied

Agronomic Pests on

See Weeds

Control of Weeds in...

Punicaceae

See Plants - Dicots

Pyralidae

See Insecta

Lepidoptera

Pyraustidae

See Insecta

Lepidoptera

Pyrethrum

See Pesticides

Insecticides

Pythium

See Fungi

Quarantine &/or Inspection

See Pest Control Measures

Quaternary Period

See Geologic Time

Cenozoic Era

Radiation

See Food Science and Technology

Processing of Food

Radiation Effects

See Materials

Radioactive Isotopes

See Isotopes

Radioisotope Tracers

WATER USE EFFICIENCY OF MAIZE IN SOME NIGERIAN SOILS... Evapotranspiration; Nuclear Moisture Meters; Soil Profile Studies; Soil-water-plant Relationships;... 9.0193

Railroads

See Transportation

Rain

See Environments, Plant

Precipitation

Rain Patterns

See Meteorology

Raindrop Impact

See Meteorology
Rainfall Simulators
SUSCEPTIBILITY OF SOILS TO EROSION AND EVOLUTION OF THEIR STABILITY UNDER MECHANIZED CULTIVATION - HYDRAULICITY OF A WATERSHED ... Cover Crops; Irrigation -general; Management Effects on Soils; Rain; Rill Erosion; Watersheds; ... 4.0041
STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST ... Precipitation Gages; Sediment Yield; Water Runoff; Water Table; ... 4.0044

Range Management
See Agronomy

Raw Quality of Food
See Food Science and Technology
Food Quality

Rearing of Insects
See Entomology, Applied

Recessive Trait
See Genetics
Genotypes

Reciprocal Recurrent Selection
See Genetics
Genetic & Breeding Methods

Recombination
See Genetics
Genetic Dup. & Transmission

Recurrent Selection
See Genetics
Genetic & Breeding Methods

Recycled and Secondary Mils.
See Materials

Regional Economics
See Economics

Regosols
See Soil Unit Classification

Remote Sensing
CHEMO - TAXONOMIC STUDIES ... Chromatography; Extract Composition; Oilsed Crops; Sugar -nonspecific; Taxonomy, Plant; ... 9.0318
STUDY OF NATURAL PASTURES - CARTOGRAPHY ... Forage Grasses; Mapping; River Basins; ... 11.0080
CARTOGRAPHY OF THE AGRARIAN ACTIVITIES OF TOGO ... Geology; Soil Survey; Topographical Parameters- other... ... 13.0041

Removal of Nutrients from Soil
See Fertilizer Technology

Reoviruses
See Viruses, Animal
RNA Viruses, Naked

Subject Index

Reproductive Physiology
See Also Plant Physiology
HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN ... Behavioral Ecology; Fish Food Supply; Plankton; Water Environment; ... 3.0236

Artificial Insemination
CROSSBREEDING FOR BEEF ... Breeding & Genetics; Disease Resistance; Maturity & Growth Stages; Trypanosomiasis; ... 3.0010
IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENEGAL FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; Pregnancy; Semen Composition; Sexual Cycle; Vertebrate Nutrition; ... 11.0077

Oviposition
INVESTIGATIONS INTO THE BIONOMICS AND CONTROL OF INSECT PESTS ON SUGAR CANE ... Cerambycidae; Dip Application; Isoperta; Saccharum; Toxaphene; ... 3.0135
APPLICATION OF METHODS OF CHEMICAL CONTROL AGAINST COELEAENOMENDOERA EALAEIDS FOR OIL PALM PROTECTION ... Foliar Application; Maturity & Growth Stages; Oilsed Crops; Parasites -biocontrol; Predators -biocontrol; ... 4.0305

Pregnancy
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT ... Breeding & Genetics; Hormones; Sexual Cycle; Vagina; ... 4.0060
IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENEGAL FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; Semen Composition; Sexual Cycle; Vertebrate Nutrition; ... 11.0077

Reproductive Rates
CROSSBRED JERSEY-NDAMA. STUDY OF THE PERFORMANCE OF HALF-BREED JERSEY CATTLE ... Breeding & Genetics; Continuous Humid; Fats - Lipids & Oils; Growth Rate; Parasite Resistance; Trypanosomiasis; ... 4.0021

Semen Composition
IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENEGAL FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; Pregnancy; Sexual Cycle; Vertebrate Nutrition; ... 11.0077

Sexual Cycle
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT ... Breeding & Genetics; Hormones; Pregnancy; Vagina; ... 4.0060
IMPROVEMENT OF THE PRODUCTION OF BEEF - STUDY OF THE SEXUAL CYCLE OF SENEGAL FULANI (GOBRA) ZEBU CATTLE ... Breeding & Genetics; Pregnancy; Semen Composition; Vertebrate Nutrition; ... 11.0077

Vagina
BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT ... Breeding & Genetics; Hormones; Pregnancy; Sexual Cycle; ... 4.0060
VIBRIOSIS - EPIDEMIOLOGICAL SURVEY ... Brucelloses; Epidemiology of Disease; Globulina; Veterinary Medicine; Vibrio Fetus; Vibriois; ... 11.0108

Residential
See Materials

Residue Analysis -pesticides
See Pest Control Measures

Resistance & Tolerance
See Pest Control Measures

Respiratory Diseases -other
See Animal Pathology
Respiratory System
See Vertebrate Physiology

Retting
See Fiber Processing (Raw-material)

Rhamnaceae
See Plants - Dicots

Rhizobium
See Bacteria

Rhizoctonia
See Fungi

Rhizopus
See Fungi

Rhizosphere
See Environments, Plant

Rhodic Ferralsols
See Soil Unit Classification

Ribonucleic Acid
See Nucleic Acids & Precursors

Rice
See Feed Science and Technology

Cereal Grains or Grasses

Rill Erosion
See Erosion Control

Rinderpest
See Animal Pathology

River Basins
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Evapotranspiration; Rain; Solar Light; Wind or Air Movement; . . . 6.0037
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Humid 1 Month; Rain Patterns; Wind or Air Movement; . . . 7.0004
AGROMETEOROLOGICAL STUDIES IN THE SENEGAL RIVER BASIN . . . Climatology; Energy Budgets; Hot Equatorial or Hot Tropical; Rain Patterns; Wind or Air Movement; . . . 11.0009
STUDY OF NATURAL PASTURES - CARTOGRAPHY . . . Forage Grasses; Mapping; Remote Sensing; . . . 11.0080

RNA Viruses, Enveloped
See Viruses, Animal

RNA Viruses, Naked
See Viruses, Animal

Roads and Highways
DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA . . . Geology; Land Use - agriculture; Soil Morphology, Profiles; Soil Physical Properties; Soil Survey; Transportation; . . . 3.0222

Rodentia
See Mammals

Rodenticides
See Pesticides

Rolling
See Soil Tillage

Root Crops
See Horticulture

Root Rot
See Plant Diseases

Rosaceae
See Plants - Dicots

Rosette Disease
See Plant Diseases

Rotary Tillage, Rotary Hoe
See Soil Tillage

Rots
See Plant Diseases

Row Application
See Application Methods

RP 17623
See Pesticides

Rubber -natural
See Materials

Rubiaaceae
See Plants - Dicots

Rubidium
See Isotopes

Rumen Bacteria
See Bacteria

Rural Sociology
See Social Sciences

Russetting
See Plant Diseases

Rusts
See Plant Diseases

Rutaceae
See Plants - Dicots
SUBJECT INDEX

Saccharum
See Plants - Monocots
Gramineae

Sacks & Bags
See Packing & Container Types

Safety Measures
See Pest Control Measures

Saline Soils
See Environments, Plant

Salmonella
See Bacteria

Salmonelloses
See Animal Pathology

Salmonidae
See Fish

Sand
See Environments, Plant
Soil Composition

Sapindaceae
See Plants - Dicots

Sapotaceae
See Plants - Dicots

Saturniidae
See Insecta
Lepidoptera

Savings and Investment
See Economics
Income Analysis

Sawdust Utilization
See Utilization of Ag Wastes

Scald
See Plant Diseases

Scarification
See Seed

Science - Social Aspects
See Social Sciences

Scirpus
See Plants - Monocots
Cyperaceae

Sclerenchyma
See Plant Tissues

Sclerospora
See Fungi

Sclerotium
See Fungi

Scolytidae
See Insecta
Coleoptera

Screening Potential Pesticides
See Pest Control Measures

Scrophulariaceae
See Plants - Dicots

Scrub Timber Utilization
See Utilization of Ag Wastes

Seasonal Application
See Fertilizer Technology

Seasonings & Flavorings
See Food Science and Technology

Sediment Yield
See Water Movement

Sedimentology

OPERATION OF RESEARCH IN GEODYNAMICS, GEOCHEMISTRY AND GEOMORPHOLOGY IN THE IVORY COAST . . . Geology; Infiltration; Soil Crusts; Soil Morphology; Profiles; . . . 4.0036

STUDY OF THE SOILS DEVELOPED ON THE CRYSTALLOPHYLLIAN BASE OF TOGO - CARTOGRAPHY AT 1/200,000TH OF THE SOUTHERN PART . . . Geology; Soil Morphology; Profiles; Soil Survey; Soil Types; . . . 13.0011

CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BAS-SARI DISTRICT . . . Geology; Quaternary Period; Soil Mor-phology, Profiles; Soil Survey; Soil Types; Topographical Parameters-other; . . . 13.0012

Seed

Dormancy

STUDY OF THE DORMANCY OF WEED SEEDS . . . Continuous Humid; Physiology of Weeds; Scarification; . . . 4.0186

STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVILIGULATA AND O. LONGISTAMINATA . . . Non-dry 3 Months, Plus; Physiology of Weeds; Soil Depth; . . . 6.0064

STUDIES ON GERMINATION, GROWTH AND ESTABLISHMENT OF KOLA . . . Cola; Cover Crops; Germination; Management; Space Competition; . . . 9.0138

INVESTIGATIONS OF METHODS OF BREAKING CASSAVA SEED DORMANCY AND THE EFFECT OF AGE ON CASSAVA SEED GERMINATION . . . Continuous Humid 7 Months, Plus; Germination; Management; Manihot; Scarification; . . . 9.0211

DORMANCY IN SEEDS FROM DELI PALMS (OIL PALM) . . . Back Cross; Oilseed Crops; Temperature - air; . . . 9.0288

Germination

SCREENING OF GHANAIAN PLANTS FOR ALLELOPATHIC SUBSTANCES . . . Cycadales; Endogenous Biological Extracts; Growth Inhibitors; . . . 3.0062

IMPROVEMENT OF OIL PALM SEED GERMINATION . . . Continuous Humid 7 Months, Plus; Dip Application; Management; Moisture Content - plants; . . . 3.0121

437
EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, Hibiscus, CannaBinus, L. . . Continuous Humid 7 Months, Plus; Germination; Low Temp. Above 0 C; Storage; . . . 3.0142

STUDY OF THE GERMINATIVE CAPACITY OF WEED SEEDS . . . Continuous Humid; Grass -nonspecific; Grasses or Sedges; Physiology of Weeds; . . . 4.0157

STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM . . . Coco; Humidity; Management; Storage; Temperature -air; . . . 4.0325

GERMINATION AND GROWTH OF VARIOUS TROPICAL FRUIT SEEDS . . . Chenopodiaceae; Guttiferae; Olea; Psidium; Sapindaceae; . . . 5.0020

FOREST TREES SEED DORMANCY, STORAGE AND GERMINATION . . . Management; Tectona; Terminalia; Triplochiton; . . . 9.0076

GERMINATION AND GROWTH STUDIES IN COCOA . . . Management; Nursery Observational Plots; . . . 9.0116

STUDIES ON GERMINATION, GROWTH AND ESTABLISHMENT OF KOLA . . . Cola; Cover Crops; Dormancy; Management; Space Competition; . . . 9.0138

USE OF GROWTH REGULATORS IN COFFEE HUSK-BANDRY . . . Ethrel; Management; Preharvest Application; Thiourea; . . . 9.0146

INVESTIGATIONS OF METHODS OF BREAKING CASAVARA SEED DORMANCY AND THE EFFECT OF AGE ON CASAVARA SEED GERMINATION . . . Continuous Humid 7 Months, Plus; Dormancy; Management; Manihot; Scarification; . . . 9.0211

MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM . . . Dormancy; Growth Substances; Management; Plant Growth Regulators; Scarification; . . . 9.0328

GERMINATION PROBLEMS OF EXTENSION WORK OIL PALM SEEDS . . . Harvest and Storage; Management; . . . 9.0347

SAVANNA FORESTRY RESEARCH STATION . . . Darkness; Low Intensity Light; Sand; Silviculture; . . . 9.0347

Scarification

STUDY OF THE DORMANCY OF WEED SEEDS . . . Continuous Humid; Dormancy; Physiology of Weeds; . . . 4.0186

INVESTIGATIONS OF METHODS OF BREAKING CASAVARA SEED DORMANCY AND THE EFFECT OF AGE ON CASAVARA SEED GERMINATION . . . Continuous Humid 7 Months, Plus; Dormancy; Germination; Management; Manihot; . . . 9.0211

MECHANISM OF DORMANCY IN THE SEED OF THE OIL PALM . . . Dormancy; Germination; Growth Substances; Management; Plant Growth Regulators; Scarification; . . . 9.0328

SAVANNA FORESTRY RESEARCH STATION . . . Darkness; Low Intensity Light; Sand; Silviculture; . . . 9.0347

Storage

EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, Hibiscus, CannaBinus, L. . . Continuous Humid 7 Months, Plus; Germination; Low Temp. Above 0 C; Storage; . . . 3.0142

STUDY OF CONSERVATION OF THE SEEDS OF THE COCONUT PALM . . . Coco; Germination; Humidity; Management; Temperature -air; . . . 4.0325

FUNGAL DISEASE OF SEEDS AND SEEDLINGS . . . Pathology; Forest; Seed-borne; Silviculture; Surveys; Viability; . . . 9.0081

Viability

EFFECTS OF CONDITIONS AND LENGTH OF STORAGE ON THE SEEDLING EMERGENCE OF KENAF, Hibiscus, CannaBinus, L. . . Continuous Humid 7 Months, Plus; Germination; Low Temp. Above 0 C; Storage; . . . 3.0142

FUNGAL DISEASE OF SEEDS AND SEEDLINGS . . . Pathology; Forest; Seed-borne; Silviculture; Storage; Surveys; . . . 9.0081

Seed Bank

See Banks and Reference Standards

Seed Nursery

See Agronomy

Seed Production

See Agronomy

Seed Treatment

See Application Methods

Seed-borne

See Phytopathology

Plant Disease Transmission

Seedbed Preparation

See Soil Tillage

Seeding or Planting Rate

See Planting Methods

Seedling Diseases -nonspecific

See Plant Diseases

Selectivity of Pesticides

See Pest Control Measures

Selfing

See Genetics

Genetic & Breeding Methods

Semen Composition

See Reproductive Physiology

Serology

See Viral and Rickettsial Studies

Service Industries

See Economics

Sesamum

See Plants - Dicots

Pedaliaceae

Sesbania

See Plants - Dicots

Leguminosae

Setaria

See Plants - Monocots

Graminaceae

Setting, Curing

See Chemistry -related Fields

Sevin

See Pesticides

Insecticides

Sex Ratio

TICK SURVEY ON SELECTED AREAS ON THE ACCRA PLAINS . . . Dry Monsoon 4 to 5 Months; Ixodidae; Maturity & Growth Stages; Surveys; . . . 3.0028

ECOLOGICAL OBSERVATIONS ON EARIAS SPECIES . . . Entomology, Physiology; Fiber Crops; High Temp. 30 C or Above; Population Dynamics; Rearing of Insects; . . . 4.0362
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO-ECOLOGY OF THE COCOA MIRID ... Beverage Crops; Entomology, Physiology; Factors Affecting Insect Pop.; Miridae; Moisture Deficiency; Population Dynamics; ... 9.0130</td>
<td>Silt</td>
</tr>
<tr>
<td>COLLECTION AND ESTABLISHMENT OF KOLA GERMPLASM ... Cola; Intraspec. Genetic Relations; Management; Plant Parts Bank; Taxonomy, Plant; ... 9.0133</td>
<td>See Environments, Plant Soil Composition</td>
</tr>
<tr>
<td>PISIFERA PALM SELECTION ... Breeding & Genetics; Selfing; ... 9.0290</td>
<td>Silvex</td>
</tr>
<tr>
<td>A CALIBRATION TRIAL ON OIL PALMS EXPERIMENT 8-1 (PLANTED 1959-1966) ... Oilseed Crops; Soil Analysis; ... 9.0298</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>SEEDLING SELECTION EXPERIMENT 33-13 (PLANTED 1966) ... Growth and Differentiation; Oilseed Crops; ... 9.0299</td>
<td>Silviculture</td>
</tr>
<tr>
<td>RELATION OF FLOWERING TO YIELD IN THE OIL PALM ... Growth and Differentiation; Oilseed Crops; Reproductive Physiology; Silves; ... 9.0331</td>
<td>See Forestry</td>
</tr>
<tr>
<td>Sexing Methods</td>
<td>Simazine</td>
</tr>
<tr>
<td>STUDIES OF THE GUINEA FOWL (NUMIDIA MELEAGRIS) ... Numidia; Poultry Husbandry; Vertebrate Nutrition; ... 3.0058</td>
<td>See Pesticides Herbicides</td>
</tr>
<tr>
<td>Sexual Cycle</td>
<td>Skin Diseases -other</td>
</tr>
<tr>
<td>See Reproductive Physiology</td>
<td>See Animal Pathology</td>
</tr>
<tr>
<td>Shade</td>
<td>Smoking</td>
</tr>
<tr>
<td>See Environments, Plant Light Quantity or Intensity</td>
<td>See Food Science and Technology Processing of Food</td>
</tr>
<tr>
<td>Shattering Resistance</td>
<td>Smuts</td>
</tr>
<tr>
<td>See Plant Resistance</td>
<td>See Plant Diseases</td>
</tr>
<tr>
<td>Sheep Husbandry</td>
<td>Social Class</td>
</tr>
<tr>
<td>See Animal Husbandry</td>
<td>See Ethnic and Social Parameters</td>
</tr>
<tr>
<td>Sheep Scab or Sheep Pox</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>See Animal Pathology</td>
<td>ECONOMIC AND SOCIOLOGICAL SURVEY OF THE VOLTA BASIN Farm Enterprises -general; Regional Economics; ... 3.0238</td>
</tr>
<tr>
<td>Shelf Life & Storage of Food</td>
<td>Anthropology</td>
</tr>
<tr>
<td>See Food Science and Technology Food Quality</td>
<td>A RESIDUAL SOCIAL GROUP CHALLENGED WITH THE DEVELOPMENT OF MARKET CROPS - ALLOCHTHONOUS IMMIGRATION AND LAND PROBLEMS ... Economics Anthropology; Ethnic and Social Parameters; Mobility; ... 4.0082</td>
</tr>
<tr>
<td>Shellfish Farming</td>
<td>Management</td>
</tr>
<tr>
<td>See Fish & Wildlife Biology</td>
<td>ECONOMIC ANALYSIS OF PEASANT FARMERS' HOLDINGS ... Capital & Financial Management; Mathematical Models; ... 11.0012</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>MANAGEMENT COUNCIL FOR FARMS ... Production and Processing; Technological Development; ... 11.0068</td>
</tr>
<tr>
<td>Shelter Belts, Windbreaks</td>
<td>Mobility</td>
</tr>
<tr>
<td>See Forestry</td>
<td>A RESIDUAL SOCIAL GROUP CHALLENGED WITH THE DEVELOPMENT OF MARKET CROPS - ALLOCHTHONOUS IMMIGRATION AND LAND PROBLEMS ... Economics Anthropology; Ethnic and Social Parameters; ... 4.0082</td>
</tr>
<tr>
<td>Shoe String</td>
<td>THE IMMIGRANT FARMERS OF YORUBALAND - A STUDY IN FOREST-SAVAANA RELATIONSHIPS ... Farm Enterprises -general; Management; Migrant Farm Workers; Production and Processing; Science - Social Aspects; ... 9.0035</td>
</tr>
<tr>
<td>See Viruses, Plant</td>
<td>OCCUPATION AND DEVELOPMENT OF THE NEW COUNTRIES ... Modernization; Topographical Parameters-other; ... 13.0015</td>
</tr>
<tr>
<td>Short Day</td>
<td>Rural Sociology</td>
</tr>
<tr>
<td>See Environments, Plant Photoperiod</td>
<td>THE USE OF MASS MEDIA AS A MEANS OF COMMUNICATION BY EXTENSION WORKERS WITH THE FARMERS</td>
</tr>
<tr>
<td>Side Dressing</td>
<td></td>
</tr>
<tr>
<td>See Application Methods</td>
<td></td>
</tr>
<tr>
<td>Silage</td>
<td></td>
</tr>
<tr>
<td>See Feed Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td></td>
</tr>
<tr>
<td>See Soil Nutrients/Fertilizers</td>
<td></td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>Soil Analysis -other</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Ferric Acetate; Magnesium; Nursery Observational Plots; ...</td>
<td>.4.0002</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Ferric Acetate; Magnesium; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus; ...</td>
<td>.4.0007</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Eutric Fluvisols; Magnesium; Nursery Observational Plots; ...</td>
<td>.4.0090</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis; Two Humid Seasons-7 Month,Plu...</td>
<td>.4.0113</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION ON COCOA... Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis; ...</td>
<td>.4.0146</td>
</tr>
<tr>
<td>MINERAL FERTILIZATION OF THE COTTON PLANT... Deficiencies; Hydroponic Studies; Management; Sulfur; ...</td>
<td>6.0074</td>
</tr>
<tr>
<td>SITE EVALUATION FOR PLANTATION DEVELOPMENT IN THE SAVANNA REGION... Groundwater Movement; Moisture Levels; Movement, Availability; Silviculture, Site Index and Site Quality; ...</td>
<td>.9.0363</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Column, Leaching Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALANCE THE SUPPLIES OF MANURE ON CLAY SOILS... Clay; Fertilizer Losses; Soil and Rock Leaching; Soil Analysis; ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Profile Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENESIS OF SOME REPRESENTATIVE SOILS OF THE DESIRED SAVANNA REGION... Geology; Soil Analysis; ...</td>
</tr>
<tr>
<td>INVESTIGATION OF THE INFLUENCE OF CLIMATE ON SOIL MORPHOLOGY AND SOIL DISTRIBUTION IN THE METAMORPHIC REGIONS OF NIGERIA... Geology; Soil Genesis; Soil Morphology, Profiles; Soil Physical Properties; Soil Types; ...</td>
</tr>
<tr>
<td>SOIL PHOSPHORUS STUDIES... Management; Movement; Availability; Soil Testing; ...</td>
</tr>
<tr>
<td>WATER USE EFFICIENCY OF MAIZE IN SOME NIGERIAN SOILS... Evapotranspiration; Nuclear Moisture Meters; Radiotracer Tracers; Soil-water-plant Relationships; ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS... Ferric Luvisols; Fertilizer Losses; Humid 6 Months; Management; Mineralogy; Timing of Planting Procedures; ...</td>
</tr>
<tr>
<td>CORRELATION OF SOIL TEST METHODS WITH CROP YIELDS (MILLET AND GUINEA CORN)... Extract Composition; Management; Panicum; Soil Analysis; ...</td>
</tr>
<tr>
<td>FIXATION OF APPLIED PHOSPHORUS IN SOME GHANA SOILS... Temperature -soil; ...</td>
</tr>
<tr>
<td>STUDY OF THE INTERACTIONS BETWEEN THE SOIL AND FORAGE PLANTS IN A HUMID TROPICAL ENVIRONMENT... Management; Removal of Nutrients from Soil; ...</td>
</tr>
<tr>
<td>SOIL PHOSPHORUS STUDIES... Management; Movement; Availability; Soil Profile Studies; ...</td>
</tr>
<tr>
<td>MICRONUTRIENTS IN TREE CROP NUTRITION... Boron; Cofal; Foliage Application; Iron; Management; Zinc; ...</td>
</tr>
<tr>
<td>STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE... Eutric Gleysols; Flood Irrigation; Management; ...</td>
</tr>
<tr>
<td>STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE... Eutric Gleysols; Flood Irrigation; Management; ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil X-ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate- Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey; ...</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Soil Chemical Properties

Soil genesis study of upland drift soils and associated residual soil...Clay; Silt; Soil Types...3.0221

To avoid the degradation of soils by continuous cultivation of pineapples...Bromeliaceae; Erosion Control; Management; Removal of nutrients from soil; Two humid seasons...4.0148

Acidification due to the intensive use of fertilizers...Continuous Humid; Formulation; Fertilizer; Soil pH...6.0025

Evolution of soils under cultivation...Calcareous Regosols; Cambic Arenosols; Humid 1 Month; Management; Management Effects on soils; Soil Tillage...6.0025

Soil improvement for reforestation in high forest zone...Elevational Levels; Altitude; Percolation; Soil and Rock Leaching; Soil moisture; Soil Types...9.0071

Study of the dynamics of the soils of rice-fields in lower casamance...Excessive moisture; Humid 2 Months; Soil Types...11.0129

Improvement of an acid sulphatic soil for the cultivation of rice...Management; Soil Amendments; Sulfur...11.0132

Absorption, fixation, exchange

Obtaining of sorghum hybrids of American-Dahomey type with short straw...Breeding & Genetics; Ferric Luvisols; Humid 5 Months; Lodging; Selfing; Sorghum Vulgare (Grain)...1.0041

Regeneration of the soils and fertilization in reclamation...Management; Panicaceae -other; Soil Structure; Two humid seasons...1.0076

Study of the influence of the anions SO4 and Cl...Cover Crops; Soil - Bare; Sulfates...11.0077

Studies on the nutrition of groundnuts (Arachis hypogaea L.)...Deficiencies; Management; Nitrogen; Placement...3.0225

Fixation of applied phosphorus in some Ghana soils...Soil Testing; Temperature-soil...3.0230

Study of rivulet formation, infiltration and of their conditional factors on the Korhogo Watershed...Rain; Rill Erosion; Soil moisture; Soil Types; Watersheds...4.0045

Study of the interactions between the soil and forage plants in a humid tropical environment...Management; Removal of nutrients from soil; Soil Testing...4.0052

Evolution of nitrogen in cultivated soils...Continuous Humid; Nitrogen; Plant residues -other...4.0197

Evolution of nitrogen in cultivated soils...C/N ratio; Ferric Cambisols; Nitrogen; Nitrogen cycle; Plant residues -other; Two humid seasons-7 Month, Plus...4.0215

Balance the supplies of manure on clay soils...Clay; Fertilizer losses; Soil and rock leaching; Soil analysis; Soil column; Leaching Diff...4.0295

Fertilization of the coconut palm - ferralitic soils on tertiary sands...Chlorine; Deficiencies; Growth stage of plant; Management...4.0313

Nitrogen fertilization in flooded fields - methods and timing of nitrogen application...Broadcast application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of application -other...9.0011

Coffee nutrition studies...Isotopes; Management; Removal of nutrients from soil; Timing of application -other...9.0147

Soil microbiology...Chlorinated hydrocarbons; Ferralic Cambisols; Herbicides -nonpersistent; Nitrogen fixation; Sulfur; Toxicity to microorganisms...9.0179

Medium term soil fertility trial - soil productivity...Comparative powers of medium duration falling...Centrosema; Cyanodon; Ferric Acrisols; Legume-grass mixtures; Organic fertility; Pueraria...9.0250

Phosphate placement trial...Broadcast application; Ferric Acrisols; Management; Rain...9.0251

Soil bacteria

See bacteria

Mineralogy

Introduction of cotton into traditional crop rotations...Ferric Luvisols; Fertilizer losses; Humid 6 Months; Management; Soil testing; Timing of planting procedures...1.0024

Determination of mineral deficiencies of soils...I.R.A.T. ...1.0038

Regeneration of the soils and fertilization in reclamation...Management; Panicaceae -other; Soil Structure; Two humid seasons...1.0076

Detailed reconnaissance soil survey of Upper Afram basin...Geology; Soil physical properties; Soil survey...3.0220

Detailed reconnaissance soil survey of the lower Afram basin...Geology; Soil morphology; Profiles; Soil physical properties; Soil survey...3.0223

Mineralogical study of ferralic pedogenesis in an equatorial and tropical climate...Climate- Humid Equatorial; Goethite; Iron; Soil Survey...4.0039

Evolution of potash in the cotton-growing regions of the Ivory Coast...Fallowing; Management...4.0266

Role of organic matter in relation to mineral fertilization in the production of crops...Maize-cotton...Management; Manure; Soil analysis...4.0270

Oil palm - study of mineral balances...Greenhouses; Management; Pesticides...4.0296

Study of the nitrogenous fertilization of cereals...C/N ratio; Humid 3 Months; Management; Sand...8.0039

Changes in the mineral content of soil and seed as related to the block composition of farm animals...Blood and lymph system; In vitro feed studies; Metabolism; Soil environment...9.0027

Distribution patterns of young economic tree species and their correlation with environmental factors...Competition; Silviculture; Soil depth; Surveys...9.0082

Soil chemistry...Fallowing; Iodine; Silicon; Soil Resistance...9.0178

Investigation into the causes of yam tuber rots...Harvest and storage; Nutrition in disease; Physiological pathology; Storage rot; Taxonomy; Plant; Tuber rot...9.0247

Studies on the role of soil microbes in soil fertility and rice culture...BHC; Management; Nitrogen fixation; Organic fertility; Soil microbiology...10.0006

Movement, availability

Study of the interactions between the soil and pasture plants in a humid tropical environment...Management; Removal of nutrients from soil; Soil testing...4.0052

Correction of mineral deficiencies of the principal soils of the Ivory coast...Continuous humid; Ferric Acrisols; Gleyic Acrisols; Soil Minerals -natural; Soil Types...4.0260

Determination of mineral deficiencies in the principal soils of the Ivory Coast...Calcium - Other than lime; Excessive moisture; Gleyic Acrisols; Magnesium; Removal of nutrients from soil; Soil fertility...4.0293

Study the time of application and fractionation of manurings for the coconut palm...Chlorite; Magnesium; Sulfate...4.0292

The soil-plant system in relation to the inorganic nutrition of herbage grasses in ni-
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Soil Nutrients/Fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Crusting</td>
<td>Soil Microbiology . Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides - nonspecific; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; . . . 9.0179</td>
</tr>
<tr>
<td>See Environments, Plant</td>
<td>Biological Control of the Brown Leaf Spot Disease of Rice Using Organisms Antagonistic to the Pathogen . Brown Spot; Helminthosporium; Phytopathology; Soil-borne; . . . 9.0217</td>
</tr>
<tr>
<td>Soil Crusts</td>
<td>To Study the Microbial Contribution to the Nitrogen Economy of Fallow . Fallowing; Management; Nitrification; . . . 9.0219</td>
</tr>
<tr>
<td>Operation of Research in Geodynamics, Geochemistry and Geomorphology in the Ivory Coast . Geochemistry; Infiltration; Soil Morphology; Profiles; . . . 4.0036</td>
<td>Rhizosphere Microflora Contribution to Phosphate Dissolution . Continuous Humid 7 Months; Plus; Phosphorus; Removal of Nutrients from Soil; Rhizosphere; Soil Bacteria; . . . 9.0255</td>
</tr>
<tr>
<td>Evolution of Ferralitic Landscapes in an Equatorial and Tropical Climate - Alteration, Erosion, Recasting, Hardening . . . Climate-Humid Equatorial; Eritrea; Geochemistry; Infiltration; Soil Crusts; Tertiary Period; . . . 4.0038</td>
<td>Studies on the Role of Soil Microbes in Soil Fertility and Rice Under Cultivation . . . Biological Control of the Brown Leaf Spot Disease of Rice Using Organisms Antagonistic to the Pathogen . Brown Spot; Helminthosporium; Phytopathology; Soil-borne; . . . 9.0217</td>
</tr>
<tr>
<td>Study of the Hardening of Sandy Soils When Dehisicated . . . Clay; Forage Grasses; Loam; Sand; Soil Porosity; Sorghum Vulgare (Grain); . . . 11.0029</td>
<td>Biology of the Brown Leaf Spot Disease of Rice Using Organisms Antagonistic to the Pathogen . Brown Spot; Helminthosporium; Phytopathology; Soil-borne; . . . 9.0217</td>
</tr>
<tr>
<td>Soil Depth</td>
<td>Soil Crusting</td>
</tr>
<tr>
<td>See Environments, Plant</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Soil Drainage</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Evolution of the Soils of Banana Plantations. Cultivation in Organic Soils . . . Env. Plant Relation; Musa; Orthic Acrisol; Soil - Alkaline; . . . 4.0153</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Soil Environment</td>
<td>See Environments, Animal</td>
</tr>
<tr>
<td>See Environments, Plant</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Soil Fertility</td>
<td>See Environments, Plant</td>
</tr>
<tr>
<td>Soil Genesis</td>
<td>Soil Morphology, Profiles</td>
</tr>
<tr>
<td>Soil Genesis Study of Upland Drift Soils and Associated Residual Soil . . . Clay; Silt; Soil Chemical Properties; Soil Types; . . . 3.0221</td>
<td>Detailed Reconnaissance Soil Survey of Cape Coast Region, Central and Western Regions of Ghana . Geochemistry; Land Use - agriculture; Roads and Highways; Soil Physical Properties; Soil Survey; Transportation; . . . 3.0222</td>
</tr>
<tr>
<td>Operation of Research in Geodynamics, Geochemistry and Geomorphology in the Ivory Coast . Geochemistry; Infiltration; Soil Crusts; Soil Morphology, Profiles; . . . 4.0036</td>
<td>Detailed Reconnaissance Soil Survey of the Lower Afram Basin . Geochemistry; Soil Physical Properties; Soil Survey; . . . 3.0223</td>
</tr>
<tr>
<td>Typology and Classification of Ferralitic Soils in an Equatorial to Tropical Climate . . . Climate- Continental Sav. Trop.; Climate-Humid Equatorial; Soil Morphology, Profiles; Soil Types; . . . 4.0037</td>
<td>Operation of Research in Geodynamics, Geochemistry and Geomorphology in the Ivory Coast . Geochemistry; Infiltration; Soil Crusts; . . . 4.0036</td>
</tr>
<tr>
<td>Evolution of Ferralitic Landscapes in an Equatorial and Tropical Climate - Alteration, Erosion, Recasting, Hardening . . . Climate-Humid Equatorial; Geochemistry; Infiltration; Soil Crusts; Tertiary Period; . . . 4.0038</td>
<td>Typology and Classification of Ferralitic Soils in an Equatorial to Tropical Climate . . . Climate- Continental Sav. Trop.; Climate-Humid Equatorial; Soil Genesis; Soil Types; . . . 4.0037</td>
</tr>
<tr>
<td>Mineralogical Study of Ferralitic Pedogenesis in an Equatorial and Tropical Climate . . . Climate- Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey; . . . 4.0039</td>
<td>Problems Caused by the Contact of Forest with Savanna in the Ivory Coast . Balance of Nature; Silriculum; Soil Moisture; Soil-Water-Plant Relationships; Topographical Parameters-other; . . . 4.0046</td>
</tr>
<tr>
<td>Study of the Mechanisms of the Evolution of Soils After Clearing and Putting Under Cultivation in an Equatorial Climate . Dry Monsoon 4 M. or Less; Fallowing; Organic Fertility; . . . 4.0040</td>
<td>Fertility Status of Major Soil of Nigeria Grown to Rice . . . Eutric Pluvisol; Fertilizer Technology; Management; . . . 9.0012</td>
</tr>
<tr>
<td>Genesis of Some Representative Soils of the Desired Savanna Region . Geochemistry; Soil Analysis; Soil Genesis; Soil Physical Properties; Soil Profile Studies; Soil Types; . . . 9.0055</td>
<td>Genesis of Some Representative Soils of the Desired Savanna Region . Geochemistry; Soil Analysis; Soil Genesis; Soil Physical Properties; Soil Profile Studies; Soil Types; . . . 9.0055</td>
</tr>
<tr>
<td>Investigation of the Influence of Climate on Soil Morphology and Soil Distribution in the Metamorphic Regions of Nigeria . Geochemistry; Soil Genesis; Soil Profile Studies; Soil Types; . . . 9.0056</td>
<td>Investigation of the Influence of Climate on Soil Morphology and Soil Distribution in the Metamorphic Regions of Nigeria . Geochemistry; Soil Genesis; Soil Profile Studies; Soil Types; . . . 9.0056</td>
</tr>
<tr>
<td>Physical Evolution of the Soil Under Cultivation . . . Core Samples; Glycine Max; Soil Permeability; Sorghum Vulgare (Grain); . . . 11.0028</td>
<td>Physical Evolution of the Soil Under Cultivation . . . Core Samples; Glycine Max; Soil Permeability; Sorghum Vulgare (Grain); . . . 11.0028</td>
</tr>
<tr>
<td>Soil Microbiology</td>
<td>Soil Nutrients/Fertilizers</td>
</tr>
<tr>
<td>Morphogenesis of Fungi with Rhizomorphs and with Sclerotia . . . Cellular Physiology; Corticium; Lep­toporus; Pricking Out; Sclerotium; . . . 4.0065</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
<tr>
<td>Study of Incubations of Rhizobium on Soy . . . Continuous Humid; Incubation; Nitrogen Fixation; Rhizobium; . . . 4.0198</td>
<td>Chemical Kinetics of Rice Soils and Varietal Response to Adverse Soil Conditions . . . Deficiencies; Management; Saline Soils; Soil pH; Soil Types; . . . 10.0012</td>
</tr>
<tr>
<td>Soil Minerals - Natural</td>
<td>Study of the Acidification of Cultivated Soils in Senegal and Determination of the Re-</td>
</tr>
<tr>
<td>See Environments, Plant</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
<tr>
<td>Soil Moisture</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
<tr>
<td>See Environments, Plant</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
<tr>
<td>See Soil Physical Properties</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
<tr>
<td>Soil Nutrients/Fertilizers</td>
<td>Soil Chemistry . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178</td>
</tr>
</tbody>
</table>
Soil Nutrients/Fertilizers

SUBJECT INDEX

Quirements in Lime
- Cambic Arenosols; Lime; Management; Soil pH; ... 11.0065

Boron
- Study of the mineral deficiencies of cotton plants ... Management; Sulphur; ... 1.0027
- Experiment on mineral fertilization of Hibiscus sabdariffa ... Deficiencies; Ferric Luviosols; Humid 6 Months; Management; Sulphur; ... 1.0054
- Study of the action of the elements N, S, P, K, B, O applied as a fertilizer on Hibiscus sabdariffa ... Management; Sulphur; ... 1.0056
- Study of the role of trace elements in the nutrition of the coconut palm ... Copper; Manganese; Sand; ... 4.0323
- Study of the profitability of an application of mineral fertilizer to tropical ferraligous soils ... Fertilizer Accumulation; Management; Manure; Rain; Sorghum Vulgare; ... 8.0045
- Micronutrients in tree crop nutrition ... Cola; Foliar Application; Iron; Management; Soil Testing; Zinc; ... 9.0124
- Trace Elements in the Nutrition of the Oil Palm ... Copper; Management; Movement; Availability; Sand; Trace Metals; ... 9.0296
- Experiment 9-2 - Trace element experiment ... Foliar Application; Management; Molybdenum; Zinc; ... 9.0033
- Study the development of mineral deficiencies in the course of rotation of crops, 1966-1975 ... Deficiencies; Fallowing; Sulphur; ... 13.0042
- Comparison of formulas for fertilizers in cotton rotation at the outstation at Nian-gouame and at the pilot centre at Kabou ... Costs; Management; Side Dressing; Sulphur; ... 13.0053
- Comparison of formulas for fertilizers in cotton rotation at the outstation at Kadjialla (The Kaga Region) ... Costs; Management; Side Dressing; Sulphur; ... 13.0054
- Comparison of formulas for fertilizers in cotton rotation at the outstation at Dapango (Savannah Region) ... Costs; Management; Sulphur; ... 13.0055
- Foliar analyses on the cotton plant ... Management; Sulphur; ... 14.0072
- Foliar analysis on the cotton plant ... Ferric Luviosols; Humid 6 Months; Management; Pilthic Luviosols; Sulphur; ... 14.0084

Calcium - Other than Lime
- Oil palm fertilization requirements in Ghana ... Continuous Humid 7 Months; Plus; Magnesium; Management; Sand; ... 3.0120
- Mineral fertilization on cocoa ... Ferric Acrisols; Magnesium; Nursery Observational Plots; ... 4.0002
- Mineral fertilization on cocoa ... Ferric Acrisols; Magnesium; Nursery Observational Plots; Two Humid Seasons; 7 Months, Plus; ... 4.0007
- Mineral fertilization on cocoa ... Eutric Fluvisols; Magnesium; Nursery Observational Plots; Soil Analysis; ... 4.0009
- Mineral fertilization on cocoa ... Growth Stage of Plant; Management; Soil Analysis; Two Humid Seasons; 7 Months; Plus; ... 4.0113
- Mineral fertilization on cocoa ... Growth Stage of Plant; Management; Soil Analysis; Two Humid Seasons; ... 4.0116
- Determination of mineral deficiencies in the principal soils of the Ivory Coast ... Excessive Moisture; Gleyic Acrisols; Magnesium; Removal of Nutrients from Soil; Soil Fertility; ... 4.0020
- Specific role of organic matter in tropical soils ... C/N Ratio; Ferralic Cambiosols; Management; Sulphur; ... 4.0012
- Fertilization of the coconut palm - Ferralitic soils on tertiary sands ... Chlorine; Deficiencies; Growth Stage of Plant; Management; ... 4.0033
- Fertilization of the coconut palm on littoral Ferralitic soils ... Chlorite; Coco; Ferralsols; Magnesium; Management; Sand; ... 4.0034
- Study of calcium in the fertilization of the coconut palm ... Coco; Magnesium; Management; ... 4.0038

Chlorine
- Mineral fertilization on cocoa ... Growth Stage of Plant; Management; Soil Analysis; ... 4.0035
- Cocoa fertilizer trials ... Management; ... 9.0121

Copper
- Study of the role of trace elements in the nutrition of the coconut palm ... Boron; Manganese; ... 9.0303
- Trace Elements in the Nutrition of the Oil Palm ... Boron; Management; Movement; Availability; Sand; Trace Metals; ... 9.0296
- Experiment 9-2 - Trace element experiment ... Boron; Foliar Application; Management; Molybdenum; Zinc; ... 9.0033

Iodine
- Soil chemistry ... Fallowing; Fertilization; Silicon; Soil Resistance; ... 8.0178

Iron
- Fertilizer requirements of irrigated rice on the black soils, acrylic plains ... Formulation; Fertilizer; Management; Sulphur; ... 3.0003
- Mineralogical study of ferralitic pedogenesis in an equatorial and tropical climate ... Climate; Humid Equatorial; Goethite; Mineralogy; Soil Survey; ... 4.0039
- Micronutrients in tree crop nutrition ... Cola; Foliar Application; Management; Soil Testing; Zinc; ... 9.0124
- Soil chemistry ... Fallowing; Iodine; Fertilization; Silicon; Soil Resistance; ... 9.0178
- Experiment 9-2 - Trace element experiment ... Boron; Foliar Application; Management; Molybdenum; Zinc; ... 9.0033
- Chemical kinetics of rice soils and varietal response to adverse soil conditions ... Deficiencies; Management; Saline Soils; Soil pH; Soil Types; ... 10.0012
- Action of lime and of manganese dioxide on the dynamics of an acid clayey soil ... Deficiencies; Management; Soil pH; ... 11.0131

Lime
- Fertilizer efficiency studies on beans (Phascolus vulgaris) and cowpea ... Irrigation; Fertilizer; Management; Nitrogen Fixation; Phosphorus; Soil pH; Timing of Application; ... 3.0818
- Forest trees establishment trials ... Boraginaceae; Eucaualpytus; Silviculture; ... 9.0063
- Soil improvement for reforestation in high forest zone ... Elevation; Levels; Altitude; Percolation; Soil and Rock Leaching; Soil Moisture; Soil Types; ... 9.0071
- Soil acidity and the growth of the oil palm ... Foliar Application; Management; Soil pH; Trace Metals; ... 9.0028
- The most favourable cropping techniques for the nodulation of groundnuts ... Fats - Lipids & Oils; Inoculation; Management; Proteins; Yellow Dwarfing; ... 11.0031

444
Subsequent Index

Studying the Acidification of Cultivated Soils in Senegal and Determination of the Requirements in Lime... Cambic Arenosols; Management; Soil pH... .11,0065
Fertilizer Efficiency Studies on Soybean and Groundnuts... Glycine Max; Irrigation - general; Management; Nitrogen; Nitrogen Fixation; Phosphorus;11,0074
Action of Lime and of Manganese Dioxide on the Fertility of an Acid Clayey Soil... Deficiencies; Iron; Management; Soil pH... .11,0131

Magnesium

Mineral Nutrition of Hybrid Coconut Palms... Cocos; Humid 6 Months; Less; Management; Sand;3,0120
Regeneration of the Soils and Fertilization in Replantation... Paniceae - other; Soil Structure; Two Humid Seasons;1,0076
Coconut Fertilizer Trial (NPK, MG) ... Cocos; Continuous Humid; Management;3,0040
Rubber NP (KMG) Factorial Trial... Continuous Humid; Management;3,0046
Oil Palm Fertilizer Requirements in Ghana... Calcium - Other Than Lime; Continuous Humid 7 Months; Plus; Management; Sand;3,0120
Fertilization of Smooth Cayenne Pineapple in Ghana... Bromeliaceae; Deficiencies; Management; Plant Growth Regulators; Somatotrophin; Space Competition;3,0171
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Ferric Acrisols; Nursery Observational Plots;4,0002
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Ferric Acrisols; Nursery Observational Plots; Two Humid Seasons 7 Month; Plus; Management; Sand;4,0007
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Eutric Fluvisols; Nursery Observational Plots; Soil Analysis - other;4,0006
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis; Two Humid Seasons 7 Month; Plus;4,0113
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis; Two Humid Seasons;4,0146
Determination of Mineral Deficiencies in the Principal Soils of the Ivory Coast... Calcium - Other Than Lime; Excessive Moisture; Gleyric Acrisols; Removal of Nutrients from Soil; Soil Fertility;4,0202
Specific Role of Organic Matter in Tropical Soils... C/N Ratio; Ferralic Cambisols; Management; Sulfur;4,0212
Fertilization of Oil Palm on Tertiary Ferralic Sands... Ferralsols; Formulation, Fertilizer; Management; Sand;4,0291
Study the Influence of the Anions S04 and Cl in the Fertilization of the Oil Palm... Chlorine; Management; Sulfate; Sulfur;4,0292
Fertilization of the Coconut Palm - Ferralic Soils on Tertiary Sands... Chlorine; Deficiencies; Growth Stage of Plant; Management;4,0313
Fertilization of the Coconut Palm on Littoral Ferralic Soils... Calcium - Other Than Lime; Chlorine; Cocos; Ferralsols; Management; Sand;4,0314
Study of K/Mg Balance in the Manuring of the Coconut Palm... Cocos; Fertilizer Toxicity; Management;4,0316
Study of Calcium in the Fertilization of the Coconut Palm... Calcium - Other Than Lime; Cocos; Management;4,0318
Study the Time of Application and Fractionation of Manurings for the Coconut Palm... Chlorine; Movement, Availability; Sulfur;4,0322
Mineral Fertilization on Cocoa... Calcium - Other Than Lime; Growth Stage of Plant; Management; Soil Analysis - other;4,0325
Fertilization of Hevea Brasiliensis and its Effect on Growth... Calcium; Growth Stage of Plant; Management; Nitrogen; Phosphorus; Potassium;5,0004
Fertilization of Hevea Brasiliensis and its Effect on Yield... Calcium; Management; Nitrogen; Phosphorus; Potassium;5,0005

Soil Nutrients/Fertilizers

Soil Chemical and Physical Changes under Continuous Cultivation... Infiltration; Management; Manihot; Sand; Trace Metals;9,0048
Experiment 180 - 1: Factorial Fertilizer Experiment... Management; Seasonal Application;9,0306
Experiment 508 - 2... Management; Seasonal Application;9,0307

Manganese

Study the Role of Trace-Elements in the Nutrition of the Coconut Palm... Boron; Copper; Management;4,0323
Experiment 9 - 2: Trace Element Experiment... Boron; Foliar Application; Management; Molybdenum; Zinc;9,0303
Chemical Kineties of Rice Soils and Varietal Response to Adverse Soil Conditions... Deficiencies; Management; Saline Soils; Soil pH; Soil Types;10,0012
Action of Lime and of Manganese Dioxide on the Fertility of an Acid Clayey Soil... Deficiencies; Iron; Management; Soil pH;11,0131

Molybdenum

Study the Role of Trace-Elements in the Nutrition of the Coconut Palm... Boron; Copper; Management;4,0323
Experiment 9 - 2: Trace Element Experiment... Boron; Foliar Application; Management; Zinc;9,0303

Silicon

Soil Chemistry... Fallowing, Iodine; Mineralogy; Soil Resistance;9,0178

Sulfur

Study of the Mineral Deficiencies of the Cotton Plant... Continuous Humid; Eutric Planosols; Management;1,0013
Study of the Mineral Deficiencies of the Cotton Plant... Dry Monsoon 5 Months; Plus; Eutric Cambisols; Ferric Luvisols; Management; Moist Monsoon;1,0020
Study of the Mineral Deficiencies of Cotton Plants... Boron; Management;1,0027
Experiments on Mineral Fertilization of Hibiscus Sabdariffa... Boron; Deficiencies; Ferric Luvisols; Humid 6 Months; Management;1,0054
Study of the Action of the Elements N, S, K, B, O Applied as a Fertilizer on Hibiscus Sabdariffa... Boron; Management;1,0056
Fertilizer Requirements of Irrigated Rice on the Black Soils, Accra Plains... Formulation, Fertilizer; Iron; Management;3,0003
Use of Isotopes in Studies on the Nutrition of Groundnuts... Broadcast Application, Management; Nitrogen Fixation;3,0219
Determination of Mineral Deficiencies in the Principal Soils of the Ivory Coast... Calcium - Other Than Lime; Excessive Moisture; Gleyric Acrisols; Magnesium; Removal of Nutrients from Soil; Soil Fertility;4,0202
Specific Role of Organic Matter in Tropical Soils... C/N Ratio; Ferralic Cambisols; Management; Sulfur;4,0212
Study the Influence of the Anions S04 and Cl in the Fertilization of the Oil Palm... Chlorine; Management; Management; Sulfates;4,0293
Study of the Role of the Anions S04 and Cl in the Fertilization of the Coconut Palm... Chlorine, Deficiencies, Nitrate; Sulfates;4,0319
Study the Time of Application and Fractionation of Manurings for the Coconut Palm... Chlorine; Magnesium; Movement, Availability; Sulfur;4,0322
Detection of Mineral Deficiencies of Soils by the Method of Pot-Cultivation... Humid 4 Months; Soil Types;6,0008
Fertilizer Fertilization of the Cotton Plant... Deficiencies; Hydroponic Studies; Management; Soil Analysis - other;6,0074
Study of Mineral Deficiencies on Tropical Ferruginous Soils... Management;8,0044
The Sulphur and Zinc Status of Soils of the Western State of Nigeria... Clay; Management;8,0044
Soil Nutrients/Fertilizers

Movement, Availability; Organic Fertility; Soil pH; Zinc;... 9.0051

STUDIES ON SOIL ORGANIC MATTER ... Deficiencies; Management; Organic Fertility; Zinc;... 9.0123

SOIL MICROBIOLOGY ... Chlorinated Hydrocarbons; Ferralic Cambisols; Herbicides - nonspecific; Nitrogen Fixation; Toxicity to Microorganisms;... 9.0179

IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE ... Management; Soil Amendments;... 11.0132

STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE FIELD ... Dystric Gleysols; Humid 3 Months; Management; Soil Moisture;... 11.0161

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON ... Dystric Gleysols; Humid 3 Months; Luvisols; Sorghum Vulgare (Grain);... 11.0166

EXPERIMENTS COMPARING IN TIME THE EFFICIENCY OF DIFFERENT RECOMMENDED FORMULATIONS FOR MANURE APPLIED TO COTTON CROPS ... Management;... 11.0167

EXPERIMENTS WITH FERTILIZERS IN PLANTATIONS OF EUCALYPTUS CAMALDULENSIS ... Eucalyptus; Phosphates; Potassium; Silviculture; Sulfates;... 13.0019

STUDY OF THE MINERAL DEFICIENCIES OF THE SOILS OF TOGO AND THEIR EVOLUTION ... Deficiencies; Geology; Management; Movement; Availability;... 13.0041

STUDY THE DEVELOPMENT OF MINERAL DEFICIENCIES IN THE COURSE OF ROTATION OF CROPS, 1968-1975 ... Boron; Deficiencies; Fallowing;... 13.0042

COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUSTATION AT KOUE (MARITIME REGION) Costs; Management;... 13.0051

COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUSTATION AT EAST-MONO (PLATEAUX REGION) ... Costs; Management; Side Dressing;... 13.0052

COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUSTATION AT NIAN-GOULAME AND AT THE PILOT CENTRE AT KABOU ... Boron; Costs; Management; Side Dressing;... 13.0053

COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUSTATION AT KADIALLA (THE KARA REGION) ... Boron; Costs; Management; Side Dressing;... 13.0054

COMPARISON OF FORMULAS FOR FERTILIZERS IN COTTON ROTATION AT THE OUSTATION AT DAPANGO (SAYANNAH REGION) ... Boron; Costs; Management;... 13.0055

RESEARCH ON MINERAL DEFICIENCY IN COTTON ... Management;... 14.0067

TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON ... Formulation; Fertilizer; Management;... 14.0069

STUDY OF NITROGENOUS NUTRITION ON COTTON ... Management;... 14.0071

FOLIAR ANALYSES ON THE COTTON PLANT ... Boron; Management;... 14.0072

RESEARCH ON MINERAL DEFICIENCY IN COTTON ... Ferric Luvisols; Humid 6 Months; Plinthic Luvisols;... 14.0079

TESTS OF FORMULATIONS OF FERTILIZERS ON COTTON ... Ferric Luvisols; Formulation; Fertilizer; Humid 6 Months; Management; Plinthic Luvisols;... 14.0081

FOLIAR ANALYSIS ON THE COTTON PLANT ... Boron; Ferric Luvisols; Humid 6 Months; Management; Plinthic Luvisols;... 14.0084

Zinc

FERTILISER REQUIREMENTS OF IRRIGATED RICE ON THE BLACK SOILS, ACCRA PLAINS ... Formulation, Fertilizer; Iron; Management; Sulphur;... 9.0053

THE SULPHUR AND ZINC STATUS OF SOILS OF THE WESTERN STATE OF NIGERIA ... Clay; Management; Movement; Availability; Organic Fertility; Soil pH; Sulphur;... 9.0055

MICRONUTRIENTS IN TREE CROP NUTRITION ... Boron; Cola; Foliar Application; Iron; Management; Soil Testing;... 9.0124

EXPERIMENT 9-2 - TRACE ELEMENT EXPERIMENT ... Boron; Foliar Application; Management; Molybdenum;... 9.0303

Soil Permeability

STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KORHOGO WATERSHED ... Rain; Soil Erosion; Soil Moisture; Soil Types; Watersheds;... 4.0045

PHYSICAL EVOLUTION OF THE SOIL UNDER CULTIVATION ... Core Samples; Glycine Max; Soil Genesis; Sorghum Vulgare (Grain);... 11.0028

Soil Physical Properties

DETAILED RECONNAISSANCE SOIL SURVEY OF UPPER AFRAM BASIN ... Geology; Mineralogy; Soil Survey;... 3.0020

DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA ... Geology; Land Use - agriculture; Roads and Highways; Soil Morphology, Profiles; Soil Survey; Transportation;... 3.0021

DETAILED RECONNAISSANCE SOIL SURVEY OF THE LOWER AFRAM BASIN ... Geology; Mineralogy; Soil Morphology, Profiles; Soil Profile Studies; Soil Types;... 9.0055

SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE ... Elevational Levels, Altitude; Percolation; Soil and Rock Leaching; Soil Moisture; Soil Types;... 9.0071

EFFECT OF FOREST PLANTATION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES ... Elevational Levels, Altitude; Gmelina; Pinus; Silviculture; Soil Analysis; Soil Environment - other;... 9.0072

ADSORPTIVE AND RETENTIVE PROPERTIES AND NATURE OF SOILS OF SIERRA LEONE ... National Network - general; Soil Porosity;... 12.0004

Soil Amendments

EVOLUTION OF THE SOILS OF BANANA PLANTATIONS. CULTIVATION IN ORGANIC SOILS ... Env. Plant Dis. Relation; Muss; Orthic Acrisols; Soil - Alkaline; Soil Drainage;... 4.0183

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED ... Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain);... 11.0027

ACTION OF BURIED STRAW ON THE DYNAMICS OF SOILS ... Clay; Humid 2 Months; Loam - Sand Soil; Management; Organic Fertility;... 11.0130

IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE ... Management; Sulfur;... 11.0132

BURIAL OF STRAW IN A RICE FIELD ... C/N Ratio; Humid 2 Months; Management;... 11.0134

Soil Moisture

COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Preforan; Synergism and Synergists;... 3.0055

DETERMINATION OF SOIL CHARACTERISTICS FOR IRRIGATION ... Irrigation; Plant Requirements - water; Soil Types; Two Humid Seasons;... 4.0092

DISTRIBUTION PATTERNS OF YOUNG ECONOMIC TREE SPECIES AND THEIR CORRELATION WITH ENVIRONMENTAL FACTORS ... Competition; Mineralogy; Silviculture; Soil Depth; Surveys;... 9.0082

STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED ... Clay; Forage Grasses; Loam; Sand; Soil Crusts; Soil Porosity; Sorghum Vulgare (Grain);... 11.0029

INFLUENCE OF WIND-BREAKS IN AN IRRIGATED PERIMETER ... Humidity; Irrigation; Irrigation - general; Shelter Belts, Windbreaks; Temperature-air; Wind or Air Movement;... 14.0005

RESEARCH FOR SHORT-CYCLE VARIETIES OF RICE ADAPTED TO CULTIVATION ON MARSHY LAND AND RESISTANT TO PIRICULARIOSIS ... Humid 3 Months; Phytopathology;... 14.0028

Soil Structure

Air - Water - Plant Relations

STUDIES ON PHYSIOLOGICAL BASES FOR FURTHER INCREASE OF GRAIN YIELD AND RESPONSE OF RICE TO...
FALLows ... Crop Contribution to Soil Fert; Manihot; Orthic Ferralsols; Pueraria; Soil Analysis; . . . 9.0366
MOISTURE BALANCE BENEATH CUT CROPS, BARE SOIL AND FALLOW ... Cover Crops; Humidity; Management; Soil - Bare; Soil-plant Relationships; . . . 11.0061
LEACHING OF THE MINERAL ELEMENTS FROM SANDY SOILS CULTIVATED AS INTENSIVE SYSTEMS ... Fertilizer Losses; Luvic Arenosols; Sand; Soil and Rock Leaching; Soil Moisture; . . . 11.0063
STUDY OF CONTINUOUS CULTIVATION ... Climate-Semiarid Tropical; Continuous Cropping; Field Crops - nonspecific; Removal of Nutrients from Soil; . . . 11.0066
STUDY OF THE DEVELOPMENT OF MINERAL DEFICIENCIES IN THE COURSE OF ROTATION OF CROPS, 1968-1975 ... Boron; Deficiencies; Sulfur; . . . 13.0042
STUDY OF THE MAINTENANCE OF FERTILIZATION ... Management Sequences / Membrane Systems; . . . 13.0047
EXPERIMENT DURATION OF FALLOW ... Management; Phaseolus; Sand; . . . 13.0048
VERIFICATION OF TECHNIQUE IN RURAL ENVIRONMENT IN PILOT CULTIVATIONS ... Cajanus; Management; Sesamum; Solanum; . . . 14.0013
CONTINUOUS CROP ROTATION WITH MANURE ... Cercospora; Chitonos; Leaf Spot; Management; Manure; Phytopathology; . . . 14.0014
EXPERIMENTS ON SYSTEMS OF CULTIVATION AND FERTILIZATION ... Management; . . . 14.0048

Hand Tillage
COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Peforan; Soil Moisture; Synergism and Synergists; . . . 3.0005
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Irrigation - general; Propanil; Silvex; . . . 4.0094
UTILIZATION OF HERBICIDES IN COFFEE CROPPING ... Ferric Acrisols; Field Crops - nonspecific; Herbicides - nonspecific; Management; Soil Tillage Sequence / Method; Two Humid Seasons-7 Month, Plus; . . . 4.0111
MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS ... Cereal Crops; Continuous Humid; Fiber Crops; Herbicides - nonspecific; Phenology, Life Cycle, Soil Tillage Method; . . . 4.0184
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; D; 2,4-; Management; Propanil; Silvex; . . . 4.0204
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Pricking Out; Selectivity of Pesticides; . . . 4.0205
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Management; Propanil; Silvex; . . . 4.0208
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Humid 5 Months; Pricking Out; Selectivity of Pesticides; . . . 4.0210
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Pricking Out; Selectivity of Pesticides; Two Humid Seasons-7 Month, Plus; . . . 4.0217
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE ... Cereal Crops; Pricking Out; Selectivity of Pesticides; . . . 4.0219
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Pricking Out; Selectivity of Pesticides; . . . 4.0221
METHODS OF PREPARING THE GROUND FOR PLANTATION ... Soil-water-plant Relationships; Management; Phytopathology; Sand; Seedbed Preparation; Two Humid Seasons; . . . 4.0236
STUDY OF WEEDS IN IRRIGATED RICE ... Cereal Crops; Economics of Chemical Control; Herbicides - nonspecific; Management; . . . 5.0016
ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA) ... Cereal Crops; Cutting Sequence; Durion; Grasses or Sedges; Management; Oryza - other; . . . 6.0063
EXPERIMENT ON MANUAL TILLAGE BEFORE PLANTATION ... Eucalyptus; Humid 1 Month; Luvic Arenosols; Silviculture; . . . 8.0013
MANAGEMENT PRACTICES OF TWO RECOMMENDED RICE VARIETIES ... Cereal Crops; Humid 6 Months; Insecticides - nonspecific; Management; . . . 9.0003
EXPERIMENT ON WEED CONTROL IN OIL PALM PLANTATIONS ... Durion; Oilseed Crops; Pest, Disease & Weed Control; . . . 9.0301

Soil Tillage
CULTIVATION AND WEEDING METHODS IN PLANTATIONS ... Costs; Eucalyptus; Mechanical Control; Pinus; . . . 9.0356
THE CONTROL OF WEEDS BY HERBICIDES IN RICE CROPS ... Cereal Crops; Herbicides - nonspecific; . . . 12.0009
COMBINED EXPERIMENT - METHOD OF PLOUGHING-FERTILIZATION ... Plowing; Sorghum Vulgare (Grain); . . . 14.0070
COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS ... Ferric Luvisols; Pesticides - other; Prometryne; . . . 14.0085

Harrowing
EROSION OF TILLED LAND ... Continuous Humid; Management Effects on Soils; Plinthic Acrisols; Plowing; Rill Erosion; . . . 4.0199

Minimum Tillage
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING ... Chemical Tillage or Nontillage; Continuous Humid; Deep Plowing; Ferralic Cambisols; Plowing; Soil Types; . . . 4.0195
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING ... Chemical Tillage or Nontillage; Deep Plowing; Humid 5 Months; Plowing; Soil Types; . . . 4.0207
COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS ... Chemical Tillage or Nontillage; Continuous Humid 7 Months-Plus; Ferralic Cambisols; Ferric Luvisols; Glycine Max; Management; . . . 9.0173

Plowing
SPECIFIC ROLE OF ORGANIC MATTER ... C/N Ratio; Dry Monsoon 4 M. or Less; Dystric Nitosols; Ferric Luvisols; Humid 4 Months; Soil Fertility; . . . 1.0002
SPECIFIC ROLE OF ORGANIC MATTER ... C/N Ratio; Ferric Luvisols; Humid 5 Months; Soil Fertility; . . . 1.0034
EFFECT OF TIME OF LAND PREPARATION AND PLANTING ON YIELD QUALITY OF FLUE CURED TOBACCO ... Continuous Humid 7 Months, Plus, Management; Nicotiana; Seedbed Preparation; Soil Tillage Methods - other; Timing of Planting Procedures; . . . 3.0145
EFFECT OF PLOUGHING AND FERTILIZER APPLICATION ON THE YIELD OF CROPS (MAIZE, CASSAVA AND COWPEAS) ... Deep Plowing; Management; Management Effects on Soils; Manihot; Soil Depth; . . . 3.0226
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING ... Chemical Tillage or Nontillage; Continuous Humid; Deep Plowing; Ferralic Cambisols; Minimum Tillage; Soil Types; . . . 4.0195
EROSION OF TILLED LAND ... Continuous Humid; Harrowing; Management Effects on Soils; Plinthic Acrisols; Rill Erosion; . . . 4.0199
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPPING ... Chemical Tillage or Nontillage; Deep Plowing; Humid 5 Months; Minimum Tillage; Soil Types; . . . 4.0207
STUDY OF THE EFFECTS OF TILLAGE ... Calcaric Regosols; Cambic Arenosols; Humid 1 Month; Management Effects on Soils; . . . 6.0024
STUDY OF DIFFERENT TYPES OF PLOUGHING FOR THE CULTIVATION OF FLOATING RICE ... Deep Plowing; Management; Non-dry 3 Months, Plus; Soil Depth; . . . 6.0061
EFFECT OF TILLAGE ON THE MINERAL NUTRITION AND THE SUPPLY OF MOISTURE TO CROPS ... Drought Resistance; Management; Moisture Deficiency; Subsoiling; Surface - soil; . . . 11.0027
TILLAGE AND FERTILIZATION ... Dry Monsoon 5 Months, Plus; Ferric Luvisols; Management; Sorghum Vulgare (Grain); . . . 13.0028
DETERMINATION OF THE APPROPRIATE TECHNIQUES FOR CULTIVATION OF PLUVIAL RICE ... Chronic Vertisols; Humid 4 Months; Management Effects on Soils; Seedbed Preparation; . . . 14.0005
COMBINED EXPERIMENT - METHOD OF PLOUGHING-FERTILIZATION ... Hand Tillage; Sorghum Vulgare (Grain); . . . 14.0070
COMBINED EXPERIMENT - METHOD OF PLOUGHING-FERTILIZATION ... Ferric Luvisols; Humid 6 Months; Plinthic Luvisols; Sorghum Vulgare (Grain); . . . 14.0082
Soil Tillage

SUBJECT INDEX

Pricking Out
MORPHOGENESIS OF FUNGI WITH RHIZOMORPHS AND WITH SCLEROTIA. Cellular Physiology; Curciatum; Lep-
toporus; Sclerotium; Soil Microbiology; . . . 4.0065
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Irrigation -general; Propam; Silvex; . . . 4.0094
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Hand Tillage; Selectivity of Pesticides; . . . 4.0205
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Hand Tillage; Selectivity of Pesticides; . . . 4.0210
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Humid 5 Months; Selectivity of Pesticides; . . 4.0215
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Hand Tillage; Selectivity of Pesticides; Two
Humid Seasons-7 Month, Plus; . . . 4.0217
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE.
Cereal Crops; Hand Tillage; Selectivity of Pesticides; . . . 4.0219
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE.
Cereal Crops; Hand Tillage; Selectivity of Pesticides; . . . 4.0221
INFLUENCE OF THE MICROCLIMATE AND OF MINERAL
FERTILIZATION ON NURSERIES OF OIL PALMS IN
BAGS . . . Blast; Interaction with Environment; Management;
Nutritional Regulation (Host); Temperature- air; . . . 4.0360
CROPPING TECHNIQUES FOR IRRIGATED . . . Drill
Application; Hot Equatorial or Hot Tropical; Management;
Planting Methods -other; . . . 8.0001
HYBRIDIZATION IN EUCALYPTUS . . . Eucalyptus; F Genera-
tion (F1, F2, F3, Etc); Humid 4 Months; Silviculture; Tree Breeding; . . . 9.0341

Rolling
STUDY OF THE PREPARATION OF THE SEED BED AND
OF TEAM-CULTIVATION IMPLEMENTS FOR THE
CULTIVATION OF FLOATING RICE . . . Management; Non-dry
3 Months, Plu; Rotary Tillage, Rotary Hoe; Soil Preparation &
Renovation; . . . 6.0062
EXPERIMENT 17-1 WEED CONTROL IN OIL PALM PLAN-
TATIONS . . . Diurec; Hand Tillage; Oleseed Crops; Pest, Dis-
case & Weed Control; . . . 9.0301
EXPERIMENT 17-2. MECHANICAL MAINTENANCE AND
MULCHING TREATMENTS OF OIL PALM PLANTA-
TIONS . . . Cultivarcontrol -other; Equipment; Mulches; Pest, Dis-
case & Weed Control; . . . 9.0302

Rotary Tillage, Rotary Hoe
STUDY OF THE PREPARATION OF THE SEED BED AND
OF TEAM-CULTIVATION IMPLEMENTS FOR THE CUL-
TIVATION OF FLOATING RICE . . . Management; Non-dry
3 Months, Plu; Soil Preparation & Renovation; . . . 6.0062

Seedbed Preparation
EFFECT OF TIME OF LAND PREPARATION AND PLANT-
ING ON YIELD QUALITY OF FLUE CURED TOBACCO
Continuous Humid 7 Months, Plus; Management; Nicotiana;
Plowing; Soil Tillage Methods -other; Timing of Planting Proce-
dures; . . . 3.0145
EFFECT OF LOCAL FARMER'S PRACTICE OF STEPPING ON
GROUNDNUTS . . . Management; Management Effects on
Soils; Soil Compaction or Density; . . . 3.0165
IMPROVEMENT OF FORAGE PRODUCTION IN SAVAN-
NAH ZONE BY MODIFICATION OF THE TRADITIONAL
SYSTEM . . . Broadcast Application; Costs: Dry Monsoon 4 M.
or Less; Moist Monsoon; Styloarabica; . . . 4.0027
METHODS OF PREPARING THE GROUND FOR PLANTA-
TION OF RUBBER TREES . . . Hand Tillage; Management;
Phytopathology; Sand; Two Humid Seasons; . . . 4.0036
STUDY OF THE PREPARATION OF THE SEED BED AND
OF TEAM-CULTIVATION IMPLEMENTS FOR THE CUL-
TIVATION OF FLOATING RICE . . . Management; Non-dry
3 Months, Plu; Rotary Tillage, Rotary Hoe; Soil Preparation &
Renovation; . . . 6.0062
CROPPING TECHNIQUES FOR SANDY SOILS DRYING
OUT AFTER FLOODING . . . Humidify; Management; Sand;
Soil Preparation & Renovation; Soil-water-plant Relationships;
Surface Irrigation -general; . . . 11.0002
TRAILS OF MOTOR-TILLERS IN THE CONDITIONS OF
UNHUNTED RICE CULTIVATION . . . Crop Production,
Harvesting; Eutric Fluvisols; Eutric Gleysols; Hot Equatorial or
Hot Tropical; Management; . . . 11.0151
DETERMINATION OF THE APPROPRIATE TECHNIQUES
FOR CULTIVATION OF PLUVIAL RICE . . . Chronic Ver-
sols; Humid 4 Months; Management Effects on Soils; . . . 14.0065

Soil Tillage Methods -other
TILLAGE SYSTEMS FOR TROPICAL AGRICULTURE . . Dry
Monsoon 4 to 5 Months; . . . 3.0001
EFFECT OF TIME OF LAND PREPARATION AND PLANT-
ING ON YIELD QUALITY OF FLUE CURED TOBACCO . . Continuous Humid 7 Months, Plus; Management; Nicotiana;
Plowing, Soil Preparation; Timing of Planting Procedures; . . 3.0145
STUDY THE ROLE OF TRACE-ELEMENTS IN THE NUTRI-
TION OF THE COCONUT PALM . . Boron; Copper; Man-
genese; Sand; . . . 4.0323
MECHANIZATION OF TROPICAL AGRICULTURE . . Con-
tinuous Humid 7 Months, Plus; Design; Modify, Develop.of
Equipment; Ferric Cambisols; Ferric Luvisols; Mathematical Models;
Tractors and Accessories; . . . 9.0184
STUDY OF THE MODALITIES FOR CULTIVATION OF THE
NEW VARIETIES (OF PLANTS) . . . Labor Input; Manage-
ment; Sorghum Vulgare (Grain); Time & Motion Studies; . . . 11.0053

Subsoiling
EFFECT OF TILLAGE ON THE MINERAL NUTRITION
AND THE SUPPLY OF MOISTURE TO CROPS . . Drought
Resistance; Management; Moisture Deficiency; Plowing; Surface
-sail; . . . 11.0027

Soil Tillage Sequence / Method
See Pest Control Measures
Cultural Control

Soil Types
See Also Environments, Plant
SOIL GENESIS STUDY OF UPLAND DRIFT SOILS AND AS-
SIATED RESIDUAL SOIL . . Clay; Silt; Soil Chemical
Properties; . . . 3.0223
AGRICULTURE RESEARCH IN DRAWDOWN AREAS . .
Floods; Lakes & Reservoirs; . . . 3.0337
MINERAL FERTILIZATION ON COFFEE . . Continuous Hu-
mid; Ferric Acrisols; Geology; Growth Stage of Plant; Manage-
ment; Nursery Observational Plots; . . . 4.0001
MINERAL FERTILIZATION OF COFFEE . . Ferric Cambi-
sols; Geology; Management; . . . 4.0006
TYPOLOGY AND CLASSIFICATION OF FERRALYTIC
SOILS IN AN EQUATORIAL TO TROPICAL CLIMATE . .
Climate- Continental Sav.Trop.; Climate- Humid Equatorial; Soil
Genesis; Soil Morphology, Profiles; . . . 4.0037
STUDY OF RIVULET FORMATION, OF INFILTRATION
AND OF THEIR CONDITIONAL FACTORS ON THE KOR-
HOGO WATERSHED . . Rain; Rill Erosion; Soil Moisture;
Watersheds; . . . 4.0045
MINERAL FERTILIZATION ON COFFEE . . Continuous Hu-
mid; Eutric Fluvisols; Geology; Growth Stage of Plant; Manage-
ment; Nursery Observational Plots; . . . 4.0009
DETERMINATION OF SOIL CHARACTERISTICS FOR IRRI-
GATION . . Irrigation; Plant Requirements-water; Two Humid
Seasons; . . . 4.0092
MINERAL FERTILIZATION ON COFFEE . . Ferric Acrisols;
Geology; Growth Stage of Plant; Management; Nursery Observa-
tional Plots; Two Humid Seasons-7 Month, Plus; . . . 4.0112
MINERAL FERTILIZATION ON COFFEE . . Ferralic Areno-
sols; Geology; Growth Stage of Plant; Management; Nursery
Observational Plots; Two Humid Seasons; . . . 4.0145
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE
CROPPING . . Chemical Tillage or Nontillage; Continuous Hu-
mid; Deep Plowing; Ferralic Cambisols; Minimum Tillage; Plow-
ing; . . . 4.0195
CORRECTION OF MINERAL DEFICIENCIES OF THE PRIN-
CIPAL SOILS OF THE IVORY COAST . . Continuous Humid;
Ferric Acrisols; Gleyic Acrisols; Movement, Availability; Soil
Minerals-naturals; . . . 4.0200
EXPERIMENT ON PREPARATION OF THE SOIL BEFORE
CROPPING . . Chemical Tillage or Nontillage; Deep Plowing;
Humid 5 Months; Minimum Tillage; Plowing; . . . 4.0207
MINERAL FERTILIZATION ON COFFEE . . Ferric Acrisols;
Geology; Growth Stage of Plant; Management; Nursery Obser-
vational Plots; Two Humid Seasons-7 Month, Plus; . . . 4.0331

Soil 450
FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE... Eutric Fluviools, Fertilizer Technology; Management; Soil Morphology, Profiles;9 .0012
GENESIS OF SOME REPRESENTATIVE SOILS OF THE DESIRED SAVANNA REGION; Geology; Soil Analysis; Soil Genesis; Soil Morphology, Profiles; Soil Physical Properties; Soil Profile Studies;9 .0055
INVESTIGATION OF THE INFLUENCE OF CLIMATE ON SOIL MORPHOLOGY AND SOIL DISTRIBUTION IN THE METAMORPHIC REGIONS OF NIGERIA; Geology; Soil Genesis, Soil Morphology, Profiles; Soil Profile Studies;9 .0056
SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE... Elevated Levels, Altitude; Percolation; Soil and Rock Leaching; Soil Moisture;9 .0071
PEDOLOGY PROJECT... Cambisols; Ferric Luvisols; Groundwater;9 .0161
EFFICIENCY OF FERTILIZER UPTAKE BY THE OIL PALM... Management; Phosphorus; Placement; Rubidium;9 .0311
STUDY OF THE HARDENING OF SANDY SOILS WHEN DESSICATED... Clay; Forage Grasses; Loam; Sand; Soil Crust; Soil Porosity; Sorghum Vulgar (Grain);11 .0029
NITROGEN BALANCE... NITROGENOUS FERTILIZATION AND ORGANIC MANURING... C/N Ratio, Dystric Nitosols; Moist Monsoon 0 to 3 Months; Plant Residues-other;13 .0009
STUDY OF THE SOILS DEVELOPED ON THE CRYSTALLINE PHYLLOTTANIC BASE OF TOGO... CARTOGRAPHY AT 1/200,000TH OF THE SOUTHERN PART; Geology; Sedimentology; Soil Morphology, Profiles; Soil Survey;13 .0011
CARTOGRAPHY AT 1/200,000 OF THE SOILS OF THE BASARI DISTRICT... Geology; Quaternary Period; Sedimentology; Soil Morphology, Profiles; Soil Survey; Topographical Parameters-other;13 .0012
BEHAVIOUR OF GROUNDNUTS ROTATED WITH SOYA AND SESAME ON THE VIRGIN SOILS OF THE VALLEY OF THE VOUTAS... Glycine Max; Management; Sesbania;14 .0019
INTRODUCTION OF SPECIES OF RAPID GROWTH ON BROWN VERTIC SOIL... Chromic Vertisols; Eutric Regosols; Humid 3 Months, Soil Tillage; Vertic Cambisols;14 .0042

Soil Unit Classification

Acrisols
TYPOLOGY AND CLASSIFICATION OF FERRALYTIC SOILS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate-Continental Savanna; Climate-Humid Equatorial; Soil Genesis; Soil Morphology, Profiles; Soil Types;4 .0037
EQUATION OF FERRALYTIC LANDSCAPES IN AN EQUATORIAL AND TROPICAL CLIMATE... ALTERATION, EROSION, RECASTING, HARDENING... Climate-Humid Equatorial; Geology; Soil Analysis; Soil Crusts; Tertiary Period;4 .0038
MINERALOGICAL STUDY OF FERRALYTIC PEDOGENESIS IN AN EQUATORIAL AND TROPICAL CLIMATE... Climate-Humid Equatorial; Goethite; Iron; Mineralogy; Soil Survey;4 .0039
Ferric Acrisols
MINERAL FERTILIZATION OF COFFEE... Continuous Humid; Geology; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types;4 .0001
MINERAL FERTILIZATION OF COCOA... Calcium - Other Than Lime; Magnesium; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus;4 .0002
GENERATIVE IMPROVEMENT OF THE CACAO-TREE... Breeding & Genetics, Spic&Bev; Continuous Humid; Inter-specific Crosses; Intraspec. Genetic Relations; Management; Plant Resistance;4 .0004
MINERAL FERTILIZATION OF COFFEE... Ferralic Cambisols; Geology; Management; Soil Types;4 .0006
MINERAL FERTILIZATION OF COCOA... Calcium - Other Than Lime; Magnesium; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus;4 .0007
IMPROVEMENT OF THE COLA Tree... COLA NITIDA... Breeding & Genetics, Spic&Bev; Continuous Humid; Inter-specific Crosses; Intraspec. Genetic Relations; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus;4 .0008
GENERATIVE IMPROVEMENT OF THE CACAO TReE... Breeding & Genetics, Spic&Bev; Intraspec. Genetic Relations; Plant Resistance;4 .0009
IMPROVEMENT OF THE COFFEE-SHRUB... BREPHORA) BY VEGETATIVE MEANS... Breeding & Genetics, Spic&Bev; Ferralic Cambisols; Management; Two Humid Seasons-7 Month,Plus;4 .0010
IMPROVEMENT OF THE COFFEE-SHRUB... BREPHORA) BY VEGETATIVE MEANS... Breeding & Genetics, Spic&Bev; Ferralic Cambisols; Management; Two Humid Seasons-7 Month,Plus;4 .0011
IMPROVEMENT OF THE COFFEE-SHRUB... BREPHORA) BY VEGETATIVE MEANS... Breeding & Genetics, Spic&Bev; Elevational Levels, Altitude; Ferralic Cambisols; Intraspec. Genetic Relations; Intraspec. Cross; Two Humid Seasons-7 Month,Plus;4 .0012
IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION... Breeding & Genetics, Spic&Bev; Elevational Levels, Altitude; Ferralic Cambisols; Intraspec. Genetic Relations; Intraspec. Cross; Two Humid Seasons-7 Month,Plus;4 .0013
STUDY ON MANUAL POLLINATION AND FERTILIZATION OF THE CACAO-TREE AND THE INFLUENCE OF A COMPLEMENTARY MANUAL POLLINATION... Breeding & Genetics, Spic&Bev; Pollination & Fertilization; Two Humid Seasons-7 Month,Plus;4 .0099
STUDY OF THE TRAINING (PRUNING) OF THE COFFEE-SHRUB... Management; Two Humid Seasons-7 Month,Plus;4 .0100
STUDY OF DENSITIES AND ARRANGEMENTS FOR PLANTATION OF THE CACAO-TREES... Management; Placement; Space Competition; Two Humid Seasons-7 Month,Plus;4 .0101
GENERATIVE IMPROVEMENT OF THE CACAO-TREE... Breeding & Genetics, Spic&Bev; Intraspec. Genetic Relations; Management; Two Humid Seasons-7 Month,Plus;4 .0102
IMPROVEMENT OF THE COFFEE-SHRUB... BREPHORA) BY VEGETATIVE MEANS... Breeding & Genetics, Spic&Bev; Management; Two Humid Seasons-7 Month,Plus;4 .0103
IMPROVEMENT OF THE COFFEE-SHRUB... BREPHORA) BY VEGETATIVE MEANS... Breeding & Genetics, Spic&Bev; Management; Two Humid Seasons-7 Month,Plus;4 .0104
IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDATION... Breeding & Genetics, Spic&Bev; Elevational Levels, Altitude; Intraspec. Genetic Relations; Plant Resistance; Two Humid Seasons-7 Month,Plus;4 .0105
STUDY OF DENSITIES AND ARRANGEMENTS IN PLANTATION OF THE COFFEE-SHRUB... Cover Crops; Green Manure; Leguminosae; Other; Management; Space Competition; Two Humid Seasons-7 Month,Plus;4 .0106
RESEARCH FOR HYBRID HANDIES OF SPECIES... Breeding & Genetics, Spic&Bev; P Generation (F1, F2, F3, Etc); Intraspec. Genetic Relations; Shade;4 .0107
PHYTECHNICAL (METHODS OF PLANTATION) AND AGRO-ECONOMIC STUDIES ON THE CACAO-TREE... Costs; Management; Shade; Two Humid Seasons-7 Month,Plus;4 .0108
TECHNOLOGICAL STUDIES ON THE COMMERCIAL QUALITIES OF THE CLONES AND HYBRIDS OF COCOA TREES UTILIZED IN THE SELECTION PROGRAMME... Breeding & Genetics, Spic&Bev; Fats; Lipids & Oils; Intraspec. Genetic Relations; Two Humid Seasons-7 Month,Plus;4 .0109
RESEARCH ON CACAO CLONES OR INTERCLonal HYBRIDS PRESENTING A 'DISTINCT' TOLERANCE TO PHYTOPHORA PALMIVORA... Black Pod; F Generation (F1, F2, F3, Etc); Fungal Resistance; Phytophthora Palmivora;4 .0110
STUDY OF THE RESPONSE OF ELITE HYBRID CACAO TREES TO MINERAL FERTILIZATION... Management; Solar Light; Two Humid Seasons-7 Month,Plus;4 .0111
MINERAL FERTILIZATION OF COCOA... Calcium - Other Than Lime; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month,Plus;4 .0112
MINERAL FERTILIZATION OF COCOA... Calcium - Other Than Lime; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; Two Humid Seasons-7 Month,Plus;4 .0113
IMPROVEMENT OF THE COLA Tree... COLA NITIDA... Breeding & Genetics, Spic&Bev; Cola; Intraspec. Genetics; Two Humid Seasons-7 Month,Plus;4 .0114

451
Other Soil Productivity Studies

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

Determination of mineral deficiencies in soils of the Ivory Coast. ... Continuous Humid; Other than Lime; Excessive Moisture; Glytic Acrisols; Magnesium; Removal of nutrients from soil; Soil fertility; ... 4.0202

Evolution of Soils Under Cultivation. ... Continous Humid; Management; Management Effects on Soils; Rhodic Ferralsols; Soil Fertility; ... 4.0201

DETERMINATION OF MINERAL DEFICIENCIES IN THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

Evolution of soils under cultivation. ... Continous Humid; Management; Management Effects on Soils; Rhodic Ferralsols; Soil Fertility; ... 4.0201

Evolution of soils under cultivation. ... Continous Humid; Management; Management Effects on Soils; Rhodic Ferralsols; Soil Fertility; ... 4.0201

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200

APPLICATION OF RADIOTRACER TECHNIQUE TO STUDY DETERMINATION OF MINERAL DEFICIENCIES OF THE PRINCIPAL SOILS OF THE IVORY COAST. ... Continuous Humid; Glytic Acrisols; Movement; Availability; Soil Minerals - natural; Soil Types; ... 4.0200
Soil Unit Classification

SUBJECT INDEX

soils; Humid 3 Months; Luvisols; Sorghum Vulgare (Grain); ... 11.0166
EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION ... Dhoron; Ferric Luvisols; Humid 3 Months; Preemergence Application; Surface -soil; ... 11.0170
INTRODUCTION OF FOREIGN EARLY MATERIAL - SMALL MILLIOTE ... - Breeding & Genetics, Drought Resistance; Humid 1 Month; ... 14.0000
INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE ... Cover Crops; Humid 1 Month; Orthic Solonetz; Vertic Cambisols; ... 14.0007

Cambisols

PEDOLOGY PROJECT ... Ferric Luvisols; Groundwater; Soil Types; ... 9.0161

Chromic Cambisols

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) ... Consumptive Use; Humidity; Irrigation; Luvic Arenosols; Soil-water-plant Relationships; ... 8.0009

Eutric Cambisols

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT ... Ferric Luvisols; Growth Stage of Plant; Management; Moist Monsoon; ... 1.0109
STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT ... Dry Monsoon 5 Months, Plus; Ferric Luvisols; Management; Moist Monsoon; Sulfur; ... 1.0120
COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON ... Ferric Luvisols; Insecticides -non-specific; Management; Manure; Moist Monsoon; ... 1.0123
EXPERIMENTATION WITH VARIETIES OF COTTON ... Dry Monsoon 5 Months, Plus; Ferric Luvisols; Fiber Crops; Insecticides -non-specific; Management; Moist Monsoon; ... 1.0128
EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE (CANNIA) ... Humid 1 Month; Management; Saccharum; Vertic Cambisols; ... 8.0022
VARIELT EXPERIMENTS ON SUGAR-CANE ... Breeding & Genetics; Humid 1 Month; Saccharum; Vertic Cambisols; ... 8.0023

ECOLOGICAL STUDY OF THE ORCHARD - SUB-ARID ZONE (SAHELO-SOUSIANI) ... Management; Pastiflora; Plant Virus -general; Soil Moisture; ... 8.0024
INSECTICIDE EVALUATIONS ON SOYBEANS - (GLYCINE MAX) ... Ferric Luvisols; Glycine Max; Insecta; Insecticides -non-specific; Oilseed Crops; Phaeolus; Surveys; ... 9.0107
GRAIN LEGUME ENTOMOLOGICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months,Plus; Ferric Luvisols; Insects; Oilseed Crops; Phaseolus; Survey; ... 9.0107
PEST CONTROL ON COWPEAS - VIGNA UNGUIS-CALTIA ... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application; ... 8.0117
IMPROVEMENT OF EARLYSORGHUMS BY SELECTION OF THE LOCAL MATERIAL ... Breeding & Genetics; Drought Resistance; Humid 3 Months; Lodging; Management; Sorghum Vulgare (Grain); ... 14.0001
INTRODUCTION OF FOREIGN EARLYSORGHUMS ... Breeding & Genetics; Drought Resistance; Humid 3 Months; Sorghum Vulgare (Grain); ... 14.0002

Ferralic Cambisols

MINERAL FERTILIZATION OF COFFEE ... Geology; Management; Soil Types; ... 4.0006
MINERAL FERTILIZATION ON COCOA ... Calcium - Other Than Lime; Ferric Acrisols; Magnesium; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus; ... 4.0007

IMPROVEMENT OF THE COLA TREE - COLA NITIDA ... Breeding & Genetics, Spice&Bev; Cola; Ferric Acrisols; Intraspec; Genetic Relations; Nursery Observational Plots; Two Humid Seasons-7 Month,Plus; ... 4.0008
GENERATIVE IMPROVEMENT OF THE CACAO TREE ... Breeding & Genetics, Spice&Bev; Ferric Acrisols; Intraspec; Genetic Relations; Plant Resistance; ... 4.0009
STUDY OF THE RESPONSE OF ELITE HYBRID CACAO-TREES TO MINERAL FERTILIZATION ... Ferric Acrisols; Management; Solar Light; Two Humid Seasons-7 Month,Plus; ... 4.0010
IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY VEGETATIVE MEANS ... Breeding & Genetics, Spice&Bev; Ferric Acrisols; Management; Two Humid Seasons-7 Month,Plus; ... 4.0011

IMPROVEMENT OF THE COFFEE-SHRUB (C. CANE-PHORA) BY GENERATIVE MEANS ... Breeding & Genetics, Spice&Bev; Ferric Acrisols; Genetic Improvement; Two Humid Seasons-7 Month,Plus; Weathering Resistance; ... 4.0012
IMPROVEMENT OF COFFEE-SHRUBS BY INTRASPECIFIC HYBRIDIZATION ... Breeding & Genetics, Spice&Bev; Elevational Levels, Altitude; Ferric Acrisols; Intraspec; Genetic Relations; Intraspecific Cross; Two Humid Seasons-7 Month,Plus; ... 4.0013
IMPROVEMENT OF THE BANANA PLANT ... Breeding & Genetics; Musa; Photosynthesis; Solar Light; ... 4.0151

INFLUENCE OF MINERAL FERTILIZATION ON THE GROWTH OF BANANA PLANT AND THE METABOLISM OF SUGARS ... Deficiencies; Growth Stage of Plant; Musa; Phytopathology; Two Humid Seasons; ... 4.0152
EVALUATION OF THE SOILS OF BANANA PLANTATIONS, CULTIVATION IN ORGANIC SOILS ... Environment; Plant Disease; Musa; Orthic Acrisols; Soil - Alkaline; Soil Drainage; ... 4.0153
INTEGRATED CONTROL OF THE PARASITES AND MA- RAUDERS OF THE BANANA PLANT ... Cladosporium; Fungicides -non-specific; Nematodes; Phytopathology; Systemic Action (Plant); ... 4.0154

EXPERIMENT ON PREPARATION OF THE SOIL BEFORE CROPING ... Chemical Tillage or Non tillage; Continuous Humid; Deep Plowing; Minimum Tillage; Plowing; Soil Types; ... 4.0195
ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR - BY CEREALS (RICE - MAIZE) ... C/N Ratio; Deficiencies; Irrigation -general; Nitrogen Metabolism; Proteins; ... 4.0196
SPECIFIC ROLE OF ORGANIC MATTER IN TROPICAL SOILS ... C/N Ratio; Management; Sulfur; ... 4.0212
BALANCE OF MINERAL ELEMENTS UNDER CULTIVA- TION - MAINTENANCE/FERTILIZATION ... Fertilizer Losses; Lysimeters; Organic Fertility; Removal of Nutrients from Soil; Soil Analysis; Two Humid Seasons-7 Month,Plus; ... 4.0213
ABSORPTION OF MINERAL ELEMENTS - NITROGEN IN PARTICULAR BY CEREALS (RICE-MAIZE) ... C/N Ratio; Management; Plant Residues -other; Two Humid Seasons-7 Month,Plus; ... 4.0214
EVALUATION OF NITROGEN IN CULTIVATED SOILS ... C/N Ratio; Nitrogen Cycle; Plant Residues -other; Two Humid Seasons-7 Month,Plus; ... 4.0215
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IR- RIGATED RICE-FIELDS ... Cereal Crops; Cultural Control; Irrigation -general; Management; Phenology, Life Cycle; Two Humid Seasons-7 Month,Plus; ... 4.0216
CHEMICAL W EED DESTRUCTION ON IRRIGATED RICE ... Cereal Crops; Hand Tillage; Pricking Out; Selectivity of Pesti- cides; Two Humid Seasons-7 Month,Plus; ... 4.0217
VARIETAL EXPERIMENT WORK ON SOYA ... Glycine Max; Management; Multiple Cropping; Two Humid Seasons-7 Month,Plus; ... 4.0218
PHYSIOLOGY OF ROOT, TUBER CROPS AND VEGETA- BLES ... Breeding & Genetics; Ipomoea; Plant Morphology; ... 9.0162
PEPPER IMPROVEMENT ... Breeding & Genetics; Capsicum; Continuous Humid 7 Months,Plus; Disease Resistance; Ferric Luvisols; Synthetic Varieties & Blends; ... 9.0163
LEAFY AND FRUIT VEGETABLE IMPROVEMENT ... Breeding & Genetics; Continuous Humid 7 Months,Plus; Disease Resistance; Ferric Luvisols; Lycopersicum; Synthetic Varieties & Blends; ... 9.0164
INCORPORATION OF LEAFY AND FRUIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS ... Capsicum; Continuous Humid 7 Months,Plus; Ferric Luvisols; Lycopersicum; Management; Plant Industries -other; ... 9.0165
HARVESTING IN RELATION TO COWPEA YIELDS ... Continuous Humid 7 Months,Plus; Ferric Luvisols; Harvest and Storage; ... 9.0172
COMPARATIVE EFFECTS OF TILLAGE ON SOYBEANS ... Chemical Tillage or Non tillage; Continuous Humid 7 Months,Plus; Ferric Luvisols; Glycine Max; Management; Minimum Till- age; ... 9.0173
COWPEA AND SOYBEAN FERTILIZATION ... Continuous Humid 7 Months,Plus; Ferric Luvisols; Glycine Max; Management; ... 9.0174
PLANT DENSITY ON COWPEAS AND SOYBEANS ... Continuous Humid 7 Months,Plus; Ferric Luvisols; Glycine Max; Management; Space Competition; ... 9.0175

454
SUBJECT INDEX

GRAIN LEGUME PROTECTION . . . Continuous Humid 7 Months; Plus; Ferric Luvisols; Oilseed Crops; Pulse Crops; . . . 9.0176

SOIL CHEMISTRY . . . Fallowing; Iodine; Mineralogy; Silicon; Soil Resistance; . . . 9.0178

SOIL MICROBIOLOGY . . . Chlorinated Hydrocarbons; Herbicides -nonselective; Nitrogen Fixation; Sulfur; Toxicity to Microorganisms; . . . 9.0179

AGRONOMY (SYSTEMS) . . . Continuous Humid 7 Months; Plus; Ferric Luvisols; Production and Processing; . . . 9.0180

IMPROVEMENT OF CEREALS PRODUCTION AND MARKETING IN THE CENTRAL AFRICAN REGION . . . Continuous Humid 7 Months; Plus; Ferric Luvisols; Grain Industries; Market Structure; Marketing; . . . 9.0181

CASSAVA BREEDING . . . Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Phytopathology; . . . 9.0182

MECHANIZATION OF TROPICAL AGRICULTURE . . . Continuous Humid 7 Months; Plus; Design, Modify; Develop of Equipment; Ferric Luvisols; Mathematical Models; Soil Tillage Methods -other; Tractors and Accessories; . . . 9.0184

SOIL CONSERVING CROPS . . . Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Forage Grasses, Pasture, Range; Insect Resistance; Mosaic -other; Pueraria; . . . 9.0185

YAM BREEDING . . . Breeding & Genetics; Disease Resistance; Ferric Luvisols; Nematode Resistance; Plants; Starch; . . . 9.0186

CASSAVA ENTOMOLOGY . . . Continuous Humid 7 Months; Plus; Ferric Luvisols; Insect Resistance; Mosaic Viruses; Pseudococcydidae; Vectors; . . . 9.0187

SWEET POTATO ENTOMOLOGY . . . Curculionidae; Economics of Chemical Control; Ferric Luvisols; Ipomoea; Vectors; . . . 9.0188

YAMS ENTOMOLOGY . . . Ferric Luvisols; Insecta; Vegetables; . . . 9.0189

CASSAVA PATHOLOGY . . . Bacterial Resistance; Breeding & Genetics; Diseases; Environments; Plant; Ferric Luvisols; Mosaic Viruses; Vectors; . . . 9.0190

SWEET POTATO PATHOLOGY . . . Breeding & Genetics; Ferric Luvisols; Plant Parts Bank; Root Rot; . . . 9.0191

Vertic Cambisols

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) . . . Chromic Cambisols; Consumptive Use; Humidity; Irrigation; Luvic Arenosols; Soil-water-plant Relationships; . . . 8.0009

EXPERIMENTAL AGRONOMIC WORK ON SUGAR-CANE (CANNA) . . . Eutric Cambisols; Humid 1 Month; Management; Saccharum; . . . 8.0012

VARIELTAL EXPERIMENTS ON SUGAR-CANE . . . Breeding & Genetics; Eutric Cambisols; Humid 1 Month; Saccharum; . . . 8.0023

ECOLOGICAL STUDY OF THE ORCHARD . . . SUB-ARID ZONE (SAHELIO-SOUDANIAN) . . . Eutric Cambisols; Management; Passiflora; Plant Virus -general; Soil Moisture; . . . 8.0024

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE . . . Cover Crops; Humid 1 Month; Luvic Arenosols; Orchi Solonetz; . . . 14.0007

STUDY OF RIVULUS FORMATION AND OF EROSION ON VERTIC SOIL . . . Eutric Regosols; Management; Effects on Soils; Soil - Bare; Soil-water-plant Relationships; . . . 14.0041

INTRODUCTION OF SPECIES OF RAPID GROWTH ON BROWN VERTIC SOIL . . . Chromic Vertisols; Eutric Regosols; Humid 3 Months; Soil Tillage; Soil Types; . . . 14.0042

Ferralsols

FERTILIZATION OF OIL PALM ON TERTIARY FERRALLICT SANDS . . . Formulation; Fertilizer; Magnesium; Management; Sand; . . . 4.0291

FERTILIZATION OF OIL PALM ON FERRALLIC SOILS THAT HAVE COME FROM GRANITE . . . Management; Soil Types; . . . 4.0292

FERTILIZATION OF THE COCONUT PALM - FERRALLIC SOILS ON TERTIARY SANDS . . . Chlorine; Deficiencies; Growth Stage of Plant; Management; . . . 4.0313

FERTILIZATION OF THE COCONUT PALM ON LITTORAL FERRALLIC SOILS . . . Calcium - Other Than Lime; Chlorine; Cocos; Magnesium; Management; Sand; . . . 4.0314

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS. SOILS CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON . . . Dystric Gleysoils; Humid 3 Months; Luvic Arenosols; Sorghum Vulgare (Grain); . . . 11.0166

Orthic Ferralsols

LONG TERM SOIL FERTILITY RESTORATIVE PROPERTIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOWS . . . Crop Contribution to Soil Fert; Fallowing; Manito; Pueraria; Soil Analysis; . . . 9.0366

Rhodic Ferralsols

EVOLUTION OF SOILS UNDER CULTIVATION . . . Continuous Humid; Ferric Acrisols; Management; Management Effects on Soils; Soil Fertility; . . . 4.0201

Xanthox Ferralsols

PINEAPPLES - PHYSIOLOGICAL STUDIES . . . Bromeliacea; Fruit-set or Fruit-bearing; Management; Phytopathology; Two Humid Seasons; . . . 4.0147

TO AVOID THE DEGRADATION OF SOILS BY CONTINUOUS CULTIVATION OF PINEAPPLES . . . Bromeliacea; Erosion Control; Management; Removal of Nutrients from Soils; Two Humid Seasons; . . . 4.0148

PINEAPPLES - PHYTOSANITARY PROTECTION . . . Bromeliaceae; Fruits and Berries, Horticultural Crops; Phytopathology; Two Humid Seasons; . . . 4.0150

PINEAPPLES IMPROVEMENT OF THE PLANT - INTERACTION BETWEEN PLANT AND ENVIRONMENT . . . Breeding & Genetics; Bromeliaceae; Management; Two Humid Seasons; . . . 4.0150

OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCCA X E. GUI-NEENSIS Cercospora; Endothorax; Interspecific Cross; Tannin; Two Humid Seasons; . . . 4.0287

Fluvisols

Calcic Fluvisols

ECOLOGICAL STUDY OF THE ORCHARD . . . SUB-ARID ZONE (SAHARO-SAHLIAN) . . . Carica; Humid 1 Month; Mangifera; Passiflora; . . . 7.0006

DATE-PALM SELECTION. PHYTOPHYSICAL AND ECOLOGICAL STUDY OF DATE-PALM . . . Groundwater; Humid 1 Month; Management; Moisture Deficiency; Phoenix; Streama; . . . 7.0007

Eutric Fluvisols

MINERAL FERTILIZATION ON COFFEE . . . Continuous Humid; Geology; Growth Stage of Plant; Management; Nursery Observational Plots; Soil Types; . . . 4.0098

MINERAL FERTILIZATION ON COCOA . . . Calcium - Other Than Lime; Magnesium; Nursery Observational Plots; Soil Analysis -other; . . . 4.0099

MINERAL FERTILIZATION OF COCOA . . . Calcium - Other Than Lime; Magnesium; Nursery Observational Plots; Soil Analysis -other; . . . 4.0099

ECOLOGICAL STUDY OF THE ORCHARD . . . SUDANO-GUINEAN ZONE . . . Humid 4 Months; Mangifera; Passiflora; Psidium; . . . 6.0004

VARIELTAL EXPERIMENTS WITH RICE . . . Breeding & Genetics; Humid 2 Months; Irrigation -general; Multiple Cropping; . . . 8.0027

IMPROVEMENT OF SOILS BY SUPPRESSION OF DEFICIENCIES . . . Eutric Gleysols; Humid 3 Months; Luvic Arenosols; Removal of Nutrients from Soil; . . . 8.0036

TILLAGE . . . Humid 3 Months; Luvic Arenosols; Management Effects on Soils; . . . 8.0036

STUDY OF THE NITROGENOUS FERTILIZATION OF CEREALS . . . C/N Ratio; Humid 3 Months; Management; Sand; . . . 8.0039

VARIELTAL EXPERIMENTS ON COTTON IN IRRIGATED CULTIVATION . . . Humid 1 Month; Irrigation -general; Luvic Arenosols; Management; . . . 8.0041

NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION . . . Broadcast Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; . . . 9.0011

FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE . . . Fertilizer Technology; Management; Soil Morphology; Profiles; . . . 9.0012

Soil Unit Classification

455
STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE ... Eutric Gleysols; Hot Equatorial or Hot Tropical; Management; Pregeneration of Seeds11.0149

CONTROL CAMPAIGN AGAINST RHIZOME RICE ... Cecropia Crop; Eutric Gleysols; Grasses or Sedges; Herbicides -nonspecific; Hot Equatorial or Hot Tropical; .11.0158

TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION ... Crop Production, Harvesting; Eutric Gleysols; Hot Equatorial or Hot Tropical; Management; Seedbed Preparation; .11.0151

EXPERIMENT ON SOURCES OF TEAK ... Gleyic Luvisols; Humid 4 Months; Measurement of Trees & Stands; Silviculture; Tectona; Variation and Selection; .14.0040

Thionic Fluvisols

ACTION OF LIME AND OF MANGANESE DIOXIDE ON THE DYNAMICS OF AN ACID CLAYEY SOIL ... Deficiencies; Iron; Management, Soil pH; .11.0131

IMPROVEMENT OF AN ACID SULPHATIC SOIL FOR THE CULTIVATION OF RICE ... Management; Soil Amendments; Sulfur; .11.0132

Gleysols

Dystric Gleysols

SELECTION FOR CONSERVATION OF THE POPULARIZED CULTIVAR OF THE COTTON PLANT ... Breeding & Genetics; Ferric Luvisols; Humid 3 Months; Livic Arenosols; Pedogenic11.0160

STUDY ON THE NITROGENOUS NUTRITION OF THE COTTON PLANT IN THE FIELD ... Humid 3 Months; Management; Soil Moisture; .11.0161

STUDY OF 2 NITROGENOUS FERTILIZERS OF SLOW MINERALIZATION, IN COTTON CULTIVATION ... Ferric Luvisols; Humid 3 Months; Livic Arenosols; Management; Time-release Capsules; .11.0162

EXPERIMENTAL ATTEMPTS TO CORRECT THE POTASSIUM DEFICIENCY IN COTTON PLANTATIONS IN SINE-SALOUM ... Ferric Luvisols; Humid 3 Months; Livic Arenosols; Management; .11.0163

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON ... Humid 3 Months; Luvisols; Sorghum Vulgare (Grain); .11.0166

EXPERIMENTAL USE OF CHEMICAL HERTICIDES IN A COTTON PLANTATION ... Diuron; Ferric Luvisols; Humid 3 Months; Pre-emerge Application; Surface-soil; .11.0170

PRICKING OUT IN A NURSERY ... Nursery; Observational Plots; Silviculture; Space Competition; .13.0020

FUMIGATION OF THE SOIL IN A NURSERY ... Forestry Insects; Forests; Methyl Bromide; Silviculture; Sterculiaceae -other; .13.0021

Eutric Gleysols

ECCOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Eutric Fluvisols; Humid 4 Months; Mangifera; Passiflora; Paidium; .6.0004

IMPROVEMENT OF SOILS BY SUPPRESSION OF DEFCENCIES ... Eutric Fluvisols; Humid 3 Months; Livic Arenosols;8.0035

MAINTENANCE OF THE FERTILITY OF SOILS WITHIN THE FRAMEWORK OF ROTATIONS ... Eutric Fluvisols; Fertilizer Losses; Humid 3 Months; Livic Arenosols; Removal of Nutrients from Soil; .8.0036

NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION ... Broadcast Application; Humid 6 Months; Sodium; Timing of Application -other; .9.0011

FERTILITY STATUS OF MAJOR SOIL OF NIGERIA GROWN TO RICE ... Eutric Fluvisols; Fertilizer Technology; Management; Soil Morphology; Profiles; .9.0012

STUDY THE DIFFERENT SYSTEMS FOR CULTIVATION OF RICE ... Eutric Fluvisols; Hot Equatorial or Hot Tropical; Management; Pregeneration of Seeds; .11.0149

CONTROL CAMPAIGN AGAINST RHIZOME RICE ... Cecropia Crop; Eutric Fluvisols; Grasses or Sedges; Herbicides -nonspecific; Hot Equatorial or Hot Tropical; .11.0158

TRIALS OF MOTOR-TILLERS IN THE CONDITIONS OF INUNDATED RICE CULTIVATION ... Crop Production, Harvesting; Eutric Fluvisols; Hot Equatorial or Hot Tropical; Management; Seedbed Preparation; .11.0151

NITROGENOUS FERTILIZATION FOR AQUATIC RICE ... Growth Stage of Plant; Humid 3 Months; Management; .14.0008

VARIETAL IMPROVEMENT OF AQUATIC RICE BY INTRODUCTION ... Humid 3 Months; Management; .14.0009

STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE ... Flood Irrigation; Management; .14.0026

IMPROVEMENT OF AQUATIC RICE BY MUTAGENESIS ... Breeding & Genetics; Humid 4 Months; Mutation, Fibrillogenesis; .14.0045

CONTROL MEASURES AGAINST PSEUDOMONAS SOLANACEARUM IN TOMATOES ... Bacterial Resistance; Hybrid Breeding -nonspecific; Pedigree; Pseudomonas -nonspecific; .14.0053

STUDY OF THE TOXICITIES OF THE SOILS USED FOR CONTINUOUS AQUATIC CULTIVATION OF RICE ... Flood Irrigation; Management; .14.0050

NITROGEN FERTILIZATION FOR AQUATIC RICE ... Growth Stage of Plant; Humid 4 Months; Management; .14.0061

VARIETAL IMPROVEMENT OF AQUATIC RICE BY INTRODUCTION ... Humid 4 Months; Management; .14.0062

Humic Gleysols

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY ... Continuous Humid; Humid 4 Months; Management; Marsh; Organic Fertility; Timing of Application -other; .1.0001

EVOLUTION OF NITROGEN IN CULTIVATED SOILS ... Continuous Humid; Nitrogen; Plant Residues -other; .4.0197

Lithosols

TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS ... Eucalyptus; Gleyic Luvisols; Silviculture; .14.0006

Luvisols

PLURIANNUAL MINERAL FERTILIZATION EXPERIMENTS, SO-CALLED "WITHDRAWAL" EXPERIMENTS, IN A CROP ROTATION WITH COTTON ... Dystric Gleysols; Humid 3 Months; Sorghum Vulgare (Grain); .11.0166

Ferric Luvisols

SPECIFIC ROLE OF ORGANIC MATTER ... C/N Ratio; Dry Monsoon 4 M or Less; Dystric Nitosols; Humid 4 Months; Plowing; Soil Fertility; .1.0002

ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY ... Dry Monsoon 4 M or Less; Dystric Nitosols; Humid 4 Months; Management Effects on Soils; Soil Tillage; .1.0003

POSSIBILITIES OF TROPICAL SOILS ... Dry Monsoon 4 M or Less; Dystric Nitosols; Humid 4 Months; Livic Arenosols; Rain; .1.0004

CORRECTION OF DEFICIENCIES IN P2OS ... Dry Monsoon 4 M or Less; Dystric Nitosols; Humid 4 Months; Livic Arenosols; .1.0005

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT ... Eutric Cambisols; Growth Stage of Plant; Management; Moist Monsoon; .1.0019

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT ... Dry Monsoon 5 Months; Plus; Eutric Cambisols; Management; Moist Monsoon; Sulfur; .1.0020

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON ... Humid 4 Months; Management; .1.0021

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON ... Eutric Cambisols; Insecticides -nonspecific; Management; Manure; Moist Monsoon; .1.0023

INTRODUCTION OF COTTON INTO TRADITIONAL CROP ROTATIONS ... Fertilizer Losses; Humid 6 Months; Management; Mineralogy; Soil Testing; Timing of Planting Procedures; .1.0024

EXPERIMENTATION WITH VARIETIES OF COTTON ... Dry Monsoon 5 Months; Plus; Eutric Cambisols; Fiber Crops; Insecticides -nonspecific; Management; Moist Monsoon; .1.0025

STUDIES ON YAMS WITH A VIEW TO THE INTEGRATION OF THIS CROP INTO AN INTENSIVE ROTATION ... Fertilizer Accumulation; Humid 5 Months; Management; Organic Fertility; .1.0031

SELECTION OF A WHITE MAIZE ADAPTED TO NORTH DAHOMEY ... Breeding & Genetics; Heterosis; .1.0032

456
SUBJECT INDEX

SUITABILITY FOR RICE OF THE SOILS OF THE MARSHY LANDS OF NORTH DAHOMEY ... Humid 5 Months; Management; Marsh; Organic Fertility; .10033

SPECIFIC ROLE OF ORGANIC MATTER ... C/N Ratio; Humid 5 Months; Plowing; Soil Fertility; .10034

ACTION OF TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY ... Humid 5 Months; Management; Management Effects on Soils; Soil Tillage; .10035

POTENTIALITIES OF TROPICAL SOILS ... Humid 5 Months; Rain; .10036

CORRECTION OF DEFICIENCIES IN P2O5 ... Humid 5 Months; .10037

CORRECTION OF DEFICIENCIES IN K2O ... Humid 5 Months; Management; .10038

MAINTENANCE OF P2O5 AND K2O FERTILITY ... Humid 5 Months; Soil Fertility; .10039

NITROGEN BALANCE IN TROPICAL SOILS ... C/N Ratio; Humid 5 Months; Management; Sorghum Vulgare (Grain); .10040

OBTAINMENT OF SORGHUM HYBRIDS OF AMERICAN-DAHOMEY TYPE WITH SHORT STRAW ... Breeding & Genetics; Humid 5 Months; Lodging, Selfing, Sorghum Vulgare (Grain); .10041

CONSTITUTION OF A COMPOSITE OF WHITE MAIZE WITH IMPROVED VARIETIES ORIGINATING IN DAHOMEY ... Breeding & Genetics; F Generation (F1, F2, F3, Etc); Humid 5 Months; Seed Bank; .10042

CREATION OF A VARIETAL HYBRID OF YELLOW MAIZE ADAPTED TO THE NORTH OF DAHOMEY ... Breeding & Genetics; Humid 5 Months; Plant Virus -general; Streaks; Virus Resistance; .10043

MODALITIES OF USE OF NATURAL TOGO PHOSPHATE ... Humid 5 Months; Source of Fertilizer; .10044

STUDY OF ROTATIONS OF KENAF (HIBISCUS) - MAIZE - FALLOW ... Fallowing; Humid 6 Months; Management; .10052

EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORchorus & URENA ... Corchorus; Environments, Plant; Humid 6 M.or Less; Management; Two Humid Seasons; .10053

EXPERIMENTS ON MINERAL FERTILIZATION OF HIBISCUS SABDARIFFA ... Boron; Deficiencies; Humid 6 Months; Management; Sulfur; .10054

EXPERIMENT ON TECHNIQUES OF RETTING FOR HIBISCUS SABDARIFFA ... Harvest and Storage; Humid 6 Months; Retting; .10057

DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERSION ... Floods; Humid 3 Months; Humid 4 Months; Management; Soil Moisture; Timing of Planting Procedures; .6.0007

DATE OF SOWING OF CEREALS IN DRY CULTIVATION ... Humid 3 Months; Humid 4 Months; Management; Rain; Sorghum Vulgare (Grain); Timing of Planting Procedures; .6.0008

THE FERTILIZATION OF RICE ... Humid 3 Months; Humid 4 Months; Management; Mineral Excess & Deficiency; Soil Minerals -natural; .6.0009

FERTILIZATION ON GROUNDNUTS AND ITS RESIDUAL EFFECTS ... Fertilizer Accumulation; Humid 3 Months; Humid 4 Months; Management; Sorghum Vulgare (Grain); .6.0010

VARIETAL EXPERIMENTS ON RICE ... Humid 3 Months; Humid 4 Months; Management; .6.0011

VARIETAL EXPERIMENTAL WORK ON GROUNDNUTS ... Breeding & Genetics; Humid 3 Months; Humid 4 Months; .6.0012

VARIETAL EXPERIMENTAL WORK WITH MAIZE ... Humid 3 Months; Humid 4 Months; Management; .6.0013

VARIETAL EXPERIMENTAL WORK WITH SORGHUM ... Humid 3 Months; Humid 4 Months; Management; Sorghum Vulgare (Grain); .6.0014

VARIETAL EXPERIMENTAL WORK WITH PENNISETUM MILLET ... Elevational Levels, Altitude; Humid 3 Months; Humid 4 Months; Management; .6.0015

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED ... Back Cross; Breeding & Genetics; Humid 4 Months; Management; Sorghum Vulgare (Grain); .6.0016

STUDY THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS ... Fallowing; Humid 4 Months; Management; Sorghum Vulgare (Grain); .6.0017

SODIUM UNIT CLASSIFICATION

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO K ... Humid 4 Months; Luvic Arenosols; Management; Plant Residues -other; Sorghum Vulgare (Grain); .6.0018

POTENTIALITY OF TROPICAL SOILS - RESPONSE TO NI-TROGEN ... Humid 4 Months; Luvic Arenosols; .6.0019

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS ... Humid 4 Months; Luvic Arenosols; Management; Removal of Nutrients from Soil; .6.0020

RESEARCH ON FERTILIZATION OF GROUNDNUTS ... Humid 4 Months; Luvic Arenosols; Management; Plant Residues -other; Sorghum Vulgare (Grain); .6.0021

POTENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE ... Humid 4 Months; Luvic Arenosols; Management; .6.0022

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TIELEMSI (MALI) ON ANNUAL CROPS ... Fallowing; Humid 4 Months; Luvic Arenosols; Management; Sorghum Vulgare (Grain); .6.0029

STUDY OF THE EFFECTS OF TILLAGE ... Humid 4 Months; Luvic Arenosols; Management; Management Effects on Soils; Soil Tillage; .6.0030

EVOLUTION OF SOILS UNDER CULTIVATION ... Humid 4 Months; Luvic Arenosols; Management; Management Effects on Soils; Soil Analysis; .6.0031

INTRODUCTIONS AND BEHAVIOUR TESTS OF PLUVIAL RICE ... Breeding & Genetics; Humid 4 Months; Management; Fertility; .6.0032

INTRODUCTION AND TESTS OF BEHAVIOUR OF RICE ON LOW LYING INUNDATED LAND ... STUDY OF THE TECHNIQUES OF CULTIVATION FOR THE SIKASSO REGION ... Excessive Moisture; Humid 4 Months; Management; .6.0033

CREATION OF MAIZE HYBRIDS WITH WHITE SEEDS AND WITH YELLOW SEEDS ... Back Cross; Breeding & Genetics; Humid 4 Months; .6.0047

CREATION OF VARIETIES OF SORGHUM WITH SHORT-ENED STRAW ... Breeding & Genetics; Humid 4 Months; Sorghum Vulgare (Grain); .6.0048

CREATION OF SYNTHETIC HYBRID PENNISETUM MILLET FROM LOCAL VARIETIES ... Breeding & Genetics; Humid 4 Months; Synthetic Varieties & Blends; Top Cross; .6.0066

CREATION OF PENNISETUM MILLET HYBRID WITH SHORT STRAW ... Breeding & Genetics; Humid 4 Months; .6.0067

CREATION OF MAIZE HYBRIDS WITH WHITE SEED AND WITH YELLOW SEED ... Back Cross; Breeding & Genetics; Humid 4 Months; .6.0069

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TIELEMSI (MALI) ON ANNUAL CROPS ... Fallowing; Humid 4 Months; Management; Rain; Sorghum Vulgare (Grain); Source of Fertilizer; .6.0070

SELECTION OF LINES OF SORGHUM OBTAINED FROM OTHER COUNTRIES HAVING THE SAME ECOLOGY ... Breeding & Genetics; Elevational Levels, Altitude; Humid 4 Months; Sorghum Vulgare (Grain); .6.0071

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS ... Humid 4 Months; Management; Removal of Nutrients from Soil; .6.0072

VARIETAL EXPERIMENTS ON COTTON UNDER POORER CONDITIONS OF CULTIVATION ... Humid 1 Month; Luvic Arenosols; Management; .8.0042

PEDOLOGY PROJECT ... Cambisols; Groundwater; Soil Types; .9.0161

PEPPER IMPROVEMENT ... Breeding & Genetics; Capium; Continuous Humid 7 Months,Plus; Disease Resistance; Ferralic Cambisols; Synthetic Varieties & Blends; .9.0163

LEAFY AND FRUIT VEGETABLE IMPROVEMENT ... Breeding & Genetics; Capium; Continuous Humid 7 Months,Plus; Disease Resistance; Ferralic Cambisols; Lycopersicum; Synthetic Varieties & Blends; .9.0164

INCORPORATION OF LEAFY AND FRUIT VEGETABLE AND PEPPER PRODUCTION INTO FARMING SYSTEMS ... Capium; Continuous Humid 7 Months,Plus; Ferralic Cambisols; Lycopersicum; Management; Plant Industries-other; .9.0165

INSECTICIDE EVALUATIONS ON SOYBEANS - (GLYCINE MAX) ... Eutric Cambisols; Glycine Max; Insecta; Insecticides -nonspecific; Oilseed Crops; Phytotoxicity; .9.0169

GRAIN LEGUME ENZYMOTICAL INVESTIGATIONS ... Cajanus; Continuous Humid 7 Months,Plus; Insecta; Oilseed Crops; Phaseolus; Surveys; .9.0170
METHOD

ME
Soil Unit Classification

EXPERIMENT ON THE FREQUENCY OF INSECTICIDAL SPRAYING OF THE COTTON CROP . . . DDT; Endrin; Fiber Crops; Humid 6 Months; Management; . . . 14.0090

VARIETAL EXPERIMENTS ON HIBISCUS . . . Ferric Luvisols; Humid 6 Months; Management; . . . 14.0090

ACTION OF THE TILLAGE ON THE PHYSICAL FACTORS OF FERTILITY . . . Dry Monsoon 4 M. or Less; Ferric Luvisols; Humid 4 Months; Management: Effects on Soils; Soil Tillage; . . . 1.0002

POTENTIALITIES OF TROPICAL SOILS . . . Dry Monsoon 4 M. or Less; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Rain; . . . 1.0002

CORRECTION OF DEFICIENCIES IN P2O5 . . . Dry Monsoon 4 M. or Less; Ferric Luvisols; Humid 4 Months; Luvic Arenosols; Rain; . . . 1.0002

MAINTENANCE AND REGENERATION OF FERTILITY OF THE DEGRADED 'TERRE DE BARRE' SOILS . . . Humid 6 M.or Less; Organic Fertility; Soil Fertility; Source of Fertilizer; . . . 1.0010

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE . . . Mangifera; Persea; Paidium; Two Humid Seasons; . . . 1.0011

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT . . . Continuous Humid; Eutric Planosols; Management; Sulfur; . . . 1.0013

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON . . . Management; Two Humid Seasons; . . . 1.0014

EXPERIMENTS WITH NATURAL PHOSPHATES OF ANEC­CHO (TOGO) . . . Management; Source of Fertilizer; Two Humid Seasons; . . . 1.0015

EXPERIMENTATION WITH VARIETIES OF COTTON . . . Climate- Continental Sav.Trop.; Fiber Crops; Gleyic Luvisols; Insecticides -nonspecific; Management; Plinthic Luvisols; . . . 1.0018

HERBICIDE EXPERIMENTATION ON COTTON . . . Fiber Crops; Humid 4 Months; Management; Pesticides -other; Postemerge Application; . . . 1.0026

EXPERIMENTS ON POTASSIUM FERTILIZATION OF COTTON . . . Management; Two Humid Seasons; . . . 1.0028

TEST ON MAINTENANCE OF THE FERTILITY OF SOILS BY PROTECTION AND RESTITUTION OF ORGANIC MATTER . . . Management; Organic Soils; Soil Fertility; . . . 1.0029

RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON PESTS IN DAHOMEY . . . Behavioral Ecology; Fiber Crops; Insect Viruses -other; Integrated Control; Olerchidacae; . . . 1.0064

INSECTICIDE EVALUATION TEST IN COTTON PLANTATIONS OF MIXTURES OF PROVEN INSECTICIDAL PREPARATIONS . . . Endrin, Gardona; Humid 6 M.or Less; Pesticides -other; Synergists and Synergists; . . . 1.0049

INTEGRATED CONTROL OF CRYPTOHELIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES . . . Disease,bioccontrol; Fiber Crops; Humid 6 M.or Less; Mode of Action; Pepsphenon; . . . 1.0051

EXPERIMENTS WITH VARIETIES OF HIBISCUS, COR­CHORUS AND URENA . . . Corchorus; Enorenmenus, Plant; Humid 6 M.or Less; Management; Two Humid Seasons; . . . 1.0053

PRODUCTION OF DOUBLE CRYPTO-HYBRIDS BETWEEN LOCAL IMPROVED WHITE MAIZE AND AN INTRO­DUCED MEXICAN VARIETY FROM TUXPENO STOCK . . . Breeding & Genetics; F Generation (F1, F2, F3, Etc); Selfing; Two Humid Seasons; . . . 1.0060

CONSTITUTION OF A VARIETAL COMPOSITE OF MAIZE FROM INTRODUCED FOREIGN VARIETIES . . . Breeding & Genetics; Polycross Test; Two Humid Seasons; . . . 1.0061

THE OBTAINING OF PURE LINES FROM FOUR LOCAL POPULATIONS OF WHITE MAIZE . . . Breeding & Genetics; Disease Resistance; Lodging; Two Humid Seasons; . . . 1.0062

FABRICATION OF SEREAL-MALE MALES OF MAIZE ADAPTED TO DAHOMY . . . Breeding & Genetics; Male Sterility; Two Humid Seasons; . . . 1.0063

INTRODUCTIONS AND TESTED COLLECTIONS OF FOR­EIGN VARIETIES OF MAIZE . . . Breeding & Genetics; Disease Resistance; Lodging; Two Humid Seasons; . . . 1.0065

CORRECTION OF DEFICIENCIES IN P2O5 . . . Two Humid Seasons; . . . 1.0066

CORRECTION OF DEFICIENCIES IN K2O . . . Management; Two Humid Seasons; . . . 1.0067

MAINTENANCE OF P2O5 AND K2O FERTILITY . . . Soil Fertility; Two Humid Seasons; . . . 1.0068

INTRODUCTION OF FOREIGN VARIETIES OF MANIOC . . . Management; Manihot; Mosaic Virus; Starch; Two Humid Seasons; Virus Resistance; . . . 1.0069

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE . . . Mangifera; Persea; Paidium; Two Humid Seasons; . . . 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO­GUINEAN ZONE . . . Management; Passiflora; Plant Virus -general; Sapotaceae; . . . 1.0071

FERTILIZATION OF THE OIL PALM IN FERRALITIC SOILS ON 'CONTINENTAL TERMINAL' SOILS ('TERRES DE BARRE') . . . Deficiencies; Light; Quantity or Intensity; Management; Rain; Soil Types; Two Humid Seasons; . . . 1.0078

LONG TERM SOIL FERTILITY RESTORATIVE PROPER­TIES OF NATURAL BUSH, TREE, GRASS AND LEGUME FALLOWS . . . Crop Contribution to Soil Pert; Fallowing; Manihot; Orthic Ferralsols; Puraria; Soil Analysis; . . . 9.0366

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANIAN ZONE . . . Bromeliaceae; Environments; Plant; Management; Musa; Persea; . . . 11.0144

EVOLUTION OF SOILS IN THE COURSE OF CULTIVATION . . . Fertilizer Technology; Humid 4 Months; Management Effects on Soils; Soil Tillage; . . . 11.0088

STUDY THE POTENTIAL FERTILITY OF SOILS . . . Management; Moist Monsoon 0 to 3 Months; Movement, Availability; . . . 13.0001

MANIOC (CASSAVA) - PERIOD FOR PROPAGATION BY CUTTINGS AND DATE OF HARVEST . . . Carbohydrates; Harvest and Storage; Management; Manihot; Moist Monsoon 0 to 3 Months; Starch; . . . 13.0002

PRODUCTION OF MAIZE AND MANIOC IN ASSOCIATED CULTIVATION . . . Companion Cropping; Competition; Management; Manihot; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; . . . 13.0003

FERTILIZATION OF MANIOC . . . Management; Manihot; Moist Monsoon 0 to 3 Months; Starch; . . . 13.0004

STUDY OF THE TOGO NATURAL PHOSPHATE AS A BASIC FERTILIZER . . . Costa; Moist Monsoon 0 to 3 Months; Movement, Availability; Source of Fertilizer; . . . 13.0005

MODALITIES FOR USE OF THE TOGO PHOSPHATE . . . Moist Monsoon 0 to 3 Months; Movement, Availability, Source of Fertilizer; . . . 13.0006

TILLAGE AND FERTILIZATION . . . Disking; Management Effects on Soils; Moist Monsoon 0 to 3 Months; . . . 13.0007

STUDY OF MAINTENANCE FERTILIZATIONS . . . Continuous Cropping; Management; Moist Monsoon 0 to 3 Months; Movement, Availability; . . . 13.0008

NITROGEN BALANCE - NITROGENOUS FERTILIZATION AND ORGANIC MANURING . . . C/N Ratio; Moist Monsoon 0 to 3 Months; Plant Residues -other; Soil Types; . . . 13.0009

EXPERIMENT FOR SELECTION BY ELIMINATION OF SPECIES OF EUCALYPTUS . . . Eucalyptus; Ferric Luvisols; Gleyic Luvisols; Humid 4 Months; Variation and Selection; . . . 14.0039

EXTRIC Nitrosols

HERBICIDE EXPERIMENTATION ON COTTON . . . Continuous Humid; ER 5461; GS 15068; MSMA; Postemerge Application; . . . 1.0012

CROPS SEQUENCE TRIAL . . . Disease Resistance; Fallowing; Management; Moist Monsoon 0 to 3 Months; . . . 3.0200

EFFECTS OF DIFFERENT LEVELS OF NITROGEN ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L. . . Fibers; Management; Moist Monsoon 0 to 3 Months; . . . 3.0201

EFFECTS OF FERTILIZER APPLICATION (NPK) ON THE GROWTH FIBRE AND SEED YIELDS OF KENAF, HIBIS-
SUBJECT INDEX

Soil-water-plant Relationships

Solonetz

Orthic Solonetz

STUDY THE POSSIBILITIES OF AFFORESTATION ON THE SALT LANDS OF SINE-SALOUM ... Chlorine; Humid 3 Months; Prosopis; Silvertufts; ... 11.0139

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE ... Cover Crops; Humid 1 Month; Luciv Arenosol; Vertic Cambisols; ... 14.0007

Vertisols

Chromic Vertisols

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) ... Chromic Cambisols; Consumptive Use; Humidity; Irrigation; Luciv Arenosol; Soil-water-plant Relationships; ... 8.0009

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH ... Eucalyptus; Fuel -wood; Planting Methods -other; Shelter Belts, Windbreaks; Soil Depth; ... 11.0118

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING LOCAL FOREST SPECIES ... Fuel -wood; Humid 3 Months; Planting Methods; Silvertufts; ... 11.0119

STUDY OF RIVULET FORMATION AND OF EROSION ON VERTIC SOIL ... Orthic Regosols; Management Effects on Soils; Soil - Bare; Soil-water-plant Relationships; ... 14.0041

INTRODUCTION OF SPECIES OF RAPID GROWTH ON BROWN VERTIC SOIL ... Orthic Regosols; Humid 3 Months; Soil Tillage; Soil Types; Vertic Cambisols; ... 14.0042

RESEARCH FOR VARIETIES OF PLUVIAL RICE WITH A SHORT CYCLE, RESISTANT TO PIRICULARIOSIS; BY INTRODUCTION ... Blast; Fungal Resistance; Phytopathology; Pirculariosis; ... 14.0063

INTRODUCTION OF PLUVIAL RICE INTO THE CROPING SYSTEM ... Ferric Luvisols; Humid 4 Months; Management; Time & Motion Studies; ... 14.0064

DETERMINATION OF THE APPROPRIATE TECHNIQUES FOR CULTIVATION OF PLUVIAL RICE ... Humid 4 Months; Management Effects on Soils; Seedbed Preparation; ... 14.0065

Pellic Veritols

EXPERIMENTS WITH VARIETIES OF HIBISCUS, CORCHORUS AND URNA ... Corchorus; Environments, Plant; Humid 6 M.or Less; Management; Two Humid Seasons; ... 11.0139

Soil X-ray

See Soil Analysis

Soil-borne

See Phytopathology

Plant Disease Transmission

Soil-water-plant Relationships

WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES ... Continuous Humid 7 Months; Plus; Drought Resistance; Evapotranspiration; Management; Oilseed Crops; ... 3.0123

STUDY OF RIVULET FORMATION, OF INFECTION AND OF THEIR CONDITIONAL FACTORS ON THE KORHOGO WATERSHED ... Rain; Soil Erosion; Soil Moisture; Soil Types; Watersheds; ... 4.0045

PROBLEMS CAUSED BY THE CONTACT OF FOREST WITH SAVANNAH IN THE IVORY COAST ... Balance of Nature; Silvertufts; Soil Moisture; Soil Morphology, Profiles; Topographical Parameters-other; ... 4.0046

DETERMINATION OF SOIL CHARACTERISTICS FOR IRRIGATION ... Irrigation; Plant Requirements -water; Soil Types; Two Humid Seasons; ... 4.0092

WATER BALANCE OF RAIN-FED CROPS AT KENIEBA (MALI) ... Excessive Moisture; Humid 4 Months; Management; Moisture Deficiency; Rain; ... 6.0034

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) ... Chromic Cambisols; Consumptive Use; Humidity; Irrigation; Luciv Arenosol; ... 8.0009

CUS CANNABINUS L ... Fibers; Management; Moist Monsoon 0 to 3 Months; ... 3.0202

EFFECTS OF DIFFERENT DATES OF PLANNING ON THE GROWTH AND FIBRE YIELD OF KENAF, HIBISCUS CANNABINUS L ... Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0203

DEVELOPMENT OF DISEASE AND PEST RESISTANT KENAF VARIETIES WITH A HIGH YIELD OF GOOD QUALITY FIBRE ... Breeding & Genetics; Insect Resistance; Nematode Resistance; Plant Nematodes -nonspecific; Selfing; ... 3.0204

INVESTIGATIONS ON FUNGICIDAL SEED DRESSINGS ... BHC; Moist Monsoon 0 to 3 Months; Phytopathology; Soil-borne; ... 3.0205

EFFECT OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF URENA LOBATA ... Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; Urena; ... 3.0206

EFFECTS OF DIFFERENT DATES OF PLANTING ON THE GROWTH AND FIBRE YIELD OF JUTE, CARCHARUS, CAPSULARIS ... Corchorus; Fibers; Management; Moist Monsoon 0 to 3 Months; Timing of Planting Procedures; ... 3.0207

Planosols

Eutric Planosols

STUDY OF THE MINERAL DEFICIENCIES OF THE COTTON PLANT ... Continuous Humid; Management; Sulfur; ... 1.0013

COMBINED EXPERIMENTS, TREATMENTS X FERTILIZATIONS, ON COTTON ... Continuous Humid; Fiber Crops; Glyphic; Luvisols; Insecticides -nonspecific; Management; ... 1.0016

STUDY OF THE NITROGEN NUTRITION OF THE COTTON PLANT ... Continuous Humid; Growth Stage of Plant; Management; ... 1.0017

Solodic Planosols

INTRODUCTION OF FORAGE SHRUBS INTO AN ARID ZONE ... Cover Crops; Humid 1 Month; Luciv Arenosol; Orthic Solonetz; Vertic Cambisols; ... 14.0007

Regosols

Calcic Regosols

STUDY OF THE EFFECTS OF THE NATURAL PHOSPHATE OF TILEMSI (MALI) ON ANNUAL CROPS ... Fallowing; Management; Sorghum Vulgare (Grain); ... 6.0023

STUDY OF THE EFFECTS OF TILLAGE ... Cambic Arenosol; Humid 1 Month; Management Effects on Soils; Plowing; ... 6.0024

EVOlUTION OF SOILS UNDER CULTIVATION ... Cambic Arenosol; Humid 1 Month; Management; Management Effects on Soils; Plowing; ... 6.0025

POtENTIALITY OF TROPICAL SOILS - RESPONSE TO NITROGEN ... Cambic Arenosol; Humid 1 Month; Management; ... 6.0026

MAINTENANCE OF FERTILITY IN CROPPING SYSTEMS ... Cambic Arenosol; Humid 1 Month; Removal of Nutrients from Soil; ... 6.0027

POtENTIALITY OF TROPICAL SOILS - PHOSPHORUS RESPONSE ... Cambic Arenosol; Humid 1 Month; ... 6.0028

Eutric Regosols

TRIALS OF EUCALYPTUS OF DIFFERENT ORIGINS ... Eucalyptus; Glyphic; Luvisols; Silvertufts; Silvertufts; ... 14.0006

STUDY OF RIVULET FORMATION AND OF EROSION ON VERTIC SOIL ... Management Effects on Soils; Soil - Bare; Soil-water-plant Relationships; ... 14.0041

INTRODUCTION OF SPECIES OF RAPID GROWTH ON BROWN VERTIC SOIL ... Chronic Verticolls; Humid 3 Months; Soil Tillage; Soil Types; Vertic Cambisols; ... 14.0042

Solonchaks

Orthic Solonchaks

STUDY THE POSSIBILITIES OF REPLANTING WOODLAND IN THE DELTA OF THE SENEGAL RIVER ... Coste, Eucalyptus; Luciv Arenosol; Prosopis; Soil Types; ... 11.0140

461
Soil-water-plant Relationships

Soil Chemical and Physical Changes Under Continuous Cultivation... See Environments, Plant Competition

River Obuba-Opa Watershed Project - Run Off and Erosion Studies... See Environments, Plant Competition

Water Use Efficiency of Maize in Some Nigerian Soils... See Environments, Plant Competition

Cropping Techniques for Sandy Soils Drying Out After Flooding... See Environments, Plant Competition

Moisture Balance Beneath Cut Crops, Bare Soil and Fallow... See Environments, Plant Competition

Moisture Studies of the Cotton-Growing Soils of Sine Saloum... See Environments, Plant Competition

Study of Rivulet Formation and of Erosion on Vertic Soil... See Environments, Plant Competition

Solanum
See Plants - Dicots
Solanaceae

Solar Light
See Environments, Plant

Solar Processes
See Materials

Solodic Planosols
See Soil Unit Classification
Planosols

Solonchaks
See Soil Unit Classification

Solonetz
See Soil Unit Classification

Somatotrophin
See Hormones

Sorghum Vulgare (Forage)
See Plants - Monocots
Gramineae

Sorghum Vulgare (Grain)
See Plants - Monocots
Gramineae

Sorghum Vulgare (Syrup)
See Plants - Monocots
Gramineae

Soups
See Food Science and Technology

Source of Fertilizer
See Fertilizer Technology

Space Competition
See Environments, Plant Competition

Spirochetes

Leptospira
LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY...
Epidemiology of Disease; Histology and Cytology; Leptospira; Pathology - mammal; Veterinary Medicine; See Environments, Plant Competition

Spoilage of Food
See Food Science and Technology

Spots
See Plant Diseases

Sprinkler Irrigation
See Irrigation

Stable Isotopes
See Isotopes

Starch
See Carbohydrates

Sterculiaceae
See Plants - Dicots

Sterile Release
See Pest Control Measures
Biological Control

Storage
See Also Environments, Plant
See Also Seed

Improvement of the Procedures for Storage and Conservation of Maize in a Rural Environment... See Environments, Plant Competition

The Preservation of Maize on the Cob in Farmers' Cribs... See Environments, Plant Competition

The Fate and Possible Nutritional and Toxicological Significance of Methyl Bromide Residues in Fumigated Cocoa Beans... See Environments, Plant Competition

Storage and Conservation of Coffee... See Environments, Plant Competition

Storage and Conservation of Cocoa... See Environments, Plant Competition

Physiology of Root, Tuber Crops and Vegetables... See Environments, Plant Competition

Yam Breeding... See Environments, Plant Competition

Origin of Mould Deterioration of Palm Kernels... See Environments, Plant Competition

Improvement of the Storage Facilities for Agricultural Produce in the Sahelo-Soudanese Zone... See Environments, Plant Competition

Deep Freeze Storage
POLLEN STORAGE (OIL PALM)... See Environments, Plant Competition

462
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Subsoil Application</th>
<th>Sulfur</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Application Methods</td>
<td></td>
</tr>
<tr>
<td>Subsolling</td>
<td></td>
</tr>
<tr>
<td>See Soil Tillage</td>
<td></td>
</tr>
<tr>
<td>Subsurface Runoff</td>
<td></td>
</tr>
<tr>
<td>See Water Movement</td>
<td></td>
</tr>
<tr>
<td>Water Runoff</td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td></td>
</tr>
<tr>
<td>See Carbohydrates</td>
<td></td>
</tr>
<tr>
<td>Sugar -nonspecific</td>
<td></td>
</tr>
<tr>
<td>See Carbohydrates</td>
<td></td>
</tr>
<tr>
<td>Sugar Crops</td>
<td></td>
</tr>
<tr>
<td>See Agronomy</td>
<td></td>
</tr>
<tr>
<td>See Entomology, Applied</td>
<td></td>
</tr>
<tr>
<td>Agronomic Pests on</td>
<td></td>
</tr>
<tr>
<td>See Weeds</td>
<td></td>
</tr>
<tr>
<td>Control of Weeds in</td>
<td></td>
</tr>
<tr>
<td>Sugar Derivatives</td>
<td></td>
</tr>
<tr>
<td>See Carbohydrates</td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td></td>
</tr>
<tr>
<td>See Sulfur</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
</tr>
<tr>
<td>See Also Isotopes</td>
<td></td>
</tr>
<tr>
<td>Radioactive Isotopes</td>
<td></td>
</tr>
<tr>
<td>Sugar Crops</td>
<td></td>
</tr>
<tr>
<td>See Also Pesticides</td>
<td></td>
</tr>
<tr>
<td>Insecticide - Fungicide</td>
<td></td>
</tr>
<tr>
<td>See Also Soil Nutrients/Fertilizers</td>
<td></td>
</tr>
</tbody>
</table>

Storage Changes
See Feed Science and Technology
Quality Evaluation of Feed

Storage Rot
See Plant Diseases
Rots

Stored Grain Insects
See Entomology, Applied
Industrial, Structural Insects

Straw
See Feed Science and Technology
By-products- Plant(Vegetative)

Streaks
See Plant Diseases

Streams
STUDY THE RATES OF FLOW OF THE DIFFERENT WATER-COURSES IN THE IVORY COAST ... Discharge; Floods; Flow Characteristics -water; ... 4.0042

HYDROLOGICAL RATES OF FLOW, SOLIDS CARRIED BY AND CHEMISTRY OF THE WATERS OF THE SAN PEDRO, NERO, AND BRIME RIVERS ... Discharge; Flow Characteristics - water; Gaging; Water Quality; ... 4.0043

STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST ... Precipitation Gages; Sediment Yield; Water Runoff; Water Table; ... 4.0044

DATE-PALM SELECTION, PHYTOECONOMIC AND ECOLOGICAL RESEARCH WORK ... Calcaric Fluvisols; Groundwater; Humid I Month; Management; Moisture Deficiency; Phoenix; ... 7.0007

DETERMINATION OF PRODUCTION OF FISH OF CONTINENTAL WATERS ... Commercial Fishing; Fish; Lakes & Reservoirs; Population Dynamics; ... 11.0073

GENERAL ECODYNAMICS OF ESTUARINE AND FRESH WATERS ... Estuaries; Growth Rate; Population Dynamics; Water Quality; ... 12.0005

Streptomycins
See Antibiotics

Streptothricosis
See Animal Pathology

Strongyloidea
See Aschelminthes
Nematoda

Strongylosis
See Animal Pathology

Structural Insects
See Entomology, Applied
Industrial, Structural Insects

Stunt Diseases
See Plant Diseases

Stylosanthes
See Plants - Dicots
Leguminosae

Sulfates
STUDY THE INFLUENCE OF THE ANIONS SO4 AND CL ... Cover Crops; Soil - Bare; ... 1.0077

COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Synergism and Synergists; ... 3.0005

SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS ... Bladex; Growth Stage of Plant, Saccharum; Simazine; Space Competition; ... 3.0006

GERMINATION AND SURVIVAL OF SPORE SPORES OF PHYTOPHTHORA PALMIVORA ... Chlorides; Extract Composition; Glutamic Acid: Low Temp. Above 0 C; Phytophthora; ... 3.0061

USE OF ISOTOPES IN STUDIES ON THE NUTRITION OF GROUNDNUTS ... Broadcast Application; Management; Nitrogen Fixation; Sulfur; ... 3.0219
Sulfur

STUDY THE INFLUENCE OF THE ANIONS SO4 AND CL IN THE FERTILIZATION OF THE OIL PALM ... Chlorine; Magnesium; Management; Sulfur; ... 4.0293
STUDY OF THE ROLE OF THE ANIONS SO4 AND CL IN THE FERTILIZATION OF THE COCONUT PALM ... Chlorine; Deficiencies; Nitrates; ... 4.0319
STUDY FORMS OF NITROGENOUS FERTILIZERS FOR THE COCONUT PALM ... Cocos; Management; Nursery Observational Plots; ... 4.0320
SUGAR CANE NITROGEN FERTILIZER TRIAL ... Management; Saccharum; ... 9.0001
NITROGEN FERTILIZATION IN FLOODED FIELDS - METHODS AND TIMING OF NITROGEN APPLICATION ... Broadcast Application; Eutric Gleysols; Humid 6 Months; Sodium; Timing of Application -other; ... 9.0011
EVALUATION OF NITROGEN FERTILIZERS ... Formulation, Fertilizer; Soil pH; ... 9.0049
EXPERIMENTS WITH FERTILIZERS IN PLANTATIONS OF EUCALYPTUS CAMALDULENSIS ... Eucalyptus; Phosphates; Potassium; Silviculture; Sulfur; ... 13.0019

Sumithion
See Pesticides
Insecticides

Summer G
See Climate- Cool Winter Tropical

Supplements, Feed Additives
See Feed Science and Technology

Supply
See Economics
Production and Processing

Surface -soil
See Application Methods

Surface Irrigation -general
See Irrigation

Surveys
See Entomology, Applied
See Forestry
See Phytopathology

Swamps - Marshes
FERTILIZER STUDIES ON IRRIGATED AND UPLAND RICE ... Costs; Management; Placement; Sand; Timing of Application -other; ... 5.0017
COSTS AND METHODS OF DEVELOPING SMALL SWAMPS FOR RICE CULTIVATION ... Costs; Crop Production, Harvesting; Management; Time & Motion Studies; ... 5.0018
PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA ... Forests; Measurement of Trees & Stands; Productivity; Silviculture; Wild Type Genotype; ... 9.0008
THE MINERAL REQUIREMENTS OF RICE ... Formulation, Fertilizer; Management; ... 12.0010

Swine Husbandry
See Animal Husbandry

Swine Industry
See Ag Industries & Agribusiness

Swine Rations
See Feed Science and Technology
Animal Rations

Swollen Shoot Virus
See Viruses, Plant

Symbionts, Plant Diseases
See Phytopathology

Synergism and Synergists
See Pest Control Measures

Synthetic Soils
See Environments, Plant
Soil Composition

Synthetic Varieties & Blends
See Genetics
Genetic & Breeding Methods

Systemic Action (Plant)
See Pest Control Measures

Systemic Application
See Application Methods

T, 2,4,5-
See Pesticides
Herbicides

Tabanidae
See Insecta
Diptera

Tachinidae
See Insecta
Diptera

Taenia
See Platyhelminthes
Cestoda

Tannin
TANNIN EXTRACTION ... Chemical Materials; Extract Composition; Finishes of Textiles; Forest Product Development; Leather; ... 3.0102
OIL PALM - STUDY THE CHARACTERS AND THE FERTILITY OF THE HYBRID E. MELANOCOCCA X E. GUI- NEENSIS ... Cercocephala; Endodermis, Interspecific Cross; Two Humid Seasons; ... 4.0287
STUDY THE ROOT SYSTEM OF THE OIL PALM ... Breeding & Genetics; Cell Wall; Extract Composition; Management; Plant Resistance; ... 4.0297

Taxonomy, Animal
ECOLOGY OF RODENTS OF THE SAVANNAH - ADAPTA-
TION OF THESE RODENTS TO THE CULTIVATED ENVI-
RONMENT ... Habits; Studies; Population Dynamics; Rodenticides; ... 4.0059
POPULATION DYNAMICS OF PLANT PARASITIC NEMA-
TODES IN CULTIVATED SOIL ... Plant Nematodes -non-
specific; Population Dynamics; Soil-borne; ... 9.0044
SURVEY AND CONTROL OF INSECT PESTS ON TIMBER ... Coleoptera -other; Forestry Insects; ... 9.0091
TAXONOMY, BIOLOGY AND CONTROL OF BORERS OF MELIACEAE ... Forestres Insects; Insects -other; Meliaceae -other; ... 9.0092
INSECT PESTS ASSOCIATED WITH CASHEW IN NIGERIA ... Insects -other; Nuts; Pests; Surveys; Thysanoptera; ... 9.0152

464
Subject Index

Temperature -air
 See Environments, Animal
 See Environments, Plant

Temperature -soil
 See Environments, Plant

Temperature -water
 See Environments, Plant

Temperature or Heat Budgets
 See Environments, Plant

Temperature Control
 See Food Science and Technology
 Processing of Food

Tenant Farmers
 See Farm Populations

Tenebrionidae
 See Insecta
 Coleoptera

Tensile Strength
 A STUDY OF THE FACTORS AFFECTING THE RESISTANCE OF TERMINALIA IVORENSIS TO TERMINATE ATTACK
 ... Forestry Insects; Insect Resistance; Isoptera; P艺术hys; Terminalia; ... 3.0235
 VARIETAL IMPROVEMENT OF COTTON
 ... Breeding & Genetics; Interspecific Cross; Irrigation -general; Plant Parts Bank; ... 4.0260

Tephrosia
 See Plants - Dicots
 Leguminosae

Terminalia
 See Plants - Dicots
 Combretaceae

Terrachlor
 See Pesticides
 Fungicides

Tertiary Period
 See Geologic Time
 Cenozoic Era

Tetramisole
 See Pesticides
 Insecticide - Antihelminth

Tetanychidae
 See Arachnida
 Acarina

Tettigonidae
 See Insecta
 Orthoptera

TBZ
 See Pesticides
 Insecticide - Fungicide

Teaching and Research
 SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES AND IN TREE PLANTATIONS IN NIGERIA
 ... Forestry Insects; Insecta; Outbreaks of Insects; Surveys; Taxonomy, Plant; ... 9.0099

Technological Development
 See Economics

Tectona
 See Plants - Dicots
 Verbenaceae

Taxonomy, Plant
 DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES
 ... Continuous Humid; Handbooks; Phenology, Life Cycle; Photography; ... 4.0187
 MICROORGANISMS IN THE RUMEN AND THEIR ROLE IN NUTRITION
 ... Cellulase; Cellulose; Goat Husbandry; In Vivo ...
 ... Also Feed Rations; Rumen Bacteria; Vertebrate Nutrition; ... 9.0025
 FLORA OF NIGERIA
 ... Cyperaceae; Floras; Grass -nonspecific; Malvaceae; Publications; ... 9.0084
 COMPILATION OF VERNACULAR NAMES OF NIGERIAN PLANTS
 ... Catalogs, Tables, Compilations; ... 9.0085
 BIOLOGY OF CAUSAL ORGANISMS OF ROOT ROT OF PLANTATION TIMBER SPECIES
 ... Fungi; Pathology, Forest; Root Rot; ... 9.0087
 SURVEY AND COLLECTION OF INSECT PESTS IN NURSERIES AND IN TREE PLANTATIONS IN NIGERIA
 ... Forestry Insects; Insecta; Outbreaks of Insects; Surveys; Teaching and Research; ... 9.0090
 WEED STUDIES IN TREE CROPS
 ... Cover Crops; Field Crops -nonspecific; Leguminosae; Mulches; Soil Tillage Sequence / Method; ... 9.0120
 COLLECTION AND ESTABLISHMENT OF KOLA GERMLASM
 ... Cola; Intraspecific Genetic Relations; Management; Plant Parts Bank; Sex Ratio; ... 9.0133
 STUDIES ON THE BACTERIAL DISEASES OF CASSAVA (MANIHOT UTILISSIMA)
 ... Bacterial Wilt; Insecta; Manihot; Phytopathology; Vectors; Xanthomonas; ... 9.0220
 CLASSIFICATION OF BEAN (COWPEA) VARIETIES INTO SUB SPECIES AND GROUPS
 ... Pulse Crops; Seed Bank; ... 9.0222
 IDENTIFICATION OF RACES OF PYRICULARIA ORYZAE
 ... Blast; Fungal Resistance; Phytopathology; Pseudococcidea; Pseudococcidiosis; ... 9.0237
 INVESTIGATION INTO THE CAUSES OF YAM-TUBER ROOTS
 ... Harvest and Storage; Mineralogy; Nutrition in Disease; Phytopathology; Storage Root; Tuber Root; ... 9.0247
 GENE POOL (COCONUT, RAPHIA, DATE PALMS)
 ... Breeding & Genetics; Cocos; Management; Palmae -other; Phoenix; Plant Parts Bank; ... 9.0316
 CHEMO - TAXONOMIC STUDIES
 ... Chromatography; Extract Composition; Oilseed Crops; Remote Sensing; Sugar -nonspecific; ... 9.0318

Tetrigidae
 See Insecta
 Orthoptera
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theobromine</td>
</tr>
<tr>
<td>THE USE OF DISCARDED COCOA BEAN MEAL IN LIVE-STOCK FEEDING ...-see Also Feed Rations; Nutritive Values -plant; Proteins; ... 9.0030</td>
</tr>
<tr>
<td>Therapeutic Nutrition</td>
</tr>
<tr>
<td>See Nutrition, Medical</td>
</tr>
<tr>
<td>Thermal Decomposition</td>
</tr>
<tr>
<td>See Chemistry -related Fields</td>
</tr>
<tr>
<td>Thermoperiod</td>
</tr>
<tr>
<td>See Environments, Plant Temperature -air</td>
</tr>
<tr>
<td>Thiodan</td>
</tr>
<tr>
<td>See Pesticides Insecticides</td>
</tr>
<tr>
<td>Thionic Fluvisols</td>
</tr>
<tr>
<td>See Soil Unit Classification Fluvisols</td>
</tr>
<tr>
<td>USE OF GROWTH REGULATORS IN COFFEE HUSBANDRY ... Ethrel; Germination; Management; Preharvest Application; ...9.0146</td>
</tr>
<tr>
<td>Threonine</td>
</tr>
<tr>
<td>See Amino Acids</td>
</tr>
<tr>
<td>Thuricide</td>
</tr>
<tr>
<td>See Pesticides Insecticides</td>
</tr>
<tr>
<td>Thysanoptera</td>
</tr>
<tr>
<td>See Insecta</td>
</tr>
<tr>
<td>Tiliaceae</td>
</tr>
<tr>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td>Time & Motion Studies</td>
</tr>
<tr>
<td>TAPPING OF RUBBER TREES - RESEARCH ON THE EQUILIBRIUM BETWEEN YIELD BY THE HECTARE AND YIELD BY WORKER ... Costs; Harvest and Storage; Management; Plant Growth Regulators; Supply; Two Humid Seasons; ...4.0245</td>
</tr>
<tr>
<td>CUMULATIVE TAPPING OF RUBBER TREES ... Costs; Harvest and Storage; Latea; Management; Two Humid Seasons; ...4.0247</td>
</tr>
<tr>
<td>COSTS AND METHODS OF DEVELOPING SMALL SWAMPS FOR RICE CULTIVATION ... Costs; Crop Production; Harvesting; Management; Swamps - Marshes; ...5.0018</td>
</tr>
<tr>
<td>ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS ... Forests; Injection; Selectivity of Pesticides; ...9.0158</td>
</tr>
<tr>
<td>STRUCTURES FOR USE IN TEAM CULTIVATION ... Farm Enterprises -general; Job Analysis; Labor Input; Production - other; ...11.0051</td>
</tr>
<tr>
<td>DETAILED SOCIO-ECONOMIC SURVEYS OF INTENSIVE PRODUCTION CONCERNS ... Labor Input; Production - other; ...11.0052</td>
</tr>
</tbody>
</table>

466
Trace Metals
YAM STORAGE TRIAL ... Harvest and Storage; Nutrition in Disease; Soft Rot; . . . 9.0042
SOIL CHEMICAL AND PHYSICAL CHANGES UNDER CONTINUOUS CULTIVATION ... Infiltration; Management; Manihot; Sand; . . . 9.0048
SOIL ACIDITY AND THE GROWTH OF THE OIL PALM ... Foliar Application; Lime; Management; Sand; Soil pH; . . . 9.0295
TRACE ELEMENTS IN THE NUTRITION OF THE OIL PALM ... Boron; Copper; Management; Movement, Availability; Sand; . . . 9.0296
EXPERIMENT 9-2 - TRACE ELEMENT EXPERIMENT ... Boron; Foliar Application; Management; Molybdenum; Zinc; . . . 9.0303
STUDY OF MINERAL DEFICIENCY COMPLEXES ... Calcium; Forage, Pasture or Range; Inorganic Elements in Feeds; Management; Phosphorus; Water Utilization - animal; . . . 11.0082

Tractors and Accessories
See Farm Machinery, Equip & Power

Translocation
See Plant Physiology
Metabolism

Transpiration
See Water Supply

Transpiration & Evaporation
See Plant Physiology
Metabolism

Transplanting Methods
See Planting Methods

Transportation
DETAILED RECONNAISSANCE SOIL SURVEY OF CAPE COAST REGION, CENTRAL AND WESTERN REGION OF GHANA . . . Geology; Land Use - agriculture; Roads and Highways; Soil Morphology, Profiles; Soil Physical Properties; Soil Survey; . . . 3.0222
INTERNAL MARKETING OF PALM OIL AND PALM KERNELS . . . Harvest and Storage; Marketing; Marketing Organizations; Plant Industries - other; . . . 9.0332
AGRONOMIC-ECONOMIC STUDY OF THE NATURAL PHOSPHATES OF TOGO . . . Costs; Movement, Availability; Natural Resources Economics; Source of Fertilizer; . . . 13.0043

Railroads
TESTING NEW SPECIES FOR USE AS RAIL SLEEPERS ... Wood; Wood Preservatives; . . . 3.0099
THE SUITABILITY OF NIGERIAN TIMBERS FOR RAILWAY SLEEPERS ... Chemical Materials; Corrosion, Deterioration; Mechanical Properties; Wood; Wood Preservatives; . . . 9.0104

Trap Crops
See Pest Control Measures
Cultural Control

Treatment
See Medicine/Psychotherapy - General Topics

Tree Breeding
See Forestry
Breeding & Genetics

Trees & Shrubs
See Weeds
Control of Plants . . .

Trypanosoma
See Protozoa

Trypanosomiases
See Animal Pathology

Trypsin
See Enzymes

Tryptophane
See Amino Acids

Tuber Rot
See Plant Diseases
Rots

Tuberculosis
See Animal Pathology

Tungro Virus
See Viruses, Plant

Tylenchoidea
See Aschelminthes
Nematoda
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosinase</td>
</tr>
<tr>
<td>See Enzymes</td>
</tr>
<tr>
<td>Ulmaceae</td>
</tr>
<tr>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td>Umbelliferae</td>
</tr>
<tr>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td>Undesired Results</td>
</tr>
<tr>
<td>See Pest Control Measures</td>
</tr>
<tr>
<td>Urea</td>
</tr>
<tr>
<td>See Plants - Dicots</td>
</tr>
<tr>
<td>Malvaceae</td>
</tr>
<tr>
<td>Urogenital System</td>
</tr>
<tr>
<td>See Vertebrate Physiology</td>
</tr>
<tr>
<td>Ustilaginales</td>
</tr>
<tr>
<td>See Fungi</td>
</tr>
<tr>
<td>Utilization of Ag Wastes</td>
</tr>
<tr>
<td>Cereal Product Development</td>
</tr>
<tr>
<td>DEVELOPMENT OF COMPOSITE FLOUR FROM NIGERIAN FOODS ... Costs; New and Unconventional Foods; ...</td>
</tr>
<tr>
<td>PRODUCTION OF WHITE FLOURED MAIZE VARIETIES FOR HUMAN CONSUMPTION ... Breeding & Genetics; Cereal Products; Continuous Humid 7 Months,plus Metabolic Expression; Organoleptic Studies of Food; Recurrent Selection; ...</td>
</tr>
<tr>
<td>MULTIPLICATION OF A GLANDLESS VARIETY OF COTTON PLANT ... Breeding & Genetics; Cereal Products; Enrichment; Food Proteins; ...</td>
</tr>
<tr>
<td>Chemurgic Crops</td>
</tr>
<tr>
<td>STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate-Continental Sav.-Trop.; Fats & Oils; Fruits and Berries; Quality and Utilization; ...</td>
</tr>
<tr>
<td>Food Processing Wastes</td>
</tr>
<tr>
<td>PRODUCTION OF WINES FROM LOCAL FRUITS AND VEGETABLES ... Fermentation; Food Yeast; Fruits; Vegetable & Vegetable Products; Wine; ...</td>
</tr>
<tr>
<td>STUDY OF THE ADAPTATION OF CITRUS FRUIT TREES IN THE DIFFERENT CLIMATIC ZONES OF THE IVORY COAST ... Breeding & Genetics; Climate-Continental Sav.-Trop.; Fats & Oils; Fruits and Berries; Quality and Utilization; ...</td>
</tr>
<tr>
<td>INDUSTRIAL TRANSFORMATION OF FRUITS ... Beverages -other; Essential Oils; Fats & Oils; Fruits; ...</td>
</tr>
<tr>
<td>SINGLE CELL PROTEIN PRODUCTION FROM CASSAVA WASTES ... Candida; Fruits; Microorganism Utilization; Organoleptic Studies of Food; Yeasts -nonspecific; ...</td>
</tr>
<tr>
<td>CROP UTILIZATION PROJECT ... By-products-Plant(vegetative); Chocolate & Cocoa; Compost; Nuts & Nutmeats; Preserves & jelly; ...</td>
</tr>
<tr>
<td>Forest Product Development</td>
</tr>
<tr>
<td>EDIBLE AND INDUSTRIAL GUMS ... Cosmetics; Flotation; Foam Fractionation; Gums and Resins; ...</td>
</tr>
<tr>
<td>TANNIN EXTRACTION ... Chemical Materials; Extract Composition; Finishes of Textiles; Leather; Tannin; ...</td>
</tr>
<tr>
<td>TIMBER SPECIES FOR WOOD WOOL CEMENT SLABS ... Construction Materials; Forms -other; Setting, Curing; Wood; ...</td>
</tr>
<tr>
<td>ACTIVATED CHARCOAL ... Charcoal; Industrial Operation; Scrub Timber Utilization; Wood Chemistry; ...</td>
</tr>
<tr>
<td>THERMAL DECOMPOSITION OF WOOD CHARCOAL ... Charcoal; Industrial Operation; Scrub Timber Utilization; Thermal Decomposition; Wood Chemistry; ...</td>
</tr>
<tr>
<td>PROMOTION OF ABUNDANT COMMERCIAL SPECIES OF WHICH LITTLE USE IS MADE ... Lumbering; Policy & Business Methods; Wood Structure & Properties; ...</td>
</tr>
<tr>
<td>NGERIAN TIMBERS FOR SPORTS GOODS ... Holoptelea; Outdoor Recreation; Ulmaceae -other; Wood; Wood Structure & Properties; ...</td>
</tr>
<tr>
<td>CARBONIZATION IN TRENCHES ... Charcoal; Scrub Timber Utilization; Tectona; ...</td>
</tr>
<tr>
<td>Oils and Product Development</td>
</tr>
<tr>
<td>COMMERCIAL PRODUCTION OF SOY-OIL AND GARI ... Child Developmental Stages; Food Proteins; Nutritive Value of Food; ...</td>
</tr>
<tr>
<td>Sawdust Utilization</td>
</tr>
<tr>
<td>COMPOSTING OF SAWDUST ... C/N Ratio; Compost; Lycopersicum; Management; Organic Soils; ...</td>
</tr>
<tr>
<td>Scrub Timber Utilization</td>
</tr>
<tr>
<td>ACTIVATED CHARCOAL ... Charcoal; Forest Product Development; Industrial Operation; Wood Chemistry; ...</td>
</tr>
<tr>
<td>THERMAL DECOMPOSITION OF WOOD CHARCOAL ... Charcoal; Forest Product Development; Industrial Operation; Thermal Decomposition; Wood Chemistry; ...</td>
</tr>
<tr>
<td>CARBONIZATION IN TRENCHES ... Charcoal; Forest Product Development; Tectona; ...</td>
</tr>
<tr>
<td>Vaccines</td>
</tr>
<tr>
<td>CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF "PEC TISSUE VACCINE ... Blood and Lymph System; Immunity; Pneumonia; Sheep Husbandry; Veterinary Medicine; ...</td>
</tr>
<tr>
<td>AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - VACCINE 9 R AGAINST FOWL TYPHOID AND PULLORUM DISEASE ... Globulins; Poultry -nonspecific; ...</td>
</tr>
<tr>
<td>Attenuated Vaccine</td>
</tr>
<tr>
<td>POX OF SMALL RUMINANTS - EPIDEMIOLOGICAL AND PROPHYLACTIC RESEARCH ... Epidemiology of Disease; Poxviruses; Sheep Scab or Sheep Pox; Viral Viruses; ...</td>
</tr>
<tr>
<td>AVIAN DISEASES - MEDICAL PROPHYLAXIS - "TRIAVIA" COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT ... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine; ...</td>
</tr>
<tr>
<td>Bacterial Vaccine</td>
</tr>
<tr>
<td>BOVINE PLEUROPNEUMONIA - ESTABLISHMENT OF A FREEZE-DRIED, HEAT-RESISTANT VACCINE ... Freeze-dry Techniques; Immunity; Pneumonia; Thiosulfates; Veterinary Medicine; ...</td>
</tr>
<tr>
<td>BACTERIAL VACCINES - ESTABLISHMENT - IMPROVEMENT ... Bovine Pleuropneumonia; Haemorrhagic Septicaemia; Hemorrhagic; Pleuropneumonia Group; ...</td>
</tr>
<tr>
<td>Toxoid Vaccine</td>
</tr>
<tr>
<td>INFECTIONS AND INTOXICATIONS ("TOXI-INFEC TIONS") CAUSED BY ANEROIC BACTERIA - BOTULISM ... Bacillus Toxins; Clostridia; Etiology; Pathology -mammal; Water Environment; ...</td>
</tr>
<tr>
<td>Vaccine, Mixed</td>
</tr>
<tr>
<td>BOVINE PLEUROPNEUMONIA - ESTABLISHMENT OF A FREEZE-DRIED, HEAT-RESISTANT VACCINE ... Bac- terial Vaccine; Freeze-dry Techniques; Immunity; Pneumonia; Thiosulfates; Veterinary Medicine; ...</td>
</tr>
<tr>
<td>AVIAN DISEASES - MEDICAL PROPHYLAXIS - "TRIAVIA" COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT ... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine; ...</td>
</tr>
<tr>
<td>AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE ... Fowl Cholera; Fowl Typhoid Pullorum Disease; Myxoviruses, True; Poultry -nonspecific; Salmonella; Veterinary Medicine; ...</td>
</tr>
</tbody>
</table>

468
SUBJECT INDEX

Vertebrate Physiology

Blood and Lymph System

- CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF "PEC TISSUE VACCINE"... Immunity; Pneumonia; Sheep Husbandry; Vaccines; Veterinary Medicine;... 8.0019
- CHANGES IN THE MINERAL CONTENT OF SOIL AND FEED AS RELATED TO THE BLOCK COMPOSITION OF FARM ANIMALS... In Vitro Feed Studies; Metabolism; Mineralogy; Soil Environment;... 9.0028

Digestive System

- GASTRO-INTESTINAL PARASITISM IN THE RED GOAT... Coccidia; Digestive Diseases -animal; Feces; Malnutrition; Strongyloidea; Treatment;... 8.0006
- THE OBTAINING OF CELL LINES NECESSARY TO SUPPLY THE REQUIREMENTS FOR THE PRODUCTION OF VACCINES AND FOR DIAGNOSTIC PURPOSES... Bovine Follicular Hepatocytes; Diagnosis; Fetus; Urogenital System; Viral Vaccines;... 11.0102

Immunology

- TRYPANOSOMIASIS - IMMUNOLOGY... Diagnosis; Etiology of Disease; Trypanosoma; Trypanosomiasis; Veterinary Medicine;... 11.0091
- RINDERPEST PROPHYLAXIS - SEROLOGICAL SURVEILLANCE OF IMMUNITY... Globulin; Pseudomyxoviruses; Rinderpest; Serology; Veterinary Medicine;... 11.0095

Metabolism

- CHANGES IN THE MINERAL CONTENT OF SOIL AND FEED AS RELATED TO THE BLOCK COMPOSITION OF FARM ANIMALS... Blood and Lymph System; In Vitro Feed Studies; Mineralogy; Soil Environment;... 9.0028
- BIOCHEMICAL DETERMINATION ON HERDS OF CATTLE AT THE DIFFERENT PERIODS OF THE YEAR... Environments, Animal; Inorganic Elements in Foods; Management; Water Utilization -animal;... 11.0083

Respiratory System

- PULMONARY SYNDROME IN SMALL RUMINANTS - AETIOLOGICAL STUDY... Bovidae; Etiology; Pleuropneumonia Group; Pulmonary Syndrome; Rinderpest;... 11.0097
- RESPIRATORY AND DIGESTIVE DISEASES OF SMALL RUMINANTS - AETIO-PATHOGENESIS... Digestive Diseases -other; Etiology; Pastureulosis; Pneumonia;... 11.0107

Skin or Special Derivatives

- CONTROL OF SKIN DISEASES OF FARM ANIMALS... Dry Monsoon 4 to 5 Months; Skin Diseases -other; Veterinary Medicine;... 8.0002
- STUDIES INTO SKIN DISEASES OF FARM ANIMALS... Bovoniosis; Demodexicosis; Mycosis; Streptothricosis; Veterinary Medicine;... 3.0055
- STREPTOTHRICOSIS - EXPERIMENTS IN TREATMENT... Chlorelloidea; Dermatophilus; Immunity; Streptothricosis; Veterinary Medicine;... 11.0113

Urogenital System

- BIOLOGY AND PHYSIOLOGY OF A SAVANNAH RODENT... Breeding & Genetics; Hormones; Pregnancy; Sexual Cycle; Vagina;... 4.0006
- THE OBTAINING OF CELL LINES NECESSARY TO SUPPLY THE REQUIREMENTS FOR THE PRODUCTION OF VACCINES AND FOR DIAGNOSTIC PURPOSES... Bovine Follicular Hepatocytes; Diagnosis; Fetus; Viral Vaccines;... 11.0102
- LEPTOSPIROSIS - EPIDEMIOLOGICAL SURVEY... Epidemiology of Disease; Histology and Cytology; Leptospirose; Pathology -mammal; Veterinary Medicine;... 11.0104

Visual Organs

- BOVINE OCULAR THELAZIOSIS - TREATMENTS... Blindness -nonspecific; Bovine Ocular Thelaziosis; Cyanides; Muscicaceae; Tetramisole; Veterinary Medicine;... 11.0087
- BOVINE OCULAR THELAZIOSIS - AETIOLOGY... Blindness -nonspecific; Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscicaceae; Veterinary Medicine;... 11.0088

Vertic Cambisols

- See Soil Unit Classification
- Cambisols

Vertisols

- See Soil Unit Classification

Veterinary Entomology

- See Entomology, Applied

Veterinary Medicine

- CONTROL OF SKIN DISEASES OF FARM ANIMALS... Dry Monsoon 4 to 5 Months; Skin or Special Derivatives; Skin Diseases -other;... 3.0017
- STUDIES WITH THE SMALL RUMINANTS... Bovidae; Dry Monsoon 4 to 5 Months; Sheep Husbandry;... 3.0019
- HELLMINTH PARASITES OF F PIGS IN GHANA... Management; Population Dynamics; Tenerica;... 3.0029
- STUDIES INTO SKIN DISEASES OF FARM ANIMALS... Bovoniosis; Demodexicosis; Mycosis; Skin or Special Derivatives; Streptothricosis;... 3.0021
- IMMUNOLOGICAL STUDIES INTO ANIMAL TRYPANOSOMIASIS... Muridae; Trypanosomiasis;... 3.0056
- EXPERIMENT ON FATTENING OF FULANI ZEBU CATTLE ON STYLOSANTHES PASTURE WITH OR WITHOUT A FODDER SUPPLEMENT... Cattle Rations; Continuous Husbandry; Forage, Pasture or Range; Legumes; Rice; Stylosanthes;... 4.0015
- OBSERVATIONS ON GROWTH AND PERFORMANCE ON NUBIAN GOATS... Bovini; Goat Husbandry; Muscidae; Trypanosomiasis; Veterinary Entomology;... 8.0021
- OBSERVATION ON GROWTH AND PERFORMANCE OF SOME EUROPEAN BREEDERS OF CATTLE AND THOSE OF BRAHMA CATTLE... Bovini; Management; Muscidae; Pesticides -other; Trypanosomiasis; Veterinary Entomology;... 5.0021
- GASTRO-INTESTINAL PARASITISM OF ZEBU CATTLE... Feces; Strongyloidea;... 8.0002
- DISEASES OF THE RED GOAT... Evaluation, Efficacy; Immunity; Rinderpest;... 8.0004
- BACTERIOLOGICAL INQUIRY ON SLAUGHTERED ANIMALS... Bacteria; Carcass Evaluation; Melioidosis; Mycobacterium Tuberculosis; Tuberculosis;... 8.0005
- CONTROL CAMPAIGN AGAINST TSSETSE FLIES AND ANIMAL TRYPANOSOMIASIS... Barriers & Weirs; DDT; Muscidae; Trypanosomiasis; Veterinary Entomology;... 8.0021
- CONTROL OF PNEUMONIA-ENTERITIS COMPLEX IN GOATS BY USE OF "PEC TISSUE VACCINE"... Blood and Lymph System; Immunity; Pneumonia; Sheep Husbandry; Vaccines;... 9.0019
- DISEASE RESISTANCE OF LOCAL CHICKENS... Breeding & Genetics; Coccidioides; Coccidiosis; Disease Resistance; Leucosis;... 9.0029
- RESISTANCE TO TRYPANOSOMIASIS IN CATTLE ("METIS DE BAMBEY") BREED... Beef Husbandry; Parasite Resistance; Trypanosoma; Trypanosomiasis;... 11.0037
- BOVINE OCULAR THELAZIOSIS - TREATMENTS... Blindness -nonspecific; Bovine Ocular Thelaziosis; Cyanides; Muscicaceae; Tetramisole;... 11.0087
- BOVINE OCULAR THELAZIOSIS - AETIOLOGY... Blindness -nonspecific; Bovine Ocular Thelaziosis; Epidemiology of Disease; Muscicaceae;... 11.0088
- HELLMINTHES OF FARM ANIMALS - TREATMENTS... Bovine Ocular Thelaziosis; Treatment; Trematoda; Veterinary Medicine;... 11.0089
- HELLMINTHES OF FARM ANIMALS - EPIDEMIOLOGY... Epidemiology of Disease; Pest Control Measures; Population Dynamics;... 11.0090
- TRYPANOSOMIASIS - IMMUNOLOGY... Diagnosis; Epidemiology of Disease; Immunity; Trypanosoma; Trypanosomiasis;... 11.0091
- TRYPANOSOMIASIS - CONTROL CAMPAIGN AGAINST THE VECTORS... Dieldrin; Muscidae; Surveys; Trypanosoma; Trypanosomiasis; Veterinary Entomology;... 5.0012
- TRYPANOSOMIASIS - TREATMENT... Pesticides -other; Treatment; Trypanosoma; Trypanosomiasis;... 11.0093

- 470
Viral and Rickettsial Studies

MULTIPLICATION & REPLICATION

BIOLOGICAL CONTROL OF CRYPTOPHLEBIA LEUCOTRETA... Disease-biocontrol; Fiber Crops; Granulosis Viruses; Olethreutidae; Polyhedrosis Viruses; Rearing of Insects;... 4.0277

BIOLOGICAL CONTROL OF HELIOTHIS ARMIGERA... Disease-biocontrol; Fiber Crops; Isolation of Viruses; Noctuidae; Polyhedrosis Viruses; Rearing of Insects;... 4.0278

SEROLOGY

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity;... 9.0129

RINDERPEST PROPHYLAXIS - SEROLOGICAL SURVEILLANCE OF IMMUNITY... Globulins; Immunology; Pseudomyxoviruses; Rinderpest; Veterinary Medicine;... 11.0095

AFRICAN HORSE SICKNESS - EPIDEMIOLOGICAL WORK... Epidemiology of Disease; Horses; Pathology -mammal; Veterinary Medicine;... 11.0099

EQUINE ENCEPHALOMYELITIS - AETIOLOGY, EPIDEMIOLOGY... Equine Encephalomyelitis; Etiology; Horses; Picornaviruses; Veterinary Entomology;... 11.0100

Viral Transmission

IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM... Panicum; Phytopathology; Plant Virus -general; Soil-borne; Vectors;... 4.0074

THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA... Electron Microscopy; Mosaic Viruses; Phytopathology; Vectors; Virus Resistance;... 4.0075

VIRUS DISEASES OF SOYA BEAN... Glycine Max; Phytopathology; Plant Virus -general; Virus Resistance;... 9.0243

Virulence and Pathogenicity

THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Pathology of Weeds; Population Dynamics; Swollen Shoot Virus;... 9.0129

Viral Transmission

See Viral and Rickettsial Studies

Viral Vaccines

See Vaccines

Virosence

See Plant Diseases

Virology and Pathogenicity

See Phytopathology

See Viral and Rickettsial Studies

Virus Resistance

See Plant Resistance

Viruses of Insects

See Viruses, Animal

SUBJECT INDEX

Viruses, Animal

DNA Viruses, Enveloped

POXviruses

POX OF SMALL RUMINANTS - EPIDEMIOLOGICAL AND PROPHYLACTIC RESEARCH... Epidemiology of Disease; Sheep Scab or Sheep Pox; Viral Vaccines;... 11.0098

AVIAN DISEASES - MEDICAL PROPHYLAXIS - 'TRIAVIA' COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine;... 11.0115

AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE... Fowl Cholera; Fowl Typhoid Poultry Disease; Myxoviruses; True; Poultry -nonspecific; Salmonella; Veterinary Medicine;... 11.0117

RNA Viruses, Enveloped

ARBOVIRUSES

AVIAN DISEASES - MEDICAL PROPHYLAXIS - 'TRIAVIA' COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine;... 11.0115

AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE... Fowl Cholera; Fowl Typhoid Poultry Disease; Poultry -nonspecific; Salmonella; Veterinary Medicine;... 11.0117

Myxoviruses, True

AVIAN DISEASES - MEDICAL PROPHYLAXIS - 'TRIAVIA' COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine;... 11.0115

AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE... Fowl Cholera; Fowl Typhoid Poultry Disease; Poultry -nonspecific; Salmonella; Veterinary Medicine;... 11.0117

Pseudoxyviruses

RINDERPEST PROPHYLAXIS - SEROLOGICAL SURVEILLANCE OF IMMUNITY... Globulins; Immunology; Rinderpest; Veterinary Medicine;... 11.0095

RINDERPEST PROPHYLAXIS - ESTABLISHMENT OF A THERMO-RESISTANT VACCINE... Immunity; Prophylaxis; Rinderpest; Veterinary Medicine; Viral Vaccines;... 11.0096

PULMONARY SYNDROME IN SMALL RUMINANTS - AETIOLOGICAL STUDY... Bovidae; Etiology; Pleuropneumonia Group; Pulmonary Syndrome; Rinderpest;... 11.0097

RNA Viruses, Naked

PICORNAVIRUSES

AVIAN DISEASES - MEDICAL PROPHYLAXIS - 'TRIAVIA' COMBINED VACCINES - ESTABLISHMENT - IMPROVEMENT... Fowl Pox; Immunity; Newcastle Disease; Salmonella; Veterinary Medicine;... 11.0115

AVIAN PATHOLOGY - MEDICAL PROPHYLAXIS - ESTABLISHMENT OF A QUADRIVALENT MIXED VACCINE... Fowl Cholera; Fowl Typhoid Poultry Disease; Poultry -nonspecific; Salmonella; Veterinary Medicine;... 11.0117

Viruses of Insects

CONTROL OF ORYCTES IN THE IVORY COAST... Entomology; Physiology; Insect Attractants; Population Dynamics; Pteraria;... 4.0327

GRANULOSIS VIRUSES

INTEGRATED CONTROL OF CRYPTOPHLEBIA, BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES... Disease -biocontrol; Fiber Crops; Humid 6 M.or Less; Mode of Action; P婚robion;... 1.0051

BIOLOGICAL CONTROL OF CRYPTOPHLEBIA LEUCOTRETA... Disease -biocontrol; Fiber Crops; Multiplication & Replication; Olethreutidae; Polyhedrosis Viruses; Rearing of Insects;... 4.0277

Insect Viruses -other

RESEARCH INTO METHODS FOR THE INTEGRATED CONTROL OF COTTON FESTS IN DAHOMEY... Behavioral Ecology; Dysmic Nioilds; Fiber Crops; Integrated Control; Olethreutidae;... 1.0048
Polyhedrosis Viruses
INTEGRATED CONTROL OF CRYPTOPHLEBIA BY ADDITION OF VIRUSES TO THE CHEMICAL INSECTICIDES ... Disease -biocontrol; Fiber Crops; Humid & M. or Less; Mode of Action; Pemphigus; ... 1.0051

BIOLICAL CONTROL OF CRYPTOPHLEBIA, LEUCOTRETA ... Disease -biocontrol; Fiber Crops; Granulosis Viruses; Multiplication & Replication; Olethreutidae; Rearing of Insects; ... 4.0277

BIOLICAL CONTROL OF HELIOTHIS ARMIGERA ... Disease -biocontrol; Fiber Crops; Isolation of Viruses; Multiplication & Replication; Noctuidae; Rearing of Insects; ... 4.0278

Viruses, Plant
Mosaic Viruses
INTRODUCTION OF FOREIGN VARIETIES OF MANIOC ... Dystic Nitosols; Management; Manihot; Starch; Two Humid Seasons; Virus Resistance; ... 1.0069

THE VIRUS DISEASES OF THE COTTON CROP IN WEST AND CENTRAL AFRICA ... Electron Microscopy; Phytopathology; Vectors; Viral Transmission; Virus Resistance; ... 4.0075

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSEILLA; Plant Virus -general; Vectors; Viral Transmission; ... 4.0077

CASSAVA BEEFING ... Bacterial Wilt; Cercospora; Disease Resistance; Ferric Luvisols; Insect Resistance; Phytopathology; ... 4.0182

CASSAVA ENTOMOLOGY ... Continuous Humid 7 Months-Plus; Ferric Luvisols; Insect Resistance; Pseudococcidae; Vectors; ... 9.0187

CASSAVA PATHOLOGY ... Bacterial Resistance; Breeding & Genetics; Disease Environments; Plant; Ferric Luvisols; Vectors; ... 9.0190

THE PRODUCTION OF MOSAIC RESISTANT/TOLERANT, HIGH YIELDING CONSUMER ACCEPTABLE CASSAVA VARIETIES ... Breeding & Genetics; Manihot; Pedigree; Virus Resistance; ... 9.0212

REDUCTION OF SUGARCANE MOSAIC VIRUS ... Detection & Diagnosis; Indicator Organisms; Phytopathology; ... 9.0245

Orange Tree Quick Decline
CITRUS ROOTSTOCK TRIAL ... Citrus; Entomology; Applied; Fungal Resistance; Gummosis; Management; Virus Resistance; ... 2.0008

Parakou Virus
NEMATOTOLOGICAL STUDIES ON COTTON PLANTS AND DIFFERENT FIBRE PLANTS IN DAHOMEY ... Corchorus; Phytopathology; Surveys; Tylechinoidae; Vectors; ... 4.0072

Plant Virus -general
ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dystic Nitosols; Mangifera; Persea; Psidium; Two Humid Seasons; ... 1.0011

CREATION OF A VARIETAL HYBRID OF YELLOW MAIZE ADAPTED TO THE NORTH OF DAHOMEY ... Breeding & Genetics; Ferric Luvisols; Humid 5 Months; Streaks; Virus Resistance; ... 1.0043

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dystic Nitosols; Mangifera; Persea; Psidium; Two Humid Seasons; ... 1.0070

ECOLOGICAL STUDY OF THE ORCHARD - SOUDANO-GUINEAN ZONE ... Dystic Nitosols; Management; Passiflora; Sapotaceae; ... 1.0071

CASSAVA IMPROVEMENT ... Continuous Humid 7 Months-Plus; Manihot; Timing of Planting Procedures; ... 3.0155

STUDY OF THE ROLE OF THE NEMATODE VECTORS OF VIRUS IN THE TRANSMISSION OF THE VIRUS DISEASE OF PANICUM MAXIMUM IN THE IVORY COAST ... Dorylaimoidae; Interparasitid Relationship; Panicum; Vectors; ... 4.0071

IDENTIFICATION OF A VIRUS DISEASE OF PANICUM MAXIMUM ... Panicum; Phytopathology; Soil-borne; Vectors; Viral Transmission; ... 4.0074

IDENTIFICATION OF VIRUSES OF MARKET GARDENING PLANTS IN THE IVORY COAST - GOMBO (OKRA), PASSIFLORA; Plant Virus -general; Vectors; Viral Transmission; ... 4.0077

Visual Organs
See Vertebrate Physiology

Vitamins
See Also Plant Physiology

Metabolism
STUDIES ON IRON SUPPLEMENT FOR PIGLETS ... Growth Rate; Inorganic Elements in Feeds; Iron; Management; Mineral Blocks, Salt Blocks, Supplements, Feed Additives; ... 3.0032

BIOCHEMICAL INVESTIGATIONS IN GRAIN LEGUMES ... Cooked Quality of Food; Pats - Lipids & Oils; Hydrogen Cyanide; Nutritive Value of Food; Pulse Crops; Tryptophane; ... 9.0177

EVALUATION OF NUTRITIVE VALUE OF SOME LOCAL AND INTRODUCED RICE ... Breeding & Genetics; Nutritive Values -plant; Proteins; Starch; Sugar -nonspecific; ... 9.0206

PLANT PHYSIOLOGY ... Fruits and Berries; Vegetables -other; ... 12.0003

Vitavax
See Pesticides

Fungicides

SUBJECT INDEX
SUBJECT INDEX

Waste Treatment/Disposal

Food Processing Wastes
MILL EFFLUENT STUDIES ... Odor & Taste; Waste Water Disposal; ... 9.0317

Odor & Taste
MILL EFFLUENT STUDIES ... Food Processing Wastes; Waste Water Disposal; ... 9.0317

Waste Water Disposal
MILL EFFLUENT STUDIES ... Food Processing Wastes; Odor & Taste; ... 9.0317

Water

See Pest Control Measures
Physical Control

Water Application Methods
See Water Supply

Water Cycle
See Water Movement

Water Environment
See Environments, Animal

Water Environment -other
See Environments, Plant

Water Level Fluctuation
See Water Movement

Water Movement

Floods
AGRICULTURE RESEARCH IN DRAWDOWN AREAS ...
Lakes & Reservoirs; Soil Types; ... 3.0237
STUDY THE RATES OF FLOW OF THE DIFFERENT WATER-COURSES IN THE IVORY COAST ... Discharge; Flow Characteristics -water, Streams; ... 4.0042
DATE OF SOWING IN RICE-FIELDS FOR SEMI-CONTROLLED SUBMERSION ... Feric Luvisols; Humid 3 Months; Humid 4 Months; Management; Soil Moisture; Timing of Planting Procedures; ... 6.0007

Groundwater Movement
SITE EVALUATION FOR PLANTATION DEVELOPMENT IN THE SAVANNA REGION ... Moisture Levels; Movement, Availability; Silviculture; Site Index and Site Quality; Soil Analysis -other; ... 9.0363

Hydraulics

Discharge
STUDY THE RATES OF FLOW OF THE DIFFERENT WATER-COURSES IN THE IVORY COAST ... Floods; Flow Characteristics -water, Streams; ... 4.0042
HYDROLOGICAL RATES OF FLOW, SOLIDS CARRIED BY AND CHEMISTRY OF THE WATERS OF THE SAN PEDRO, NERO, AND BRIME RIVERS ... Flow Characteristics -water; Gaging; Streams; Water Quality; ... 4.0043

Flow Characteristics -water
STUDY THE RATES OF FLOW OF THE DIFFERENT WATER-COURSES IN THE IVORY COAST ... Discharge; Floods, Streams; ... 4.0042
HYDROLOGICAL RATES OF FLOW, SOLIDS CARRIED BY AND CHEMISTRY OF THE WATERS OF THE SAN PEDRO, NERO, AND BRIME RIVERS ... Discharge; Gaging; Streams; Water Quality; ... 4.0043

Infiltration

OPERATION OF RESEARCH IN GEODYNAMICS, GEO-CHEMISTRY AND GEOMORPHOLOGY IN THE IVORY COAST ... Geology; Soil Crusts; Soil Morphology, Profiles; ... 4.0036

STUDY OF RIVULET FORMATION, OF INFILTRATION AND OF THEIR CONDITIONAL FACTORS ON THE KOR-HOGO WATERSHED ... Rain; Rill Erosion; Soil Moisture; Soil Types; Watersheds; ... 4.0045

STUDY OF SOIL - MOISTURE - PLANT RELATIONSHIPS (WATER ECONOMY) ... Chronic Cambisols; Consumptive Use; Humidity; Irrigation; Luvis Arenosols; Soil-water-plant Relationships; ... 8.0009

SOIL CHEMICAL AND PHYSICAL CHANGES UNDER CONTINUOUS CULTIVATION ... Management, Manihot; Sand; Trace Metals; ... 9.0048

Leaching

Soil and Rock Leaching
POSSIBLE SECOND SEASON CASH CROP FOR FLUE CURED TOBACCO FARMERS ... Continuous Humid 7 Months; Plus; Fertilizer Losses; Management; Multiple Cropping; Production and Processing; Sorghum Vulgare (Grain); ... 3.0146
BALANCE THE SUPPLIES OF MANURE ON CLAY SOILS ... Clay; Fertilizer Losses; Soil Analysis; Soil Column, Leaching Diff; ... 4.0295

SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE ... Elevational Levels, Altitude; Percolation; Soil Moisture; Soil Types; ... 9.0071

LEACHING OF THE MINERAL ELEMENTS FROM SANDY SOILS CULTIVATED AS INTENSIVE SYSTEMS ... Fallowing; Fertilizer Losses; Luvis Arenosols; Sand; Soil Moisture; ... 11.0063

Percolation

TO AVOID THE DEGRADATION OF SOILS BY CONTINUOUS CULTIVATION OF PINEAPPLES ... Bromeliaceae; Erosion Control; Management; Removal of Nutrients from Soil; Two Humid Seasons; ... 4.0148

SOIL IMPROVEMENT FOR REFORESTATION IN HIGH FOREST ZONE ... Elevational Levels, Altitude; Soil and Rock Leaching; SoiL Moisture; Soil Types; ... 9.0071

Sediment Yield

STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST ... Precipitation Gages; Water Runoff; Water Table; ... 4.0044

Water Cycle

IRRIGATION SYSTEMS INVESTIGATION - HYDROLOGIC CHARACTERIZATION OF SMALL WATERSHEDS IN THE HUMID TROPICS ... Fertilizer Losses; Irrigation -general; Lysimeters; Subsurface Runoff; Watersheds; ... 9.0160

Water Level Fluctuation

WATER MANAGEMENT EXPERIMENT IN LOWLAND RICE ... Evapotranspiration; Management; Moisture Levels; Plant Responses; ... 9.0006

Water Runoff

STUDY OF REPRESENTATIVE WATERSHEDS IN THE FRAMEWORK OF MULTIDISCIPLINARY ACTIVITIES IN THE IVORY COAST ... Precipitation Gages; Sediment Yield; Water Table; ... 4.0044

INDEX OF EROSION BY THE RAIN IN UPPER VOLTA ...
Erosion Control; Rain; Rain Amount; Raindrop Impact; Weather Charts, Maps; ... 14.0004

Agricultural Runoff
RIVER OBUSA-OPA WATERSHED PROJECT - RUN OFF AND EROSION STUDIES ... Erosion Control; Management Effects on Soils; Rain; Rain Amount; Raindrop Impact; Soil-water-plant Relationships; ... 9.0050

STUDY OF RIVULET FORMATION AND OF EROSION ON VERTIC SOIL ... Furtic Regosols; Management Effects on Soils; Soil - Bare; Soil-water-plant Relationships; ... 14.0041

474
SUBJECT INDEX

Weeds

See Also Entomology, Applied
Agronomic Pests on

Control of Plants . . .

Aquatic Plants
HYDROBIOLOGY RESEARCHES IN THE VOLTA BASIN . . . Behavioral Ecology; Fish Food Supply; Plankton; Water Environment; . . . 3.0236

Forbs (Broadleaf Herbs)
CHEMICAL WEED CONTROL IN SUGARCANE . . . Fenac; Grasses or Sedges; Pesticides -other; Saccharum; Sugar Crops; . . . 3.0116
PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass -nonspecific; Humid 6 Months; Planavvin; . . . 9.0004

CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LANES . . . Dalapon; Economics of Chemical Control; Grasses or Sedges; Nursery Observational Plots; Triazines -nonspecific; . . . 9.0385
AGRONOMIC STUDIES ON IRRIGATED, RAINFOREST LOW-AND UPLAND RICE . . . Bentazon; D 2,4'-D; Drought Resistance; Grass -nonspecific; Irrigation -general; Pesticides -other; Rain; . . . 10.0001

STUDY CHEMICAL WEEDING OF RICE GROWN IN THE RAINGROWN SEASON . . . Cereal Crops; Grasses or Sedges; Hericides -nonspecific; Humid 4 Months; Interaction with Environment; . . . 11.0153

Grasses or Sedges
CHEMICAL WEED CONTROL IN SUGARCANE . . . Fenac; Pesticides -other; Saccharum; Sugar Crops; . . . 3.0116
STUDY OF THE GERMINATIVE CAPACITY OF WEED SEEDS . . . Continuous Humid; Germination; Grass -non-specific; Physiology of Weeds; . . . 4.0157
CONTROL OF WEEDS ON IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAMMIRUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS . . . Humid 1 Month; Oryza -other; . . . 6.0050
ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA) . . . Cereal Crops; Cutting Sequence; Drought; Management; Oryza -other; . . . 6.0063
STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVIGULUTA AND O. LONGISTAMINATA . . . Dormancy; Non-dry 3 Months; Plus; Physiology of Weeds; Soil Depth; . . . 6.0064
HERBICIDE EXPERIMENTS WITH COTTON ON ALLUVIALLY DISTRIBUTED SOILS . . . Cyperus Rotundus; Grass -nonspecific; Herbicides -nonspecific; . . . 8.0048
PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass -nonspecific; Humid 6 Months; Planavvin; . . . 9.0004
STUDIES ON THE HOST RANGE OF HELMINTHO- PORIUM ORYZAE . . . Grass -nonspecific; Helminthosporium; . . . 9.0278

CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERIES AND FIRE LANCES . . . Dalapon; Economics of Chemical Control; Forbs (Broadleaf Herbs); Nursery Observational Plots; Triazines -nonspecific; . . . 9.0385
AGRONOMIC STUDIES ON IRRIGATED, RAINFOREST LOW-AND UPLAND RICE . . . Bentazon; D 2,4'-D; Drought Resistance; Grass -nonspecific; Irrigation -general; Pesticides -other; Rain; . . . 10.0001
CONTROL CAMPAIGN AGAINST RHIZOME RICE . . . Cereal Crops; Eutric Fluvisols; Eutric Gleysols; Herbicides -nonspecific; Hot Equatorial or Hot Tropical; . . . 11.0150

STUDY CHEMICAL WEEDING OF RICE GROWN IN THE RAINGROWN SEASON . . . Cereal Crops; Forbs (Broadleaf Herbs); Herbicides -nonspecific; Humid 4 Months; Interaction with Environment; . . . 11.0153

Trees & Shrubs
ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS . . . Forests; Injection; Selectivity of Pesticides; Time & Motion Studies; . . . 9.0358

Control of Weeds in . . .

Beverage Crops
COFFEE AGROSCIENCE PROJECT . . . Ethree; Fruit-set or Fruit-thinning; Management; Mulches; Shade; Space Competition; . . . 9.0145

Cereal Crops
CONTROL OF WEEDS IN RICE . . . Irrigation -general; Moisture Deficiency; Postemerger Application; Propazine; . . . 3.0004
WEED CONTROL OF UPLAND RICE . . . CP 53619; Management; Timing -other; . . . 3.0185
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Irrigation -general; Management; Phenology, Life Cycle; Physical Control; Two Humid Seasons; . . . 4.0093
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Irrigation -general; Planavvin; Silvex; . . . 4.0094
MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS . . . Continuous Humid; Fiber Crops; Hand Tillage; Herbicides -nonspecific; Phenology, Life Cycle; Soil Tillage Sequence / Method; . . . 4.0184
WEEDING OF PLUVIAL RICE, COMBINING CULTIVATION TECHNIQUES AND CHEMICAL HERBICIDE TREATMENTS . . . Herbicides -nonspecific; Management; Placement; . . . 4.0185
STUDY OF THE BIOLOGICAL CYCLES OF WEEDS . . . Competition; Continuous Humid; Management; Phenology, Life Cycle; Soil Tillage Sequence / Method; . . . 4.0188
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . D, 2,4'-D; Management; Planavvin; Silvex; . . . 4.0204
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Hand Tillage; Pricking Out; Selectivity of Pesticides; . . . 4.0205
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Continuous Humid; Cultural Control; Irrigation -general; Management; Phenology, Life Cycle; . . . 4.0206
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . Hand Tillage; Management; Planavvin; Silvex; . . . 4.0208
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Humid 5 Months; Irrigation -general; Management; Phenology, Life Cycle; Physical Control; . . . 4.0209
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Humid 5 Months; Pricking Out; Selectivity of Pesticides; . . . 4.0210
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Cultural Control; Ferralic Cambisols; Irrigation -general; Management; Phenology, Life Cycle; Two Humid Seasons-7 Month,Plus; . . . 4.0216
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Hand Tillage; Pricking Out; Selectivity of Pesticides; Two Humid Seasons-7 Month,Plus; . . . 4.0217
CHEMICAL WEED DESTRUCTION ON PLUVIAL RICE . . . Hand Tillage; Pricking Out; Selectivity of Pesticides; . . . 4.0219
INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRRIGATED RICE-FIELDS . . . Continuous Humid 7 Months,Plus; Cultural Control; Irrigation -general; Management; Phenology, Life Cycle; . . . 4.0220
CHEMICAL WEED DESTRUCTION ON IRRIGATED RICE . . . Hand Tillage; Pricking Out; Selectivity of Pesticides; . . . 4.0221
STUDY OF WEEDS IN IRRIGATED RICE . . . Economics of Chemical Control; Herbicides -nonspecific; Management; . . . 5.0016
CONTROL OF WEEDS IN IRRIGATED RICE-FIELDS, PARTICULARLY ISCHAMMIRUM RUGOSUM AND THE WILD SPECIES OF RICE PLANTS . . . Grasses or Sedges; Humid 1 Month; Oryza -other; . . . 6.0050
ERADICATION OF PERENNIAL RICE SPECIES WITH RHIZOMES (O. LONGISTAMINATA) . . . Cutting Sequence; Drought; Management; Oryza -other; . . . 6.0063
MANAGEMENT PRACTICES OF TWO RECOMMENDED RICE VARIETIES . . . Hand Tillage; Humid 6 Months; Insecticides -nonspecific; Management; . . . 9.0003
PRE-PLANTING HERBICIDE TRIAL ON RICE . . . Dalapon; Grass -nonspecific; Humid 6 Months; Planavvin; . . . 9.0004
POST-PLANTING HERBICIDE TRIAL FOR RICE . . . Humid 6 Months; Marsh; Preemergence Application; Timing -other; . . . 9.0008

476
SUBJECT INDEX

Weeds

SORGHUM CROP PROTECTION ... Rearing of Insects; Scrob-pularia; Seedling Diseases -non-specific; Smut; Tet-tigoniae; ... 9.0159

MAIZE HERBICIDE TRIAL ... Bladex; Herbicides -non-specific; Humid 6 Months; Simazine; ... 9.0198

MAIZE HERBICIDE TRIAL ... Continuous Humid 7 Months; Plus; Simazine; ... 9.0199

HERBICIDE SCREENING ... Continuous Humid 7 Months; Plus; Herbicides -non-specific; Postemerge Application; ... 9.0204

MAIZE HERBICIDE TRIAL ... Bladex; Economics of Chemical Control; Management; Simazine; ... 9.0276

MAIZE HERBICIDE TRIAL ... Economics of Chemical Control; Management; ... 9.0367

MAIZE HERBICIDE TRIAL ... Bladex; Continuous Humid 7 Months; Plus; Economics of Chemical Control; Management; Simazine; ... 9.0368

MAIZE HERBICIDE TRIAL ... Bladex; Economics of Chemical Control; F.G.N.; Simazine; ... 9.0370

AGRONOMIC STUDIES ON IRRIGATED, RAINFED LOWLAND AND UPLAND RICE ... Bentonox; D, 2,4-; Drought Resistance; Grass -non-specific; Irrigation -general; Pesticides -other; Rain; ... 10.0001

IDENTIFICATION AND ALLEVIATION OF ON-FARM CONSTRAINTS TO INCREASED RICE PRODUCTION ... Irrigation -general; Management; Rain; Technological Development; ... 10.0002

FIELD TESTING OF NEW RICE TECHNOLOGY AND ADOPTION OF THE NEW TECHNOLOGY THROUGH A PILOT IMPLEMENTATION PROGRAM ... Herbicides -non-specific; Insecticides -non-specific; Management; Rain; Timing of Application -other; ... 10.0004

DEVELOPMENT OF IMPROVED CROPPING PATTERNS FOR SMALL ASIAN RICE FARMS ... Intercropping; Management; Phaseolus; Rain; ... 10.0011

CHEMICAL CONTROL OF WEEDS OF THE SORGHUM CROP ... Consumer Attitudes, Awareness; Costs; Economics of Chemical Control; Herbicides -non-specific; Selectivity of Pesticides; Sorghum Vulgaris (Grain); ... 11.0020

CHEMICAL CONTROL OF THE WEEDS OF THE MILLET CROP ... Consumer Attitudes, Awareness; Costs; Economics of Chemical Control; Herbicides -non-specific; Selectivity of Pesticides; ... 11.0021

INTRODUCTION OF CHEMICAL WEED DESTRUCTION INTO THE PRODUCTION STRUCTURE ... Consumer Attitudes, Awareness; Herbicides -non-specific; Oilsed Crop; ... 11.0070

STUDY OF HERBICIDE PREPARATIONS ON SORGHUM ... Ferric Luviosols; Humid 3 Months; Promachol; Sorghum Vulgaris (Grain); ... 11.0146

CONTROL CAMPAIGN AGAINST RHIZOME RICE ... Euric Fluvial; Euric Gleysols; Grasses or Sedges; Herbicides -non-specific; Hot Equatorial or Hot Tropical; ... 11.0150

STUDY CHEMICAL WEEDING OF RICE GROWN IN THE RAINDY SEASON ... Forbs (Broadleaf Herb); Grasses or Sedges; Herbicides -non-specific; Humid 4 Months; Interaction with Environment; ... 11.0153

STUDY OF THE HARMFULNESS OF WEEDS TO RICE ... Competition; Humid 4 Months; Physiology of Weeds; ... 11.0156

THE CONTROL OF WEEDS BY HERBICIDES IN RICE CROPS ... Hand Tillage; Herbicides -non-specific; ... 12.0009

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORGHUM ... Fiber Crop; Oilsed Crop; Preemerge Application; Pulse Crops; Sorghum Vulgaris (Grain); ... 14.0027

Fiber Crops

HERBICIDE EXPERIMENTATION ON COTTON ... Continuous Humid; ER 5461; GS 16068; MSMA; Postemerge Application; ... 16.0012

HERBICIDE EXPERIMENTATION ON COTTON ... Dystric Nitolsols; Humid 4 Months; Management; Pesticides -other; Preemerge Application; ... 16.0026

TESTS OF CHEMICAL CONTROL OF WEEDS IN KENAF CROPS ... Dacthal; Monolinuron; Trifluralin; ... 16.0055

COTTON AGRONOMY ON THE BLACK SOILS, ACCRA PLAINS ... DDT; Formulation, Fertilizer; Preforan; Soil Moisture; Systemic; Synergists; ... 17.0005

INFLUENCE OF COTORAN AND PLANAVIN HERBICIDES ON THE YIELD OF COTTON ... Cotonan; National Network -general; Planavin; ... 17.0162

MODIFICATIONS OF THE WEEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS ... Cereal Crop; Continuous Humid; Hand Tillage; Herbicides -non-specific; Phenology; Life Cycle; Soil Tillage Sequence / Method; ... 14.0184

STUDY OF THE ACTION OF HERBICIDES IN THE CULTIVATION OF COTTON ... Herbicides -non-specific; Management; Phytotoxicity; ... 14.0267

UTILIZATION OF HERBICIDES IN THE CULTIVATION OF COTTON ... Herbicides -non-specific; Persistence of Residues; ... 16.0078

TECHNIQUES FOR MULTIPLICATION OF THE SEEDS OF HIBISCUS SPECIES ... Herbicides -non-specific; Management; Seeding or Planting Rate; Timing of Planting Procedures; ... 16.0099

HERBICIDE EXPERIMENTS WITH COTTON ON ALLUVIALLY DISTRIBUTED SOILS ... Cyperus Rotundus; Grass -non-specific; Herbicides -non-specific; ... 8.0048

EXPERIMENTAL USE OF CHEMICAL HERBICIDES IN A COTTON PLANTATION ... Diuron; Ferric Luviosols; Humid 3 Months; Preemerge Application; Surface -soil; ... 11.0170

EXPERIMENT ON CHEMICAL WEEDING OF A COTTON PLANTATION WITH 3 HERBICIDE PREPARATIONS ... Cotoran; Persistence of Residues; Pesticides -other; Preemerge Application; Surface -soil; ... 13.0049

TEST OF POSSIBLE PHYTOXICITY FOR COTTON PLANTS OF COMPOUNDS WITH HERBICIDAL ACTIVITY ... Cotoran; Preemerge Application; ... 13.0050

EXPERIMENT WITH TRIAZINE HERBICIDES ON SORG-HUM ... Cereal Crop; Oilsed Crop; Preemerge Application; Pulse Crops; Sorghum Vulgaris (Grain); ... 14.0027

COMPARATIVE TRIAL OF CHEMICAL WEED-KILLERS IN COTTON PLANTATIONS ... Ferric Luviosols; Hand Tillage; Pesticides -other; Prometryn; ... 14.0086

Field Crops -non-specific

UTILIZATION OF HERBICIDES IN COFFEE CROPPING ... Ferric Acidols; Hand Tillage; Herbicides -non-specific; Management; Soil Tillage Sequence / Method; Two Humid Seasons:7 Month; Plus; ... 4.0115

UTILIZATION OF HERBICIDES IN COCOA CROPPING ... Ferric Acidols; Herbicides -non-specific; Management; Two Humid Seasons:7 Month; Plus; ... 4.0116

WEED DESTRUCTION BY HERBICIDES IN HEVEA PLANTATIONS ... Competition; Economics of Chemical Control; Herbicides -non-specific; Maturity or Growth Stage; Sand; Soil Fertility; ... 4.0238

WEED STUDIES IN TREE CROPS ... Cover Crop; Leguminosas; Mulches; Soil Tillage Sequence / Method; ... 9.0120

STUDY OF CONTINUOUS CULTIVATION ... Climate -Semi-arid Tropical; Continuous Copping; Fallowing; Removal of Nutrients from Soil; ... 11.0066

THE RESIDUAL EFFECTS OF HERBICIDES ... Environment Accumulation Rates; Ferric Luviosols; Herbicides -non-specific; Humid 3 Months; Persistence of Residues; ... 11.0145

Forage Grasses, Pasture, Range

SOIL CONSERVING CROPS ... Cajanus; Continuous Humid 7 Months; Plus; Disease Resistance; Ferric Cambisols; Insect Resistance; Panicaceae -other; Pueraria; ... 9.0185

REGENERATION OF NATURAL MOIST FOREST ... Silviculture; Sodium Arsenite; ... 9.0065

PRODUCTIVITY OF NATURAL FORESTS OF NIGERIA ... Measurement of Trees & Stands; Productivity; Silviculture; Swamps - Marshes; Wild Type Genotype; ... 9.0080

CULTIVATION AND WEEDING METHODS IN PLANTATIONS ... Costs; Eucalyptus; Hand Tillage; Mechanical Control; Pinus; ... 9.0356

CHEMICAL WEED CONTROL IN PLANTATIONS, NURSERY AND FIRE LINES ... Dalapon; Economics of Chemical Control; Forbs (Broadleaf Herb); Grasses or Sedges; Nursery Observational Plots; Triazines -non-specific; ... 9.0357

ELIMINATION OF UNWANTED LOW GRADE HARDWOOD TREES FROM FOREST STANDS AND PLANTATIONS ... Injection; Selectivity of Pesticides; Time & Motion Studies; ... 9.0358

STUDY OF THE POSSIBILITIES OF REPLANTING WOODLAND IN THE WESTERN CENTRE OF SENEGAL UTILIZING EXOTIC SPECIES OF RAPID GROWTH ... Chromie Verticosp; Eucalyptus; Foup -wood; Planting Methods -other; Shelter Belts; Windbreaks; Soil Depth; ... 11.0118
Weeds

<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeds</td>
</tr>
<tr>
<td>TECHNIQUES OF CLEARING IN TEAK POPULATIONS OF EQUAL AGE... Lumbe... Silviculture; T. 2,4,5-; Tectona;... 13.017</td>
</tr>
<tr>
<td>FUMIGATION OF THE SOIL IN A NURSERY... Dystric Gleysoi... Forestry Insects; Methyl Bromide; Silviculture; Sterculiaceae-other;... 13.021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horticultural Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINEAPPLES - PHYTOSANITARY PROTECTION... Bromeliaceae; Fruits and Berries; Phytopathology; Two Humid Seasons;... 4.0149</td>
</tr>
<tr>
<td>CHEMICAL DESTRUCTION OF WEEDS ON A PLANT OF YAM (DIOSCOREA)... Continuous Humid; Diuron; Management; Paraquat; Preemerge Application; Selectivity of Pesticides;... 4.0183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legume Forage & Hay Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE EFFECT OF HERBICIDES ON RHIZOBOID ACTIVITIES IN THE SOIL... Continuous Humid 7 Months, Plus; Nitrogen Fixation; Pesticidal Interaction -other; Pulse Crops; Simazine; Toxicity to Microorganisms;... 9.0216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oiled Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCONUT INTERCROPPING TRIAL... Coco; Continuous Humid; Intercropping; Management; Manihot;... 3.0044</td>
</tr>
<tr>
<td>WEED CONTROL IN YOUNG AND MATURE OIL PALMS (ELAEIS GUINEENSIS), USING HERBICIDES... Bladed; Continuous Humid 7 Months, Plus; Epam; VSSA; Paraquat;... 3.0117</td>
</tr>
<tr>
<td>WATER CONSERVATION IN THE DRY SEASON BY IMPROVED CULTURAL PRACTICES... Continuous Humid 7 Months, Plus; Drought Resistance; Evapotranspiration; Management; Soil-water-plant Relationships;... 3.0123</td>
</tr>
<tr>
<td>THE PRODUCTION OF HIGH YIELDING VARIETIES OF GROUNDNUTS... Continuous Humid 7 Months, Plus; Fats - Lipids & Oils; Orthic Acrisols; Rosette Disease; Space Competition;... 3.0155</td>
</tr>
</tbody>
</table>

| EXPERIMENT 17-1: WEED CONTROL IN OIL PALM PLANTATIONS... Diuron; Hand Tillage; Pest; Disease & Weed Control;... 9.0301 |
| EXPERIMENT 17-2: MECHANICAL MAINTENANCE AND MULCHING TREATMENTS OF OIL PALM PLANTATIONS... Cultcontrol -other; Equipment; Mulches; Pest, Disease & Weed Control;... 9.0302 |

| STUDY OF THE HARMFUL EFFECT OF WEEDS ON GROUNDNUTS... Humid 2 Months; Light Competition; Moisture Competition; Physiology of Weeds;... 11.0017 |
| STUDY OF THE CHEMICAL WEEDING OF GROUNDNUTS... Ferric Luvisols; Herbicides -non-specific; Humid 3 Months;... 11.0019 |
| INTRODUCTION OF CHEMICAL WEED DESTRUCTION INTO THE PRODUCTION STRUCTURE... Cereal Crops; Consumer Attitudes, Awareness, Herbicides -non-specific;... 11.0070 |
| STUDY OF HERBICIDE PREPARATIONS ON GROUNDNUTS ON SANDY SOILS... Ferric Luvisols; Humid 3 Months; Preemerge Application; Prometryne; Sand;... 11.0147 |
| STUDY OF THE CHEMICAL WEEDING OF GROUNDNUTS... Ferric Luvisols; Herbicides -non-specific; Humid 3 Months;... 11.0148 |
| EXPERIMENT WITH TRIAZINE HERBICIDES ON SORG-HUM... Cereal Crops; Fiber Crops; Preemerge Application; Pulse Crops; Sorghum Vulgare (Grain);... 14.0027 |

<table>
<thead>
<tr>
<th>Pulse Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEED CONTROL IN COWPEA... Management; Phytotoxicity; Pheron; RP 17623; Trifluralin;... 3.0008</td>
</tr>
<tr>
<td>PEST CONTROL ON COWPEAS - VIGNA UNGUICULATA... Chrysomelidae; Ferric Luvisols; Insect Resistance; Pests; Seed Bank; Systemic Application;... 9.0171</td>
</tr>
<tr>
<td>EXPERIMENT WITH TRIAZINE HERBICIDES ON SORG-HUM... Cereal Crops; Fiber Crops; Oiled Crop; Preemerge Application; Sorghum Vulgare (Grain);... 14.0027</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugar Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUGARCANE AGRONOMY ON THE BLACK SOILS OF THE ACCRA PLAINS... Bladed; Growth Stage of Plant; Saccharum; Simazine; Space Competition; Sulfates;... 3.0006</td>
</tr>
<tr>
<td>CHEMICAL WEED CONTROL IN SUGARCANE... Fenc; Grasses or Sedges; Fungicides -other; Saccharum;... 3.0116</td>
</tr>
<tr>
<td>SUGARCANE HERBICIDE TRIAL... D, 2,4-D; Diuron; Management; Preemerge Application; Preplant Application;... 9.0002</td>
</tr>
</tbody>
</table>

Pathology of Weeds

| THE COCOA SWOLLEN SHOOT VIRUS DISEASE PROJECT... Beverage Crops; Insects; Population Dynamics; Swollen Shoot Virus; Virulence and Pathogenicity;... 9.0129 |
| STUDIES ON THE HOST RANGE OF HELMINTHOSPORIUM ORYZAE... Grass -non-specific; Helminthosporium;... 9.0278 |

Phenology, Life Cycle

| INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS... Cereal Crops; Irrigation -general; Management; Physical Control; Two Humid Seasons;... 4.0093 |
| MODIFICATIONS OF THE WEED FLORA DUE TO CHEMICAL HERBICIDE TREATMENTS... Cereal Crops; Continuous Humid; Fiber Crops; Hand Tillage; Herbicides -non-specific; Soil Tillage Sequence / Method;... 4.0184 |
| DETERMINATION OF WEEDS AT THE SEEDLING AND YOUNG PLANT STAGES... Continuous Humid; Handbooks; Photography; Taxonomy, Plants;... 4.0187 |
| STUDY OF THE BIOLOGICAL CYCLES OF WEEDS... Cereal Crops; Competition; Continuous Humid; Management; Soil Tillage Sequence / Method;... 4.0188 |
| INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS... Cereal Crops; Continuous Humid; Cultural Control; Irrigation -general; Management;... 4.0206 |
| INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS... Cereal Crops; Humid 3 Months; Irrigation -general; Management; Physical Control;... 4.0209 |
| INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS... Cereal Crops; Cultural Control; Ferralic Cambisols; Irrigation -general; Management; Two Humid Seasons / Month; Plus;... 4.0216 |
| INVENTORY OF THE WEED FLORA OF PLUVIAL AND IRIGATED RICE-FIELDS... Cereal Crops; Continuous Humid 7 Months; Plus; Cultural Control; Irrigation -general; Management;... 4.0220 |
| WEED STUDIES IN TREE CROPS... Cover Crops; Field Crops -non-specific; Leguminosae; Mulches; Soil Tillage Sequence / Method;... 9.0120 |

Physiology of Weeds

| STUDY OF THE GERMINATIVE CAPACITY OF WEED SEEDS... Continuous Humid; Germination; Grass -non-specific; Grasses or Sedges;... 4.0157 |
| STUDY OF THE DORMANCY OF WEED SEEDS... Continuous Humid; Dormancy; Scarcification;... 4.0186 |
| STUDY OF THE DORMANCY OF THE WILD VARIETIES OF RICE, O. BREVIGILULATA AND O. LONGISTAMINATA... Dormancy; Non-dry 3 Months; Plus; Soil Depth;... 6.0064 |
| STUDY OF THE HARMFUL EFFECT OF WEEDS ON GROUNDNUTS... Humid 2 Months; Light Competition; Moisture Competition; Oiled Crop;... 11.0017 |
| STUDY OF THE HARMFULNESS OF WEEDS TO RICE... Cereal Crops; Competition; Humid 4 Months;... 11.0156 |

Wet Rot

See Plant Diseases

See Plant Diseases : Rots

Wetlands

CEREAL BREEDING - MAIZE... Breeding & Genetics; Ecoregions; Excessive Moisture; Humid 3 Months;... 6.0041

Wheat

See Feed Science and Technology

Cereal Grains or Grasses

Wild Type Genotype

See Genetics

Wilt

See Plant Diseases
SUBJECT INDEX

Wind
See Plant Resistance

Wind or Air Movement
See Environments, Plant

Wind Erosion
See Erosion Control

Wine
See Food Science and Technology
Alcoholic Beverages

Wood
See Materials

Wood Chemistry
See Chemistry-related Fields

Wood Preservation & Seasoning
See Forestry
Processing Forest Products

Wood Preservatives
See Pesticides

Wood Structure & Properties
See Forestry

Xanthi:x: Ferralsols
See Soil Unit Classification
Ferralsols

Xanthomonas
See Bacteria

Xylem
See Plant Tissues
Vascular Tissue

Yeasts -nonspecific
See Fungi

Yellow Dwarfing
See Plant Diseases

Yellows
See Plant Diseases

Zectran
See Pesticides
Insecticides

Zinc
See Soil Nutrients/Fertilizers
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmadu Bello University - Zaria, Nigeria</td>
<td>Nigeria</td>
<td>1956, 1957</td>
</tr>
<tr>
<td>Central Agri. Experiment Station - Liberia</td>
<td>Nigeria</td>
<td>1900s</td>
</tr>
<tr>
<td>Centre Tech.</td>
<td>Nigeria</td>
<td>1900s</td>
</tr>
<tr>
<td>Centre Tech. For. Trop. - Abidjan, I.C.</td>
<td>Africa</td>
<td>1900s</td>
</tr>
<tr>
<td>Centre Tech. For. Trop. - Dakar, Senegal</td>
<td>Africa</td>
<td>1900s</td>
</tr>
<tr>
<td>Centre Tech. For. Trop. - Niamey, Niger</td>
<td>Africa</td>
<td>1900s</td>
</tr>
<tr>
<td>Centre Tech. For. Trop. - Upper Volta</td>
<td>Africa</td>
<td>1900s</td>
</tr>
<tr>
<td>Cocos Res. Inst. of Nigeria - Ibadan</td>
<td>Nigeria</td>
<td>1900s</td>
</tr>
<tr>
<td>Cocoa Research Inst. - Kumasi, Ghana</td>
<td>Nigeria</td>
<td>1900s</td>
</tr>
<tr>
<td>I. Barbel, Inst. de Rech. Agron. de Bamako, Mali</td>
<td>Mali</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Bamako, Mali</td>
<td>Mali</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Elevage Med. Veterinaire - France</td>
<td>France</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Douhomy</td>
<td>Cameroun</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Bonsane, I.C.</td>
<td>Cameroon</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Lome, Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Bamako, Mali</td>
<td>Mali</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Libreville</td>
<td>Congo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Ibadan</td>
<td>Nigeria</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Douhomy</td>
<td>Cameroun</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Bonsane, I.C.</td>
<td>Cameroon</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Lome, Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Economie Rurale - Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. d'Elevage Med. Veterinaire - France</td>
<td>France</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Douhomy</td>
<td>Cameroun</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Bonsane, I.C.</td>
<td>Cameroon</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Lome, Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Inst. de Rech. Agron. - Togo</td>
<td>Togo</td>
<td>1900s</td>
</tr>
<tr>
<td>Food & Agric. Org. of the U.N. - Rome, It.</td>
<td>Italy</td>
<td>1900s</td>
</tr>
</tbody>
</table>

*INDICATES PRINCIPAL INVESTIGATOR

EXECUTIVE AGENCY INDEX
INVESTIGATOR INDEX

Siband, P. -11.0064
Sicot, M. -4.0052
Simaga, B. -6.0005
Sivers, P. -8.0021
Smit, J.J. -4.0070°
Soubies, F. -4.0039°
Soulie, P. -8.0024°
Traverse, S.L. -11.0122°, 11.0123°
Trouslot, M.F. -4.0049°
Tweneboa, C.K. -3.0237
Udolisa, B.E. -9.0194, 9.0195, 9.0196
Unny, K.L. -9.0264*, 9.0265*
Usher, M.B. -3.0233°, 3.0234°
Valet, S. -8.0009°
Vallier, G. -6.0001, 6.0002
Vandesenne, R. -4.0178°, 4.0179°, 4.0180°, 4.0181°
Vanroose, G. -11.0087°, 11.0088, 11.0089, 11.0090
Vercambruy, R. -11.0016*, 11.0018*, 11.0069*
Vergara, B.S. -10.0013
Vergnet, L. -4.0086°
Villelauve, A. -4.0345
Wanders, A. -11.0151°

Wellington, M.H. -5.0001*, 5.0002*, 5.0009
Wencelius, F. -4.0083, 4.0084, 4.0344°, 4.0345°, 4.0346°
West, M.J. -9.0313
Whyte, S. -3.0236
Wickham, T.H. -10.0002
Wien, H.C. -9.0167*
Wilkinson, G.E. -9.0050°
Will, H. -12.0006*, 12.0009*, 12.0100°
Williams, G.E. -3.0058*
Williams, J. -9.0144*, 9.0197*
Williams, M.O. -12.0002°
Williams, R.J. -9.0168
Williams, S.K. -9.0046
Wilson, G.F. -9.0164*, 9.0165°
Wilson, J. -5.0023
Winckell, A. -4.0046
Wintrebert, D. -6.0005
Wright, E.H. -12.0004°
Ybert, J.P. -4.0047°
Yoshida, S. -10.0013*
Yoshida, T. -10.0012*
Youn, P.D. -5.0022°
PART 2
RESEARCH
INSTITUTIONS
AND STATIONS
INTRODUCTION TO PART 2

Description of the Research Institutions and Stations.

The objective of this section, prepared by CARIS staff in FAO, is not to give a complete description of the Research Institutions or Stations but to allocate them about the environment, importance and administrative or technical dependence. These Institutions or Stations are assembled by countries, and in the country following their CARIS reference number. Institutions and Stations outside West Africa are given at the end of the Section.

Data on each station are given in the following order:

CARIS Reference number and name of the Institution or Station

Each Institution or Station has received a reference number composed of two parts. Ex.: DM.021

Two letters indicate the country. The following codes have been used:

DM (Dahomey), FR (France), GA (Gambia), GH (Ghana), IV (Ivory Coast), LI (Liberia), ML (Mali), MR (Mauritania), NG (Niger), NI (Nigeria), RP (Philippines), SG (Senegal), SL (Sierra Leone), TO (Togo), UN (United Nations specialized Agencies), UV (Upper Volta).

The three-figure number identifies the research institution or station in the country.

The CARIS reference number of the research projects is the number of the stations where research is carried out to which have been added four figures to identify the project in the station.

Thus, the project DM.021.0007 is the seventh project sent by the station DM.021 in Dahomey (DM).

In the first section of this directory a sequential accession number has been substituted for the CARIS Project reference number given after the name of the first investigator in the description of the project.

This CARIS number can be used to find the description of the research station where a research project is carried out.

Addresses

Postal and telegraphic address, telephone.

Location

Longitude, latitude and altitude in metres (1 foot = 0,30 metre; 1 metre = 3,30 feet).

Climate

At the outset, the intention was to describe climates in the form of condensed original data. Therefore data received from the stations were not equally detailed and without homogeneity. For these reasons, it has been thought better to use climatic indexes based on an existing world-wide classification.

Thus the different climates have been represented by a four-figure code from “Climates of the World and their Agricultural Potentialities” by J. Papadakis (1966).

Soils

Indications sent by the different stations were given in different classifications. For the sake of uniformity, they have been converted into two-letter symbols from the FAO/UNESCO classification used in the explanatory text of “Soil Map of the World, vol. I” published by UNESCO (Paris).

Staff

Number of scientists and technicians. Official and secondary languages that can be used for correspondence.

Experimental fields

Areas are only those used for research. They are given in hectares (1 acre = 0,40 hectare; 1 hectare = 2.5 acres).
Specialized equipment

Not to encumber the directory with a listing of usual equipment, commonly found in nearly all laboratories and stations, as tractors, cultivation material, etc., the quoted equipment is the specialized one as specialized laboratories, computers, cultivars collection. etc.

Training facilities

Subjects, level and duration of the courses.

Library and Documentation

Publications

Financial support

The expenditures include the staff salaries. The amount has been changed into US$. The official quotation on 18 January 1973 is the basis of these evaluations, i.e.:

1 US$ = 263 Fr.CFA = 208 Dalasi = 128 Cedi = 0.325 £. Nigeria = 0.78 Leone = 1 Liberia $.

Field of activity

Parent organization

These organizations do not undertake direct research; they often play an important part in the definition of the goals and can profit from the research results. They can be owners of the Research Installations or Stations. They can provide working facilities in material or money to Institutions or Agencies in charge of research.

Executive Agencies

These agencies organize research in the framework of the programme that they have defined either themselves or after agreement with the parent organization. They divide the research and the working facilities between the scientists and the stations. They supervise the research and centralize the result which they generally publish on their own responsibility.

Climatic Codes

1100 – HUMID SEMI-HOT EQUATORIAL
(FOREST BELT)
Moderate maximum temperature (highest monthly average daily maximum of the warmest month below 33.5°C); annual rainfall greater than annual potential evapotranspiration.

1110 – Ever humid. All months are humid.
1120 – Humid. One or more months are non-humid but no month is dry.
1121 – The humid season is formed by a continuous series of months; rainfall surplus below 2000 mm.
1122 – There are 2 humid seasons; rainfall surplus below 2000 mm.
1123 – Rainfall surplus above 2000 mm.
1130 – Moist monsoon; 1 to 3 months are dry.
1131 – Seven or more humid months; rainfall surplus below 1000 mm; the humid season is formed by a continuous series of months.
1132 – Seven or more humid months; rainfall surplus above 1000 mm and below 2000 mm.
1133 – Seven or more humid months; rainfall surplus above 2000 mm.
1134 – Seven or more humid months; rainfall surplus below 1000 mm; there are 2 humid seasons.
1135 – Six or less humid months.

1300 – DRY SEMI-HOT TROPICAL
(COASTAL SAVANNAH BELT)
Moderate maximum temperature (average daily maximum of the warmest month below 33.5°C; annual rainfall between 44 and 100% of annual potential evapotranspiration.

1310 – Dry monsoon; 4-5 dry months.
1320 – Dry monsoon; 6 or more dry months.
1350 – Moist monsoon; 0-3 dry months.

1400 – HOT TROPICAL
High maximum temperature (average daily maximum of the warmest month above 33.5°C); annual rainfall above 44% of annual potential evapotranspiration.

1410 – Dry monsoon; 4 or less dry months.
1411 – The humid season is formed by a continuous series of months.
1412 – Two humid seasons.
1420 – Dry monsoon; 5 or more dry months.
1460 – Moist monsoon; 4 or more dry months, annual rainfall is greater than annual potential evapotranspiration.
1470 – Moist monsoon; 3 or less dry months, annual rainfall is greater than annual potential evapotranspiration.
1471 – Rainfall surplus less than 1000 mm.
1476 – Rainfall surplus more than 1000 mm.
1480 – Moist monsoon; (Guinean Savannah), annual rainfall between 44% and 100% of annual potential evapotranspiration.
1481 – 7 humid months.
1482 – 6 humid months.
1483 – 5 humid months.
1484 – 4 humid months.
1486 – Rainfall surplus above 1000 mm.

1500 – SEMI ARID TROPICAL
Annual rainfall less than 44% of annual potential evapotranspiration, but one or more months are non-dry.
1530 – Hot tropical, one or more months are humid (Sudanian or Northern Savannah Belt). High maximum temperature (average daily maximum of the warmest month above 33,5°C).
1532 – 3 humid months.
1533 – 2 humid months.
1534 – One humid month.
1540 – Same as 1530, but no month is humid (Sahelian Steppes).
1542 – 3 non-dry months.
1570 – Semi-hot tropical, 1 or more humid month. Average daily maximum of the warmest month below 33,5°C.
1573 – 2 humid months.
1580 – Same as 1570, but no month is humid.

1700 – HUMID TIERRA TEMPLADA
Cool nights (average daily minimum of all months below 20°C).
1730 – Moist monsoon; 4 or less dry months.
1740 – Same as 1730, but 5 or more dry months.
1741 – 5 dry months.

1900 – COOL WINTER HOT TROPICAL
1910 – Average daily maximum of the coldest month above 21°C; average daily minimum of the coldest month between 8 and 13°C.
1916 – 2 humid months.
1917 – One humid month.
1918 – No humid month; 3 or more non-dry months.
1919 – No humid month; 2 or less non-dry months.

3100 – HOT TROPICAL DESERT
Average daily maximum of the warmest month above 33,5°C. All months with average daily maximum above 15°C are dry.
3120 – Average daily minimum of the coldest month between 13 and 18°C.
3140 – Average daily minimum of the coldest month between 8 and 13°C.

SOIL CODES

A – ACRISOLS
AF – Ferric Acrisols
AG – Gleyoc Acrisols
AO – Orthic Acrisols
AP – Plinthic Acrisols

F – FERRASOLS
FA – Acric Ferrasols
FO – Orthic Ferrasols
FR – Rhodic Ferrasols
FX – Xanthic Ferrasols

G – GLEY SOLS
GD – Dystric Gleysols
GE – Eutric Gleysols
GH – Humic Gleysols

I – LITHOSOLS

J – FLUVISOLS
JC – Calcaric Fluvisols
JD – Dystric Fluvisols
JE – Eutric Fluvisols
JT – Thionic Fluvisols

L – LUVISOLS
LC – Chromic Luvisols
LF – Ferric Luvisols
LG – Gleyic Luvisols
LY – Vertic Luvisols
N – NITOSOLS
ND – Dystric Nicotols NH – Humic Nitosols
NE – Eutric Nitosols

Q – ARENOSOLS
QC – Cambic Arenosols QL – Luvic Arenosols
QF – Ferralic Arenosols

R – REGOSOLS
RC – Calcaric Regosols RE – Eutric Regosols
RD – Dystric Regosols

SO – ORTHIC SOLONETZ

V – VERTISOLS
VC – Chromic Vertisols VP – Pellic Vertisols

W – PLANOSOLS
WE – Eutric Planosols WS – Solodic Planosols

ZO – ORTHIC SOLONCHAKS
DAHOMEY (DM)

DM. 020 — AGENCE IRAT AU DAHOMEY
B.P. 422, Cotonou
Tel. Add.: IRATROP - COTONOU
Tel.: Cotonou 28-72.

This body is the representative in Dahomey of the Institut de Recherches Agronomiques Tropicale et des Cultures Vivrières (IRAT), 110 rue de l'Université, Paris VIIe, France (FR. 130)

Financial Support:
The detail of financial support is given for each centre or station.

Field of Activity:
Agronomy (Techniques of cultivation, fertilization and systems of cropping on maize, groundnuts, rice, sorghum, yams, vigna) - Varietal improvement (maize, sorghum) - Forage plants - Sugar cane - Conservation of harvests.

Par. Org.: Secretariat d'Etat aux Affaires Etrangeres (France) Ministere du Developpement Rural et de la Coopération du Dahomey

DM. 021 — CENTRE IRAT DE COTONOU
BP. 422, Cotonou
Tel. Add.: IRATROP - COTONOU
Tel.: Cotonou 28-73

Staff: 1 scientist, 3 technicians - Language: French

Field of activity: see DM. 020

Attached to this centre are the following outstations, where the experimental work is carried out:

- OUTSTATION AT ANGAREDEBOU
 E. 03.00 - N. 11.19 - 240 m
 Climate: 1484 - Soils: LF
 Not irrigated crops: 4 Ha - (Financial support $15,200 - Bilateral)

- OUTSTATION AT SAVÉ
 E. 02.24 - N. 08.02 - 190 m
 Not irrigated crops: 5 Ha - (Financial support $15,200 - Bilateral)

- OUTSTATION AT BAGOU
 E. 02.44 - N. 10.49 - 300 m
 Climate: 1484 - Soils: GH-BG
 Not irrigated crops: 2 Ha - (Financial support $3,800 - Bilateral)

- OUTSTATION AT LOGOZOHÉ
 E. 02.05 - N. 07.52 - 220 m
 Climate: 1411 - Soils: GH-JE
 Not irrigated crops: 2 Ha - (Financial support $3,800 - Bilateral)

- OUTSTATION AT ABOMEY
 E. 02.03 - N. 07.10 - 164 m
 Climate: 1412 - Soils: ND-QL
 Not irrigated crops: 4 Ha - (Financial support $9,500 - Bilateral)

DM. 022 — SECTION DE RECHERCHES D'INA (IRAT)
Ina via N'Dali
BP. 155, Parakou
Tel.: Parakou 22-33

Location: E. 02.43 - N. 09.58 - 341 m
Climate: 1483 - Soils: LF
Staff: 1 scientist, 2 technicians - Language: French
Experimental fields:
Not irrigated crops: 30 Ha
Teaching and popularization:
Course intended for advisers in agriculture (1 month)
Publications:
Annual reports
Financial support: $45,600
Government of Dahomey ⅓ Bilateral ⅓

Field of activity: see DM. 020
Includes the OUTSTATION AT ODURA:
Climate: 1483 - Soils: GH-LG-WE
Not irrigated crops: 4 Ha

Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Institut de Recherches Agronomiques Tropicale des Cultures Vivrières (IRAT) - Agence au Dahomey (DM. 020)

DM. 023 — STATION DE RECHERCHES AGRONOMIQUES DE NIAOULI (IRAT)
Niaouli via Attogon
Tel. Add.: IRAT - ATTOGON
Tel.: Attogon 1

Location: E. 02.08 - N. 06.44 - 105 m
Climate: 1412 - Soils: ND

501
Soils: N.

IKPILE (Dept. of Soils: SECIEUR)

Experimental fields:

Teaching and popularization:

Library and documentation:

Publications:

Annual reports - Technical notes

Financial support:

Government of Dahomey ½
Bilateral ½

Field of activity: see DM. 020

Par. Org.: Ministère du Développement Rural et de la Co­opération du Dahomey

Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) Agence au Dahomey (DM. 020)

DM. 040 — DIRECTION RÉGIONALE IRECT AU DAHOMEY

BP. 715, Cotonou
Tel.: Cotonou 34-46

This Regional Administration represents, in Dahomey, the Institut du Coton et des Textiles exotiques (IRCT), 34 rue des Renaudas, Paris XVIIIe, France (FR. 150)

The research work is carried out by five sectors and sections each having one scientist at its head:

 - IRECT Sector of South Dahomey (DM. 042)
 - IRECT Sector of Central Dahomey (DM. 043)
 - IRECT Sector of North Dahomey (DM. 044)
 - Hessian Fibres Section (DM. 045)
 - Entomology Section (DM. 046)

Teaching and popularization:

The training of monitors and of extension officers is guaranteed at the IRCT Station at Sekou and in all the outstations.

Publications:

Report of the year's activities
Participation in "Coton et Fibres Tropicales," a review published by the IRCT (Paris)

Financial support:

The detail of the financial support is given for each sector and section.

Field of activity:

Research work on the production and the protection of plants used for textile fibres.

Par. Org.: Secrétariat d'État aux Affaires Etrangères Ministère du Développement Rural et de la Co­opération au Dahomey

DM. 042 — SECTEUR IRECT — SUD-DAHOMEY

IRCT Station at Sekou
(Dpt de l'Atlantique) Dahomey
BP. 715, Cotonou

Staff: 1 scientist, 3 technicians - Language: French

The research work is carried out at the following stations and outstations:

IRCT STATION AT SEKOU (ATLANTIQUE)

E. 002.13 - N. 06.38 - 82 m
Climate: 1135 - Soils: ND
Not irrigated crops: 7.80 Ha
Financial support: $73,400

OUTSTATION at AGONY - IKPILE (Dept. of Guémon)

E. 002.33 - N. 06.51 - 100 m
Climate: 1135 - Soils: ?

Not irrigated crops: 3.25 Ha
Financial support: $30,000

OUTSTATION AT APLAHOUE - BOZINKPE (Dept of Non)

E. 001.41 - N. 06.58 - 201 m
Climate: 1412 - Soils: ND
Not irrigated crops: 3.30 Ha
Financial support: $31,000
Total financial support: $134,400
Government of Dahomey ½
Bilateral ½

Par. Org.: Ministère du Développement Rural et de la Co­opération du Dahomey

Exec. Ag.: Direction Régionale IRECT au Dahomey (DM. 040)

DM. 043 — SECTEUR IRECT — CENTRE-DAHOMEY

BP. 144, Abomey

Staff: 1 scientist, 5 technicians - Language: French

The research work is carried out on the following outstations, located in the department of Zou:

BOHICON OUTSTATION

E. 002.22 - N. 07.14 - 120 m
Climate: 1412 - Soils: ND
Not irrigated crops: 2.1 Ha
Financial Support: $5,600

GOBE OUTSTATION

E. 002.28 - N. 08.00 - 190 m
Climate: 1411 - Soils: WE
Not irrigated crops: 12.20 Ha
Financial support: $33,500

COVE OUTSTATION

E. 002.02 - N. 07.13 - 200 m
Climate: 1412 - Soils: ND
Not irrigated crops: 4.5 Ha
Financial support: $12,000

AGOUA OUTSTATION

E. 001.57 - N. 08.16 - 240 m
Climate: 1411 - Soils: LG-LP
Not irrigated crops: 5.70 Ha
Financial support: $2,900

SAVALOU OUTSTATION

E. 001.55 - N. 07.45 - 170 m
Climate: 1411 - Soils: LG-LP
Not irrigated crops: 5.70 Ha
Financial support: $15,300
Total financial support: $69,300
Government of Dahomey 90%
Bilateral 10%

Par. Org.: Ministère du Développement Rural et de la Co­opération du Dahomey

Exec. Ag.: Direction Régionale IRECT au Dahomey (DM. 040)

DM. 044 — SECTEUR IRECT — NORD-DAHOMEY

BP. 172, Parakou

Staff: 1 scientist, 8 technicians - Language: French

The research work is carried out on the following outstations, located in the departments of Borgou and of Atakora:

ALAFIAROU OUTSTATION (Borgou)

E. 002.45 - N. 09.20 - 350 m
Climate: 1482 - Soils: LF
Not irrigated crops: 12 Ha
Financial support: $22,000

502
DM. 045 — SECTION FIBRES JUTIÈRES IRCT — DAHOMEY

IRCT Station at SEKOU (Dépt. de l’Atlantique - Dahomey)
BP. 715, Cotonou

Staff: 1 scientist, 3 technicians - Language: French

The research work is carried out in the following stations and outstations:

IRCT STATION AT SEKOU
E. 002.13 - N. 06.38 - 82 m
Climate: 1135 - Soils: ND
Equipment:
Centre for retting, washing and drying
Financial support: $10,150

LOKPARA OUTSTATION (Borgou)
E. 002.42 - N. 09.18 - 350 m
Climate: 1148 - Soils: LF
Equipment:
Centre for retting, washing and drying
Financial support: $13,520

MASSI OUTSTATION (Dept. of the Atlantic)
E. 002.15 - N. 06.00 - 22 m
Climate: ? - Soils: VP
Not irrigated crops: 4 Ha
Financial support: $33,800

Total financial support: $304,000

Financial support:
Government of Dahomey 22%
Bilateral 22%
Self-support 56%

Field of activity:
Oil palm: Genetics (selection)
Experimental work - Pedology - Phytopathology - Entomology - Physiology - Treatment (extraction of the oil)

Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO) Paris (FR. 160)

DM. 062 — STATION IRHO DE SEME-PODJI

Seme-Podji via Porto-Novo
Tel. Add.: INSTHUIL - SEME-PODJI

Location: E. 02.38 - N. 06.22 - 4 m
Climate: 1135 - Soils: ND
Staff: 1 scientist - Language: French

Experimental fields:
Not irrigated crops: 192 Ha - Irrigated crops: 50 Ha

Teaching and popularization:
Specialization course on the cultivation of the cacao-tree for leaders of agricultural work - Baccalauréat [= Matriculation] level (3 weeks) - Introductory course on the
c Cultivation of the cacao-tree for students from the centres for rural training - BEPC level (3 weeks) - Various refresher courses on special request (variable duration)

Library and documentation:
Special Reviews
Publications:
Annual reports of activities - Technical reports - Participation in "Oleagineux" published with the collaboration of the IRHO (Paris)
Financial support: $71,200
Government of Dahomey 42%
Bilateral 42%
Self-support 16%
Field of activity:
Cacao-tree: Genetics (selection) - Experimental work - Pedology - Ecology - Phytopathology - Entomology
Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Institut de Recherches pour les Huiles et Oleagineux (IRHO) Paris (FR. 160)

DM. 100 — SERVICE DES PÊCHES
BP. 383, Cotonou
Tel.: Cotonou 25-51
Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey

DM. 101 — LABORATOIRE DES PÊCHES
BP. 383, Cotonou
Tel.: Cotonou 25-51
Location: E. 02.20 - N. 06.20 - 0 m
Climate: 1135
Staff: 1 scientist, 4 technicians - Language: French
Financial support: $22,800
Government of Dahomey 100%
Field of activity:
Physical and biological oceanography - Technological studies on the fishes of the sea, lagoons and rivers - Systematic classification of the West African species of fishes.
Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Service des Pêches (DM. 100)

DM. 140 — MISSION IFAC AU DAHOMEY
BP. 89 Abomey
Tel.: Abomey 98
This mission is the representative in Dahomey of the Institut Français des Recherches Fruitières Outre-Mer (IFAC), 6 rue du Général Clergerie, Paris XVI, France (FR. 170)
Field of Activity:
Cultivation of fruit-trees (biochemistry, physiology, production, protection, entomology, phytopathology, improvement of varieties, technology).

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France)
Ministère du Développement Rural et de la Coopération du Dahomey

DM. 141 — STATION IFAC D'ALLAHE
BP. 89, Abomey
Tel.: 98, Abomey
Location: E. 02.17 - N. 07.08 - 110 m
Climate: 1412 - Soils: ND
Staff: 1 scientist, 2 technicians - Language: French (occ. English)
Experimental fields:
Not irrigated crops: 15 Ha - Irrigated crops: 5 Ha
Special Equipment:
Collection of cultivars of synsepalum, avocado trees, citrus trees
Teaching and popularization:
Practical fruit-tree cultivation (1 month) - Nursery techniques (1 month)
Library and documentation:
150 volumes - analytical documentation of the IFAC
Publications:
Participation in "Fruits" published by IFAC
Participation in "Développement Rural et Progrès" published by the Service de l'Agriculture
Financial support: $38,000
Government of Dahomey 1/10
Bilateral 9/10
Field of activity: see DM. 140
Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Institut Français des Recherches Fruitières Outre-Mer (IFAC) - Mission au Dahomey (DM. 140)

DM. 142 — STATION IFAC DE TOUE
BP. 29 Abomey
Tel.: Abomey 98
Location: E. 02.20 - N. 07.12 - 150 m
Climate: 1412 - Soils: ND
Staff: 1 scientist, 2 technicians - Language: French (Occ. English)
Experimental fields:
Not irrigated crops: 15 Ha - Irrigated crops: 5 Ha
Special Equipment:
Collection of cultivars (citrus trees, mango trees - guava trees)
Teaching and popularization:
Practical fruit-tree cultivation (1 month) - Nursery techniques (1 month)
Library and documentation:
150 volumes - analytical documentation of the IFAC
Publications:
Participation in "Fruits" published by IFAC
Participation in "Développement Rural et Progrès" published by the Service de l'Agriculture
Financial support: $38,000
Government of Dahomey 1/10
Bilateral 9/10
Field of activity: see DM. 140
Par. Org.: Ministère du Développement Rural et de la Coopération du Dahomey
Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC) - Mission au Dahomey (DM. 140)
GAMBIA (GA)

GA. 020 — DEPARTMENT OF AGRICULTURE (MINISTRY OF AGRICULTURE AND NATURAL RESOURCES)

Headquarters, Cape St. Mary
Tel.: Cape 620
Par. Org.: Ministry of Agriculture and Natural Resources of Gambia

GA. 024 — YUNDUM EXPERIMENTAL STATION

P.O. Box Bathurst
Tel. Add.: Agric., Yundum
Tel. Yundum 735
Location: W. 16.40 - N. 13.21 - 25.80 m
Climate: 1486 - Soils:
Staff: 4 scientists, 7 technicians - Language: English
Experimental fields:
Non-irrigated crops: 10 Ha - Irrigated Crops: 2 Ha
Specialized equipment:
A small collection mainly of groundnut, rice, sorghum and millet varieties.

Training facilities:
Pre-certificate level training in general agriculture (44 weeks)
Full two-years certificate training is expected to start in 1974
Refresher courses of varying duration for extension workers.

Library and Documentation:
About 100 volumes - 25 journals
Publications:
Annual reports
Financial support: $23,500
Government of the Gambia 100%
Field of activity:
Soil management (soil chemistry, erosion control, rotational trials, fertilizer trials) - Crop production (groundnuts, maize, sorghum, sesame, upland rice, cotton) - Crop protection - Animal husbandry (cattle) - Agricultural chemistry (groundnuts, lime processing).
Par. Org.: Ministry of Agriculture and Natural Resources (Gambia)
Exec. Ag.: Department of Agriculture

GHANA (GH)

GH. 020 — ANIMAL RESEARCH INSTITUTE OF GHANA

P.O. Box 20, Achimota
Tel. Add.: ANIMRES - ACHIMOTA
Tel.: 776-31 and 776-32
Location: W. 00.01 - N. 05.11 - 610 m
Climate: 1310
Staff: 10 scientists, 4 technicians - Language: English
Experimental fields:
Pastures: 85 Ha
Training facilities:
Junior technican's course: laboratory technology - animal health - parasitology - animal science - breeding and genetics - tropical grassland husbandry - introduction course in farm management (1 year)
Library and documentation:
1,500 books - Subject indexes
Publications:
Annual reports
Financial support: $363,000
Government of Gambia 100%
Field of activity:
Cocoa insect collection - Cocoa cultivar collection - Biochemical laboratory (ultra-centrifuge) - Computer facilities
Publications:
Field of activity:
Agronomy - Plant breeding - Entomology - Plant pathology - Soil science and chemistry - Plant physiology
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

GH. 060 — CROPS RESEARCH INSTITUTE OF GHANA

P.O. Box 3785, Kumasi
Tel. Add.: CROPSEARCH - KUMASI
Library and documentation:
1,600 books - 200 titles of periodicals - Author and Subject indexes - Sheaf catalogues - Reprographic equipment
Publications:
Crops Research Institute Annual Reports - Bulletins and Farming guides - Participation in "Ghana Journal of Agricultural Science " issued by the CSIR and the Faculties of Agriculture of the Universities
Financial support (for the Institute and all attached stations): $224,500
Government of Ghana 100%
Field of activity:
General chemistry - Organic chemistry - Biochemistry - Genetics - Plant physiology - Botany - Zoology - Ecology -
Soil management - Plant breeding (maize, rice, cassava, sorghum, millet, groundnut, tomatoes, garden eggs, pepper, okroes) - Plant introduction and exploration (local and exotic) - Special crop investigations (oil palm, tobacco, cotton) - Crop protection - Entomology (insect predators of maize, sorghum, millet, yam, kenaf) - Plant pathology (investigations on seed dressings, coconut investigations, disease survey) - Food storage (maize, yam, cassava, dried fish, grains, beans) - Farm management (rotation trials, high yield demonstration, testing performance of imported vegetable seeds) - Agricultural statistics.

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

GH. 061 — KWADASO AGRICULTURAL EXPERIMENTAL STATION

P.O. Box 3785, Kumasi
Tel. Add.: CROPSEARCH - KUMASI
Tel.: Kumasi 6221-2

Location: W. 01.41 - N. 06.41 - 265 m
Climate: 1131 - Soils: ?
Staff: 22 scientists, 11 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 60 Ha

The Station includes: Horticulture section - Entomology section - Plant breeding/Agronomy section - Plant pathology section - Agriculture statistics section - Plant physiology section.

Library and documentation, publications, financial support and field of activity: see GH. 060

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 062 — AIYINASI AGRICULTURAL EXPERIMENTAL STATION

P.O. Box 10, Aiyinasi, Nzima
Tel. Add.: CROPTECH - AIYINASI
Tel.: Aiyinasi 15

Location: W. 02.28 - N. 05.03 - 0 m
Climate: 1121 - Soils: ?
Staff: 2 scientists, 1 technician - Language: English

Experimental fields:
- Non-irrigated crops: 90 Ha

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana

GH. 063 — PLANT INTRODUCTION AND EXPLORATION SECTION BUNSO-BUSOSO

PPB: Bunso - Busoso
Tel. Add.: CROPTECH - BUNSO
Tel.: Bunso 2

Location: W. 00.28 - N. 06.17 - 225 m
Climate: 1131 - Soils: ?
Staff: 1 technician - Language: English

Experimental fields:
- Non-irrigated crops: 21 Ha

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 064 — NYANKPALA AGRICULTURAL EXPERIMENTAL STATION

P.O. Box 54, Nyankpala, via Tamale
Tel. Add.: CROPTECH - TAMALE
Tel.: Tamale 2411

Location: W. 00.58 - N. 09.25 - 280 m
Climate: 1420 - Soils: ?
Staff: 3 scientists, 3 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 24 Ha

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 065 — OHAWU AGRICULTURAL EXPERIMENTAL STATION

PPB, Ohawu
Tel. Add.: CROPTECH - OHAWU
Tel.: Abor 4

Location: E. 00.54 - N. 06.08 - 15 m
Climate: 1350 - Soils: NE
Staff: 1 scientist - Language: English

Experimental fields:
- Non-irrigated crops: 48 Ha - Irrigated crops: 5 Ha

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 066 — MANGA SUBSTATION

Manga

Location: W. 00.16 - N. 11.01
Climate: 1420 - Soils: ?

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 067 — KONG AGRICULTURAL IRRIGATION STATION

Kpung

Location: E. 00.04 - N. 06.08
Climate: 1134 - Soils: VP

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 068 — KUSI OIL PALM RESEARCH CENTRE

P.O. Box 74, Kade
Tel. Add.: CROPTECH - KADE

Location: W. 00.50 - N. 06.05 - 135 m
Climate: 1131 - Soils: ?
Staff: 4 scientists, 2 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 167 Ha

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

Exec. Ag.: Crops Research Institute of Ghana (GH. 060)
GH. 069 — POKOASE FOOD STORAGE SECTION

PMB, Pekoase
Tel. Add.: CROPTECH - POKOASE

Location: W. 00.16 - N. 05.40 - 50 m
Climate: 1310 - Soils: ?
Staff: 1 scientist, 2 technicians - Language: English
Experimental fields:
- Non-irrigated crops: 12 Ha
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 071 — ASUANSI STATION

P.O. Box Asuansi
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 072 — EJURA FIELD STATION

P.O. Box Ejura
Location: W. 01.20 - N. 07.25
Climate: 1481 - Soils: ?
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 073 — KETA SUBSTATION

P.O. Box Keta
Location: E. 01.00 - N. 06.00
Climate: 1350 - Soils: ?
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
Exec. Ag.: Crops Research Institute of Ghana (GH. 060)

GH. 080 — FOOD RESEARCH INSTITUTE

P.O. Box 20, Accra
Tel. Add.: FOODSEARCH - ACCRA
Tel.: Accra 773-30
Staff: 25 scientists, 36 technicians
Library and documentation:
3,000 volumes, 200 periodicals
Field of activity:
- Nutrition (food habits) - Food technology (analysis, preservation, processing and storage of fish, meat, cereals, fruits and vegetables, refrigeration, packaging) - Food microbiology - Food marketing - Food chemistry
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

GH. 100 — FOREST PRODUCTS RESEARCH INSTITUTE

P.O. Box 63, Kumasi
Tel. Add.: FORSEARCH - Kumasi
Tel.: Kumasi 3201 ext 400
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

GH. 160 — SOIL RESEARCH INSTITUTE OF GHANA

Academy post-office, Kwadaso-Kumasi
Tel. Add.: CHIEFSOIL - KUMASI
Tel.: Kumasi 2353 and 2354
Location: W. 01.40 - N. 06.40 - 835 m
Climate: 1131
Staff: 14 scientists, 90 technicians - Language: English
Specialized equipment:
- Soil Survey, Genesis and Classification Division: Spectrophotometers - mapping
- Soil Chemistry and Mineralogy and Soil Fertility Divisions: Radiation monitor (Burndept) - Radiation survey meter (Type EMB 3) - Electronic - Atomic absorption spectrophotometer - Spectronic 20 - Philips X-ray set - "Spekker" - Cambridge Bench pH meter - Electric ovens - Electric furnace - Pressure membrane apparatus - Soils Physics Division: Radiation survey meter (Burndept) - Soil Survey, Genesis and Classification Division: Spectrophotometers - Electrical equipment:
- Pedology - Pedology (soil analysis - classification - genesis - mapping) - Soil management (fertility - fertilizers)
Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)

GH. 210 — DIVISION OF VETERINARY SERVICES (MINISTRY OF AGRICULTURE)

P.O. Box M 161, Accra
Field of activity:
Animal health. This division supervises work in two laboratories, in Accra (GH. 211) and Tamale (GH. 212)
Par. Org.: Ministry of Agriculture of Ghana

GH. 211 — ACCRA VETERINARY LABORATORY

P.O. Box M 161, Accra
Tel. Add.: PATHVET - ACCRA
Tel.: 758-23
Location: W. 00.10 - N. 05.36 - 0 m
Climate: 1310
Staff: 1 scientist, 11 technicians - Language: English
Specialized equipment:
- Fluorescent antibody microscope
Training facilities:
- Laboratory assistants and lab technicians (3 years)
Library and documentation:
- 150 volumes - 58 veterinary and agriculture periodicals
Publications:
- Occasional papers in the "GHANA Journal of Science"
Field of activity:
- Diagnosis of livestock diseases (poultry in particular)
Par. Org.: Ministry of Agriculture (Ghana)
Exec. Ag.: Division of Veterinary Services (GH. 210)
GH. 212 — TAMALE VETERINARY LABORATORY

P.O. Box 97, Tamale
Tel. Add.: PATHVET - TAMALE
Tel.: 071-2832

Location: W. 00.52 - N. 09.42 - 180 m
Climate: 1420
Staff: 2 scientists, 16 technicians - Language: English
Specialized equipment:
Vaccine freeze drying machines
Training facilities:
Laboratory assistants and technicians (3 years)
Library and documentation:
100 volumes - 40 veterinary and agricult. periodicals.
Publications:
Occasional papers in the "GHANA Journal of Science"
Field of activity:
Diagnosis of livestock disease - care of livestock
Par. Org.: Ministry of Agriculture (Ghana)
Exec. Ag.: Division of Veterinary Services (GH. 210)

GH. 320 — FACULTY OF AGRICULTURE (UNIVERSITY OF GHANA)

P.O. Box 68, Legon, Accra
Tel. Add.: UNIVERSITY LEGON
Tel.: Accra 753-81

Training facilities:
B.Sc. (Hons) Agric. Animal Science. (100 weeks)
M.Sc. Agric. Animal Science. (62 weeks)
National Diploma in Agric. (50 weeks)
National Diploma in Animal Health (50 weeks)

Library and documentation:
Balme Library (University) 260,000 volumes
Faculty Library 5,000 volumes

Publications:
Par. Org.: Ministry of Education - University of Ghana

GH. 322 — DEPARTMENT OF ANIMAL SCIENCE (FACULTY OF AGRICULTURE)

P.O. Box 68 Legon, Accra
Location: W. 00.10 - N. 05.36 - 0 m
Climate: 1310
Staff: 10 scientists, 5 technicians - Language: English
Specialized equipment:
Freeze-Dryer

Publications:

Financial support: $54,290
Government of Ghana 100%

Field of activity:
Cross breeding - Management of poultry - Nutritional requirements - Nutrition - Foot, mouth and skin diseases - Grassland and forage production and storage.

Par. Org.: University of Ghana
Exec. Ag.: Faculty of Agriculture (GH. 320)

GH. 324 — AGRICULTURAL RESEARCH STATION Kpong

P.O. Box 9, Kpong
Tel. Add.: UNIVERSITY KPONG
Tel.: Kpong 3

Location: E. 00.04 - N. 06.07 - 24 m
Climate: 1134 - Soils: VP
Staff: 4 scientists, 6 technicians - Language: English (second French)

Experimental fields:
Irrigated crops: 80 Ha - Pastures: 60 Ha - Forest: 24 Ha
Specialized equipment:
Sprinkler irrigation (and gravity irrigation), tractors and implements, rice combine-harvester, rice mill, experimental cotton gin.

Training facilities:
Training in irrigation and mechanized agriculture is planned to start in 1973

Library and documentation:
Scientific Journals

Publications:

Financial support: $108,000
Government of Ghana 100%

Field of activity:
Soil management - Crop production (rice, sugar cane, cotton) - Crop rotation - Fertilizer - Irrigation - Variety trials - Animal health - Grazing trials - Pasture lands

Par. Org.: Ministry of Education, University of Ghana
Exec. Ag.: Faculty of Agriculture (GH. 320)

GH. 326 — AGRICULTURAL RESEARCH STATION NUNGU

P.O. Box 38, Legon, Accra
Location: W. 00.05 - N. 05.40 - 300 m
Climate: 1310 - Soils: ?
Staff: 1 scientist, 1 technician - Language: English

Experimental fields:
Pastures: 1,600 Ha - Ponds for pisciculture: 10 Ha

Training facilities:
Livestock management: training of potential farmers through doing the actual work (1-6 months)

Publications:

Financial support: $160,000
Government of Ghana 80%
Private 20%

Field of activity:
Animal production and animal products (breeding and cross-breeding) - Nutrition - Animal health (trypanosomiasis, haematological changes, postmortem findings) - Agrostology.

Par. Org.: Ministry of Education - University of Ghana
Exec. Ag.: Faculty of Agriculture (GH. 320)

GH. 340 — FACULTY OF SCIENCE (UNIVERSITY OF GHANA)

P.O. Box 71, Legon, Accra
Par. Org.: Ministry of Education, University of Ghana
GH. 342 — DEPARTMENT OF BOTANY (FACULTY OF SCIENCE)

P.O. Box 71, Legon, Accra

Field of activity:
Ecology (marine algae, aquatic weeds, rain forest) - Genetics - Biometry - Taxonomy (algae, flowering plants) - Plant physiology (growth and flowering of forest trees, yam metabolism, drought resistance, fungal space germination)

Par. Org.: Ministry of Education, University of Ghana
Exec. Ag.: Faculty of Science (GH. 340)

GH. 343 — DEPARTMENT OF ZOOLOGY (FACULTY OF SCIENCE)

P.O. Box 71, Legon, Accra

Field of activity:
Taxonomy - Genetics - Neurophysiology - Helminthology - Entomology - Herpetology - Parasitology - Marine and freshwater biology - Ecology (Sub-littoral, forest) - Animal behaviour - Ethology - Animal populations

Par. Org.: Ministry of Education, University of Ghana
Exec. Ag.: Faculty of Science (GH. 340)

GH. 350 — VOLTA BASIN RESEARCH PROJECT

University of Ghana
Legon, Accra

Staff: 6 scientists, 11 technicians - Language: English
Library and documentation:
Special collection in the Balme Library (University of Ghana)

Publications:
Financial support: $57,720
Government of Ghana 100 %

Field of activity:
Animal ecology (insects, fish) - Plant ecology - Hydrobiology (physicochemical analysis of water, phytoplankton and zooplankton enumeration, fish population, food of fishes, effects of herbicides and molluscicides on invertebrate fauna)

Includes:
Biology project: Depts of Botany and Zoology, University of Ghana, Volta lake research project, Akosombo
Draw-down area agricultural project: Faculty of Agriculture, Legon
Sociology project: Dept. of Sociology, Legon

Par. Org.: University of Ghana

GH. 410 — BUILDING AND ROAD RESEARCH INSTITUTE

University of Science and Technology
University P.O. Box 40, Kumasi

GH. 411 — TERMITE DIVISION

University P.O. Box 40, Kumasi

Par. Org.: Ministry of Education, University of Science and Technology
Exec. Ag.: Building and Road Research Institute (GH. 410)

GH. 831 — RADIOISOTOPE LABORATORY OF THE SOIL RESEARCH INSTITUTE

Academy Post Office, Kwadaso, Kumasi

Location: W. 01.40 - N. 06.40 - 835 m
Staff: 2 scientists, 7 technicians - Language: English
Financial support: $7,500
Government of Ghana 65%
Bilateral 35%

Field of activity:
Use of isotopes in agricultural research

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
International Atomic Energy Agency

Exec. Ag.: Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, Vienna (UN. 118)
Soil Research Institute of Ghana (GH. 160)

GH. 832 — RADIOISOTOPE LABORATORY OF THE COCOA RESEARCH INSTITUTE OF GHANA

P.O. Box 8, Tafo, Akim

Location: W. 00.03 - N. 06.00 - 200 m
Staff: 3 scientists, 6 technicians - Language: English
Financial support: $ 6,000
Government of Ghana 60%
Bilateral 40%

Field of activity:
Use of isotopes in agricultural research

Par. Org.: Council for Scientific and Industrial Research - CSIR (Ghana)
International Atomic Energy Agency

Exec. Ag.: Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, Vienna (UN. 118)
Cocoa Research Institute of Ghana (GH. 040)

IVORY COAST (IV)
(CÔTE-D'IVOIRE)

IV. 020 — AGENCE IRAT EN CÔTE-D'IVOIRE
BP. 635, Bouaké
Tel. Add.: IRATROP - BOUAKE

This body is the representative in the Ivory Coast of the Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT), 110 rue de l'Université, Paris VIIe, France (FR. 130)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France)
Ministère de la Recherche Scientifique de Côte-d'Ivoire

509
IV. 021 — STATION IRAT DE BOUAKE

BP. 635, Bouaké
Tel. Add.: IRATROP - BOUAKE
Tel.: Bouaké 21-69

Location: W. 05.05 - N. 07.40 - 365 m
Climate: 1411 - Soils: AP-AF-BF-GH-FR
Staff: 13 scientists, 5 technicians - Language: French
Experimental fields:
Not irrigated crops: 30 Ha - Irrigated crops: 10 Ha
Special Equipment:
- Range of apparatus for auto-analysis - spectrophotometer
- 2 neutron humidimeters
Library and documentation:
1,760 volumes or brochures - 120 reviews
Publications:
Participation in "Agronomic Tropicale" published by the IRAT (Paris)
Financial support: $557,000
Government of the Ivory Coast 46%
Bilateral 46%
Self-support 8%
Field of activity:
Pedology - Plant improvement (rice, maize, yams) - Techniques for cultivation (chemical weed control) - Irrigation
Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence en Côte-d’Ivoire (IV. 020)

IV. 022 — STATION IRAT DE GAGNOA

BP. 602, Gagnoa

Location: W. 06.55 - N. 06.05 - 210 m
Climate: 1134 - Soils: BF
Staff: 1 technician - Language: French
Experimental fields:
Not irrigated crops: 3 Ha - Irrigated crops: 5 Ha
Financial support: $66,900
Government of the Ivory Coast 47.5%
Bilateral 47.5%
Self-support 5%
Field of activity:
Pedology - Cultivation techniques (chemical weed control)
Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence en Côte-d’Ivoire (IV. 020)

IV. 023 — STATION IRAT DE MAN

BP. 440, Man

Location: W. 07.20 - N. 07.25 - 320 m
Climate: 1132 - Soils: ?
Staff: 1 technician - Language: French
Experimental fields:
Not irrigated crops: 7 Ha - Irrigated crops: 0.5 Ha
Financial support: $37,000
Government of the Ivory Coast 47.5%
Bilateral 47.5%
Self-support 5%
Field of activity:
Cultivation techniques (chemical weed control)
Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)

IV. 024 — FERME DES CULTURES IRRIGUÉES DE TOMBORO (IRAT)

BP. 12, Yamoussoukro

Location: W. 05.30 - N. 06.56 - 210 m
Climate: 1412 - Soils: ?
Staff: 1 scientist, 2 technicians - Language: French
Experimental fields:
Not irrigated crops: 8 Ha - Irrigated crops: 22 Ha
Special Equipment:
- 2 neutron humidimeters
Financial support: $127,400
Government of the Ivory Coast 97.5%
Self-support 2.5%
Field of activity:
Irrigation - Pedology - Rice cultivation
Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence en Côte-d’Ivoire (IV. 020)

IV. 025 — STATION IRAT DE FERKÉSSÉDOUGOU

BP. 121, Ferkessedougou

Location: W. 05.15 - N. 09.30 - 320 m
Climate: 1483 - Soils: ?
Staff: 1 technician - Language: French
Experimental fields:
Not irrigated crops: 10 Ha
Irrigated crops: 5 Ha
Financial support: $68,400
Government of the Ivory Coast 43.5%
Bilateral 43.5%
Self-support 13%
Field of activity:
Pedology - Cultivation techniques (chemical weed control)
Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence en Côte-d’Ivoire (IV. 020)

IV. 040 — CENTRE CTFT EN CÔTE-D’IVOIRE

BP. 8033, Abidjan
Tel. Add.: CETEFO - ABIDJAN
Tel.: 34-98-58

This body is the representative in the Ivory Coast of the Centre Technique Forestier Tropical (CTFT), Avenue de la Belle Gabrielle 93, Nogent-sur-Marne, France (FR. 110)

The research work is carried out by the Divisions of Technology, Phytopathology and Forest Improvement at Abidjan (IV. 041) and also by the Silviculture Stations at Bouaké (IV. 042) and at San Pedro (IV. 043) and the Pisciculture station at Bouaké (IV. 044)
Par. Org.: Secrétariat d'Etat aux Affaires Étrangères (France)
Ministère de la Recherche Scientifique de Côte-d’Ivoire
IV. 041 — DIVISIONS CTFT D’ABIDJAN

BP 8033, Abidjan
Tel. Add.: CETEFO - ABIDJAN
Tel.: 34-98-58

Location: W. 04.00 - N. 05.20 - 50 m
Climate: 1122 - Soils: QF
Staff: 4 scientists, 1 technician - Language: French
Experimental field
Forest 100 Ha
Library and documentation:
3,000 volumes - Oxford card system of classification
Publications:
Participation in “Bois et Forêts des Tropiques” published by the CTFT (Paris)
Financial support: $114,000
Government of the Ivory Coast 50%
Bilateral 50%
Field of activity:
Three divisions: Technology - Phytopathology - Forest Improvement
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre en Côte-d'Ivoire (IV. 040)

IV. 042 — STATION SYLVICOLE DE BOUAKE (CTFT)

BP. 695, Bouaké
Tel. Add.: CETEFO - BOUAKE
Tel.: 63-21-70

Location: W. 05.05 - 07.50 - 290 m
Climate: 1411 - Soils: AP
Staff: 1 scientist, 2 technicians - Language: French
Experimental fields:
Forest 300 Ha
Library and documentation:
300 volumes
Financial support: $64,600
Government of the Ivory Coast 50%
Bilateral 50%
Field of activity:
Silviculture - Ecology - Soil conservation
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre en Côte-d'Ivoire (IV. 040)

IV. 043 — STATION SYLVICOLE DE SAN PEDRO

BP. 326, San Pedro
Tel.: 72

Location: W. 06.47 - N. 04.45 - 40 m
Climate: 1122 - Soils: AF
Staff: 1 technician - Language: French
Experimental fields:
Forest: 90 Ha
Financial support: $38,000
Government of the Ivory Coast 100%
Field of activity:
Silviculture in dense forest
Par. Org: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre en Côte-d'Ivoire (IV. 040)

IV. 044 — STATION PISCICOLE DE BOUAKE

BP. 621, Bouaké
Tel. Add.: CETEFO - BOUAKE
Tel.: 63-21-70

Location: W. 05.05 - N. 07.50 - 290 m
Climate: 1411 - Soils: AP
Staff: 2 scientists, 1 technician - Language: French
Ponds for Pisciculture: 3 Ha
Teaching and popularization:
The training ofInspectors of Fisheries and Pisciculture
(Level: end of secondary studies) - 1 year
Library and documentation:
100 volumes
Financial support: $60,800
Government of the Ivory Coast 50%
Bilateral 50%
Field of activity:
Hydrobiology - Fishing - Pisciculture
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre en Côte-d'Ivoire (IV. 040)

IV. 061 — STATION IRCT DE BOUAKE

BP. 604, Bouaké
Tel. Add.: IRCTE - BOUAKE
Tel.: 63-20-44, 63-20-45

Location: W. 05.02 - N. 07.41 - 338 m
Climate: 1411 - Soils: AF-AP-FR-RD
Staff: 10 scientists - Language: French
Experimental fields:
Not irrigated crops: 58 Ha - Pastures: 64 Ha
Irrigated crops: 1 Ha - Forest: 25 Ha
Special Equipment:
Installation for cotton picking - Laboratory of fibre technology - Microfermentator - Ultracentrifuge - Freezedryer - Laboratory of cytogenetics - Insectarium
Teaching and popularization:
Training of probationers and of promoters
Library and documentation:
1,500 volumes - 40 periodicals
Publications:
Annual reports - Participation in “Coton et Fibres Tropicales” published by the IRCT (Paris)
Financial support: $602,000
Government of the Ivory Coast 2/3
Bilateral 1/3
Field of activity:
Fundamental oriented research and research applied to cotton and to jute-like fibres in the following fields:
Genetics - Cytogenetics - Varietal improvement - Phytochemistry - Phytopathology - Entomology - Treatment and technology of fibres
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut de Recherche du Coton et des Textiles Exotiques (IRCT) Paris (FR. 150)

IV. 070 — REPRÉSENTATION PERMANENTE IRHO EN CÔTE-D’IVOIRE

BP. 1001, Abidjan
Tel. Add.: INSTHUUL - ABIDJAN
Tel.: Abidjan 269-85
STATION IRHO

IV. 071 — STATION IRHO DE LA MÊME

BP. 13 - Bingerville
Tel. Add.: INSTHUIL - BINGERVILLE
Tel.: 22-86-61 (Abidjan network)

Location: W. 03.05 - N. 05.07 - 23 m
Climate: 1122 - Soils: FX
Staff: 10 scientists, 5 technicians - Language: French
Experimental fields:
- Not irrigated crops: 840 Ha - Irrigated crops: 3 Ha
Special Equipment:
- Geiger counter, Entomotion (3 cells of 30 cubic metres)
- collection of Elaeis
Teaching and popularization:
- Training of plantation assistants (4 months), of leaders of village sectors (4 months), of group leaders (2 months)
- Refresher courses, intended for technicians and for research workers and of variable duration, in the different fields of activity of the station.
Library and documentation:
- 350 works - 45 reviews and periodicals
Publications:
- Participation in "OLEAGINEUX, Revue Internationale des Corps Gras" published with the collaboration of the IRHO - Participation in the annual reports of the IRHO.
Financial support: $1,102,000
Government of the Ivory Coast 4%
Bilateral 4%
Private 16%
Self-Support 76%
Field of activity:
- Genetics - Plant Physiology - Plant Biology (botany, taxonomy) - Pedology - Production and protection of yields (oil palm) - Application of radioactive tracers in agriculture - Extraction (treatment of the product).

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO)
Représentation permanente en Côte-d'Ivoire (IV. 070)

IV. 072 — STATION IRHO DE PORT-BOUET

BP. 7013, Abidjan - Aéroport
Tel. Add.: INSTHUIL - Port-Bouet
Tel.: 22-8-67 (Abidjan network)

Location: W. 03.03 - N. 05.07 - 20 m
Climate: 1122 - Soils: RD-QF
Staff: 5 scientists - Language: French (occ. English)
Experimental fields:
- Not irrigated crops: 541 Ha - Irrigated crops: 150 Ha
Special Equipment:
- Collection of 45 varieties of coconut palm
Teaching and popularization:
- Courses of variable duration intended for technicians and research workers
Library and documentation:
- 100 volumes
Publications:
- Participation in "OLEAGINEUX, Revue Internationale des Corps Gras" published with the collaboration of the IRHO - Participation in the annual reports of the IRHO.
Financial support: $1,416,548
Government of the Ivory Coast 25%
Bilateral 25%
Private 9%
Self-Support 41%
Field of activity:
- Specialized in the study of the coconut: Genetics - Plant Biology (botany, taxonomy) - Applied Agronomy - Production of yields - Protection of the harvests - Entomology of the coconut palm

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO)
Représentation permanente en Côte-d'Ivoire (IV. 070)

IV. 073 — PLANTATION EXPÉRIMENTALE IRHO DE GRAND-DREWİN

BP. 11, Sassandra
Tel. Add.: INSTHUIL-SASSANDRA
Tel.: 22-8-67 (Abidjan network)

Location: W. 06.09 - N. 05.00 - 20 m
Climate: 1122 - Soils: FX
Staff: 1 scientist, 2 technicians - Language: French
Experimental fields:
- Not irrigated crops: 70 Ha
Publications:
- Participation in "OLEAGINEUX, Revue Internationale des Corps Gras," published with the collaboration of the IRHO - Participation in the annual reports of the IRHO.
Financial support: $228,000
Self-support 100%
Field of activity:
- Studies on the oil palm tree: applied Agronomy - Production and protection of the harvests (treatment of the product).

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO)
Représentation permanente en Côte-d'Ivoire (IV. 070)

IV. 074 — PLANTATION EXPÉRIMENTALE IRHO ROBERT MICHAUX

BP. 8, Dabou
Tel. Add.: INSTHUIL-DABOU
Tel.: 30-30-34

Location: W. 04.20 - N. 05.20 - 5 to 20 m
Climate: 1122 - Soils: FX
Staff: 3 scientists, 5 technicians - Language: French (occ. English)
Experimental fields:
- Not irrigated crops: 600 Ha
Publications:
- Participation in "OLEAGINEUX, Revue Internationale des Corps Gras," published with the collaboration of the IRHO - Participation in the annual reports of the IRHO.
Financial support: $760,000
Self-support 100%
Field of activity:
- Study of the oil palm tree: applied Agronomy - Pro-
IV. 091 — STATION IRCA DE BIMBRESSO

BP. 1536, Abidjan
Tel. Add.: NAFRIC - ABIDJAN
Tel.: 22-61-54

Location: W. 04.08 - N. 05.18 - 20 m
Climate: 1122 - Soil: ?
Staff: 10 scientists, 2 technicians - Language: French (occ. English)

Experimental fields:
Not irrigated crops: 551 Ha

Special Equipment:
Beckman LSO Scinitillometer - Ultracentrifuge (L3-50 Beckman) - Micro-wave Autoclave - Greenhouse for multiplication

Teaching and popularization:
Training of specialized workers (3 weeks) - Training of local technicians (2 months) - Student engineers in course of specialization (3 - 6 months)

Library and documentation:
300 volumes - special card-indexes in agronomy, biochemistry, technology - Reproduction of documents by photo-copiers

Publications:
Annual reports - Participation in the "Revue générale des Caoutchoucs et Plastiques" published by the IRCA (Paris)

Financial support: $650,000
Government of the Ivory Coast 42.5%
Bilateral 42.5%
Self-support 15%

Field of activity:
Rubber: Plant biochemistry and physiology (formation of latex and of rubber, stability and flow of the latex) - Ecology - Soil science (fertility, mineral nutrition) - Production of yields (techniques of cultivation, manuring, vegetative improvement, maintenance, exploitation, tapping and collection) - Protection of yields - Chemistry and technology of latex and of rubber (chemical, physical and technological properties, specifications) - Processing of crude rubber.

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut de Recherches sur le Caoutchouc en Afrique (IRCA)
Paris (FR. 140).

IV. 110 — SECTION IFAC DE CÔTE-D'IVOIRE

BP. 1740, Abidjan
Tel.: Abidjan 32-13-09

This section is the representative in the Ivory Coast of the Institut Français des Recherches Frutières Outre-Mer (IFAC), 6 rue du Général Clergerie, Paris XVIe, France (FR. 170)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France) Ministère de la Recherche Scientifique (Côte-d'Ivoire)

IV. 111 — STATION IFAC D'AZAGUIÉ

BP. 1740, Abidjan
Tel.: Azaguïé 4

Location: W. 04.00 - N. 05.40 - 120 m
Climate: 1122 - Soil: AO-BF
Staff: 5 scientists, 1 technician - Language: French (Occ. English - German - Spanish)

Experimental fields:
Not irrigated crops: 55 Ha - Irrigated crops: 25 Ha

Special Equipment:
Collection of banana-trees - Collection of fruit trees - Laboratory of Pedology

Teaching and popularization:
Training and specialization in the growing of fruit trees for agronomic engineers, agricultural technicians and specialized and executive staff (1 to 6 months)

Library and documentation:
200 volumes

Publications:
Bulletin d’Assistance Scientifique, Technique et Economique (monthly) - Annual reports - Participation in "FRUITS" published by the IFAC (Paris)

Financial support: $456,000
Government of the Ivory Coast 42.5%
Bilateral 42.5%
Self-support 15%

Field of activity:
Banana trees and fruit tree (citrus, avocado, mango, etc.) - Applied Agronomy - Phytopathology - Entomology - Haematology - Physiology - Pedology

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut Français de Recherches Fruitières Outre-Mer (IFAC)
Section de Côte-d'Ivoire (IV. 110)

IV. 112 — STATION IFAC D’ANGUÉDÉDOU

BP. 1740, Abidjan
Tel.: Abidjan 32-42-91

Location: W. 04.15 - N. 05.35 - 60 m
Climate: 1122 - Soil: FX
Staff: 6 scientists, 1 technician - Language: French (occ. English - German - Spanish)

Experimental fields:
Not irrigated crops: 45 Ha

Special Equipment:
Collection of pineapples - Experimental cold room - Laboratory of Physiology - Laboratory of Phytopathology - Laboratory of Entomatology and Nematology - Insectarium

Teaching and popularization:
Training and specialization in cultivation of pineapples for agronomic engineers, agricultural technicians and specialized and executive staff (1 to 6 months)

Library and documentation:
300 volumes

Publications:
Bulletin d’Assistance Scientifique, Technique et Economique (monthly) - Annual reports - Participation in "FRUITS" published by the IFAC (Paris)

Financial support: $228,000
Self-support 100%

Field of activity:
Pineapples: Agronomy - Entomology - Phytopathology - Physiology

Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
IV. 130 — CENTRE DE RECHERCHES IFCC EN CÔTE-D’IVOIRE

BP. 1827, Abidjan
Tel.: Abidjan 530-04

This body is the representative in the Ivory Coast of the Institut Français du Café, du Cacao et autres plantes stimulantes (IFCC), 34 rue des Renaudes, Paris XVIIème, France (FR. 180)

Par. Org.: Secrétariat d’État aux Affaires Etrangères (France) Ministère de la Recherche Scientifique (Côte-d’Ivoire)

III. 133 — BASE DE MULTIPLICATION ET DE VULGARISATION IFCC DE SAN PEDRO

BP. 1287, Abidjan
Location: W. 06.40 - N. 04.50 - 50 m
Climate: 1121 - Soils: AF
Staff: 1 scientist - Language: French
Experimental fields: Not irrigated crops: 17 Ha
Publications:
- Annual reports - Participation in “Café, Cacao, Thé” published by the IFCC (Paris)
- Financial support: $100,000
- Government of the Ivory Coast 100%
- Field of activity:
 - Coffee, cacao and stimulating plants: Genetics and Agronomy
- Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)

IV. 134 — BASE DE MULTIPLICATION ET DE VULGARISATION IFCC DE ZAGNÉ

BP. 1827, Abidjan
Location: W. 07.27 - N. 06.15 - 200 m
Climate: 1134 - Soils: AF-BF
Staff: 2 scientists, 1 technician - Language: French
Experimental fields: Not irrigated crops: 19 Ha
Publications:
- Annual reports - Participation in “Café, Cacao, Thé” published by the IFCC (Paris)
- Financial support: $83,000
- Government of the Ivory Coast 100%
- Field of activity:
 - Coffee, cacao and stimulating plants: Genetics - Agronomy
- Par. Org.: Ministère de la Recherche Scientifique (Côte-d’Ivoire)

IV. 135 — ESSAIS IFCC DE Tombokro

BP. 1827, Abidjan
Tel.: Abidjan 30-30-04
Location: W. 05.30 - N. 06.55 - 150 m
Climate: 1411 - Soils: SE
Staff: 1 scientist, Language: French
Experimental fields: Not irrigated crops: 2 Ha
Publications:
- Annual reports - Participation in “Café, Cacao, Thé” published by the IFCC (Paris)
Financial support: $38,000
Government of the Ivory Coast 100%
Field of activity:
Agronomy of the cacao-tree and of the coffee-shrub (irrigation)
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut Français du Café, due Cacao et autres plantes stimulantes (IFCC) - Centre de Recherches en Côte-d'Ivoire (IV. 130)

IV. 136 — STATION RÉGIONALE IFCC D'ABENGOUROU
BP. 147, Abengourou
Tel.: 51-30-98
Location: W. 03.28 - N. 06.47 - 200 m
Climate: 1134 - Soils: AF
Staff: 1 scientist, 1 technician - Language: French
Experimental fields:
Not irrigated crops: 71 Ha
Publications:
Annual reports - Participation in "Café, Cacao, Thé" published by the IFCC (Paris)
Financial support: $86,000
Government of the Ivory Coast ½
Bilateral ½
Filed of activity:
Coffee, cacao and other stimulating plants: Genetics - Agronomy
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut Français du Café, du Cacao et autres plantes stimulantes (IFCC) - Centre de Recherches en Côte-d'Ivoire (IV. 130)

IV. 161 — CENTRE DE RECHERCHES ZOOTÉCHNIQUES DE MINANKRO-BOUKÉ
BP. 1152, Bouaké
Location: W. 05.00 - N. 07.60 - 450 m
Climate: 1411 - Soils: ?
Staff: 5 scientists, 3 technicians - Language: French (occ. English)
Experimental fields:
Not irrigated crops: 40 Ha - Irrigated crops: 15 Ha - Pastures: 360 Ha
Herds of N'Dama × Jersey cattle, Jersey, ½ blood Jersey × N'Dama, 3/4 blood Jersey × N'Dama, 5/8 blood Jersey × N'Dama, 3/4 blood Jersey × N'Dama, Baoulais cattle, Nellore and Busera zebu cattle.
Special Equipment:
Live collections of tropical forage plants (550 introductions)
Teaching and popularization:
"Zootechny" course intended for works engineers and for doctors of veterinary science (2 to 4 months) - Course on "improvement of plants" intended for works engineers and for doctors of veterinary science (2 to 4 months) and for students and monitors (2 weeks)
Library and documentation:
400 volumes
Publications:
Annual reports - Reports for restricted publication - Participation in the Review of the IEMVT
Field of activity:
Cultivation of forage crops - Use of natural pastures - Production of animals and animal products (bovine, porcine, poultry).
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)
Exec. Ag.: Institut d'Élevage et de Médecine Vétérinaire des Pays Tropicaux (IEMVT) (FR. 120)

IV. 258 — INSTITUT POUR LA TECHNOLOGIE ET L'INDUSTRIALISATION DES PRODUITS AGRICOLES TROPICAUX (ITIPAT)
BP. 8881, Abidjan
Tel.: 31-13-14 and 31-12-78
Location: W. 04.00 - N. 05.20 - 0 m
Climate: 1122
Staff: 7 scientists, 7 technicians - Language: French (occ. English)
Special Equipment:
Biscuit manufacturing line - fruit juices line - drying line - extraction line - distillation line - mixing line - concentrator line - fermentation line - cooking line - Testing laboratory for analysis and microbiology
Teaching and popularization:
Course of perfection for technicians: analyses, technology, documentary practice (4 months)
Library and documentation:
600 works - 6,000 photocopies and reprints - 40 subscriptions - 18,000 reference slips classified on the Selecte system
Field of activity:
Food technology: Treatment of the coconut, extraction and concentration of fruit juices, industrialization of starches, improvement of the quality of cacao shells, irradiation of foodstuffs, conservation by dehydration
Par. Org.: Ministère de la Recherche Scientifique (Côte-d'Ivoire)

IV. 300 — CENTRE ORSTOM D'ADIPOPODÔMÉ
BP. 20, Abidjan
Tel.: 22-84-45, 37-44-45 and 37-41-70
Location: W. 04.07 - N. 05.20 - 40 m
Climate: 1122 - Soils: QF-FX
Staff: 61 scientists, 25 technicians - Language: French (occ. English)
Experimental fields:
Not irrigated crops: 38 Ha - Pastures 14 Ha - Forest (ecological reserve) 100 Ha
Special Equipment:
X-ray diffractometer
Eight stations for measurement of erosion and of vertical and oblique drainage
Rain simulator (under construction)
Spectrometer for liquid scintillation
Neutron humidimeters
Gamma densimeters
Electrophoresis apparatus
Apparatus for microclimatic measurements
Laboratory for rhizology
Herbarium of the Ivory Coast
Attack room for study of pollens
Apparatus for measurement of respiratory intensity of nematode cysts
Teaching and popularization:
Possibility of training or of professional perfection in all the laboratories of the Centre. Each year, courses (15 days to 12 months) are organized at the request of ORSTOM of the Ivory Coast or of the neighbour States.
Level: students higher teaching, engineer starting (training), technician, assistant. Moreover, each year some students of ORSTOM complete their second year of study.
Liberia (LI)

Framework of Agricultural Research in Liberia

In Liberia Agricultural Research is the responsibility of the Ministry of Agriculture. The Minister of Agriculture is assisted by one Deputy Minister and three Assistant Ministers; one of whom is directly dealing with research. The Director of Research, who is also concurrently the Director of the Central Agricultural Experiment Station, reports to the Assistant Minister of Agricultural for Technical Services.

The William R. Tolbert, Jr. College of Agriculture and Forestry is controlled by an autonomous body, the University of Liberia. The funding of certain Development Projects at the College is through the Ministry of Agriculture. Close cooperation exists between the Ministry and the College.

The research by the Firestone Plantation Company is mainly concerned with rubber. By agreement, the results of this research are available to the Rubber Planters Association of Liberia.

The Liberian Agricultural Company had a US-AID contract for research in the possibilities of large scale commercial farming. After the termination of the contract, some work is still being carried out by the company with its own resources.
LI. 012 — CENTRAL AGRICULTURAL EXPERIMENT
STATION SUAKOKO

P.O. Box Suakoko

Location: W. 09.30 - N. 06.58 - 255/265 m
Climate: 1471 - Soils: ?
Staff: 15 scientists, 10 technicians - Language: English
Experimental fields:
- Non irrigated crops: 160 Ha - Irrigated crops: 12 Ha - Pastures: 80 Ha - Ponds for pisciculture: 18 Ha
Library and documentation:
- 440 volumes - 395 bulletins - 25 journals (current subscription)
Financial support: $131,500
Government of Liberia 100%
Field of activity:
- Pedology - Soil management - Crop production (rice: selection, multiplications) - Fruits (citrus, mangoes, avocados, pineapples) - Vegetables - Entomology - Animal production and health (cattle, poultry, swine) - Continental fisheries - Pisciculture - Cultural technology

Par. Org.: Ministry of Agriculture (Liberia)

LI. 030 — FIRESTONE PLANTATIONS COMPANY

Harbel, Liberia
Tel.: 2286

Location: W. 10.25 - N. 06.23 - 100 m
Climate: 1121 - Soils: ?
Staff: 4 scientists, 9 technicians - Language: English
Experimental fields:
- Non irrigated crops: 240 Ha - Irrigated crops: 46 Ha - Pastures: 4 Ha
Specialized equipment:
- Hevea rubber seed collection - Botanical introduction garden - Trace elements laboratory - Computer
Training facilities:
- Subjects taught at University of Liberia to 3rd and 4th year students in School of Agriculture and Forestry: Breeding and Selection (1 week) - Disease and Pests (1 week) - Tapping systems and yield stimulation (1 week)
Library and documentation:
- 1,800 volumes with specialized card indexes
Publications:
- Monthly, quarterly and annual reports of research activities - Monthly and annual meteorological reports
Financial support: $232,020
Private 100%
Field of activity:
- Breeding and selection of new rubber clones and seedling families - Fertilization of immature and mature rubber - Control of diseases of hevea - Experiments on methods of tapping rubber trees and of husbandry maintenance - Introduction and testing of plants of economic importance other than rubber (citrus, mango, oil palm, castor oil...).

Par. Org.: Firestone Natural Rubber and Latex Company, Akron, Ohio (USA)
Exec. Ag.: Firestone Plantations Cy (LI. 030)

MALI (ML)

ML. 020 — DIRECTION RÉGIONALE IRCT POUR LE MALI

BP. 114, Bamako
Tel. Add.: IRCTE - BAMAKO
Tel.: 242-93

This Regional Administration is the representative in Mali of the Institut de Recherches du Coton et des Textiles Exotiques (IRCT), 34 rue des Renaudes, Paris XVIIIe, France (FR. 150)
Location: W. 08.00 - N. 12.40 - 340 m
Climate: 1484 - Soils: LF
Staff: 2 scientists - Language: French
Library and documentation:
- 260 works and documents - 25 reviews
Publications:
- Annual reports - Technical booklets - Participation in "Coton et Fibres Tropicales" published by the IRCT (Paris)
Financial support: $53,500
Government of Mali 31%
Bilateral 69%
Field of activity:
- Applied research on cotton and jute-like fibres

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France)
Ministère de la Production du Mali

ML. 021 — CELLULE EXPÉRIMENTALE IRCT DE KOGONI

Kogoni (via Niono)
Location: W. 06.02 - N. 14.44 - 273 m
Climate: 1534 - Soils: VC-LF
Staff: 2 technicians - Language: French
Experimental fields:
- Irrigated crops: 25 Ha
Publications:
- Annual reports - Participation in "Coton et Fibres Tropicales" published by the IRCT (Paris)
Financial support: $12,400
Government of Mali 100%
Field of activity:
- Entomology - Agronomy (irrigated cultivation) - Physiology of cotton
ML. 022 — STATION IRECT DE N'TARLA M'PESOBA

BP. 28, Koutiala
Tel. Add.: IRCTE, Koutiala

Location: W. 05.42 - N. 12.35 - 308 m
Climate: 1533 - Soils: LF
Staff: 5 scientists, 5 technicians - Language: French
Experimental fields:
Not irrigated crops: 64 Ha (Station and outstations)

Special equipment:
Retting vats for jute-like fibres - Experimental installation for picking (1 picker 20 Continental saws)

Teaching and popularization:
Training of staff for production of textiles, cotton and hibiscus (6 months)

Library and documentation:
750 works and documents - 20 collections of reviews
Publications:
Annual reports - Specialized articles - Participation in "Coton et Fibres Tropicales" published by the IRCT (Paris)

Financial support: $349,000
Government of Mali 27%
Bilateral 53%
Multilateral 20%

Field of activity:
Cultivation of cotton under pluvial condition of management (varietal selection, agronomy: fertilization and rotations, entomology, phytosanitary protection) - Cultivation of jute-like fibres (varietal selection, agronomy: fertilization, technological preparation of fibres intended for sacking).

Par. Org.: Ministère de la Production (Mali)
Exec. Ag.: Institut de Recherches du Coton et des Textiles Exotiques (IRCT) Direction Régionale pour le Mali (ML. 020)

ML. 060 — AGENCE AU MALI

BP. 438, Bamako

This body is the representative in Mali of the Institut de Recherches Agronomiques Tropicale et des Cultures Vivrières (IRAT), 110 rue de l'Université, Paris VIIe, France (FR. 130)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France) Ministère de la Production du Mali (Institut d'Economie Rurale)

ML. 061 — STATION IRECT DE SOTUBA

BP. 30, Bamako
Tel.: 232-15

Location: W. 08.00 - N. 12.60 - 360 m
Climate: 1485 - Soils: GE-GD
Staff: 3 scientists - Language: French
Experimental fields:
Irrigated crops: 20 Ha

Library and documentation:
200 volumes
Publications:
Participation in "Agronomie Tropicale" published by the IRAT (Paris)

Financial support: $68,000
Government of Mali 60%
Bilateral 40%

Field of activity:
Soil science (pedology, fertilization) - Production of the harvests (rice, cereals) - Genetics (rice, cereals, sugar cane)

Par. Org.: Ministère de la Production du Mali (Institut d'Economie Rurale)
Exec. Ag.: Institut de Recherches Agronomiques Tropicale et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

518
ML. 062 — SOUS-STATION IRT DU SÉNO

Seno

Location: W. 03.10 - N. 14.20 - 220 m
Climate: 1534 - Soils: RC-QC
Staff: 2 techniciens - Language: French
Experimental fields:
- Not irrigated crops: 15 Ha
Financial support: $5,000
Government of Mali 100%
Field of activity:
Production and protection of the yields (cereals)

Par. Org.: Ministère de la Production du Mali (Institut d'Economie Rurale)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

ML. 063 — SOUS-STATION IRT DE KITA

Kita

Location: W. 09.20 - N. 11.00 - 240 m
Climate: 1484 - Soils: QL-LF
Staff: 2 techniciens - Language: French
Experimental fields:
- Not irrigated crops: 15 Ha
Financial support: $5,000
Government of Mali 100%
Field of activity:
Production and protection of the harvests (groundnuts)

Par. Org.: Ministère de la Production du Mali (Institut d'Economie Rurale)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

ML. 064 — STATION IRT DE KATIBOUGOU

BP. 16, Koulikoro

Location: W. 07.40 - N. 12.50 - 220 m
Climate: 1484 - Soils: LF
Staff: 1 scientist, 2 techniciens - Language: French (occ. English)
Experimental fields:
- Not irrigated crops: 20 Ha
Library and documentation:
20 volumes
Publications:
Participation in "Agronomie Tropicale" published by IRAT (Paris) and in "Oleagineux" published by IRHO (Paris)
Financial support: $40,000
Government of Mali ½
Bilateral ¼
Field of activity:
Besides research work concerning food crops, research is carried out at this station on oleaginous plants. The latter work is done for the benefit of the IRHO.

Par. Org.: Ministère de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

ML. 065 — SOUS-STATION IRT DE SIKASSO

BP. 20, Sikasso

Location: W. 05.30 - N. 11.10 - 230 m
Climate: 1484 - Soils: QL-LF
Staff: 2 techniciens - Language: French
Experimental fields:
- Not irrigated crops: 8 Ha - Irrigated crops: 12 Ha
Financial support: $6,400
Government of Mali 80%
Multilateral 20%
Field of activity:
Study of soils - Cultivation techniques (rice)

Par. Org.: Ministère de la Production du Mali (Institut d’Economie Rurale)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

ML. 066 — STATION IRT DE MOPTI

BP. 119, Mopti
Tel.: Mopti 33

Location: W. 04.12 - N. 14.30 - 269 m
Climate: 1542 - Soils: ?
Staff: 4 scientists, 5 techniciens - Language: French (occ. English)
Experimental fields:
Irrigated crops: 38 Ha
Library and documentation:
50 volumes
Publications:
Participation in "Agronomie Tropicale" published by IRAT (Paris)
Financial support: $88,000
Government of Mali 50%
Bilateral 50%
Multilateral 25%
Field of activity: Floating Rice (Varietal improvement - Cultivation techniques - Fertilization)

Par. Org.: Ministère de la Production du Mali (Institut d’Economie Rurale)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Mali (ML. 060)

ML. 067 — STATION IRT DE KOSONI

Kogoni, via Niono

Location: W. 06.00 - N. 14.50 - 230 m
Climate: 1534 - Soils: LF
Staff: 2 scientists, 6 techniciens - Language: French (occ. English)
Experimental fields:
Irrigated crops: 60 Ha
Library and documentation:
100 volumes
Publications:
Participation in "Agronomie Tropicale" published by IRAT (Paris)
Financial support: $80,000
Government of Mali 70%
Bilateral 30%
Field of activity:
Varietal improvement: rice and cereals in dry cultivation - Fertilization - Out-of-season cultivation.

519
ML. 080 — SERVICE DES EAUX ET FORÊTS

Bamako
Par. Org.: Ministère de la Production du Mali

ML. 081 — LABORATOIRE D'HYDROBIOLOGIE DE MOPTI

BP. 91, Mopti
Tel.: Mopti 28
Location: W. 04.00 - N. 14.30 - 0 m
Climate: 1542
Staff: 1 scientist, 2 technicians - Language: French
Special Equipment:
- Microscopes
- Precision balances
- Apparatus for scalimetry
[measurement of scales (of fish)]
Teaching and popularization:
- Courses for specialization in fisheries and hydrobiology for Forestry Engineers of the Polytechnical Institute at Katiougo (6 months)
Financial support: $1,819,000
Government of Mali 100%
Field of activity:
- Hydrobiology: Biological study of the commercialized species (age of growth, frequencies, diet, reproduction, migration)
- Systematic classification (survey of certain biotypes and particularly of the lakes in order to discover new species)
- Applied research (study of the efficacy of insecticides in the control of ichthyophagous insects).

Par. Org.: Ministère de la Production du Mali
Exec. Ag.: Service des Eaux et Forêts (ML. 080)

ML. 100 — ORGANISATION INTERNATIONALE CONTRE LE CRIQUET MIGRATEUR AFRICAIN (OICMA)

BP. 136, Bamako
Tel.: BAMAKO
Tel.: Bamako 31-21

Intergovernmental international organization, devoted to the control campaign against the African migratory locust, undertakes research work (applied research).
Staff: 156, of whom 6 are scientists.
Laboratories: of 75 square miles
Library and documentation: 300 volumes, 20 periodicals received annually
Publications:
- Diffusion of publications
Remark:
- Set up by an international convention signed at Kano (Nigeria) on the 25th May, 1962 (constitutes a sequel to the provisional international Committee for the prevention of acridians of the French Sudan, set up in 1948);
- groups the following 22 countries: French Cameroons, Central African Republic, People's Republic of the Congo, Ivory Coast, Dahomey, Gambia, Ghana, Upper Volta, Kenya, Mali, Mauritania, Niger, Nigeria, Uganda, Senegal, Sierra Leone, Sudan, Tanzania, Chad, Togo, Zaïre and Zambia; includes a technical centre at Kara via Macina (ML. 201)
Field of activity:
- Anti-acridian control (botany, biology, ecology and population dynamics of migratory locusts, insecticides, operational techniques).

ML. 110 — DIVISION DE LA RECHERCHE AGRONOMIQUE DE L'INSTITUT D'ÉCONOMIE RURALE

BP. 281, Bamako
Par. Org.: Ministère de la production du Mali

ML. 111 — SECTION DES ESSAIS MULTILOCAUX

BP. 281, Bamako
Location: W. 08.00 - N. 12.40 - 340 m
Climate: (1484)
Staff: 2 scientists, 2 technicians - Language: French
Library and documentation:
- 200 volumes
Publications:
- Annual reports
Financial support: $2,146,000
Government of Mali 100%
Field of activity:
- Varietal experimental work (rice, groundnuts, maize, sorghum, millet) - Fertilization
- Includes the following outstations, where the experiments are carried out:
OUTSTATION AT SAMANKO
W. 08.05 - N. 12.33 - 349 m
Climate: (1484) - Soils: LF + LS

Not irrigated crops: 10 Ha
Financial support: $300,000 Multilateral 100%
Field of activity:
- Anti-acridian control: Botany - Biology - Ecology and population dynamics of migratory locusts - Insecticides - Operational techniques

 Exec. Ag.: Organisation Internationale contre le Criquet Migrateur Africain (OICMA)
ML. 801 — STATION AGRONOMIQUE DE SAMÉ
BP. 84, Kayes

Location: W. 11.20 - N. 14.20
Climate: 1532 - Soils: ?
Staff: 2 scientists, 1 technician - Language: French (occ. English)
Experimental fields:
- Not irrigated crops: 15 Ha - Irrigated crops: 1 Ha
Publications:
- Reports of activities

Financial support: $178,600
- Government of Mali: 30%
- Multilateral: 70%

Field of activity:
- Principal Station for climatology and Agronomic Research

Par. Org.: Organisation pour la Mise en Valeur de la Vallée du Sénégal
Ministère de la Production du Mali
Exec. Ag.: Projet FAO pour le Développement de la Recherche Agronomique dans le Bassin du Fleuve Sénégal (SG. 800)

MAURITANIA (MR)

MR. 050 — MISSION IFAC EN MAURITANIE
BP. 87, Nouakchott

This mission represents in Mauritania the Institut Français de Recherches Fruitières Outre-Mer (IFAC), 6 rue du Général Clergerie, Paris XVIe, France (FR. 170)

Par. Org.: Secrétariat d'État aux Affaires Etrangères (France)
Ministère du Développement Rural de Mauritanie

MR. 051 — CENTRE DE RECHERCHES FRUITIÈRES ET DE LUTTE BIOLOGIQUE (IFAC)
BP. 87, Nouakchott
Tel.: 26-57

Location: W. 15.58 - N. 18.06 - 1 m
Climate: 3140 - Soils: QC
Staff: 1 scientist, 1 technician
Experimental fields:
- Irrigated crops: 0.10 Ha
Special Equipment:
- Quarantine for the rearing of insects for biological control
Teaching and popularization:
- Specialization courses for agricultural supervisors (3 months)
Library and documentation:
- 200 volumes - Specialized entomological reviews
Publications:
- Annual reports - Participation in the review "Fruits" published by the IFAC (Paris)
Financial support: $72,200
- Government of Mauritania: ½
- Bilateral: ½
Field of activity:
- Date-palm: Agronomy - Biological control - Protection of crops - Technology (conditioning) - Selection - Adaptation
- To this centre the following outstations are attached. It is at these outstations that the experiments in biological intervention are carried out against the white bug [Hemiptera] of the date-palm:
 - OUTSTATION AT ATAR
 W. 13.03 - N. 20.31 - 255 m
 Climate: 3210 - Soils: BG
 - OUTSTATION AT TIDJIKA
 W. 11.25 - N. 18.32 - 314 m
 Climate: 3220 - Soils: BG
 - OUTSTATION AT KANKOSA
 W. 11.32 - N. 15.56
 Climate: 1534 - Soils: QC

Teaching and popularization:
- Specialized courses in date cultivation intended for supervisors of agriculture (3 to 6 months)

Financial support: $50,540
- Government of Mauritania: ½
- Bilateral: ½
Field of activity:
- Research on the date-palm

Par. Org.: Ministère du Développement Rural (Mauritanie)
Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC)
Mission en Mauritanie (MR. 050)

MR. 052 — STATION PHOENICIOCOLE DE KANKOSAS (IFAC)
BP. Kankossa, via Kiffa

Location: W. 11.32 - N. 15.56
Climate: 1534 - Soils: QC
Staff: 1 scientist, 1 technician - Language: French
Experimental fields:
- Not irrigated crops: 5 Ha - Irrigated crops: 40 Ha
- Pastures: 5 Ha - Forest: 5 Ha
Special Equipment:
- Study factory for the transformation of the date and of its by-products
Teaching and popularization:
- Elementary certificate (? diploma) in irrigation, plantation and sowing of fruit-trees in the framework of the National training school (Ecole Nationale de formation) - Lectures according to demand
Library and documentation:
- 30 volumes

Financial support: $50,540
- Government of Mauritania: ½
- Bilateral: ½

Field of activity:
- Date-palm: Irrigation - Protection of crops - Selection - Adaptation
- To this station the following outstations are attached. It is at these outstations that the experiments in biological intervention are carried out against the white bug [Hemiptera] of the date-palm
 - OUTSTATION AT KANKOSA
 W. 11.32 - N. 15.56
 Climate: 1534 - Soils: QC

Par. Org.: Ministère du Développement Rural (Mauritanie)
Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC)
Mission en Mauritanie (MR. 050)

MR. 053 — PÉRIMÈTRE FRUITIER DE RINDIAO (IFAC)
BP. 56, Kaedi

Location: W. 13.30 - N. 16.09
Climate: 1534 - Soils: JC
Experimental fields:
- Irrigated crops: 8 Ha - Forest: 1 Ha
Teaching and popularization:
- Elementary certificate (? diploma) in irrigation, plantation and sowing of fruit-trees in the framework of the National training school (Ecole Nationale de formation) - Lectures according to demand
Library and documentation:
- 30 volumes
Financial support: $57,000
Government of Mauritania ½
Bilateral ½
Field of activity:
Tropical fruits of the subarid zones

Par. Org.: Ministère du Développement Rural (Mauritanie)
Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC)
Mission en Mauritanie (MR. 050)

MR. 801 — CENTRE NATIONAL D’EXPÉRIMENTATION AGRONOMIQUE ET DE DÉVELOPPEMENT AGRICOLE DE KAEDI
BP. Kaedi
Location: W. 13.31 - N. 16.09 - 12 m
Climate: 1534 - Soils: ?

Staff: 2 research workers, 1 technician - Language: French
Experimental fields:
Irrigated crops: 11 Ha
Special Equipment:
Neutron probe
Publications:
Reports on activities
Financial support: $313,500
Government of Mauritania 69%
Multilateral 31%
Field of activity:
Principal station for climatology - Irrigation - Rice cultivation

Par. Org.: Organisation pour la Mise en Valeur de la Vallée du Sénégal (OMVS)
Ministère du Développement Rural (Mauritanie)
Exec. Ag.: Projet FAO pour le développement de la Recherche Agronomique dans le Bassin du Fleuve Sénégal (NG. 800)

NIGER (NG)

NG. 020 — AGENCE IRAT DU NIGER
BP. 150, Niamey
Tel. Add.: IRATROP - NIAMEY
Tel.: Niamey 20-70

This body is the representative in Niger of the Institut de Recherches Agronomiques Tropicales et des Cultures Vivières (IRAT), 110 rue de l’Université, Paris VIIe, France (FR. 130)

Par. Org.: Secrétariat d’Etat aux Affaires Etrangères (France)
Ministère de l’Economie Rurale du Niger

NG. 021 — LABORATOIRE DE RADIOAGRONOMIE — SECTION « ÉCONOMIE DE L’EAU » (IRAT)
BP. 150, Niamey
Tel. Add.: IRATROP - NIAMEY
Tel.: Niamey 20-70

Location: E. 02.08 - N. 13.30 - 216 m
Climate: 1530 - Soils: QL-BC-BV-VC
Staff: 1 scientist - Language: French
Special Equipment:
1 Analyser, multi-tube (Kevotion) - 4 radiation detectors
Library and documentation:
100 volumes, specialized in entomology and utilization of isotopes
5 specialized reviews
Publications:
Participation in the annual Reports of the IRAT/NIGER
Financial support: $19,000
Bilateral 100%
Field of activity:
Entomology, Utilization of radioisotopes for the study and control of insects

Par. Org.: Ministère de l’Economie Rurale (Niger)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivières (IRAT) Agence du Niger (NG. 020)

NG. 022 — LABORATOIRE ENTOMOLOGIQUE DES RADIOISOTOPES (IRAT)
BP. 150, Niamey
Tel. Add.: IRATROP - NIAMEY
Tel.: Niamey 20-70

Location: E. 02.08 - N. 13.30 - 216 m
Staff: 1 scientist - Language: French
Special Equipment:
1 Analyser, multi-tube (Kevotion) - 4 radiation detectors
Library and documentation:
100 volumes, specialized in entomology and utilization of isotopes
5 specialized reviews
Publications:
Participation in the annual Reports of the IRAT/NIGER
Financial support: $19,000
Bilateral 100%
Field of activity:
Entomology, Utilization of radioisotopes for the study and control of insects

Par. Org.: Ministère de l’Economie Rurale (Niger)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivières (IRAT) Agence du Niger (NG. 020)

NG. 023 — STATION IRAT DE TARNIA
BP. 6, Maradi
Tel. Add.: IRATROP - MARADI
Tel.: Maradi 281

Location: E. 07.06 - N. 13.27 - 350 m
Climate: 1532 - Soils: QL-1E-GE
Staff: 2 scientists, 2 technicians - Language: French
Experimental fields:
Not irrigated crops: 66 Ha - Irrigated crops: 14 Ha
Teaching and popularization:
Refresher courses for supervisors and leaders of agriculture (15 days)

522
NG. 025 — STATION CANNE À SUCRE DE TILLABÉRY (IRAT)

Tillabéry
Tel.: Tillabery 58

Location: E. 01.27 - N. 14.15 - 209 m
Climate: 1534 - Soils: BE-BV
Staff: 1 scientist, 1 technician - Language: French
Experimental fields:
Irrigated crops: 20 Ha
Special Equipment:
Laboratory for the technology of sugar cane
Library and documentation:
5 specialized periodical reviews (sugar cane)
Publications:
Annual reports
Financial support: $131,000
Niger Government 100%
Field of activity:
Sugar cane; agronomic experimental work - varietal improvements
Par. Org.: Ministère de l'Economie Rurale (Niger)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence du Niger (NG. 020)

NG. 040 — CENTRE CTFT NIGER — HAUTE-VOLTA

BP. 225, Niamey (Niger)

This body is the representative in Niger and in Upper Volta of the Centre Technique Forestier Tropicale (CTFT), Avenue de la Belle Gabrielle 93, Nogent-sur-Marne (France) (FR. 110)

This Centre comprises two sections, the CTFT Niger section (NG. 041) and the CTFT Upper Volta section (UV. 090)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France)
Ministère de l'Economie Rurale du Niger
Ministère de l'Agriculture, de l'Elevage, des Eaux et Forêts de Haute-Volta

NG. 041 — SECTION CTFT DU NIGER

BP. 225, Niamey

Location: E. 02.06 - N. 13.32 - 205 m
Climate: 1534 - Soils: QL
Staff: 1 scientist, 2 technicians - Language: French
Experimental fields:
Forest: 82.5 Ha
Special Equipment:
Equipment for the protection and the reclamation of soils
Frames for cuttings
Teaching and popularization:
Course on conservation of soils (20 hours)
Course for engineers undergoing training with rural equipment (1 month)
Library and documentation:
200 works
Publications:
Participation in "Bois et Forêts des Tropiques" published by the CTFT (France)
NG. 051 — STATION IRCT DE MALBAZA

BP. 6, Malbaza

Location: E. 05.20 - N. 14.50 - 300 m
Climate: 1534 - Soils: JE-QL-LF
Staff: 1 scientist - Language: French
Experimental fields:
Experimental plots dispersed in rural surroundings and having a variable surface.
Publications:
Annual reports - Occasionally specialized articles - Participation in "Coton et Fibres Tropicales" published by the IRCT (Paris)
Financial support: $51,800
Bilateral 100%
Field of activity:
Experimental work on cotton (varietal selection under different conditions of cultivation) - Phytotechny - Fertilization - Phytosanitary treatments.
Par. Org.: Ministère de l'Economie Rurale (Niger)
Exec. Ag.: Institut de Recherche du Coton et des Textiles Tropicales (IRCT) - Paris (FR. 150)

NG. 060 — SERVICE DE L'ÉLEVAGE ET DES INDUSTRIES ANIMALES

BP. 241, Niamey

This service comprises the centre for goat breeding and rearing and the poultry station at Maradi, the experimental Sahelian station at Toukounous and the pilot farm at Kirkissaye. It also assumes the responsibility for a project of control of trypanosomiasis with the aid of the Deutsche Förderungsgesellschaft für Entwicklungsländer, 600 Frankfurt/Main 1, Oberlindau 54-56 (RFA)
Par. Org.: Ministère de l’Économie Rurale (Niamaye)

NG. 061 — CENTRE D'ÉLEVAGE CAPRIN

BP. 139, Maradi
Tel.: Maradi 70-389

Location: E. 07.00 - N. 13.30
Climate: 1532
Staff: 1 scientist, 3 technicians - Language: French
Experimental fields:
Pastures: 1,800 Ha (traversing the Sahelian zone)
Not irrigated crops: 7 Ha
Financial support: $308,480
Niger Government 40%
Bilateral 60%
Par. Org.: Ministère de l’Économie Rurale (Niamaye)
Exec. Ag.: Service de l’Élevage et des Industries Animales (NG. 060)

NG. 062 — STATION AVICOLE DE MARADI

BP. 139, Maradi
Tel.: Maradi 70-389

Location: E. 07.00 - N. 13.30
Climate: 1532
Staff: 7 technicians - Language: French
Par. Org.: Ministère de l’Économie Rurale (Niger)
Exec. Ag.: Service de l’Élevage et des Industries Animales (NG. 060)

NG. 063 — STATION SAHELienne EXPÉRIMENTALE DE TOUKOUNOUS

Toukounous/ Filingué

Location: E. 03.20 - N. 14.20 - 225 m
Climate: 1534
Staff: 3 scientists, 7 technicians - Language: French (occ. German)
Experimental fields:
Not irrigated crops: 16 Ha - Pastures: 44.8 Ha (traversing the Sahelian zone)
Special Equipment:
Herbarium
Teaching and popularization:
Course intended for young breeders (3 months) - Rural enlistment (permanent)
Publications:
Participation in "Tierärztliche Wochenschrift Verlag" Hamburg - RFA
Financial Support: $224,000
Niger Government 100%
Field of activity:
Research on Azawack zebu cattle
Par. Org.: Ministère de l’Économie Rurale (Niger)
Exec. Ag.: Service de l’Élevage et des Industries Animales (NG. 060)

NG. 064 — FERME PILOTE DE KIRKISSOYE

BP. 241, Niamey

Location: E. 02.08 - N. 13.30 - 216 m
Climate: 1534
Staff: 6 technicians - Language: French
Experimental fields:
Irrigated crops: 36 Ha
Publications:
Monthly and Annual reports
Field of activity:
Settling of peasant families on the irrigated perimeter as a co-operative for the production of milk to supply Niamey - Intensive feeding of housed cattle for the export of meat
Par. Org.: Ministère de l’Économie Rurale (Niger)
Exec. Ag.: Service de l’Élevage et des Industries Animales (NG. 060)

NG. 081 — LABORATOIRE D'ÉLEVAGE IEMVT DE NIAMEY

BP. 485, Niamey
Tel. Add.: LABELVA - NIAMEY
Tel.: Niamey 20-09

Location: E. 02.08 - N. 13.30 - 200 m
Staff: 3 scientists, 1 technician - Language: French
NIGERIA (NI)

FRAM-EWORK OF RESEARCH IN THE FEDERAL REPUBLIC OF NIGERIA

Agricultural Research in Nigeria is at present undertaken by a number of organizations broadly classified into three, namely:

(i) Government Research Department of the Ministries of Agriculture and Natural Resources.

(ii) Semi-autonomous Commodity Research Institutes and some commodity oriented private organizations.

(iii) the Universities and affiliated Institutes.

Research in Food Crops, Livestock, Forestry and Fisheries is undertaken by the Government Departments of Research and University affiliated Institutes, and research on the main tree crops is undertaken by the Commodity Research Institutes. The Universities of Agriculture of the Universities contribute to research in food crops while commodity oriented private organizations such as the Nigeria Tobacco Company and the Nigeria Sugar Company conduct research into the problems of production of these crops. A semi-autonomous Research Institute conducts research into Trypanosomiasis, an important disease of livestock in Nigeria.

The Governments provide funds for the research activities of the Research Departments and the Research Institutes and to a lesser extent for University Research.

The Agricultural Research Council of Nigeria has just been established, and it will be responsible for, among other functions, coordination of agricultural research and for its funding.

NI. 060 — INSTITUTE FOR AGRICULTURAL RESEARCH (IAR)

Samaru
PMB 1044, Zaria
Par. Org.: Ahmadu Bello University, Zaria

NI. 090 — COCOA RESEARCH INSTITUTE OF NIGERIA (CRIN)

PMB 5244, Ibadan
Tel. Add.: CRIN - IBADAN
Tel.: Ibadan 613-60-2

The headquarters of this Institute are on Gambabi Experimental Station (NI. 091) where the specialized divisions and the main laboratories are located.

Research in the field is carried out on this station and on the substations of Ochajia (NI. 092), Uhonomora (NI. 093), Mambilla Plateau (NI. 094), Owena (NI. 095), Bende (NI. 096) and Ikom (NI. 097).

Publications:

Field of activity:

NG. 161 — STATION EXPERIMENTALE IFAC DE GABOUGOURA

Gabougoura near Niamey
Location: E. 02.08 - N. 13.30 - 216 m
Climate: 1534 - Soils: BE-BV-JE-GE
Staff: 1 scientist - Language: French (occ. English)

Experimental fields:

Irrigated crops: 13 Ha

Special Equipment:

Collections of cultivars (citrus - mangoes)

Teaching and popularization:

Courses and refresher courses in fruit-tree cultivation and popularization intended for those responsible for agriculture and for volunteers undergoing training (variable duration)

Library and documentation:

40 volumes - 6 specialized reviews

Publications:

Reports of activities - Participation in "Fruits" published by IFAC (Paris) - Production of technical leaflets distributed by the Ministry of the Rural Economy of the Niger.

Financial support:

Niger Government 46%
Bilateral 54%

Field of activity:

Research on tropical fruits

Par. Org.: Ministére de l'Economie Rurale (Niger)

Exec. Ag.: Institut Français de Recherches Fruitières d’Outre-Mer (IFAC) - Mission au Niger (NG. 160)
Cocoa, coffee, kola and cashew nut - (Soil chemistry, genetics, general physiology, plant biology, agronomy and plantation management, plant pathology and entomology, soil management, crop production, crop protection, human nutrition, food technology, other uses of cocoa).

Par. Org.: Agricultural Research Council of Nigeria

NI. 091 — GAMBARI EXPERIMENTAL STATION (CRIN)

PMB 5244, Ibadan
Tel. Add.: CRIN IBADAN
Tel.: Ibadan 61360 - 2

Location: E. 03.51 - N. 07.23 - 200 m
Climate: 1131 - Soils: LF-LP-LG
Staff: 30 scientists, 110 technicians - Language: English
Experimental fields:
Non-irrigated crops: 1,500 Ha
Specialized equipment:
Sample chocolate manufacturing equipment - Radioisotope laboratory equipment - photominerograph equipment - Warburg manometer - PYE unicum ultra-violet recording spectrophotometer SP 8000 - Field germplasm collection of cocoa, kola, coffee - Herbarium - Weeds of cocoa, kola, coffee and cashew farm - Fractional distillation unit with vacuum rotary evaporator - Lloyd gas analyser - chromatographic equipment
Training facilities:
Hand pollination techniques for increasing cocoa and kola productivity (4 weeks) - Cocoa rehabilitation techniques (2 weeks) - Nursery techniques (4 weeks) - Any course on any aspect of cocoa, kola, coffee, cashew production on request by Ministries of Agriculture
Library and documentation:
2,000 volumes - Specialized card indexes - reprographic unit
Publications: see NI. 090
Financial support: $2,128,000
Field of activity: see NI. 090

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 092 — OCHAJA SUBSTATION (CRIN)

Ochaja, Kwara State

Location: E. 07.36 - N. 07.30 - 300 m
Climate: 1482 - Soils: ND
Staff: 6 technicians - Language: English
Experimental fields:
Non-irrigated crops: 50 Ha
Training facilities:
Nursery techniques (2 weeks)
Financial support: $82,360
Government of Nigeria 100%

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 093 — UHONMORA SUBSTATION (CRIN)

Uhonmora, Mid-Western State

Location: E. 06.30 - N. 06.15 - 200 m
Climate: 1132 - Soils: AF
Staff: 5 technicians - Language: English
Experimental fields:
Non-irrigated crops: 105 Ha

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 094 — MAMBILLA PLATEAU SUBSTATION (CRIN)

Mambilla Plateau, North Eastern State

Location: E. 11.00 - N. 07.51
Climate: 1482 - Soils: I-RD-GH-NH
Staff: 3 technicians - Language: English
Experimental fields:
Non-irrigated crops: 14 Ha
Specialized equipment:
Coffee pulping machine - Coffee hulling machine
Training facilities:
Coffee husbandry techniques (4 weeks)
Financial support: $30,400
Government of Nigeria 100%
Field of activity:
Plant breeding (coffee)

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 095 — OWENA SUBSTATION (CRIN)

Owena, Western State

Location: E. 05.00 - N. 07.00 - 250 m
Climate: 1131 - Soils: ?
Staff: 1 technician - Language: English
Experimental fields:
Non-irrigated crops: 34 Ha
Financial support: $118,560
Government of Nigeria 100%
(New station)

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 096 — BENDE SUBSTATION (CRIN)

Bende, East Central State

Location: E. 08.00 - N. 05.45 - 100 m
Climate: 1132 - Soils: AF-AG
Staff: 1 technician - Language: English
Experimental fields:
Non-irrigated crops: 40 Ha
Financial support: $112,480
Government of Nigeria 100%

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

526
NI. 097 — IKOM SUBSTATION (CRIN)

Ikom, South Eastern State
Location: E. 08.48 - N. 06.06 - 130 m
Climate: 1132 - Soils: ND-FR
Staff: 2 technicians - Language: English
Experimental fields:
- Non-irrigated crops: 66 Ha - Forest: 734 Ha
Training facilities:
- Nursery techniques (2 weeks) - Kola hand pollination techniques (4 weeks)
Financial support: $66,760
Government of Nigeria 100%
Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Cocoa Research Institute of Nigeria - CRIN (NI. 090)

NI. 100 — NATIONAL ROOT CROPS RESEARCH INSTITUTE OF NIGERIA

Umudike, Umahia, Ibebu

The headquarters of this Institute are on UMUDIKE AGRICULTURAL RESEARCH AND TRAINING STATION (NI. 111)

Publications:

Field of activity:
- Oriented fundamental and applied research on cassava, yam and sweet potato - Improvement of yield and disease resistance through selection and cross breeding - Improvement of cropping, storage and processing methods.

Par. Org.: Agricultural Research Council of Nigeria

NI. 101 — UMUDIKE AGRICULTURAL RESEARCH AND TRAINING STATION

Umudike, Umahia, Ibebu, East Central State

Location: E. 07.33 - N. 05.29 - 120 m
Climate: 1123 - Soils: ND-FO-QF
Staff: 44 scientists, 24 technicians - Language: English
Experimental fields:
- Non-irrigated crops: 172 Ha - Pastures: 36 Ha
- Forest: 158 Ha - Ponds for pisciculture: 1 Ha
Specialized equipment:
This station is presently being re-organized. Among the equipment planned: a spectrometer and special equipment for trace element analysis.

Training facilities:
- School of Agriculture training up to intermediate level: animal husbandry, field extension, crop husbandry, farm mechanization, plant protection, agricultural economics, soil and fertilizer and veterinary hygiene (2 years).

Library and documentation:
- 900 volumes
Publications: see NI. 110

Financial support: $1,140,000
Government of Nigeria 100%
Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: National Root Crops Research Institute (NI. 110)

NI. 102 — FEDERAL DEPARTMENT OF AGRICULTURAL RESEARCH (FDAR)

PMB 5042, Moor Plantation, Ibadan
Tel. Add.: AGRIFED - IBADAN
Tel.: Ibadan 228-21

Field of activity:
- Plant breeding - Plant pathology - Entomology - Crop husbandry - Soil chemistry - Soil fertility

Par. Org.: Federal Ministry of Agriculture and Natural Resources of Nigeria

NI. 103 — MOOR PLANTATION

PMB 5042, Ibadan
Location: E. 03.80 - N. 07.20 - 200 m
Climate: 1131 - Soils: ?
Field of activity: see NI. 130
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 104 — BADEGGI RICE RESEARCH STATION

Badeggi, via Minna
Location: E. 05.50 - N. 09.00
Climate: 1482 - Soils: ?
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 105 — SOIL FERTILITY UNIT

at NIFOR
Benin City, Mid-Western State
Location: E. 05.37 - N. 06.33 - 147 m
Climate: 1132
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 106 — UYO AGRICULTURAL RESEARCH STATION

Uyo, South Eastern State
Location: E. 08.00 - N. 05.00
Climate: 1123 - Soils: ?
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 107 — UMUDIKE AGRICULTURAL RESEARCH STATION

Umudike, East Central State
Location: E. 08.00 - N. 05.15
Climate: 1132 - Soils: ?
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 136 — MOKWA AGRICULTURAL RESEARCH STATION
North Eastern State
Location: E. 04.50 - N. 09.20
Climate: 1482 - Soils: ?
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 137 — BACITA AGRICULTURAL RESEARCH STATION
Location: E. 04.40 - N. 09.10
Climate: 1482 - Soils: ?
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Agricultural Research - FDAR (NI. 130)

NI. 150 — FOREST RESEARCH INSTITUTE OF NIGERIA (PRIN)
PMB 5054, Ibadan
Tel. Add.: FORESEARCH - IBADAN
Tel.: Ibadan 247-21
Location: E. 03.52 - N. 07.24 - 195 m
Climate: 1131
Staff: 34 scientists, 75 technicians - Language: English
Specialized equipment:
Equipment for timber testing, germinators, spectrophotometers, etc.
Training facilities:
Has the responsibility of the Federal Schools of Forestry at Ibadan and Jos. Apart from the training of technical staff, courses are organized for sawmillers and others in the timber industry.
Library and documentation:
17,000 volumes - Centralized Title Service Cards of the Oxford Forestry Bureau
Publications:
Information bulletin, books, journals, research papers and technical notes
Financial support: $650,000
Government of Nigeria 100%
Field of activity:
Ecology - Hydrology - Forestry and forest products - General physiology - Taxonomy
Par. Org.: Agricultural Research Council of Nigeria

NI. 151 — SAVANNA FORESTRY RESEARCH STATION
PMB 1039, Samaru, Zaria, North Central State
Tel. Add.: SAVANNA - ZARIA
Tel.: Zaria 2591
Location: E. 07.36 - N. 11.10 - 680 m
Climate: 1484
Staff: 11 scientists, 10 technicians - Language: English
Experimental fields:
Forest: 120 Ha
Specialized equipment:
Plant growth chambers, Neutron probe
Library and documentation:
2,100 books and papers (possible reproduction)
Financial support: $615,000
Government of Nigeria 75%
Multilateral 25%
Field of activity:
Study of site evaluation for plantation development in the Savanna region - Soil surveys - Study of the plantation silviculture
Par. Org.: Agricultural Research Council of Nigeria
FAO/UNDP
Exec. Ag.: Forest Research Institute of Nigeria (NI. 150)
FAO Forestry Department (UN. 120)

NI. 190 — FEDERAL DEPARTMENT OF FISHERIES
PMB 12529, Lagos
Field of activity:
Oceanography - Hydrobiology - Continental marine fisheries - Fish husbandry
Par. Org.: Federal Ministry of Agriculture and Natural Resources of Nigeria

NI. 191 — LAKE CHAD RESEARCH STATION
P.O. Box 227, Maiduguri
Tel. Add.: FEDFISH MAIDUGURI
Location: E. 13.19 - N. 13.57 - 282 m
Climate: 1534
Staff: 3 scientists, 1 technician - Language: English
Library and documentation:
100 volumes
Publications:
Participation in "Bulletin de l'IFAN, " "Federal Fisheries Department Annual Reports," "Nature"
Financial support: $55,800
Government of Nigeria 100%
Field of activity:
Hydrobiology - Continental fisheries - Fish farming
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)

NI. 192 — FISH CULTURE BRANCH
P.O. Box 5122, Port Harcourt
Tel. Add.: FEDFISH CARE Perm. Mag. Pharcourt
Location: E. 06.47 - N. 04.43 - 15 m
Climate: 1132
Staff: 1 scientist, 3 technicians - Language: English
Experimental fields:
Ponds for pisciculture: 3.4 Ha
Library and documentation:
10 volumes
Financial support: $205,000
Government of Nigeria 100%
Field of activity:
Fish farming (continental and maritime)
Par. Org.: Federal Ministry of Agriculture and Natural Resources (Nigeria)
Exec. Ag.: Federal Department of Fisheries (NI. 190)

528
NI. 193 — BUGUMA RESEARCH STATION

PMB, Buguma
Par. Org.: Federal Ministry of Agriculture and Natural Resources
Exec. Ag.: Federal Department of Fisheries (NI. 190)

NI. 220 — NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE — LAGOS

PMB 12543, Lagos
Tel. Add.: NISPRI - LAGOS
Tel.: 48201 - 42203
Location: E. 03.50 - N. 06.50 - 10 m
Climate: 1123
Staff: 3 scientists, 10 technicians - Language: English
Specialized equipment:
- Thermal conductivity meter
- Avrometer
- Marconi moisture meter
- Scot-mec axe moisture meter
- Copra moisture tester
- Mettler balance
- Binocular dissecting microscope
- Kisopan microscope
- pH meter
- Spectrophotometer
- Mechanical calculator
- Two ventilated ovens
- One incubator
- One cooled incubator
Training facilities:
- Training at laboratory technician level in basic analytical work relevant to stored products E.G.F.F.A. and oil context, moisture content analysis (6 weeks)
Library and documentation:
- 100 volumes - Index of authors - Classified separates and related reports
Publications:
- Annual reports of NISPRI
Financial support: $48,640
Government of Nigeria 100%
Field of activity:
- Research into the conservation of food supplies - Entomology - Insecticide testing - Chemistry - Animal health (mycotoxins)
Par. Org.: Federal Ministry of Trade (Nigeria)
Exec. Ag.: Nigerian Stored Products Research Institute NISPRI (NI. 220)

NI. 221 — NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE — IBADAN

PMB 5044, Ibadan
Tel. Add.: NISPRI - IBADAN
Tel.: 227-08
Location: E. 03.80 - N. 07.45 - 250 m
Climate: 1131
Staff: 3 scientists, 5 technicians - Language: English
Specialized equipment:
- Three cooled incubators
- One autoclave
- Two microscopes
- One mettler balance
- Two facit calculators
- Air bath
- Soxhlet sets
- Water bath
- Marconi moisture meltler
Training facilities:
- Training at laboratory technician level in basic analytical work on F.F.A. oil content and moisture contents of oil seeds and grain - Isolation techniques for fungi
Library and documentation:
- 100 volumes, classified separates
Financial support: $48,640
Government of Nigeria 100%
Field of activity: see NI. 220
Par. Org.: Federal Ministry of Trade (Nigeria)
Exec. Ag.: Nigerian Stored Products Research Institute NISPRI (NI. 220)

NI. 222 — NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE — KANO

PMB 3032, Kano
Tel. Add.: NISPRI - KANO
Tel.: Kano 3372
Location: E. 08.50 - N. 12.00 - 400 m
Climate: 1916
Staff: 3 scientists, 5 technicians - Language: English
Specialized equipment:
- BURKHARD Autospot - Plate chromatography equipment
- Four air bath Soxhlet sets
- U.V. (black lamp)
- Spectrophotometer
- Ventilated ovens
- Balances
- Thermostat bridge
Training facilities:
- Training at laboratory technician level in basic analytical work on F.F.A. oil content, moisture content of oil seeds and grain insecticide and aflatoxin determinations (6 weeks)
Library and documentation:
- 100 volumes, classified separates and related reports
Financial support: $48,640
Government of Nigeria 100%
Field of activity: see N. 220
Par. Org.: Federal Ministry of Trade (Nigeria)
Exec. Ag.: Nigerian Stored Products Research Institute NISPRI (NI. 220)

NI. 223 — NIGERIAN STORED PRODUCTS RESEARCH INSTITUTE — PORT HARCOURT

PMB 5063, Port Harcourt
Tel. Add.: NISPRI - PORTHARCOURT
Tel.: 21109
Location: E. 07.00 - N. 04.75 - 10 m
Climate: 1123
Staff: 1 scientist, 2 technicians - Language: English
Specialized equipment:
- U.V. lamp
- Soxhlet equipment
- Ventilated ovens
- Chemical laboratory in course of re-organization
Library and documentation:
- 20 volumes
Publications:
- Contribution to the Annual Report of NISPRI
Financial support: $42,560
Government of Nigeria 100%
Field of activity: see N. 220
Par. Org.: Federal Ministry of Trade (Nigeria)
Exec. Ag.: Nigerian Stored Products Research Institute NISPRI (NI. 220)

NI. 224 — FEDERAL PRODUCE INSPECTION SERVICE — SAPELE

Sapele
Tel. Add.: FEDPROD - SAPELE
Location: E. 05.45 - N. 05.55 - 10 m
Climate: 1132
Staff: 2 technicians - Language: English
Specialized equipment:
- Thermohygrographs
- Whirling - Hygrometer
- (New laboratory in course of construction)
Financial support: $6,080
Government of Nigeria 100%
Par. Org.: Federal Ministry of Trade (Nigeria)
Exec. Ag.: Nigerian Stored Products Research Institute NISPRI (NI. 220)
NL 270 — NIGERIAN INSTITUTE FOR OIL PALM RESEARCH (NIFOR)

PMB 1030, Benin City
Tel. Add.: PALMS - BENIN-CITY
Tel.: Benin 53

Location: E. 05.37 - N. 06.33 - 147 m
Climate: 1132 - Soils: ND-QF-FO
Staff: 26 scientists, 44 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 1080 Ha
- Irrigated crops: 8 Ha
- Pastures: 40 Ha

Specialized equipment:
- Computer IBM 1130 - Technician Auto analyzer II - 290B
- Perking Elmer atomic absorption spectrophotometer
- Pye Unicam gas chromatograph - Reichert microscope
- NR. 316570 with Reichert camera NR. 58972 - Moisture and density measuring equipment NE. 8401.

Training facilities:
- Diploma in oil palm work: seed production, germination, technique, nursery management, plantation establishment, soil and plant nutrition, milling, crop protection (10 weeks)

Library and documentation:
- 6,000 volumes - Card index on oil palm literature - reprographic equipment

Publications:
- NIFOR Annual Report - NIFOR Journal
- Government of Nigeria 100%

Field of activity:
- Oil palm: Agronomy - Plant breeding - Plant nutrition - Plant pathology - Plant physiology - Research engineering - Soil chemistry - Statistics

Par. Org.: Agricultural Research Council of Nigeria

NL 280 — RUBBER RESEARCH INSTITUTE OF NIGERIA (RRIN)

PMB 1049, Benin City
Tel. Add.: RUBSEARCH - BENIN

Location: E. 05.35 - N. 06.09 - 30 m
Climate: 1132 - Soils: ND-FO-QF
Staff: 6 scientists, 38 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 336 Ha

Specialized equipment:
- Atomic absorption spectrophotometer - Crumb processing machines

Training facilities:
- Tapping - Budgrafting - Processing - Chemistry quality control - Disease control - Agronomy (12 weeks)

Publications:
- Annual report of the RRIN - Tourist guide to RRIN revised every two years - Advisory circulars

Financial support: $1,650,000

Government of Nigeria 100%

Field of activity:
- Soil chemistry - Polymer chemistry - Genetics - Plant breeding (rubber) - Plant nutrition - Meteorology - Soil conservation - Water conservation (irrigation) - Agronomy - Plant pathology - Crop production and protection (rubber)

Par. Org.: Agricultural Research Council of Nigeria

NL 320 — FACULTY OF AGRICULTURE (UNIVERSITY OF IBADAN)

Ibadan, Western State

The Department of Agronomy of this Faculty has a radioisotope laboratory (NI. 831) where research is carried out in cooperation with the Joint FAO/IAEA division of Atomic Energy in Food and Agriculture (UN. 118)

Par. Org.: University of Ibadan

NL 360 — FACULTY OF AGRICULTURE (UNIVERSITY OF IFE)

Ife - Ife, Western State
Tel. Add.: IFEVARSITY - IFE
Tel.: 2291/228

Location: E. 04.40 - N. 07.30 - 300 m
Climate: 1131 - Soils: LF-LG-LP-NE-GE
Staff: 50 scientists, 11 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 120 Ha
- Irrigated crops: 1 Ha
- Pastures: 25 Ha - Forest: 150 Ha
- Ponds for pisciculture: 4.5 Ha

Specialized equipment:
- Computer - Crop collection nursery - Insect collection

Training facilities:
- B.Sc. Agriculture (93 weeks)

Library and documentation:
- 75,000 volumes - Author and subject card indexes - Photocopying equipment

Publications:
- Annual research report of the Faculty of Agriculture issued by University of Ife press.
- Government of Nigeria 84%
- Bilateral 16%

Field of activity:

Par. Org.: University of Ife

NL 460 — FACULTY OF AGRICULTURAL SCIENCES (UNIVERSITY OF NIGERIA)

Nsukka, East Central State
Tel. Add.: NIGERISITY - NSUKKA
Tel.: Nsukka 48

Par. Org.: Agricultural Research Council of Nigeria

University of Nigeria

NL 461 — DEPARTMENT OF PLANT/SOIL SCIENCE (UNIVERSITY OF NIGERIA)

Nsukka, East Central State

Location: E. 07.05 - N. 07.00 - 380 m
Climate: 1482 - Soils: FO-ND-BF
Staff: 13 scientists, 19 technicians - Language: English

Experimental fields:
- Non-irrigated crops: 8 Ha - Pastures: 1 Ha

Specialized equipment:
- 5 greenhouses - 1 crop collection

Training facilities:
- Undergraduate and post-graduate courses in soil science and crop science (3 terms of 33 weeks)

Library and documentation:
- 100 volumes of departmental books

Publications:
- Articles published in various learned journals in crops and soil sciences

530
Field of activity: Activities mainly aimed at observation, demonstrations and maintaining a crop collection

Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Faculty of Agricultural Sciences of the University of Nigeria (NI. 460)

NI. 462 — DEPARTMENT OF VETERINARY SCIENCE (UNIVERSITY OF NIGERIA)
Nsukka, East Central State
Location: E. 07.05 - N. 07.00 - 380 m
Climate: 1482
Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Faculty of Agricultural Sciences of the University of Nigeria (NI. 460)

NI. 460 - DEPARTMENT OF VETERINARY SCIENCE
(Faculty of Agriculture, University of Nigeria)
Nsukka, East Central State
Location: E. 07.05 - N. 07.00 - 380 m
Climate: 1482
Par. Org.: Agricultural Research Council of Nigeria
Exec. Ag.: Faculty of Agricultural Sciences of the University of Nigeria (NI. 460)

NI. 550 — FEDERAL INSTITUTE OF INDUSTRIAL RESEARCH
PMB 1023, Ikeja Airport
Tel. Add.: APPLIED - IKEJA
Tel.: 321-61 - 343-37 - 340-99
Location: N. 06.25 - E. 03.25 - 15 m
Staff: 31 scientists, 52 technicians - Language: English
Specialized equipment:
Amino acid analyser
Library and documentation:
5,300 volumes - 162 journals - 40 bulletins
Publications:
Quarterly reports - Annual reports - Research reports - Technical memoranda - Industrial abstracts - Bulletin for industry
Field of activity:
Food technology - Food biology - Agricultural economy
Par. Org.: Industrial Research Council of Nigeria

NI. 810 — INTERNATIONAL INSTITUTE OF TROPICAL AGRICULTURE
Oyo Road, PMB 5320, Ibadan
Tel. Add.: TROPFOUNd IKEJA
Tel.: 237-41 (5 lines)
Location: E. 04.00 - N. 07.30 - 210 m
Climate: 1131 - Soils: LF-BF
Staff: 40 scientists, 100 technicians - Language: English (sec. French)
Specialized equipment:
Gas chromatograph - Atomic absorption spectrophotometer - Nuclear magnetic resonance analyser - infra-red spectrophotometer - Technican auto-analysers - Differential thermo-analysers - Liquid scintillation counting system
Library and documentation:
6,500 volumes with growth rate of 2,000 volumes per year - Approximately 1,000 periodical titles
Publications:
Annual Review - Newsletter - Programme Brochures - Proceedings of Seminars - Workshops
Financial support: $5,500,000
Bilateral 76%
Multilateral 1,5%
Private 22,5%
Field of activity:
Soil physics - Agroclimatology - Soil chemistry - Agronomy - Biochemistry - Tissue culture - Cytogenetics - Plant pathology - Entomology - Nematology - Soil microbiology
No parent organization

NI. 831 — ISOTOPE LABORATORY OF THE DEPARTMENT OF AGRONOMY (UNIVERSITY OF IBADAN)
Ibadan
Location: E. 03.80 - N. 07.20 - 200 m
Staff: 4 scientists, 3 technicians - Language: English
Specialized equipment:
Neutron moisture meter
Financial support: $16,000
Multilateral 28%
Field of activity:
Use of isotopes in agricultural research
Par. Org.: International Atomic Energy Agency
University of Ibadan
Exec. Ag.: Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture (UN. 118)
Faculty of Agriculture of the University of Ibadan

SENegal (SG)

SG. 110 — CENTRE CTFt AU SÉNEGAL
BP. 2312, Dakar
Tel. Add.: CETEF0 - Dakar
Tel.: 36478
This body is the representative in Senegal of the Centre Technique Forestier Tropical (CTFT) - (FR. 110), Avenue de la Belle Gabrielle 93, Nogent-sur-Marne (France).
This centre includes the Forestry Station at HANN (SG. 111), the Sub-Stations of BAMBEY (SG. 112) and of DJIBELOR (SG. 113) and the Division des Recherches Piscicoles at RICHARD-TOLL (SG. 114)

SG. 111 — STATION FORESTIÈRE DE HANN (CTFT)
Parc de Hann - BP. 2312, Dakar
Tel. Add.: CETEF0 - Dakar
Tel.: 364-78
Location: W. 17.26 - N. 14.43 - 4 m
Climate: 1320 - Soils: RE
Staff: 2 scientists, 1 technician - Language: French
Special Equipment:

531
Frame for cuttings under "mist" spray
Library and documentation:
420 volumes - Oxford classification card system - Photocopying apparatus
Publications:
Annual reports
Field of activity:
Protection and reclamation of soils - Silviculture - Reafforestation - Introduction of exotic species resistant to
drought and salinity.
To this station are attached the Sub-stations of BAMBEY (SG. 112) and of DJIBELOR (SG. 113) and the following experimental outstations, the financial support of which is ensured by:
Senegal Government 50%
Bilateral 50%

OUTSTATION AT SINE-SALOUM
W. 16.11 - N. 14.02 - 6 m
Climate: 1532 - Soils: JE-ZO
Forest: 14 Hh
Financial support: $25,000

OUTSTATION AT ROSS-BETHIO
W. 16.04 - N. 16.16 - 6 m
Climate: 1540 - Soils: ZO-QL
Forest: 35 Ha
Financial support: $15,200

OUTSTATION AT LINGUERE
W. 15.09 - N. 15.23 - 21 m
Climate: 1534 - Soils: QL
Forest: 3 Hh
Financial support: $14,000

Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre au Sénégal (SG. 110)

SG. 112 — SOUS-STATION FORESTIÈRE DE BAMBEY

Bambeu
Location: W. 16.20 - N. 14.42 - 20 m
Climate: 1532 - Soils: VC
Staff: 1 technician
Experimental fields:
Forest: 15 Ha
Financial support: $21,850
Senegal Government ½
Bilateral ½

Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre au Sénégal (SG. 110)

SG. 113 — SOUS-STATION FORESTIÈRE DE DJIBELOR

Djibelor
Location: W. 16.18 - N. 12.34 - 12 m
Climate: 1486 - Soils: ND
Staff: 1 technician
Experimental fields:
Forest: 19 Ha
Financial support: $13,600
Senegal Government ½
Bilateral ½

Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre au Sénégal (SG. 110)

SG. 114 — DIVISION DES RECHERCHES PISCICOLES

B.P., 28, Richard-Toll
Tel.: Richard-Toll 2
Location: W. 15.42 - N. 16.27 - 7 m
Climate: 1540
Staff: 1 scientist - Language: French
Library and documentation:
90 volumes
Publications:
Annual reports
Financial support: $51,500
Senegal Government ½
Bilateral ½
Field of activity:
Continental fisheries - Biology of species
Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Centre au Sénégal (SG. 110)

SG. 131 — LABORATOIRE NATIONAL DE L'ÉLEVAGE
ET DE RECHERCHES VETERINAIRES (IEMVT)

BP. 2057, Dakar
Tel. Add.: LEBELEVAGE - DAKAR
Tel.: Dakar 320-65 - 320-66 - 320-67
Location: W. 17.25 - N. 14.45 - 10 m
Climate: 1320
Staff: 17 scientists, 21 technicians - Language: French (occ. English)
Experimental fields:
Irrigated crops: 7 Ha - Pastures: 493 Ha
Teaching and popularization:
Pathology of infectious diseases (3 to 6 months) - Pathology of parasitic diseases (3 to 6 months) - Physiological pathology of nutrition (3 to 6 months) - Zootechny (3 to 6 months)
Library and documentation:
11,000 works and scientific reviews - 1,834 microfilms - 5 films - 58 maps - 120 periodicals
Publications:
Financial support:
Senegal Government ½
Bilateral ½
Field of activity:
Animal health (bacteriology, virology, helminthology, entomology, protozoology) - Physiology - Pathology - Nutrition and biochemistry - Agrostology - Chemistry of nutrition - Zootechny
Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Institut d'Elevage et de Médecine Vétérinaire des Pays Tropicaux (IEMVT) - France (FR. 120)

SG. 132 — CENTRE DE RECHERCHES ZOOTECNIQUES
DE DARA-DJOLLOFF — IEMVT

Dara
Tel. Add.: DARA - DJOLOFF
Tel.: Dara 11
Location: W. 15.29 - N. 15.20 - 50 m
Climate: 1534
Staff: 2 scientists - Language: French (occ. English)
Experimental fields:
Pastures: 6,800 Ha

Publications:
Participation in “Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux” published by IEMVT (France)
Financial support: $51,300
 Senegal Government ½
 Bilateral ½
Field of activity:
Agrostology - Animal production and animal products (improvement of the bovine and equine species, artificial insemination)

Par. Org.: Ministère du Développement Rural (Sénégal)
Exec. Ag.: Institut d’Élevage et de Médecine des Pays Tropicaux (IEMVT) - France (FR. 120)

SG. 150 — AGENCE IRAT DU SÉNÉGAL
Bambey
Tel. Add.: NORAGRO - BAMBEY
This body is the representative in Senegal of the Institut de Recherches Agronomiques Tropicales et des Cultures Végétales (IRAT) - (FR. 130), 110 rue de l’Université, Paris VII, France
Par. Org.: Secrétariat d’État aux Affaires Etrangères (France) Ministère du Développement Rural du Sénégal

SG. 151 — CENTRE NATIONAL DE RECHERCHES AGRONOMIQUES IRAT DE BAMBEY
Bambey
Tel. Add.: NORAGRO - BAMBEY
Tel.: 843-50
Location: W. 16.28 - N. 14.42 - 18 m
Climate: 1532 - Soils: QL
Staff: 16 scientists, 23 technicians - Language: French (occ. English)
Experimental fields:
Not irrigated crops: 640 Ha
Special Equipment:
1,500 square metres of laboratory including one sterile room
Library and documentation:
4,000 volumes - Various reviews
Publications:
Reports - Participation in “Agronomic Tropicale” published by IRAT (Paris)
Financial support: $1,282,000
 Senegal Government 48%
 Bilateral 46%
 Multilateral 6%
Field of activity:
Genetics (selection) - Plant biology (agrobotany, physiology) - Agricultural ecology - Bioclimatology - agropedology (erosion, rivulet formation, fertility) - Hydrology - Production of harvests (early and late millets, sorghum, rice, maize, groundnuts, nile, sugar cane) - Protection of the harvests (entomology, phytopathology) - Techniques and systems of cropping - Application of radio-active tracers in agriculture - Agricultural machinery.
The research work is carried out on the Station and on the following outstations, each of which has a technician in residence, and which are totally supported financially by the Government of Senegal.

OUTSTATION AT KEUR SAMBA
W. 14.50 - N. 13.50 - 25 m
Climate: 1532 - Soils: LF
Not irrigated crops: 12 Ha
Financial support: $2,500

OUTSTATION AT KEUR YORO-DOU
W. 16.00 - N. 13.50 - 30 m
Climate: 1532 - Soils: LF
Not irrigated crops: 30 Ha
Financial support: $2,300

OUTSTATION AT MAKA-KOULIBANTAN
W. 14.15 - N. 13.40 - 20 m
Climate: 1532 - Soils: ND-QL-LF
Not irrigated crops: 10 Ha
Financial support: $2,000

OUTSTATION AT BUIKOKER
W. 16.30 - N. 13.20 - 15 m
Climate: 1486 - Soils: JT
Irrigated crops: 10 Ha
Financial support: $1,700

OUTSTATION AT KEUR-MADIABEL
W. 16.10 - N. 13.50 - 20 m
Climate: 1532 - Soils: LF-QL
Not irrigated crops: 10 Ha
Financial support: $2,000

OUTSTATION AT MADIOA
W. 16.15 - N. 13.00 - 20 m
Climate: 1486 - Soils: FA
Not irrigated crops: 10 Ha
Financial support: $1,400

OUTSTATION AT FORBOTTE
W. 16.30 - N. 15.00 - 20 m
Climate: 1533 - Soils: QL
Not irrigated crops: 10 Ha
Financial support: $950

OUTSTATION AT N’DIEMANÉ
W. 16.35 - N. 14.25 - 25 m
Climate: 1532 - Soils: LF-VC-BV
Not irrigated crops: 10 Ha
Financial support: $950

OUTSTATION AT ROF
W. 16.50 - N. 14.15 - 5 m
Climate: 1532 - Soils: BK-VC
Not irrigated crops: 10 Ha
Financial support: $1,700

OUTSTATION AT KOTIARY
W. 13.25 - N. 13.55 - 30 m
Climate: 1532 - Soils: QL-LF
Not irrigated crops: 10 Ha
Financial support: $1,700
Research work is also carried on in a peasant environment in the following experimental units, totally supported financially by the Government of Senegal.

EXPERIMENTAL UNIT AT THYSSE-KAYEMOR

- Location: W. 15.40 - N. 13.40 - 30 m
- Climate: 1532 - Soils: LF
- Financial support: $9,500

EXPERIMENTAL UNIT AT KOUMBIDIA

- Location: W. 14.45 - N. 13.50 - 40 m
- Climate: 1533 - Soils: FA
- Financial support: $9,500

In these experimental units, courses of technical training, alphabetsisation and education in domestic science take place.

SG. 152 — STATION IRAT DE SÉFA

Séfa

- Location: W. 15.32 - N. 12.47 - 40 m
- Climate: 1484 - Soils: LF-FA
- Staff: 1 scientist, 5 technicians - Language: French (occ. English)
- Experimental fields: Not irrigated crops: 90 Ha
- Library and documentation: 230 volumes - various reviews
- Publications: Participation in "Agronomie Tropicale" published by IRAT (Paris)
- Participation in the various reports of the CNRA/Bamby
- Financial support: $167,200
- Senegal Government ½
- Bilateral ½
- Field of activity: Genetics - Agropedology - Production and protection of the harvests (forage crops, maize, rice)
- Par. Org.: Ministère du Développement Rural (Sénégal)
- Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Sénégal (SG. 150)

SG. 153 — STATION IRAT DE RICHARD-TOLL

Richard-Toll

- Tel.: Richard-Toll 5
- Location: W. 15.42 - N. 16.27 - 3 m
- Climate: 1540 - Soils: JE-GE
- Staff: 3 scientists, 4 technicians - Language: French (occ. English)
- Experimental fields: Not irrigated crops: 100 Ha
- Library and documentation: 500 volumes and reviews
- Publications: Participation in "Agronomie Tropicale" published by IRAT (Paris)
- Participation in the various reports of the CNRA/Bamby
- Financial support: $182,400
- Senegal Government 68%
- Bilateral 32%
- Field of activity: Genetics - Agropedology - Production and protection of the harvests (rice, sugar cane, maize, millet, sorghum)
- Par. Org.: Ministère du Développement Rural (Sénégal)
- Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Sénégal (SG. 150)

SG. 154 — STATION IRAT DE NIORO-DU-RIP

Nioro-du-rip

- Tel.: Nioro 2
- Location: W. 15.47 - N. 13.45 - 15 m
- Climate: 1532 - Soils: LF
- Staff: 5 technicians - Language: French
- Experimental fields: Not irrigated crops: 60 Ha
- Financial support: $45,600
- Senegal Government ½
- Bilateral ½
- Field of activity: Cropping techniques: chemical weed control (sorghum, groundnuts)
- Par. Org.: Ministère du Développement Rural (Sénégal)
- Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Sénégal (SG. 150)

SG. 155 — STATION IRAT DE SINTHIOU-MALÈME

Sinthiou - Maleme

- Location: W. 13.55 - N. 13.50 - 20 m
- Climate: 1532 - Soils: LF
- Staff: 2 technicians - Language: French (occ. English)
- Experimental fields: Not irrigated crops: 60 Ha
- Financial support: $49,400
- Senegal Government ½
- Bilateral ½
- Field of activity: Cropping techniques
- Par. Org.: Ministère du Développement Rural (Sénégal)
- Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Sénégal (SG. 150)

SG. 156 — STATION DE RECHERCHES RIZICOLES DE DJIBELOR (IRAT)

Ziguinchor

- Tel.: 91-205
- Location: W. 16.20 - N. 12.30 - 32 m
- Climate: 1486 - Soils: GD-JD-JT
- Staff: 4 scientists, 3 technicians - Language: French (occ. English)
- Experimental fields: Irrigated crops: 30 Ha
- Publications: Participation in "Agronomie Tropicale" published by IRAT (Paris)
- Participation in the various reports of the CNRA/Bamby
- Financial support: $209,000
- Senegal Government 77%
- Bilateral 23%
- Field of activity: Agropedology - Agrophysiology - Selection - Protection of crops - cropping techniques (irrigated rice)
- Par. Org.: Ministère du Développement Rural (Sénégal)
- Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Agence au Sénégal (SG. 150)
SG. 170 — MISSION IFAC AU SÉNÉGAL

BP. 486, Dakar
Tel.: 912-12

This mission represents in Senegal the Institut Français de Recherches Fruitières d'Outre-Mer (IFAC) - (FR. 170), 6 rue du Général Clergerie, Paris XVIe, France

Field of activity:
Production and protection of tropical fruits

Par. Org.: Secrétariat d'État aux Affaires Etrangères (France)
Ministère du Développement Rural du Sénégal

SG. 171 — STATION IFAC DE KEUR MAMA LAMINE

Inspection de l'Agriculture à Kaolack
Tel.: 870-93

Location: W. 16.22 - N. 13.46 - 23 m
Climate: 1484 - Soils: QL
Staff: 1 scientist, 1 technician - Language: French
Experimental fields:
Irrigated crops: 10 Ha
Special Equipment:
Collections of cultivars
Teaching and popularization:
Course in fruit crops intended for overseers of agriculture (1 year)
Library and documentation:
30 volumes
Publications:
Technical notes - Participation in the annual report of the IFAC/Senegal - Participation in the review "Fruits" published by the IFAC (Paris)
Financial support: $76,000
Senegal Government 100%

Par. Org.: Ministère du Développement Rural (Sénégal)

Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC) Mission au Sénégal (SG. 170)

SG. 172 — STATION IFAC DE SINGHER

Inspection de l’Agriculture à Ziguinchor
BP. 242, Ziguinchor
Tel.: 912-63

Location: W. 15.25 - N. 12.31 - 14 m
Climate: 1486 - Soils: ND
Staff: 2 scientists, 2 technicians - Language: French
Experimental fields:
Irrigated crops: 13 Ha
Special Equipment:
Collections of cultivars
Teaching and popularization:
Course in Fruit-tree growing intended for overseers of agriculture (1 year)
Publications:
Technical notes - Participation in the annual report of the IFAC/Senegal - Participation in the review "Fruits" published by the IFAC (Paris)
Financial support: $19,000
Senegal Government 100%

Par. Org.: Ministère du Développement Rural (Sénégal)

Exec. Ag.: Institut Français de Recherches Fruitières d'Outre-Mer (IFAC) Mission au Sénégal (SG. 170)

SG. 181 — STATION IRCT DE KAOLACK

BP. 208, Kaolack
Tel.: 204

Location: W. 16.05 - N. 14.08 - 8 m
Climate: 1532 - Soils: QL-LF-GD
Staff: 2 scientists, 1 technician - Language: French
Experimental fields:
Not irrigated crops: 25 Ha - Experimental plots dispersed in a rural environment
Teaching and popularization:
Training of probationers (1 month) - Permanent training of staff (12 months)
Publications:
Annual reports - Specialized articles - Participation in "Coton et Fibres Tropicales" published by the IRCT (Paris)
Financial support: $100,000
Multilateral 100%
Field of activity:
Varietal experimental work on cotton - Pedology - Entomology

Par. Org.: Ministère du Développement Rural (Sénégal)

Exec. Ag.: Institut de Recherches du Coton et des Textiles (IRCT) Paris (FR. 150)

SG. 800 — PROJET FAO POUR LE DÉVELOPPEMENT DE LA RECHERCHE AGRONOMIQUE DANS LE BASSIN DU FLEUVE SÉNÉGAL

BP. 154, Dakar

The research work is carried on at the agronomic station of Samé (ML. 801) at the national centre for agronomic experimental work at Kaedi (MR. 801) and at the experimental centre of Guédé (SG. 801)

Par. Org.: Plant Production and Protection Division - FAO (Rome) (UN. 113)
Organisation pour la Mise en Valeur de la Vallée du Sénégal - OMVS (Dakar)

SG. 801 — CENTRE EXPÉRIMENTAL DE GUÉDÉ

c/o Projet de Recherche Agronomique
BP. 154, Dakar

Location: W. 14.46 - N. 16.32 - 7 m
Climate: 1540 - Soils: ND
Staff: 1 scientist - Language: French (occ. English)
Experimental fields:
Irrigated crops: 17 Ha
Special Equipment:
Neutron probe
Publications:
Reports of activities
Financial support: $182,400
Senegal Government 1/3
Multilateral 2/3
Field of activity:
Climatology - Agriculture

Par. Org.: Organisation pour la Mise en Valeur de la Vallée du Sénégal (OMVS)

Exec. Ag.: Projet FAO pour le Développement de la Recherche Agronomique dans le Bassin du Fleuve Sénégal (SG. 800)

535
SG. 830 — LABORATOIRE DE RADIOISOTOPIE DU CENTRE DE RECHERCHES AGRONOMIQUES DE BAMBEY

BP. Bamby
Location: W. 16.20 - N. 14.42 - 20 m
Staff: 2 scientists
Financial support: $6,000
Senegal Government 60%
Bilateral 40%

Field of activity:
Studies on the nutrition of plants and fertilization

Par. Org.: Ministère du Développement Rural (Sénégal)
International Atomic Energy Agency

Exec. Ag.: Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture (UN. 118)
Agence IRAT du Sénégal (SG. 150)

SIERRA LEONE (SL)

SL. 040 — VETERINARY DIVISION (MINISTRY OF AGRICULTURE)
Tower Hill, Freetown
Par. Org.: Ministry of Agriculture and Natural Resources of Sierra Leone

SL. 041 — VETERINARY RESEARCH LABORATORY
Teko, via Makeni
Tel.: Makeni 357
Location: W. 12.05 - N. 08.55 - 70 m
Climate: 1476
Staff: 2 scientists, 1 technician - Language: English
Experimental fields:
Pastures: 800 Ha
Training facilities:
A course for inoculators and vet. field assistants is expected to start next year
Library and documentation:
Books for all vet. subjects and different laboratory work - 11 vet. journals and bulletins
Publications:
Field of activity:
Research into animal diseases and post mortem and diagnostic work on diseased animals is carried out. Vaccine against CBPP is produced
Par. Org.: Ministry of Agriculture and Natural Resources (Sierra Leone)
Exec. Ag.: Veterinary Division (SL. 040)

SL. 050 — FACULTY OF PURE AND APPLIED SCIENCES (UNIVERSITY OF SIERRA LEONE)
P.O. Box 87, Freetown
Tel. Add.: FOURABAY - FREETOWN
Par. Org.: Ministry of Education (Sierra Leone)

SL. 060 — FOURAH BAY COLLEGE
P.O. Box 87, Freetown
Tel. Add.: FOURAHBAY - FREETOWN
Location: W. 13.13 - N. 08.29 - 250 m
Climate: 1133
Staff: 37 scientists, 13 technicians - Language: English

Specialized equipment:
Gillet and Silbert 'Conference' microscope with 35 mm camera attachment - Bomb calorimeter - sorptometer - Concentration cell apparatus - Automatic balance
Training facilities:
Courses leading to the B.Sc. Degree (4 years after "O" level)
Courses leading to the B.Sc. (Hons) Degree (5 years after "O" level)
Library and documentation:
63,000 volumes - 900 periodicals
Publications:
Participation in "Fourah Bay College" and "Njala University College" publications as well as in various international and scientific journals
Field of activity:
Pedology - Biology - Ecology - Physiology
Par. Org.: Ministry of Education (Sierra Leone)
Exec. Ag.: Faculty of Pure and Education (SL. 050)

SL. 071 — RICE RESEARCH STATION ROKUPR
Tel. Add.: RICE ROKUPR
Location: W. 12.57 - N. 09.01 - 5 m
Climate: 1133 - Soils: JT-FO-GD
Staff: 3 scientists, 13 technicians - Language: English
Experimental fields:
Non-irrigated crops: 10 Ha - Irrigated crops: 27 Ha
Specialized equipment:
Gene Bank store - Growth cabinet - Artificial dryer
Library and documentation:
800 volumes - 127 journals and periodicals - author and subject index cards - catalogues - microfilm and microreader - reprographic equipment
Publications:
Annual reports - Progress reports - Technical bulletins
Financial support: $24,300
Government of Sierra Leone 100%
Field of activity:
Until recently it was part of the West Africa Rice Research Institute and is now part of the West Africa Rice Development Association. It is in the process of being expanded in terms of staff and resources in order to deal with other crops in addition to rice. There is a substantial laboratory and building complex already in existence. Experimental field plots in different parts of Sierra Leone are controlled from Rokupr.
Par. Org.: Government of the Republic of Sierra Leone
Exec. Ag.: West African Rice Development Association - WARDA (LI. 840)
TOGO (TO)

TO. 020 — MISSION IRAT DU TOGO
BP. 1163, Lomé
Tel. Add.: IRATROP - LOME
Tel.: Lomé 3278

This body is the representative in Niger of the Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - (FR. 130), 110 rue de l'Université, Paris VIIe, France

Par. Org.: Secrétariat d'Etat aux affaires Etrangères (France) Ministère de l'Economie Rurale du Togo

TO. 021 — CENTRE EXPERIMENTAL IRAT DE DAVIÉ (TSÉVIE)
Davié

Location: E. 01.03 - N. 06.20 - 90 m
Climate: 1350 - Soils: ND
Staff: 1 research worker, 1 technician - Language: French
Experimental fields:
- Not irrigated crops: 13 Ha - Irrigated crops: 13 Ha

Teaching and popularization:
- Practical course intended for 2nd year students of the Ecole Nationale d'Agriculture de Tové (1 month)

Publications:
- Annual reports - Syntheses and technical notes

Financial support: $28,500
Bilateral 100%

Field of activity:
- Pedology and fertilization - Cropping techniques (maize, manioc)

Par. Org.: Ministère de l'Economie Rurale (Togo)

Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Mission du Togo (TO. 020)

TO. 022 — STATION IRAT DE TOAGA
BP. 16, Mango

Location: E. 00.30 - N. 10.07 - 300 m
Climate: 1420 - Soils: LF
Staff: 1 research worker - Language: French
Experimental fields:
- Not irrigated crops: 7 Ha

Teaching and popularization:
- Practical course intended for 2nd year students of the Ecole Nationale d'Agriculture de Tové (1 month)

Publications:
- Annual reports - Syntheses and technical notes

Financial support: $28,500
Bilateral 100%

Field of activity:
- Pedology and Fertilization - Cropping techniques (pluviolar rice)

Par. Org.: Ministère de l'Economie Rurale (Togo)

Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) - Mission du Togo (TO. 020)

TO. 041 — STATION IRC'T D'ANIE MONO
BP. 1, Anié
Tel. Add.: IRCTE - ANIE
Tel.: 3 Anié

Location: E. 01.15 - N. 07.45 - 160 m
Climate: 1411 - Soils LF-ND-VC
Staff: 3 research workers, 2 technicians - Language French
Experimental fields:
- Not irrigated crops: 70 Ha - Pastures: 10 Ha

Field of activity:
- General agronomy (selection and propagation of cotton seeds) - Genetics - Meteorology

Par. Org.: Ministère de l'Economie Rurale (Togo)

Exec. Ag.: Institut de Recherches du Coton et des Textiles Exotiques (IRCT) - Paris (FR. 150)

TO. 060 — MISSION IFCC AU TOGO
BP. 90, Palimé

This mission represents in Togo the Institut Français du Café, du Cacao et autres Plantes Stimulantes (IFCC), 34 rue des Renaudes, Paris XVIIe, France - (FR. 180)

The research work is carried on under the direction and in part with the staff of the IFCC Research Centre in the Ivory Coast (IV. 130)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France) Ministère de l'Economie Rurale du Togo

TO. 061 — STATION IFCC DE TOVÉ
BP. 90, Palimé
Tel.: Palimé 45

Location: E. 00.38 - N. 06.54 - 210 m
Climate: 1471 - Soils: AO
Staff: 2 research workers, 2 technicians - Language: French
Experimental fields:
- Not irrigated crops: 31.6 Ha

Special Equipment:
- Collection of cultivars (coffee - cacao - cola)

Library and documentation:
- Specialized card-index system (coffee - cacao - cola)

Publications:
- Half-yearly report of the IFCC/TOGO

Financial support: $155,800
Togo Government 25%
Bilateral 75%
Field of activity:
Production and protection of cacao (surveys and introduction, control of "swollen shoot" disease - fermentation and drying of cacao beans) - Production and protection of the canephora coffee-shrub (clonal experimental work - regeneration)

Par. Org.: Ministère de l'Economie Rurale (Togo)
Exec. Ag.: Institut Français du Café, du Cacao et autres Plantes Stimulantes (IFCC) - Mission au Togo (TO. 060)

TO. 160 — INSTITUT POLYVALENT DE RECHERCHES DE L'ÉCONOMIE RURALE
BP. 1026, Lomé

The IPRER (Institut Polyvalent de Recherches de l'Economie Rurale), whose offices are at Cacavelli (12 km from Lomé), comprises at present six divisions, two of which are already installed: (Pedology and Nutrition). The other divisions will be installed eventually - these will comprise: the division of agronomic research, the division of socio-economic inquiries, the division of relations with foreign research institutes, the division of veterinary research and breeding stations.

The IPRER depends, as regards service, on the Minister for Rural Economy; however, the agronomic research is one of the departments of the INRS (Institut National de la Recherche Scientifique), which is itself subordinate to the Ministry for Youth, Sports and Culture in charge of scientific research.

TO. 161 — DIVISION DES ÉTUDES PÉDÓLOGIQUES ET DE L'ÉCOLOGIE GÉNÉRALE
BP. 1026, Lomé
Tel.: Lomé 3096
Location: E. 01.12 - N. 06.07 - 150 m
Climate: 1350

Staff: 7 research workers - Language: French
Library and documentation:
200 volumes
Publications:
Various periodical publications having a bearing on cartography and soil studies
Field of activity:
Pedology (physical and chemical analysis of soils) - Hydrology (surface waters)

Par. Org.: Ministère de l'Economie Rurale (Togo)
Exec. Ag.: Institut Polyvalent de Recherches de l'Economie Rurale (TO. 160)

TO. 190 — CENTRE ORSTOM DE LOMÉ
BP. 375, Lomé
Location: E. 01.12 - N. 06.07 - 2 m
Staff: 5 research workers, 1 technician - Language: French
Library and documentation:
1,000 volumes
Publications:
Participation in the editing of the "Cahiers ORSTOM " (Pedology Series - Human Sciences series) published by ORSTOM (Paris)
Field of activity:
Seismology - Meteorology - Physical Oceanography (temperature, salinity, haele) - Pedology - Hydrology - Political (human) geography - Sociology

Exec. Ag.: Office de la Recherche Scientifique et technique Outre-Mer (ORSTOM) - Paris (FR. 200)

TO. 800 — PROJET FAO/UNDP DE DÉVELOPPEMENT DES RESSOURCES FORESTIERES
BP. 911, Lomé
Par. Org.: Forestry Department, FAO (Rome) - (UN. 120)

UPPER VOLTA (UV)
(HAUTE-VOLTA)

AGRICULTURAL RESEARCH ORGANIZATION

The specialist Committee for Agricultural Research is entrusted with the coordination of the activities of the various Institutes of Specialized Research Work in operation in the area.

To this end, it defines the aspect of Research work to be pursued with a view to improving agricultural production, examines the results of the studies undertaken by the different Research bodies, fixes an order of urgency for the research projects to be pursued, and finally determines the annual programmes of the experimental stations.

The Committee meets once a year. It is composed of representatives of the different research bodies in operation in Upper Volta and of representatives of the Rural Development services.

UV. 020 — AGENCE IRAT EN HAUTE-VOLTA
BP. 596, Ouagadougou

This agency represents in Upper Volta the Institut de Recherches Agronomiques Tropicale et des Cultures Vivières (IRAT), 110 rue de l'Université Paris VII, France (FR. 130)

The research work is carried out in the stations at Saria (UV. 021), Parako 'Ba (UV. 022), Mogtedo (UV. 023) and Mamboinse (UV. 024) as well as in the outstations at Tankoutounga and at Dori.

Field of activity:
Soil sciences (erosion, deficiencies, maintenance of fertility, manuring). Selection, varietal improvement, cropping techniques, protection of crops (groundnuts, sesame, soya beans ...)

Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France) Ministère de l'Agriculture et de l'Élevage de Haute-Volta

538
UV. 021 — STATION DE RECHERCHES AGRONOMIQUES DE SARIA (IRAT)

Saria, via Kougougou
Location: W. 02.09 - N. 12.17 - 300 m
Climate: 1532 - Soils: ?
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) Agence en Haute-Volta (UV. 020)

UV. 022 — STATION IRAT DE FARAKO'Ba

BP. 32, Bobo-Dioulasso
Location: W. 04.30 - N. 11.00 - 380 m
Climate: 1484 - Soils: ?
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) Agence en Haute-Volta (UV. 020)

UV. 023 — STATION D'HYDRAULIQUE AGRICOLE DE MOGTÉDO (IRAT)

Mogtédo, via Zorgho
Location: W. 00.40 - N. 12.30
Climate: 1532 - Soils: ?
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) Agence en Haute-Volta (UV. 020)

UV. 024 — STATION AGRICOLE IRAT DE KAMBOINSE

Kamboinsè
Location: W. 01.55 - N. 11.55
Climate: 1532 - Soils: ?
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches Agronomiques Tropicales et des Cultures Vivrières (IRAT) Agence en Haute-Volta (UV. 020)

UV. 040 — SECTION D'EXPÉRIMENTATION IRCT EN HAUTE-VOLTA

BP. 237, Bobo Dioulasso
This section represents in Upper Volta the Institut de Recherches du Coton et des Textiles Exotiques (IRCT), 34 rue des Renaudes, Paris XVIe, France (FR. 150)
Par. Org.: Secrétariat d'Etat aux Affaires Etrangères (France) Ministère de l'Agriculture et de l'Elevage (Haute-Volta)

UV. 041 — STATION IRCT DE BOBO DIOULASSO

BP. 237, Bobo Dioulasso
Tel. Add.: IRCTE - BOBO-D
Tel.: 96-71
Location: W. 04.19 - N. 11.10 - 460 m
Climate: 1484 - Soils: LF-ND-LV
Staff: 2 scientists - Language: French
Experimental fields:
- Experimental work in the African environment
- Teaching and popularization:
 - Lectures and practical work for the O.R.D. technicians
Publications:
- Reports of activities - Specialized articles - Participation in "Coton et Fibres Tropicales," published by IRCT (Paris)
Financial support: $60,023
- Upper Volta Government ½
- Bilateral ½
Field of activity:
- Cotton: Anatomy - Physiology (cropping techniques, nurseries, moisture requirements, irrigation) - Genetics (selection) - Entomology - Phytopathology (parasitic fauna and flora, chemical control, biological control).
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches du Coton et des Textiles Exotiques (IRCT) - Section d'Expérimantation en Haute-Volta (UV. 040)

UV. 042 — STATION IRCT D'OUAGADOUGOU

BP. 574, Ouagadougou
Tel.: 27-44
Location: W. 01.03 - N. 12.22 - 300 m
Climate: 1382 - Soils: LF-LP
Staff: 1 scientist
Experimental fields:
- Experimental work in the African environment
Publications:
- Reports of activities - Specialized articles - Participation in "Coton et Fibres Tropicales" published by IRCT (Paris)
Financial support: $ 40,120
- Upper Volta Government ½
- Bilateral ½
Field of activity:
- Cotton: Anatomy - Physiology (cropping techniques, fertilizations, moisture requirements, irrigation) - Genetics (selection) - Entomology - Phytopathology (parasitic fauna and flora, chemical control, biological control).
Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches du Coton et des Textiles Exotiques (IRCT) - Section d'Expérimantation en Haute-Volta (UV. 040)

UV. 061 — STATION AGRICOLE IRHO DE NIANGOLOKO

Niangoloko via Banfora
Location: W. 04.55 - N. 10.17 - 355 m
Climate: 1484 - Soils: ?
Staff: 3 scientists - Language: French (occ. English)
Experimental fields:
Not irrigated crops: 15 Ha

Special Equipment:
Cultivars of groundnuts having early and late cycles, and resistant to "rosette" disease - Collection of wild groundnuts

Publications:
Participation in "Oléagineux, Revue Internationale des Corps Gras," published with the collaboration of the IRHO (Paris)

Financial support: $64,600
Upper Volta Government ½
Bilateral ½

Field of activity:
Cropping techniques - Selection - Hybridation - Protection of crops (groundnuts, sesame).

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO) Paris (FR. 160)

UV. 062 — STATION AGRICOLE IRHO DE SARIA
BP. 21, Kougougou
Tel.: 24, Kougougou

Location: W. 02.09 - N. 12.17 - 300 m
Climate: 1532 - Soils: ?
Staff: 1 scientist - Language: French (occ. English)

Experimental fields:
Not irrigated crops: 5 Ha

Publications:
Participation in "Oléagineux, Revue Internationale des Corps Gras," published with the collaboration of the IRHO (Paris) - Participation in the annual reports of the IRHO

Financial support: $22,800
Upper Volta Government ½
Bilateral ½

Includes the Experimental Outstation at DIEBOUGOU
Location: W. 03.15 - N. 10.52 - 290 m
Climate: 1484 - Soils: ?
Not irrigated crops: 3 Ha

Field of activity:
Selection, varietal improvement, cropping techniques (groundnuts, sesame)

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Institut de Recherches pour les Huiles et Oléagineux (IRHO) Paris (FR. 160)

UV. 090 — SECTION CFTF DE HAUTE-VOLTA
BP. 303, Ouagadougou
Tel.: Ouagadougou 26-71

Location: W. 01.07 - N. 12.05 - 300 m
Climate: 1532 - Soils: ?
Staff: 1 scientist, 4 technicians - Language: French

Library and documentation:
50 volumes

Field of activity:
Silviculture in the soudanian zone (bioclimatology, introduction of exotic species ...) - Soil conservation
To this station are attached the stations at LINOGHIN (UV. 091) and at DINDERESSO (UV. 092) and also the following outstations:

OUTSTATION AT GONSE
W. 01.19 - N. 12.25 - 315 m
Climate: 1532 - Soils: LP-1
Forest: 40 Ha

OUTSTATION AT DONSE
W. 01.24 - N. 12.35 - 285 m
Climate: 1532 - Soils: ?
Forest: 2 Ha
Equipment: Meteorological Station

OUTSTATION AT DORI
W. 00.03 - N. 14.03 - 290 m
Climate: 1534 - Soils: QL-WS-SO-BV
Forest: 1 Ha

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT), Centre Niger-Haute-Volta (NG. 040)

UV. 091 — STATION FORÊTIERE DE LINOGHIN (CFTF)
BP. 303, Ouagadougou

Location: W. 01.09 - N. 12.25 - 285 m
Climate: 1532 - Soils: RE-BV-VC
Staff: 1 scientists, 1 technician - Language: French
Experimental fields:
Not irrigated crops: 6 Ha - Forest: 7 Ha

Special Equipment:
Limnigraphs - Erosion vats - Dividers - Pluviographs (recording rain-gauges)

Library and documentation:
1,400 volumes - Indexing system - Photocopying machine

Field of activity:
Protection and reclamation of the soils

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Section de Haute Volta (UV. 090)

UV. 092 — STATION FORÊTIERE DE DINDERESSO (CFTF)
BP. 303, Ouagadougou

Location: W. 04.25 - N. 11.14 - 400 m
Climate: 1484 - Soils: ND-LG
Staff: 1 technician
Experimental fields:
Forest: 40 Ha

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
Exec. Ag.: Centre Technique Forestier Tropical (CTFT) - Section de Haute-Volta (UV. 090)

UV. 120 — LABORATOIRE DE DIAGNOSTIC ET DE RECHERCHES VÉTÉRINAIRES — OUAGADOGOU
BP. 396, Ouagadougou
Tel.: Ouagadougou 24-32

Location: W. 01.07 - N. 12.05 - 300 m
Climate: 1532
Staff: 1 research worker, 4 technicians - Language: French

Teaching and popularization:
Teaching at the Ecole des Infirmiers Vétérinaires d'Ouagadougou, BEPC level (2 years): microbiology, tropical contagious diseases.

Field of activity:
Animal health (detection of contagious and parastisic diseases - epidemiological surveys)

Par. Org.: Ministère de l'Agriculture et de l'Elevage (Haute-Volta)
INSTITUTIONS AND STATIONS OUTSIDE WEST AFRICA

FR. 100 — GROUPEMENT D’ETUDES ET DE RECHERCHE POUR LE DEVELOPPEMENT DE L’AGRONOMIE TROPICALE (GERDAT)

42, rue Scheffer, 75 - Paris (XVI^e)
Tel.: Paris 553-56-41

In this grouping are included: the Secrétariat d’Etat aux Affaires Étrangères, the Caisse Centrale de Coopération Économique and eight French research institutions which are specialized in tropical agricultural research, i.e.:

- Centre technique forestier tropical (CTFT) (FR. 110); Institut d’élevage et de médecine vétérinaire des pays tropicaux (IEMVT) (FR. 120);
- Institut français de recherches fruitières d’Outre-mer (IFAC) (FR. 170);
- Institut français du café et du cacao (IFCC) (FR. 180);
- Institut de recherches agronomiques tropicales et de cultures vivrières (IRAT) (FR. 130);
- Institut de recherches sur le caoutchouc en Afrique (IRCA) (FR. 140);
- Institut de recherches sur le coton et les textiles exotiques (IRCT) (FR. 150);
- Institut de recherches sur les huiles et oléagineux (IRHO) (FR. 160).

The objective of this grouping is to maximize the research activities of the members, chiefly in order to optimize the development operations in the states where the research is carried out.

FR. 110 — CENTRE TECHNIQUE FORESTIER TROPICAL (CTFT)

45 av. de la Belle Gabrielle - 94 Nogent-sur-Marne (France)
Tel. Add.: CETEFO - NOGENT SUR MARNE
Tel.: 873-32-95 Nogent-sur-Marne

A State Society endowed with civil status and with financial autonomy
Field of activity:
Research in tropical silviculture, technology of forestry products, fresh-water fisheries and pisciculture
Publications:
"Bois et forêts des tropiques"

In French West Africa the research work is carried out in the following centres and sections:

- Centre CTFT en Côte-d’Ivoire (IV. 040)
- Centre CTFT Niger - Haute-Volta (NG. 040)
- Centre CTFT au Sénégal (SG. 110)

FR. 120 — INSTITUT D’ELEVAGE ET DE MEDECINE VETERINAIRE DES PAYS TROPICAUX (IEMVT)

10 rue Pierre Curie, 94 Maisons Alfort (France)
Tel. Add.: TROPELVA - MAISONS ALFORT
Tel.: Paris 368-88-73

A national public establishment enjoying civil status and financial autonomy.
Field of activity:
Biochemistry, Biophysics, Cellular Biology, Genetics, Agrostology, Bromotology (Food Science), Zoology, Taxonomy, Anatomy, Endocrinology, Animal diseases and vectors, Animal production and animal products, Animal health.
Publications:
"Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux"

In French West Africa, research is carried out in the following centres and laboratories:

- Ivory Coast : Centre de recherches zootéchniques de MINANKRO-BOUAKE (IV. 161)
- Niger: Laboratoire d’élevage IEMVT de Niamey (NG. 081)
- Senegal : Laboratoire national de l’élevage et de recherches vétérinaires (SG. 131)
- Senegal : Centre de recherches zootéchniques de DARA-DJOLOFF (SG. 132)

FR. 130 — INSTITUT DE RECHERCHES AGRONOMIQUES TROPICALES ET DES CULTURES VIVRIERES (IRAT)

110 rue de l’Université, Paris VII^e (France)
Tel. Add.: IRATROP - PARIS
Tel.: Paris 551-49-79

A private association governed by the Statute of 1901
Field of activity:
Pedology, Hydrology, Production and protection of harvests, Human nutrition, Technology of food products, Application of radioactive tracers in agriculture
Publications:
"Agronomie Tropicale," a monthly review comprising three series: "Riz, riziculture et cultures vivrières tropicales," "Agronomie générale, études techniques," "Agronomie générale, études scientifiques"

In French West Africa the research work is carried out under the supervision of the following bodies:
<table>
<thead>
<tr>
<th>Agence IRAT au Dahomey</th>
<th>DM. 020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agence IRAT en Côte d'Ivoire</td>
<td>IV. 020</td>
</tr>
<tr>
<td>Agence IRAT au Mali</td>
<td>ML. 060</td>
</tr>
<tr>
<td>Agence IRAT du Niger</td>
<td>NG. 020</td>
</tr>
<tr>
<td>Agence IRAT du Sénégal</td>
<td>SG. 150</td>
</tr>
<tr>
<td>Agence IRAT du Togo</td>
<td>TG. 020</td>
</tr>
<tr>
<td>Agence IRAT en Haute-Volta</td>
<td>UV. 020</td>
</tr>
</tbody>
</table>

FR. 140 — INSTITUT DE RECHERCHES SUR LE CAOUTCHOUC EN AFRIQUE (IRCA)

42 rue Scheffer, Paris XVIe (France)
Tel. Add.: INFRANCA - PARIS
Telex: Paris 62871
Tel.: Paris 553-93-96

A private association governed by the Statute of 1901
Field of activity:
Chemistry - general and organic, Biochemistry, Phyto-
biology, Ecology, Pedology, Protection and cultivation of
plants yielding latex, Technology of rubber
Publications:
" Revue Générale du Caoutchouc "
In French West Africa the research carried out in the
Ivory Coast at the IRCA Station of Bimbresso (IV. 091)

FR. 150 — INSTITUT DE RECHERCHES DU COTON ET DES TEXTILES EXOTIQUES (IRCT)

34 rue des Renaudes, Paris XVIIe (France)
Tel. Add.: IRCTE - Paris
Tel.: Paris 622-53-26

A private association governed by the Statute of 1901
Field of activity:
Cotton and exotic textiles, Genetics, Agronomy, Protection
of crops, Technology publications:
" Coton et Fibres Tropicale "
In French West Africa, the research is carried out under the
supervision of the following bodies:
- Direction Régionale IRCT au Dahomey (DM. 040)
- Station IRCT de Bouaké - Côte-d'Ivoire (IV. 061)
- Direction Régionale IRCT pour le Mali (ML. 020)
- Station IRCT de Malbaza - Niger (NG. 051)
- Station IRCT de Kaolack - Sénégal (SG. 181)
- Station IRCT d'Anié Mono - Togo (TO. 041)
- Section IRCT d'expérimentation en Haute-Volta (UV. 040)

FR. 160 — INSTITUT DE RECHERCHES POUR LES HUILES ET OLEAGINEUX (IRHO)

11 Square Petrarque, Paris XVIe (France)
Tel. Add.: INSTHUIL - PARIS
Tel.: Paris 553-60-25

A private association governed by the Statute of 1901
Field of activity:
Pedology, Production and protection of plants yielding
oil, Human nutrition, Technology of oily materials, ex-
traction and up-grading of the products
Publications:
" Oléagineux "
In French West Africa the research work is carried out under the
supervision of the following bodies:

- Agence IRAT au Dahomey (DM. 061)
- Agence IRAT en Côte d'Ivoire (IV. 062)
- Agence IRAT au Mali (ML. 070)
- Agence IRAT du Niger (NG. 091)
- Agence IRAT du Sénégal (SG. 150)
- Agence IRAT du Togo (TG. 020)
- Agence IRAT en Haute-Volta (UV. 020)

FR. 170 — INSTITUT FRANCAIS DE RECHERCHES FRUITIÈRES D'OUTRE-MER (IFAC)

6 rue du Général Clergerie, Paris XVIe (France)
Tel. Add.: IFACOLO - PARIS
Tel.: Paris 553-16-92

Private Association, governed by the Statute of 1901
Field of activity:
Biochemistry, Phytophysiology, Production and protection
of fruit plantations, Entomology, Phytopathology
Publications:
" Fruits "
In French West Africa, the research projects are carried out by
the missions or sections listed below:
- Mission IFAC au Dahomey (DM. 140)
- Section IFAC du Côte-d'Ivoire (IV. 110)
- Mission IFAC au Mali (ML. 040)
- Mission IFAC en Mauritanie (MR. 050)
- Mission IFAC au Niger (NG. 160)
- Mission IFAC au Sénégal (SG. 170)

FR. 180 — INSTITUT FRANCAIS DU CAFE, DU CACAO ET AUTRES PLANTES STIMULANTES

34 rue des Renaudes, Paris XVIIe (France)
Tel. Add.: IFRACAFE - PARIS
Tel.: Paris 622-53-26

Private Association, governed by the Statute of 1901
Field of activity:
Production and protection of the coffee-shrub, the cacao-
tree, the cola-tree, the tea-shrub and other stimulating
plants.
Publications:
" Café, Cacao, Thé "
In French West Africa, the research projects are carried out by:
- Le Centre de Recherches IFCC en Côte-d'Ivoire (IV. 130)
- La Mission IFCC du Togo (TO. 160)

FR. 200 — OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER (ORSTOM)

24 rue Bayard, Paris VIIIe (France)
Tel. Add.: ORSTOM - PARIS
Tel.: Paris 225-31-52

A French public establishment endowed with civil status and
with financial autonomy.
Field of activity:
Soil Chemistry, Genetics, General physiology, Plant bi-
ology (botany, taxonomy), Animal biology (zoology, tax-
onomy), Soil biology, Gravity, Magnetism, Geology, Vol-
canoology, Geophysics, Medical entomology and hel-
mirnology, Nutrition, Pedology, Hydrology, Production
and protection of the harvests, Continental and maritime
fisheries, Human nutrition, Food technology, Applications
of radioactive tracers in agriculture.
Publications:
Bulletin signalétique d'entomologie médicale et vétérinaire,
monthly; Bulletin bibliographique de pédologie, quarterly;

542

In French West Africa, the research work is carried out under the supervision of the following centres:

- Ivory Coast: Centre ORSTOM d'Adiopodoumé (IV. 300)
- Ivory Coast: Centre ORSTOM de Pehl Bassah (IV. 310)
- Togo: Centre ORSTOM de Lomé (TO. 190)

FAO/UNDP Project - Development of Agricultural Research in the Senegal River Basin (SG. 800)

UN. 118 — JOINT FAO/IAEA DIVISION OF ATOMIC ENERGY IN FOOD AND AGRICULTURE (AGE)

Located in the Headquarters of the International Atomic Energy Agency (IAEA), Kärntnerring 11, A-1010 Vienna (Austria)

Functions:

- Undertakes the planning, programming and co-ordination of all activities concerned with atomic energy in food and agriculture, with the executing divisions of either organization (FAO - IAEA).
- Has scientific and technical responsibility for technical cooperation, pre-investment and other field projects of either agency.
- Retains scientific and technical responsibility for projects concerned with atomic energy in food and agriculture and collaborates with international and regional organizations working in the same field.
- Disseminates technical information on the use of isotopes and radiation in food and agriculture.

In the West African countries this Division carries out research at the following stations:

- Laboratoire de Radioisotopie du CNRA de Bamby (SG. 830)
- Radioisotope Laboratory of the Soil Research Institute (GH. 831)
- Radioisotope Laboratory of the Cocoa Research Institute (GH. 832)

UN. 120 — FAO FORESTRY DEPARTMENT (FO)

FAO, Rome (Italy)

Functions:

- Provides direct advice and assistance to Member Governments on the formulation of forestry development programmes.
- Operates UNDP forestry projects for which FAO is the executing agency and participates in the operation of other UNDP projects where forestry aspects are involved.
- Collects, analyzes and disseminates information on forest policy and legislation, forest production, forestry research and the role of forestry in the national, regional and world economy.
- Promotes regional and world-wide cooperation in these fields and assists in the implementation of the resulting recommendations, prepares and publishes technical, economic and statistical reports on various aspects of forestry and forest industry development.

In West African countries, this Department carries out research at the following stations:

- FAO/UNDP Project - Development of Forest Resources (TO. 800)
- Savanna Forestry Research Station (NI. 151)
LOCATION OF AGRICULTURAL RESEARCH - INSTITUTIONS AND STATIONS

SCHEME OF MAIN CLIMATIC ZONES

After J. Papadakis