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ABSTRACT Assessing the healthiness of food items in images has gained attention in both the computer
vision and the nutrition fields. However, such task is generally a difficult one as food images are captured
in various settings and thus are usually non-homogeneous. Moreover, assessing how healthy a food item is
requires nutritional expertise and knowledge of the constituents of the food item and how it is processed.
In this manuscript, we propose an end-to-end deep learning approach that can detect and localize various
food items in a given food image using a customized object detection model. Our approach then assesses how
healthy each detected food item is by classifying it into one or more of the four NOVA groups (Unprocessed
Food, Processed Culinary Ingredients, Processed Food, and Ultra-processed Food). To train our food item
detection model, we used two public datasets and a custom one we created ourselves and which contains
images of food taken using wearable cameras. To train the NOVA food classifier, we use the custom dataset
we created ourselves and that was manually labeled by expert nutritionists. Our food item detection model
achieved a mAP of 0.90 and the NOVA food classifier achieved an average F1-score of 0.86 on test data.

INDEX TERMS Food images, NOVA food classification, deep learning, nutrition.

I. INTRODUCTION
With the proliferation of ubiquitous devices such as smart
phones and wearable cameras, documenting dietary intake
through images has become a common practice. Automat-
ically assessing the healthiness of food items in images
is a challenging computer vision task.1 Food images can
generally be non-homogenous as they can be taken in various
settings and with different resolutions and qualities. They
might also contain multiple food items in addition to other
non-food related ones. Finally, assessing the healthiness of
each food item in an image requires a knowledge of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

1In this manuscript, we use the term food to refer to both food and
beverages.

constituents of the food items and how they are processed,
which can be only accurately done by trained nutritionists
who are familiar with the food items captured in the images.

To address all of the above mentioned challenges, we pro-
pose an end-to-end deep learning approach that can assess the
healthiness of multiple food items in images without making
any assumptions on how or where the images were taken. Our
approach consists of two models: 1) a food item detection
model that detects and localizes food items in an image
that contains multiple food items, and 2) a classification
model that classifies a detected food item into one or more
of the four NOVA food groups, namely Unprocessed or
Minimally Processed Food (Group 1); Processed Culinary
Ingredients (Group 2); Processed Food (Group 3), and
Ultra-processed Food (Group 4) [1]. Ultra-processed food
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FIGURE 1. Overview of approach.

is usually considered unhealthy as it is associated with
increased risk for obesity and other chronic diseases [2].
Using these two models, our approach can thus assess the
healthiness of various food items in any given image. Our
proposed approach is depicted in Figure 1. It takes as input
an image containing one or more food items and passes
it to the food detection model, which detects and localizes
each food item in the images using bounding boxes. The
localized food items are then extracted using their bounding
boxes and each food item image is then passed to the NOVA
classifier, which classifies the food item into one or more
of the four NOVA groups based on the processing level it
went through. In Figure 1, the predicted groups for each
detected food item are indicated under the food item, where
1 indicates the first NOVA group, 2 the second one and
so on.

Our food item detection model is based on a customized
YOLOv3 (YouOnly LookOnce, Version 3)model for general
object detection [3]. To train our model, we used two public
datasets, which are the EgocentricFood dataset [4] and the
UECFood-256 dataset [5], and a custom dataset we created
ourselves, which we refer to as the NOVA dataset. The first
dataset, the EgocentricFood dataset, consists of food images

captured using wearable cameras, and which contain food
items of various types (general food, glass, cup, jar, can, mug,
bottle, dish, and basket). The food items in the images in
this dataset are localized using bounding boxes. The second
dataset we used to train the food item detection model, the
UECFood-256 dataset, consists of images of Asian food (e.g.,
Miso soup, RamenNoodles and Fired Rice) that were crawled
from the Web. The food items in each image in this dataset
are also localized using bounding boxes. The third dataset
we used to train our food item detection model, the NOVA
dataset, consists of images of Tunisian food captured through
wearable cameras. The images were then annotated on the
crowdsourcing platform Labelbox2 to detect food items in
the images, again using bounding boxes. The reason we
used these various datasets to train our food item detection
model is to add more variability in the training data of the
model to obtain a general model that can detect and localize
food items in any food image no matter how or where it
was captured. Our food item detection model achieved a
mean Average Precision (mAP) of 0.90 on test data from the
NOVA dataset.

Once food items have been detected and localized in a
given food image, our approach extracts each food item using
its bounding box and passes it to the NOVA classification
model to estimate its healthiness. There have been many
attempts to estimate the healthiness of food items using
their corresponding images. However, most of these are
quantitative approaches that are based on volume and calories
estimation, which face many limitations. For instance, many
of these approaches make unrealistic assumptions about the
food images such as assuming the food images are all
captured from specific predefined angles, or assuming the
presence of reference objects in each image that can be used
to estimate the volume of the food items. To this end, many
expert nutritionists are advocating for food classification
systems that are based on the food processing level rather than
using calories and volume to assess the healthiness of food
items [6]. Our proposed approach in this manuscript follows
this school of thought by doing a qualitative assessment of the
healthiness of food items rather than a quantitative one based
on calories estimation.

Our NOVA classification model classifies food items into
four groups according to the nature, extent and aim of the
industrial processes that were applied to the food items. The
first group is the Unprocessed or Minimally Processed Food,
which includes natural food items such as vegetables, fruits,
eggs, milk, water, etc. The second group is the Processed
Culinary Ingredients, which is usually acquired from the first
group and includes butter, oil, honey, etc. The third group is
the Processed Food, which includes products made by adding
salt, sugar or other Group 2 substances to Group 1 food
such as unpackaged bread, canned fish, canned vegetables,
etc. Finally, the fourth group is the Ultra-Processed Food,
which includes food items that are produced using a series

2https://labelbox.com/
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of industrial processes such as chips, chocolate, soft drinks,
hotdog, etc. Obviously, a single food item might contain
constituents that belong to more than one of these four groups
and thus our NOVA classification model is a multi-label
classification model.

Our NOVA classification model is based on the
MobileNetV2 deep learning architecture [7]. To train our
model, we used the NOVA dataset that we also used as
part of the training data for the food item detection model.
The dataset consists of image of Tunisian food that were
captured using wearable cameras and that were annotated
using crowdsourcing. In addition to localizing food items in
the images using bounding boxes, the food items were also
labeled with one or more of the NOVA groups depending
on the level of processing the food items underwent. Since
such task requires knowledge about the ingredients of
food items and how they are processed, the NOVA dataset
was fully annotated by expert Tunisian nutritionists. Our
NOVA classification model described in this manuscript can
thus assess the healthiness of Tunisian food items based
on their images. However, our approach itself is general
enough that it can be used to assess the healthiness of any
food items, provided that accurately-labeled training data is
obtained. Such data can be obtained using crowdsourcing
as we did in the case of Tunisian food, as long as the
annotators have sufficient knowledge about the food items
in the images. Our NOVA classification model achieved
an average F1-score of 0.86 on test data from the NOVA
dataset.

Our main contributions in the manuscript can thus be
summarized as follows:

1) we build a general deep-learning-based food item
detection model that can be used to detect and localize
food items in any food image,

2) we build a deep-learning-based multi-label classifica-
tionmodel that can be used to classify a food item based
on its image into one ormore of the NOVA food groups,
and

3) we provide a prototype to acquire training data for these
two models using crowdsourcing.

The manuscript is organized as follows. In Section II,
we give an overview of related work that addresses the
problem of assessing the healthiness of food items using
their images. In Section III, we describe our proposed deep
learning approach to assess the healthiness of food items
based on their images. Section IV describes the experiments
we conducted to evaluate our proposed approach, their results
and the error analysis of the proposed approach. Finally,
we conclude and provide future directions in Section V.

II. RELATED WORK
There is a wealth of work on food analysis from food images.
These works can be broadly categorized into works that focus
on food item detection, works that focus on food healthiness
assessment, or both.

A. FOOD ITEM DETECTION
Most of the works that aim to analyze food based on
their images require algorithms and models for food item
detection, recognition, and segmentation. For example,
Akhi et al. [8] proposed a Convolutional Neural Network
(CNN) model based on the ResNet-5 pre-trained model [9],
which was used to extract features from fast-food images.
The extracted features were then used to train a multi-class
Support Vector Machines (SVM) classifier that classifies
food images into 10 classes. Similalry, Liu et al. [10]
proposed a deep learning approach based on CNNs that
classifies food images that are captured in the real world.
Aguilar et al. [11] developed a framework that addresses
the problem of automatic food-tray analysis in restaurants.
Their framework is based on CNNs, and is composed of food
localization, recognition, and segmentation models. The first
part of their framework is a food segmentation model that is
based on a Fully Convolutional Network (FCN), and it aims
to separate food items from the background (i.e, the tray). The
second part of the framework then detects food items by using
the YOLOv2 model [12].

Bolanos et al. [4] proposed another approach for generic
simultaneous food localization and recognition. First, they
trained the GoogleNet CNN model [13] to distinguish
between food and non-food images. Second, they enhanced
the previous model by adding Global Average Pooling (GAP)
layer that aims to generate heat maps of food probabilities.
Finally, bounding boxes were generated for the regions with
a probability above a certain threshold. After detecting the
food items, they fine-tuned the GoogleNet model to classify
the items into various types. In addition to that, they built
the EgocentricFood dataset, which contains food images that
were captured using wearable cameras.

Unlike most of the approaches described above, our food
item detection model proposed as part of the approach
described in this manuscript does not make any assumptions
about how the food images were captured or what they
contain. It is thus able to detect food items of different shapes,
sizes, and types in images that are taken in real settings, and
with various resolutions and qualities. Our model is based on
a customized version of YOLOv3 [3] that is able to detect
food items on three different image scales with very high
accuracy as indicated by our experiments.

B. FOOD HEALTHINESS ASSESSMENT
Assessing the healthiness of food items present in an image is
a challenging computer vision task. Most works that address
such problem rely on estimating the amount of calories
in the food items to assess their healthiness. For instance,
Liang et al. [14] proposed a calorie estimation approach
that takes two images as an input: a top and a side view
of a food item that include on its side a coin, which is
used as a calibration object. They used a Faster r-CNN
model [15] to detect food items using bounding boxes. They
then applied image segmentation on the detected food items
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for background removal using the GrabCut algorithm [16].
The segmented images are then used to estimate the volume
and mass of the detected food items, which are in turn used
to estimate the amount of calories in each food item.

Similarly, Myers et al. [17] developed the Im2Calories
system that estimates the amount of calories in food dishes.
They started by training a GoogLeNet model on the Food101
multi-labeled dataset [18]. They then used the DeepLab
system [19] for semantic image segmentation to localize food
items and segment them. Using the voxel representation and
the segmentation mask of food items, they estimated the
volume of each food item, and consequently predicted the
amount of calories using the calorific density of each type
of food. The authors, however, faced the problem of lack of
sufficient calorie-annotated training data and thus could not
do extensive evaluation of their approach because the texture
properties and the color of the images in the Food101 dataset
are different from the ones of real food images.

Another related work is the one by Lu et al. [20], where
the authors proposed an AI system that is able to estimate
the nutrient intake of hospital patients. They built a dataset
consisting of 660 images by setting up a table that contains
a camera on the top with a specific distance from the
food items. In addition to that, they created a database that
contains the recipes and the nutrient intake of the consumed
meals. They used a Multi-Task Fully Convolutional Network
(MTFCN) model [21] for image segmentation that aims to
estimate the volumes of food items, which in turn helped in
estimating the nutrient intakes based on the created database.

Gao et al. [22] proposed MUSEFood, which is a
food-volume estimation approach that is different from
all of the previous volume-estimation approaches. Their
proposed approach does not require any training using food
images with their corresponding volume information, and
in addition eliminates the need to place a reference object
of known size when capturing the images. Instead, they
used microphones and speakers to calculate the vertical
distance from the camera to the food items, which helped in
estimating the actual volume of the food items and in turn
estimating the amount of calories in the food items.

Chokr and Elbassuoni [23] also proposed an approach
for calories estimation from food images. Their approach
uses a machine learning model to predict the type of a
food item in an image based on the image visual features.
Their approach also predicts the size of the food item (in
grams) and then based on these two predicted values as
well as the original features of the image, it estimates the
amount of calories in the food item. However, the authors
only trained and tested their model on images that contain
a single food item that belongs to only one of six different
categories (burger, chicken, doughnut, pizza, salad and
sandwich).

Overall, using volume and calories estimation approaches
for assessing the healthiness of food items has many
limitations including 1) the fact that the images of the food
items should be captured from specific angles, 2) the need for

reference objects, which are used in volume estimation, to be
present in the food images, 3) training these models typically
requires a large number of annotated images for each food
type, and 4) there should be a specific predefined database
that contains the nutrient information of the food items that
exist in the images.

Sudo et al. [24] proposed a different healthiness assessment
approach that is based on a feature extraction deep learning
model that is followed by a ranking algorithm. First, they built
a dataset of 850 images of meals that were taken from a top
view. These images were ranked by registered nutritionists
based on the healthiness of the whole meal from best to
worst. Second, they built a feature extraction model that
uses a CNN followed by a pyramid scene parsing network
(PSPNET) [25], which outputs pixel-based feature maps. The
extracted features were then used as an input to the ranking
algorithm that uses another CNN. However, the authors
reported that the correlation coefficient between the rankings
of the nutritionists and the ground truth rank that is based
on the nutritional facts of the meals was relatively low. The
authors explained that their approach did not perform well
because assessing the healthiness of food items by ranking
them from best to worst without a specific criteria is not
highly correlated with the ground truth healthiness of the food
items.
Our healthiness assessment approach we propose in

this manuscript addresses all the limitations of the above
described approaches by utilizing a qualitative approach
rather than a quantitative one. Instead of estimating the
amount of calories in food items depicted in images,
it classifies the food items into one or more of the four NOVA
food groups based on their processing level. Our NOVA
classification model can thus be used to accurately assess the
healthiness of multiple food items in generic images without
making any unrealistic assumptions about how the food
images were taken. Moreover, our model does not require
extensive annotation efforts as is the case with most of the
above surveyed approaches.

III. APPROACH
In this section, we describe our end-to-end deep learning
approach that can assess the healthiness of multiple food
items in images. Our approach consists of two models: 1) a
food item detection model that detects and localizes food
items in an image, and 2) a classification model that classifies
a detected food item into one or more of the four NOVA food
groups. We describe each model separately next.

A. FOOD ITEM DETECTION MODEL
Our food item detection model is a customized object
detection model that localizes food items in an image using
bounding boxes. The food items can be of any type, shape,
and size. Moreover, they can be in a dish, bowl, cup, or held
by a person, etc. We first describe the data we used to train
such a model, then we describe the architecture of the model
itself afterwards.

128526 VOLUME 10, 2022



S. Elbassuoni et al.: DeepNOVA: A Deep Learning NOVA Classifier for Food Images

FIGURE 2. Training example for the food item detection model.

TABLE 1. EgocentricFood dataset: distribution of food items across
categories.

1) DATASETS
Training our food item detection model requires a dataset
consisting of images that contain food items localized using
bounding boxes. For example, Figure 2 shows a sample
training example consisting of an image with multiple food
items and where the food items are localized using bounding
boxes. We used three different datasets to train our food
item detection model. The first two are the EgocentricFood
dataset [4] and the UECFood-256 dataset [5], which are
both publicly available datasets, and the third is a custom
dataset that we created ourselves and that contains food
images taken usingwearable cameras and inwhich food items
were localized via crowdsourcing. The reason we used three
different datasets is to ensure 1) we use a sufficiently large
amount of data to train a deep-learning model, which usually
require large amounts of data, and 2) we have sufficient
variability in the training data so that our model is able to
detect and localize all food items in any image regardless of
their shape, type or size and regardless of how or where the
image was taken.

Our first dataset, the EgocentricFood dataset, includes
5,038 images that were taken by wearable cameras. The
images contain 7,294 different food items that are localized
using bounding boxes. The dataset contains nine categories of
food items, which are glasses, cups, jars, cans, mugs, bottles,
dishes, baskets and others (food items that do not belong to
any of the other categories). The distribution of food items
across these categories is shown in Table 1. Figure 3 shows a
sample of images from this dataset.

FIGURE 3. Sample images from the EgocentricFood dataset.

TABLE 2. UECFood-256 dataset: Top-10 categories with the highest
number of items.

FIGURE 4. Sample images from the UECFood-256 dataset.

Our second dataset, the UECFOOD-256 dataset, is an
Asian food dataset that consists of food images crawled from
the Web. Similar to the first dataset, the food items in this
dataset are also localized in the images using bounding boxes.
The dataset consists of a total of 28,898 images that contain
31,395 food items belonging to 256 different categories.
The dataset contains at least 100 images for each category.
Table 2 shows the 10 categories with the highest number of
items in the dataset. Figure 4 shows sample images from the
UECFOOD-256 dataset. Since the dataset consists of images
crawled from the Web, some of these images are not taken in
real-life settings such as commercial images of food items.
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FIGURE 5. Sample images from the NOVA dataset.

The third and final dataset we used to train our food
item detection model, which we refer to as the NOVA
dataset, consists of 1,800 food images. The images contain
various Tunisian food items as they were taken by school
children in Tunisia using wearable cameras. Figure 5 shows
sample images from the NOVA dataset. To localize the food
items in the images, we created a custom interface on the
crowdsourcing platform Labelbox3 that allows annotators
to localize each food item in a given image by drawing a
bounding box around it. Each image was annotated by two
different trained nutritionists. After all the images in the
NOVAdataset were annotated on Labelbox, we ended upwith
4,201 localized food items in the 1,800 images.

2) MODEL
Our generic food item detection model is based on YOLOv3
model that was developed by Redmon and Farhadi [3].
YOLOv3 is a one stage real-time object detection model
that localizes general objects in images and videos using
bounding boxes. This model has been shown to outperform
other object detection models in terms of both detection
quality and time [3].

Similar to YOLOv3, our food detection model is made up
of two main components, which are a feature extractor and a
feature detector. The feature extractor is a CNN referred to in
YOLOv3 as Darknet-53. It is made up of 53 layers (hence the
name Darknet-53) with 3× 3 and 1× 1 convolutional layers
followed by residual connections [9]. 53 additional layers are
also added to the Darknet-53 network that serve as a detection
head, resulting in a total of 106 convolutional layers. The
detection head of the model performs object detection on
three different image scales by applying 1 × 1 detection
kernels on their corresponding feature maps [3]. The three
scales of each image are determined by the stride parameters
in the CNN, which are responsible for down-sampling the

3https://labelbox.com/

FIGURE 6. Bounding box coordinates prediction.

images by factors of 32, 16, and 8, respectively. Since all
the images in our three training datasets have a resolution of
416 × 416, we ended up with three different resolutions for
each image: 52 × 52, 26 × 26, and 13 × 13. This technique
of performing object detection on three different scales of
each image helps in improving the accuracy of detecting food
items of different sizes as we show in our experiments in
Section IV.

After getting the feature maps, the input image is divided
into S × S grid according to the extracted feature map size.
For example, a 416× 416 image with a 26× 26 feature map
will result in an image divided into 26× 26 cells. Each of the
cells predicts three bounding boxes, objectness scores (i.e.,
the probability that there is an object in a bounding box ), and
the classes the detected objects belong to. The model outputs
a bounding box coordinate (tx , ty, tw, th), where (tx , ty) is the
center of the bounding box and (tw, th) is the width and height
of the box. The bounding boxes are calculated with the help
of the anchor boxes, which are predefined bounding boxes
that are used to predict the bounding boxes coordinates by
predicting the offsets to the anchor boxes. Figure 6 shows the
predicted bounding box coordinates in green and the anchor
box in red.

The anchor boxes are calculated using the k-means
clustering algorithm [26], which starts by choosing k random
points as initial clustering centroids. It then calculates the
distance from each point to each of the centroids, and finally
assigns each point to its nearest centroid. The algorithm
then proceeds to update the centroids until the algorithm
converges (i.e., the centroids do not change anymore). In our
model, the input to the clustering algorithm is the widths and
heights of the bounding boxes and we set k = 9 since we
need three anchor boxes per each of the three image scales.
To calculate the distance from a centroid to a bounding box,
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we subtract 1 from the Intersection over Union (IoU) of the
box and the centroid as shown in Equation 1:

distance(Box,Centroid) = 1− IoU (Box,Centroid) (1)

where IoU is a measure that calculates the similarity between
two bounding boxes using Jaccard index by dividing the
intersection of the shapes by their union as shown in Eq. 2:

IoU =
|A ∩ B|
|A ∪ B|

(2)

To calculate the bounding boxes coordinates, the model
first transforms the output of the CNN (tx , ty, th, tw) to
(bx , by, bw, bh), where (bx , by) is calculated by applying
sigmoid function (Eq. 3 and Eq. 4) on the predicted (tx , ty)
and adding (cx , cy), which is the top-left offset of our grid
from the current cell of the feature map:

bx = σ (tx)+ cx (3)

by = σ
(
ty
)
+ cy (4)

(bw, bh) is the width and height of the predicted bounding
box, which are calculated using (pw, ph), which in turn is the
anchor box’s coordinates as can be seen in Eq. 5 and Eq. 6:

bw = pwetw (5)

bh = pheth (6)

In addition to the bounding box coordinates, the model
outputs an objectness score, which is calculated using logistic
regression (Eq. 7) and indicates the probability that there is
an object inside a certain bounding box:

σ (x) =
1(

1+ e−x
) (7)

Moreover, the model also predicts classes for the detected
objects using a sigmoid function (i.e., multi-label classifica-
tion where the model can predict more than one class per
bounding box). Note that in our case, all objects are assumed
to belong to one class, namely food, as compared to the
general YOLOv3 model, which is typically used to detect
objects that belong to multiple classes (e.g., car, pedestrian,
truck, tree, etc.). That is, in our case, the objectness score
represents the probability that there is a food item inside a
bounding box, and the classification is a binary one (i.e.,
a detected object is either a food item or not).

The YOLOv3 model calculates the bounding box error
using Mean Squared Error (MSE) of t − t̂ [3], where t is
the ground truth coordinates, and t̂ is the predicted ones.
In our model, we use the Generalized IoU (GIoU) proposed
by Rezatofighi et al. [27] as a loss function. GIoU is an
extension of IoU that addresses its limitations as pointed out
in [27]. First, If |A ∩ B| = 0, then IoU = 0 and therefore
IoU will not reflect if the bounding boxes are near or far from
each other. Second, IoU does not actually reflect the overlap
between the bounding boxes. The GIoU metric was proposed
to solve these problems and the evaluation in [27] shows that
using theGIoU loss improves the performance ofmany object

detection models, including YOLOv3, on popular object
detection benchmarks such as the COCO dataset [28]. GIoU
is calculated using Eq. 8:

GIoU (A,B) = IoU (A,B)−
|C\(A ∪ B)|
|C|

(8)

where C is the smallest box enclosing A and B, and
|C\(A ∪ B)| calculates the area occupied by C without
A and B.

The values of IoU are in the range [0, 1], whereas the
values of GIoU are in the range [−1, 1], where 1 is the
maximum value when two bounding boxes overlap and
−1 is the minimum value when the bounding boxes are not
overlapping. GIoU loss is calculated by subtracting 1 from
the value of GIoU as shown in Eq. 9:

LGIoU = 1− GIoU (9)

Unlike the standard YOLOv3, which uses BCE loss for
objectness scores and class prediction, we use BCE with
Logits Loss (BCEWithLogitsLoss) as shown in Eq. 10:

BCEWithLogitsLoss = −
1
n
×

∑
i

(
yi × log

(
σ
(
ŷi
))

+ (1− yi)× log
(
1− σ

(
ŷi
)))
(10)

where y is the true label of the image, ŷ is the predicted
probability, and σ is the sigmoid function that maps the
values between 0 and 1. This is a more stable version of
BCE loss, which takes too long to converge compared to
BCEWithLogitsLoss that uses sigmoid before applying the
BCE loss, resulting in more stable results [29].

Our final loss function that we need to minimize while
training the model is thus a sum of the object (i.e., food item)
localization loss, the classification loss (whether a localized
object is a food item or not) and the objectness loss (the
probability of a food item being present in a bounding box)
as shown in Eq. 11:

Lmodel = LLocalization + LClassification + LObjectness (11)

where:

LLocalization =
S2∑
i=0

B∑
j=0

LGIoU (bji, b̂
j
i) (12)

LObjectness =
S2∑
i=0

B∑
j=0

1obj
i,j

[
cji × log

(
σ
(
ĉji
))

−

(
1− cji

)
× log

(
1− σ

(
ĉji
)) ]

+λnoobj

S2∑
i=0

B∑
j=0

1noobj
i,j

[
cji × log

(
σ
(
ĉji
))

−

(
1− cji

)
× log

(
1− σ

(
ˆcji

)) ]
(13)
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TABLE 3. NOVA dataset: distribution of food items over the NOVA food groups.

LClassification =
S2∑
i=0

B∑
j=0

1obj
i,j

∑
c∈class

[
p(cji)

× log
(
σ
(
p(ĉji)

))
−

(
1− p(cji)

)
× log

(
1− σ

(
p(ĉji)

)) ]
(14)

and s2 = (s × s) is the number of cells of the feature map,
and B, which is set to 3 in our model, is the number of
bounding boxes generated by each cell. In the localization
loss equation (Eq. 13), bji and b̂

j
i are the true and predicted

bounding boxes coordinates, respectively. The objectness loss
(Eq. 13) is calculated using BCEWithLogitsLoss, where cji
and ĉji are the true and predicted confidences, respectively.

1noobj
i,j is used to determine if the jth bounding box of the

ith cell is not responsible for the detection of the object.
In addition, λnoobj is the weight of GIoU loss, which is set
to 0.5 in our experiments. Similarly, the classification loss
(Eq. 14) is calculated using BCEWithLogitsLoss, where p(cji)
is the ground truth probability that the object in the ith cell
belongs to class c (in our case the single class food), and
p(ĉji) is the predicted probability. Similar to the objectness
loss, 1obj

i,j checks if the jth bounding box of the ith cell is
the one responsible for the detection. It is equal to 1 if the
GIoU (BoundingBox,GroundTruth) is 1 (i.e., the maximum
value possible), and 0 otherwise.

B. NOVA CLASSIFICATION MODEL
Once food items have been detected and localized in an image
using our food item detection model described above, they
are fed to the NOVA classification model, which classifies
each food item into one or more of the four NOVA groups [1]
based on their nature and the extent of the industrial processes
that were applied to the food items. The first group is the
Unprocessed or Minimally Processed Food, which includes
natural food items such as vegetables, fruits, eggs, milk,
water, etc. The second group is the Processed Culinary
Ingredients, which is usually acquired from the first group
and includes butter, oil, honey, etc. The third group is the
Processed Food, which includes products made by adding
salt, sugar or other Group 2 substances to Group 1 food
such as unpackaged bread, canned fish, canned vegetables,
etc. Finally, the fourth group is the Ultra-Processed Food,
which includes food items that are produced using a series
of industrial processes such as chips, chocolate, soft drinks,
hotdog, etc. Since a food item can belong to more than one
of these groups at the same time, our NOVA classification
model is a multi-label classifier. We first describe the dataset
we used to train the model and then describe the model itself
afterwards.

1) DATASET
To train our NOVA classification model, we used the NOVA
dataset we created ourselves as part of the training data for
the food item detection model. To the best of our knowledge,
no public datasets are available that contain images of food
items with their corresponding NOVA food groups. Recall
that the NOVA dataset consists of 1,800 images of Tunisian
food items captured through wearable cameras in real-life
settings. Each one of these images was annotated by two
different trained Tunisian nutritionists using the Labelbox
crowdsourcing platform. The annotators localized each food
item in each image by drawing a bounding box around it.
In addition, for each localized food item, each of the two
annotators assigned it to one or more of the four NOVA
food groups based on its processing level as perceived by the
annotator. In case it was not possible for an annotator to assign
a certain food item to any of the NOVA groups based on its
image, the annotator indicated this by not assigning the food
item to any of the groups.

The agreement between the two annotators was then
calculated over all the food items detected in all the images
in the NOVA dataset using 1) the IoU of the bounding boxes
provided by the two annotators to localize each detected food
item, and 2) the agreement over the assigned NOVA groups
between the two annotators for each detected food item. The
agreement score between the two annotators was 85%. As can
be observed, there was a disagreement on the food groups
for a small portion of the detected food items between the
two annotators, which can be mainly attributed to the fact
that some food items contain some ingredients that were not
visible in the images such as oil and salt. To address this, the
two annotators were asked to go over all the food items with
an agreement less than 95% until they agreed on their NOVA
groups.

After the just described annotation process was completed,
we extracted cropped images of all the detected food items in
the original images using their bounding boxes’ coordinates.
We thus ended up with a dataset that contains 4,201 images
of different food items that belong to the different NOVA
groups. Out of these, 185 food items were not assigned to
any NOVA food group, and were thus removed from the
dataset. We also removed any images of food items that
were too blurry or too small from the dataset. Thus, the
final dataset that we used to train the NOVA classification
model consisted of 3,728 images of food items that belong
to the different NOVA groups as shown in Table 3. As a
food item can belong to multiple NOVA groups at the same
time, in the table, the column corresponding to xy indicates
the number of food items that belong to both groups x
and y. For example, the number of food items in the NOVA
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dataset that belong to groups 1 and 2 is equal to 510 food
items.

2) MODEL
Our NOVA classificationmodel is based on theMobileNetV2
architecture [7]. The architecture of MobileNetV2 contains
an initial fully convolutional layer with 32 filters, followed
by 19 residual bottleneck layers. It uses ReLU6 as a
non-linearity because of its robustness when used with low-
precision computations. It uses a kernel size of 3 × 3 as
is standard in modern networks, and utilizes dropout and
batch normalization during training. To adapt MobileNetv2
to our case and use it to classify a food item into one or
more of the NOVA groups, we built a model that is made up
of MobileNetV2 architecture loaded with frozen ImageNet
weights, and we added a classifier on the top of it. The
classifier consisted of a global average pooling layer followed
by a dense layer of 250 neurons and a dropout layer with a
dropout rate of 0.5. The output layer is a dense layer with
four neurons representing the four NOVA groups. Each of the
four neurons uses a sigmoid activation function to output the
probability of a food item belonging to each of the four NOVA
classes. Finally, to train the full model, we used Binary Cross
Entropy loss as a loss function.

IV. EXPERIMENTS
In this section, we describe how we trained our two models,
the food item detection model and the NOVA classification
model. We report on the performance of each model, and then
provide some error analysis for each one.

A. FOOD ITEM DETECTION MODEL
For the food item detection model, we trained three different
versions of the model described in Section III using
our three training datasets, the UECFood256 dataset, the
EgocentricFood dataset, and the NOVA dataset. For the first
model, we obtained the pretrained weights for the base
YOLOv3 model on the COCO dataset [28] and retrained the
whole food item detection model using the UECFood256
dataset. The dataset was split into 80% for training (23,119
images) and 20% for validation (5,780 images). We refer to
this model as the UECFood256 model.
For our second model, we started with the UECFood256

model, and froze the weights of the backbone network,
Darknet-53, which is used as the feature extractor. We then
only trained the head of our food item detection model via
transfer learning using the EgocentricFood dataset. Again,
this dataset was split into 80% for training (4,038 images) and
20% for validation (1,000 images). We refer to this second
model as the EgocentricFood model.

Finally, for our third model, we again started with the
UECFood256 model and did transfer learning by freezing the
backbone of our model, Darknet-53. We then trained only the
head of the model, however on a combination of the NOVA
dataset and the EgocentricFood dataset, but after removing a
random sample of 500 images from the NOVA dataset, which

is used as our test data. We split the combined data into 80%
for training and 20% for testing. We refer to this model as the
NOVA and EgocentricFood model.

The three above-described models were all trained for
100 epochs on images of size 416× 416. We used a learning
rate of 0.01 and a decay weight of 0.0005. Moreover, we used
different anchor boxes, depending on the dataset that was
used for training. That is, we generated nine anchor boxes
for each dataset using the k-means algorithm as explained in
Section III. Table 4 shows the anchor boxes for each dataset
on three scales.

To evaluate the three models, we used the mean Average
Precision (mAP) metric. mAP is the mean of AP over the
classes and since we only have one class, namely food, the
mAP will be the same as AP. To compute mAP, we need
to compute the precision (Eq. 15) and the recall (Eq. 16).
We also need to specify an IoU threshold value. For a
threshold value of 0.5, a detected object is a True Positive
(TP) if IoU ≥ 0.5, otherwise it is a False Positive (FP). On the
other hand, a False Negative (FN) is a food item that was not
detected and a True Negative (TN) is any part of the image
that does not contain any food item.

Precision =
TP

TP+ FP
(15)

Recall =
TP

TP+ FN
(16)

In our evaluation, we used two mAP versions: the Pascal
Visual Object Classes (VOC) metric [30] and the COCO
metric [28]. The Pascal VOC metric, mAp@0.5 calculates
the mAP for IoU ≥ 0.5. The COCO metric, mAP@[0.5 :
0.95], calculates the average of the mAP over different IoU
thresholds that range from 0.5 to 0.95 with a step size of 0.05.

In order to compare the three versions of our food item
detection model describe above, we tested them on 500
images that were sampled from the NOVA dataset and were
not part of the training or validation. Table 5 shows the results
for the three models using different metrics. We can clearly
see that the NOVA and EgocentricFood model outperforms
the first two models for all metrics. The UECFood256
model achieved the worst results since the images in this
dataset were crawled from theWeb and are all homogeneous,
which thus does not generalize well to other more realistic
images such as those captured through wearable cameras.
The EgocentricFood model achieved better results since the
images in this dataset are taken from wearable camera, which
are very similar to the test images.

As a baseline, we also trained a standard YOLOv3
model on the combined NOVA and EgocentricFood datasets
(with the same train-validation split as the NOVA and
EgocentricFood model) and compared it with our best
performing model, the NOVA and EgocentricFood model.
Table 6 shows the localization loss and the objectness loss
for each model on the validation set. As can be seen from the
table, the NOVA and EgocentricFood model outperformed
the baseline YOLOv3 model for both loss functions (smaller
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TABLE 4. The generated anchor boxes for each dataset.

TABLE 5. Test results for three food item detection models.

TABLE 6. Validation results for the YOLOv3 vs. the NOVA and EgocentricFood models.

FIGURE 7. Results of the food item detection model on sample test images.

is better) as well as in terms of mAP@o.5 (with 3%
improvement). This can be mainly attributed to the use of
LGIoU instead of MSE when calculating the error between
the ground truth bounding boxes and the predicted ones.

Finally, in Figure 7, we show the results obtained by
applying the NOVA and EgocentricFood model on a sample
test images from the NOVA dataset. As can be seen from the
figure, the model was able to detect most of the food items
that appear in the sample images shown. On the other hand,
the model was not able to detect some of the food items
that are occluded by other objects such as the dish in the

top image of set (a), which is occluded by a water bottle.
On the other hand, overall the model was robust, as it was
able to detect small food items that are even far from the
table, as can be seen in the top image of set (b). This is
mainly due to the fact that our food item detection model
is applied on three different image scales (small, medium,
and large). This actually had a negative effect on the reported
precision, by increasing the number of false positives, since
the annotators did not localize food items that are far away
from the table when generating the ground truth. Finally,
some of the food items had overlapping bounding boxes( such
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FIGURE 8. Sample misclassified food items by the NOVA classification model.

as the bottom image in set (b)), and we addressed this by
excluding the ones with a low confidence score (less than
0.40), as is custom in object detection in general.

B. NOVA CLASSIFICATION MODEL
The NOVA classification model was trained using the NOVA
dataset described in Section III. The dataset was split
into 80% for training, 10% for validation and 10% for
testing. Recall that the model consists of two parts, a base
MobileNetV2 backbone and a classifier on top of it that
consisted of a global average pooling layer followed by a
dense layer of 250 neurons and a dropout layer with a dropout
rate of 0.5. The final output layer of the model is a dense
layer with four neurons representing the four NOVA groups.
To train the model, the MobileNetV2 backbone was loaded
with pretrained ImageNet weights (i.e., transfer learning), its
layers were frozen and the rest of the model was trained for
20 epochs using the Adam optimizer with a learning rate of
0.001. After that, we did fine-tuning by unfreezing the last
55 layers of the model and retraining the model for 10 more
epochs with a learning rate of 0.0001.

Since the NOVA dataset contains images of various sizes,
we used different image sizes as a hyperparameter (128, 160,
192, 224).We resized the images using Bilinear Interpolation,
which is a resampling method that calculates a new pixel
value based on the distance weighted average of the nearest
four pixels [31]. After training our NOVA classification
model with different image sizes, the 224 × 224 image size
was the best fit for the model based on the validation set. The
results of this model on the testing data is shown in Table 7,
which shows the precision, the recall, and the F1-score for
each of the four NOVA groups.

TABLE 7. NOVA classification model test results.

While the overall performance of the model on the test
data was relatively high, however, some of the images
were misclassified due to the complexity of the food items.
We noticed that our model was not able to predict all the
ground truth NOVA groups for some of the images that
contain ingredients that are not visible to the model such
as salt and oil. Figure 8 shows a sample of misclassified
images by the NOVA model. For example, the first image’s
ground truth NOVA groups are 1 and 2 since it is a salad,
and 4 because it contains cheese. The model was able to
correctly predict that the food item belong to groups 1 and 2,
however, it did not predict group 4 since most of the salad
related images in the training set belong to groups 1 and
2 only. Another example is image 3, where the ground truth
indicates that the food item belongs to the NOVA groups 1,
3, and 4 since it contains bread, tomatoes, and cheese. The
model correctly predicted that it belongs to groups 1 and 3 and
it missed group 4. These results explain whywe did not obtain
a very high recall for some of the NOVA groups.

V. CONCLUSION AND FUTURE WORK
In this manuscript, we proposed DeepNOVA, a novel end-
to-end deep learning approach that can assess the healthiness
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of food in images based on the NOVA classification system.
Our approach can be used by nutritionists to study the dietary
intake of a target population, which is traditionally done using
interviews and questionnaires, and is known to suffer from
recall bias. Our approach consists of two main models, a food
item detection model followed by a NOVA classification
model. The food item detection model is a custom object
detection model that is trained to detect and localize any food
item in an image, while the NOVA classification model is a
multi-label classification model that assigns a food item to
one or more of the NOVA food groups based on its processing
level. Both models were trained using a combination of
public datasets and a custom dataset that we generated
using wearable cameras and that was annotated by trained
nutritionists.

In future work, we plan to use DeepNOVA in real-world
nutritional case studies. Since the NOVA classification model
was trained on images of Tunisian food, and was labeled by
Tunisian nutritionist, the model has to be fine-tuned based on
the type of food in the case study. We do not consider this
a limitation as it mimics human behavior when assessing the
healthiness of food, which requires local knowledge about the
food being assessed and how it is processed. However, our
model can be used as a pretrained model and fine-tuned using
other food types via transfer learning.
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