DEVELOPMENT OF A MILLET DEHULLER (HAND – OPERATED) TO REDUCE DRUDGERY IN PROCESSING AND UTILIZATION OF MILLET WASTE (HULLS) IN ANTIOXIDANT EXTRACTION

By

SUBHASH PALANISWAMY

Department of Bioresource Engineering
Faculty of Agricultural and Environmental Sciences

McGill University
Sainte-Anne-de-Bellevue, Quebec, Canada
December 2017

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Science
In
Bioresource Engineering

© Subhash Palaniswamy, 2018
ABSTRACT

Efficient post-harvest handling practices are important in grain processing, since improper handling of the harvested crops may lead to losses. Post-harvest handling of crops includes a combination of several unit operations including threshing, drying, storage, etc. Among those processes, dehulling is crucial for cereal grains as it facilitates the removal of fibrous outer husk layers. Consumption of cereal grains in their natural form and in the form of processed foods like flour and other consumables would have been impossible without dehulling.

Millets are cereal crops that fall under a category of small seeded grasses. Millets’ unique characteristics make them equivalent to other cereal grains in terms of nutrition. Some of their notable properties include drought and temperature resistance, short harvest period and gluten-free nature. In arid and semi-arid regions of the world, millets are the major energy reservoir among the poor. Millet dehulling for human consumption is, however, tiresome due to their small size and unavailability of suitable processing equipment. Dehulling practices can be made simpler and more efficient by adopting and developing appropriate processing technology.

The primary objective of this study was set to develop a simple hand operated, table-top millet dehuller that could reduce processing drudgery at household levels. Its performance was evaluated based on its ability to dehull different millet varieties, namely, foxtail (*Setaria italica*), barnyard (*Echinochloa colona*) and kodo (*Paspalum scrobiculatum*) millets. Friction-Shearing principle was used to loosen and remove the outer hull layer from millets, since presence of hulls makes the grains inedible. A centrifugal blower was also fabricated for aspirating the millet hulls from the dehulled clean grains. The blower functions as an integral part of the dehuller such that both the rubber rollers and the blower operates simultaneously. The dehulling efficiency of the machine was assessed by passing (1-3 consecutive passes) the whole grains in different rubber
roller spacing (0.20, 0.25, 0.30 and 0.35 mm). As kodo millet is the hardest of all the millet varieties, the lowest dehulling efficiency was recorded for this variety, when compared to the other two varieties tested. For foxtail and barnyard millets, complete dehulling was achieved only after 3 consecutive passes. In addition to dehulling efficiency, percentage of broken grains and head rice recovery were also investigated.

The millet hull/husk generated as a by-product during millet processing possess a considerable amount of phenolic compounds with antioxidant potential. It can be utilized as a functional component in nutraceuticals and food industry. Hence in the next part of this study, millet hulls obtained through mechanical dehulling were used in extracting antioxidants. Microwave assisted extraction was employed for extraction and response surface methodology was used as a tool for optimizing the extraction conditions. Three parameters at different levels namely, microwave holding time (2, 4 and 6 min), extraction temperature (60°C, 80°C and 100°C) and solvent concentration (30%, 60% and 90% v/v) were used to study their individual and combined effect on phenolic compounds present in millet hulls. Antioxidative properties of millet hull extracts were evaluated by examining their total phenol content and antioxidant capacity using different assays. The antioxidant potential of the extracts was found to be temperature dependent. Increase in extraction temperature also increased the total phenol content and the antioxidant capacity. From the results it was evident that millet hull fractions can be used for extracting phenolic antioxidants.
RESUMÉ

Des pratiques de manutention post-récolte efficaces sont importantes dans le traitement des céréales, car une mauvaise manipulation des récoltes peut entraîner des pertes. La manutention post-récolte des cultures se réfère à plusieurs opérations unitaires incluant le battage, le séchage, le stockage, etc. Parmi ces processus, le décorticage ou la décorticage est crucial pour les céréales car il facilite l'enlèvement des couches fibreuses extérieures de la coque. La consommation et la transformation des céréales en farine et autres produits alimentaires consommables auraient été impossibles sans décorticage.

Les millets sont des cultures cérialières qui entrent dans la catégorie des petites graminées. Les caractéristiques uniques de Millets les rendent équivalentes aux autres céréales en termes de nutrition, et elles constituent également un ensemble d'avantages pour la santé. Certaines de leurs propriétés notables comprennent la résistance à la sécheresse et à la température, la courte période de récolte et la nature sans gluten. Dans les régions arides et semi-arides du monde, les mls constituent le principal réservoir d'énergie, en particulier chez les pauvres. Le décorticage du millet est cependant fastidieux en raison de sa petite taille et de l'indisponibilité d'un équipement de traitement approprié. Les pratiques de décortiquage peuvent être rendues plus simples et plus efficaces en adoptant et en développant une technologie de traitement appropriée.

L’objectif principal de cette étude était de mettre au point un simple décortiqueur de millet à table, pouvant être utilisé pour le décorticage domestique. Sa performance a été évaluée sur la base de sa capacité à décortiquer différentes variétés de millet, à savoir, la sétaire (Setaria italica), la basse-cour (Echinochloa colona) et le kodo (Paspalum scrobiculatum). Le principe de friction-cisaillement a été utilisé pour desserrer et enlever la couche externe de la coque des mls, puisque la présence des coques rend les grains non comestibles. Une soufflante centrifuge a également été
fabriquée pour aspirer les coques de mil à partir des grains propres dépelliculés. La soufflante fait partie intégrante du décortiqueur, de sorte que les rouleaux en caoutchouc et la soufflante fonctionnent simultanément. L'efficacité de décorticage de la machine a été évaluée en faisant passer (1-3 passes consécutives) les grains entiers dans différents espacements de rouleaux de caoutchouc (0.20, 0.25, 0.30 et 0.35 mm). La dureté et la teneur en humidité des grains affectent significativement la capacité de décorticage. Le millet de kodo étant le plus dur de toutes les variétés de millet, l'efficacité de dépelliculage la plus faible a été enregistrée pour cette variété, comparée aux deux autres variétés testées. Pour les millet de sétaire et de basse-cour, le décorticage complet a été réalisé après 3 passages consécutifs. En plus de l'efficacité de décorticage, le pourcentage de grains cassés et la récupération du riz de tête ont également été étudiés.

La coque / enveloppe de mil produite en tant que sous-produit pendant le traitement du millet possède une quantité considérable de composés phénoliques ayant un potentiel antioxydant. Il peut être utilisé comme un composant fonctionnel dans les nutraceutiques et l'industrie alimentaire. Par conséquent, dans la partie suivante de cette étude, les coques de mil obtenues par décorticage mécanique ont été utilisées pour extraire des antioxydants. L'extraction assistée par micro-ondes a été utilisée pour l'extraction et la méthodologie de surface de réponse a été utilisée comme un outil pour optimiser les conditions d'extraction. Trois paramètres à différents niveaux, à savoir, temps de maintien des micro-ondes (2, 4 et 6 min), température d'extraction (60 °C, 80 °C et 100 °C) et concentration de solvant (30%, 60% et 90% v/v) ont été utilisés pour étudier leur effet individuel et combiné sur les composés phénoliques présents dans les coques de mil. Les propriétés antioxydantes des extraits de coque de mil ont été évaluées en examinant leur teneur en phénol total et leur capacité antioxydante en utilisant différents dosages. Le potentiel antioxydant des extraits s'est révélé être dépendant de la température. L'augmentation de la température...
d'extraction a également augmenté la teneur totale en phénol et la capacité antioxydante. D'après les résultats, il était évident que les fractions de coque de mil peuvent être utilisées pour extraire des antioxydants phénoliques