THE EFFECTIVENESS OF OER USE IN STUDENT'S LOGICAL-MATHEMATICAL SKILLS: AN STUDY OF FIRST YEAR HIGHER EDUCATION STUDENTS IN CHILE

Westermann, W.;

© 2018, WESTERMANN, W.

This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted use, distribution, and reproduction, provided the original work is properly credited.

Cette œuvre est mise à disposition selon les termes de la licence Creative Commons Attribution (https://creativecommons.org/licenses/by/4.0/legalcode), qui permet l’utilisation, la distribution et la reproduction sans restriction, pourvu que le mérite de la création originale soit adéquatement reconnu.

IDRC Grant/ Subvention du CRDI: 107311-001-Research into Open Educational Resources for Development
María Montessori (1870-1952)
The effectiveness of OER use in student's logical-mathematical skills:

An study of first year higher education students in Chile

Update Sub-project 9

Banff, Canada. April 2015
Rationale

• OER Adoption looking to assess its Effectiveness
 – Student 1st year performance
 • Very low socio-demographic profile
 – Very low retention (46%)
 – Lack of basic knowledge and academic skills
 • No prerequisite to enroll

• Mixed approach
 – Quantitative report, March 2015
 – Qualitative
 • Focus groups with Students / Interview with teachers
 • Survey to students
Scenarios

Scenario 1: In person Class (Face to face)
- School of Education
 - Course: Arithmetics - Statistics
- Control Group
 - (30 students)
- Treatment Group 1
 - with Semi-open OER
 - (35 students)
 - Treatment Group 2
 - with More-open OER
 - (31 students)

Scenario 2: Blended/E-learning
- School of Education
 - Course: Algebra - Calculus
- Control Group
 - (41 students)
- Treatment Group
 - with OER
 - (21 students)
Treatment

• Comparison of groups:
 – randomly assign students to the groups
 – same teacher for all groups in each scenario
 – alternatives to assure comparison
 • Propensity Score Matching: estimation of the probability of receiving an specific treatment
 – mechanism of comparison
 • Inverse Probability Weight: matching algorithm compare results of most similar individuals
Treatment

• Result variables: dependent
 – Student’s results in the final exam of the evaluated course
 – Student’s grades in the evaluated course
 – Percentage of student’s attendance
 – Percentage of student’s retention

• Standard deviation
Results: Face-to-face scenario

Table 1: Estimation of the effect of using OER (Khan) versus the use of none additional resources

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Final Exam</th>
<th>Final Course Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.90**</td>
<td>0.66**</td>
<td>0.15</td>
</tr>
<tr>
<td>(0.28)</td>
<td>(0.29)</td>
<td>(0.30)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n = 61.

Table 2: Estimation of the effect of using OER (Khan) versus the use of none additional resources using PSM5

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Final Exam</th>
<th>Final Course Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.86**</td>
<td>0.54*</td>
<td>0.13</td>
</tr>
<tr>
<td>(0.36)</td>
<td>(0.30)</td>
<td>(0.33)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n = 32.
Results: Face-to-face scenario

Table 3: Estimation of the effect of using Khan versus the use of an Open Textbook

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Final Exam</th>
<th>Final Exam Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.38***</td>
<td>1.49***</td>
<td>0.21</td>
</tr>
<tr>
<td>(0.21)</td>
<td>(0.18)</td>
<td>(0.25)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n: 65.

Table 4: Estimation of the effect of using Khan versus the use of an Open Textbook using PSM

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Final Exam</th>
<th>Final Course Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.24***</td>
<td>1.55***</td>
<td>0.28</td>
</tr>
<tr>
<td>(0.25)</td>
<td>(0.20)</td>
<td>(0.24)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n: 55.
Results: e-Learning scenario

Table 6: Estimation of the effect of using OER

<table>
<thead>
<tr>
<th>Final Exam</th>
<th>Final SumScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>(0.30)</td>
<td>(0.31)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n=261.

Table 7: Estimation of the effect of using OER using PSM

<table>
<thead>
<tr>
<th>Final Exam</th>
<th>Fi-Mi SumScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>(0.29)</td>
<td>(0.28)</td>
</tr>
</tbody>
</table>

*** = p<0.01, ** = p<0.05, * = p<0.1; n: 32.
Conclusions

• students of the face to face classes that used a semi-open OER obtain significantly better exam grades than students:
 – that did not use any extra resource
 – that used an open textbook as an extra resource

• face-to-face students that used semi open OER have significantly less attendance levels than other examined students
Thanks for your attention!!!

Werner Westermann
wernerwestermannj@gmail.com
wwestermann@bcn.cl