PERCEPTIONS ENDOGENES, ANALYSES AGROCLIMATIQUES ET STRATÉGIES D'ADAPTATION AUX VARIABILITÉS ET CHANGEMENTS CLIMATIQUES DES POPULATIONS DANS TROIS ZONES CLIMATIQUES DU BURKINA FASO

Soutenu le 16 septembre 2010 devant le jury composé de :

Président: Professeur Bouzou Moussa Ibrahim
Membres: Dr MBaye NDiaye, Maître assistant
Mr Katiellou Lawan, DMN
Maîtres du stage: Dr Benoît SARR, Maître-assistant, Centre Régional AGRHYMET
Mr Joachim BONKOUNGOU, Ingénieur de recherches INERA/Kamboinsé
INTRODUCTION

I. Objectif de l’étude ... 3

II. Etat des connaissances sur les changements climatiques 4

III. Matériels et méthodes .. 10

3.1. Matériels .. 10

3.1.1. Les données météorologiques ... 10

3.1.2. Les indices climatiques ... 10

3.1.3. Les données d’enquêtes terrain .. 11

3.1.4. Les outils et logiciels ... 13

3.2. Méthode .. 14

IV. Résultats .. 16

4.1. Les résultats des données d’enquêtes 16

4.1.1. Age, sexe et activités .. 16

4.1.2. Perception des populations de l’évolution du climat 16

4.1.2.1. La pluviométrie ... 16

4.1.2.2. La température ... 23

4.1.2.3. Les vents .. 24

4.1.2.4. Les extrêmes climatiques .. 25

4.1.3. Impacts socio économiques .. 26

4.1.4. Les indicateurs traditionnels de saisons 28

4.1.4.1. Indicateurs de début de l’hivernage: 28

4.1.4.2. Indicateurs de la fin de l’hivernage 28

4.1.4.3. Indicateurs d’un hivernage pluvieux 28
4.1.4.4. Indicateurs d’un hivernage sec ... 29

4.1.5. Les stratégies d’adaptation ... 30
 4.1.5.1. Mauvaise installation de la saison des pluies ... 30
 4.1.5.2. Sécheresse ... 31
 4.1.5.3. Réchauffement important .. 32
 4.1.5.4. Vents violents ... 32

4.2. Résultats des données météorologiques .. 33
 4.2.1. Les données pluviométriques ... 33
 4.2.1.1. Evolution générale de la pluviométrie .. 33
 4.2.1.2. Le cumul pluviométrique saisonnier .. 34
 4.2.1.3. La date de début d’hivernage .. 35
 4.2.1.4. La date de fin d’hivernage ... 36
 4.2.1.5. La longueur de la saison d’hivernage ... 37
 4.2.1.6. Les séquences sèches ... 38
 4.2.2. La température .. 39
 4.2.3. Les vents .. 42

V. Discussion ... 43

CONCLUSION ... 47

BIBLIOGRAPHIE ... 48

ANNEXES ...
Liste des figures

Figure 1: Localisation des villages d’enquête ... 11
Figure 2: Entretiens réalisées en focus groupes ... 12
Figure 3: Analyse de la perception paysanne de l’évolution globale de la saison 16
Figure 4: Perception paysanne de la variabilité interannuelle de la pluviométrie 17
Figure 5: Variation du changement observé dans le cumul des mois de juillet, août, septembre 18
Figure 6: Perception paysanne de l’évolution de la date d'installation de l'hivernage 19
Figure 7: Perception paysanne de l’évolution de la date de fin de l'hivernage 20
Figure 8: Appréciation paysanne de la longueur moyenne de la saison d'hivernage 21
Figure 9: Appréciation paysanne de la durée moyenne des séquences sèches 22
Figure 10: Perception paysanne de l’évolution de la température globale, nocturne et saisonnière 23
Figure 11: Perception paysanne sur la variation du régime de vent (mousson, harmattan) 24
Figure 12: Appréciation paysanne sur la fréquence des événements extrêmes 25
Figure 13: Appréciation paysanne de l’évolution des surfaces cultivables 26
Figure 14: Principaux facteurs de la baisse des rendements agricoles 27
Figure 15: Evolution des anomalies des cumuls pluviométriques annuels sur la série 1961_2008 à Bobo, Koudougou et Dori ... 33
Figure 16: Variation du cumul pluviométrique des mois de juillet, août, septembre par rapport au cumul total .. 34
Figure 17: Dates de début de l’hivernage à Bobo, Koudougou et Dori 35
Figure 18: Dates de la fin de l’hivernage à Bobo, Koudougou et Dori 36
Figure 19: Variation de la longueur moyenne de la saison d’hivernage 37
Figure 20: Evolution de la longueur moyenne des séquences sèches sur les quatre mois qui suivent le semis .. 38
Figure 21: Evolution de la température maximale sur la série 1961_2008 à Bobo Dioulasso, Ouagadougou et Dori ... 39
Figure 22: Comparaison du nombre des jours et des nuits chauds d’avant et actuel à Bobo Dioulasso, Ouagadougou et Dori .. 40

Figure 23: Evolution de la température moyenne en hivernage à Bobo Dioulasso, Ouagadougou et Dori ... 40

Figure 24: Evolution de la température moyenne en saison froide à Bobo Dioulasso, Ouagadougou et Dori ... 41
Liste des tableaux

Tableau 1: Différentes stratégies d’adaptation en cas de mauvaise installation de la saison des pluies (en % de personnes enquêtées) .. 30

Tableau 2: Différentes stratégies d’adaptation en cas de sècheresse en zone soudanienne, soudano sahélienne et sahélienne (en % de personnes enquêtées) .. 31

Tableau 3: Stratégies et pratiques d’adaptation en cas de réchauffement important (en % de personnes enquêtées) ... 32

Tableau 4: Stratégies et pratiques d’adaptation en cas de vent violent (en % de personnes enquêtées) ... 32

Tableau 5: Evolution du nombre de jours de vent à vitesse supérieure à 1m/s, 3m/s et 5m/s........ 42
Liste des annexes

Annexe 1: Carte du réseau météorologique du Burkina Faso ... II

Annexe 2: Fiche d’enquête sur la perception paysanne du changement du climat et les stratégies d’adaptation au Burkina Faso .. III

Annexe 3: Documentation de Processus des entretiens réalisés en focus groupe à Bobo, Koudougou et Dori ... VIII

Annexe 4: Pourcentage d’hommes et de femmes enquêtés à Bobo, Koudougou et Dori X

Annexe 5: Principales activités des populations de Bobo Dioulasso, Koudougou et Dori X

Annexe 6: Appréciation de la précocité/tardivité de la date de début des saisons agricoles....... XI

Annexe 7: Appréciation de la précocité/tardivité de la fin de l’hivernage.. XI

Annexe 8: Perception paysanne sur la fréquence des conflits et de l’exode rural......................... XII

Annexe 9: Appréciation de la baisse des rendements agricoles ... XII

Annexe 10: Nombre de jours où la pluviométrie est supérieure aux seuils 1, 10 et 50 mm dans les 03 zones agro climatiques ... XIII
DEDICACE

À la mémoire de mon papa, rappelé à Dieu : que son âme repose en paix ;

À ma mère pour toute son affection et le courage dont elle fait preuve ;

À mes frères et sœurs pour leurs soutiens et encouragements ;

À tantie Dioda et tantie Djénéba ;

À Ben Idriss, que Dieu te protège.
REMERCIEMENTS

J’ai bénéficié au cours de ce stage et durant toute ma formation, du soutien d’innombrables personnes à qui je ne peux manquer d’exprimer ma sincère reconnaissance. Je remercie :

- Mr Mohamed YAHYA Ould Mohamed Mahmoud, Directeur Général du Centre Régional AGRHYMET et l’ensemble de son personnel ;
- Dr Benoît SARR, Expert formateur en agro météorologie du Centre Régional AGRHYMET pour l’encadrement de ce présent mémoire ;
- Mr Joachim BONKOUNGOU et tout le personnel d’ACCA-VICAB ;
- Dr Sanoussi ATTA et tous les experts formateurs du CRA pour la formation dont nous avions bénéficié ;
- Mr Jacques GARANE, directeur de la Météorologie Nationale du Burkina Faso pour son appui technique et matériel ;
- Toute ma famille ;
- Tous mes amis et collègues de classe.
Sigles et abréviations

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Abréviation complet</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRHYMET</td>
<td>Centre Régional de Formation et d’Application en Agrométéorologie et en Hydrologie Opérationnelle</td>
</tr>
<tr>
<td>CCNUCC</td>
<td>Convention Cadre des Nations Unies sur les Changements Climatiques</td>
</tr>
<tr>
<td>CES</td>
<td>Conservation des Eaux et des Sols</td>
</tr>
<tr>
<td>DMN</td>
<td>Direction de la Météorologie Nationale</td>
</tr>
<tr>
<td>DP</td>
<td>Documentation de Processus</td>
</tr>
<tr>
<td>GIEC</td>
<td>Groupe Intergouvernemental sur l’Evolution du Climat</td>
</tr>
<tr>
<td>INERA</td>
<td>Institut National de l’Environnement et de Recherches Agronomiques</td>
</tr>
<tr>
<td>OMM</td>
<td>Organisation Météorologique Mondiale</td>
</tr>
<tr>
<td>ONG</td>
<td>Organisation Non Gouvernementale</td>
</tr>
<tr>
<td>ONU</td>
<td>Organisation des Nations Unies</td>
</tr>
<tr>
<td>PANA</td>
<td>Programme d’Action National d’Adaptation</td>
</tr>
<tr>
<td>PNUD</td>
<td>Programme des Nations Unies pour le Développement</td>
</tr>
<tr>
<td>RU</td>
<td>Reserve Utile</td>
</tr>
<tr>
<td>SRES</td>
<td>Rapport Spécial sur les Scénario d’Emission (Special Report on Emission Scenarios)</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
</tbody>
</table>
RESUME

Les résultats des données observées ont montré que la pluviométrie a une tendance globale à la baisse, bien que cette dernière décennie connaisse de plus en plus une alternance entre année humide et année sèche. Quant à la température, elle est en hausse avec des écarts de 0,74°, 1,05° et 1,24 °C respectivement à Bobo-Dioulasso, Ouagadougou et Dori. La période d’installation de la saison il y a plus de trente ans par rapport à ces dix dernières années, est passée du mois de mai à juin pour toutes les zones climatiques. La fin de la saison quant à elle, s’installe de plus en plus tôt. En général, les perceptions locales convergent avec les résultats issus de l’analyse du climat observé. Cependant les populations n’ont pas perçu le retour des précipitations à des conditions meilleures cette dernière décennie. En réponse à ces contraintes, les principales mesures d’adaptation que les populations utilisent sont notamment la fumure organique, les variétés améliorées et les techniques de conservation des eaux et des sols.

Mots clés : Changement climatique, Perception locale, Stratégies locales d’adaptation, Variabilité

Abstract

“Endogenous perceptions, agroclimatic observations and adaptation strategies to climate change of the population in three climatic zones of Burkina Faso”

In these last years the agricultural sector of Burkina Faso has experienced production fluctuations due to negative effects of the climate change. The objective of this study is to establish a relationship between local perceptions of climate change and scientific studies carried out in Burkina Faso. To this effect a survey involving 120 households and discussions with groups was carried out in three different agricultural and climatic zones. Three meteorological parameters were used, daily rainfall, temperatures and winds. These data came from the stations of Bobo-Dioulasso, Koudougou, Ouagadougou and Dori for the period from 1961 to 2008. The SPSS and INTAT+ softwares were respectively used in analyzing the survey results and agroclimatic parameters of the rainy season. Results from the observed data showed that rainfall has an over all downward trend, although the last decade has seen more alternation between wet and dry years. With regard to temperatures increases of 0.74°C, 1.05°C and 1.24°C were observed at Bobo-Dioulasso, Ouagadougou and Dori. Comparing the decade to the past 30 years, the installation period of the rainy season has moved from May to June for all climatic zones, whilst the end of the seasons becomes more and more early. In general, local perceptions agree with the results from the analysis of the observed climate. However, the local population did not notice the return of precipitations to better conditions during the last decade. In respond to these constraints, the main adaptations strategies that the population uses include organic fertilizers, improved varieties and soil and water conservation techniques.

Key Words: Climate change, local perceptions, local adaptation strategies, Variability
Introduction

L’Afrique est le continent le plus vulnérable aux effets des changements climatiques (GIEC, 1997). La principale raison de cette vulnérabilité est due à sa pauvreté qui se traduit par un faible niveau de technicité et d’instruction. Selon BADOLO (2003), les pays africains dont l’économie repose sur l’agriculture et l’élevage, très sensibles aux aléas climatiques, sont les plus vulnérables.

Le Burkina Faso, à l’instar de la plupart des pays du Sahel, a une économie essentiellement tournée vers l’agriculture qui est tributaire des aléas climatiques. Cependant le climat est devenu de plus en plus capricieux et se manifeste par la diminution des quantités pluviométriques et du nombre de jours de pluie doublée d’une répartition très irrégulière dans le temps et dans l’espace. On assiste également à une hausse des températures maximale et minimale tant à l’échelle du pays qu’à l’échelle globale. A cela, s’ajoutent des démarrages imprévisibles de la saison pluvieuse, une plus grande fréquence des épisodes secs toutes choses qui affectent le calendrier cultural (OUEDRAOGO, 2007).

Les indices climatiques sont utilisés généralement par les scientifiques dans leur tentative de caractériser et de comprendre divers processus climatiques liés au temps et suivre les fluctuations des éléments météorologiques à long terme.

Toutefois, pour bien transmettre les prédicitions scientifiques, il est nécessaire de comprendre ce que les populations pensent de la pluie, y compris la manière dont elles perçoivent et prédisent la variabilité ainsi que les pratiques traditionnelles adoptées pour l’adaptation au changement
climatique (CTA, 2008). Comprendre les modèles culturels locaux est essentiel pour une transmission effective des produits de la recherche et des technologies de développement.

La présente étude qui porte sur « Perceptions endogènes, observations climatiques et stratégies d’adaptation au changement et variation climatiques des populations dans les trois zones climatiques du Burkina Faso », se propose de:

- Étudier la variabilité du climat à partir des données de la pluviométrie, de la température et du vent pour la période 1961 à 2008 ;
- Analyser la perception paysanne des variabilités et des changements climatiques et les stratégies locales d’adaptation.

Nous nous proposons à travers cette caractérisation, de compléter les études précédentes menées au Burkina Faso sur l’analyse des tendances du climat, à mettre en relation les études scientifiques et les perceptions locales du changement climatique ainsi que les stratégies d’adaptation mises en place car, pendant longtemps, la question de l’adaptation aux changements climatiques s’est souvent limitée aux scientifiques.

Le présent rapport comporte trois parties :
- la première est consacrée à l’état de connaissance sur le sujet ;
- la seconde décrit la méthodologie de travail ;
- la troisième présente les résultats obtenus ;
- la dernière comporte la discussion des résultats.
I. Objectif de l’étude

L’objectif global vise à analyser d’une part la perception paysanne du changement climatique afin de la confronter aux données d’observation du climat et d’autre part, les stratégies endogènes d’adaptations mises en œuvre dans les domaines de l’agriculture, l’élevage, la gestion des ressources naturelles.

Les objectifs spécifiques se résument à :

➢ analyser la perception de la variabilité et du changement climatique au niveau paysan ;
➢ analyser la tendance et la variabilité des facteurs climatiques (Pluie, Température, Vent) et des paramètres de la saison (date début, date fin, longueur saison, etc.) ;
➢ comparer la perception climatique locale aux données observées ;
➢ répertorier les stratégies d’adaptations mises en œuvre par les populations.
II. État des connaissances sur les changements climatiques

Dès 1976, la hausse de température moyenne mondiale s’est nettement accélérée, atteignant 0,18°C par décennie (OMM, 2006). Ce réchauffement à la surface du globe, ainsi que l’élévation moyenne du niveau de la mer observée au cours des 100 dernières années, sont attribués à l'augmentation observée de 35% environ du gaz carbonique et d’autres gaz à effet de serre atmosphérique (ROYER et MAHFOUF, 2006 cité par PEREIRA, 2007).

Le premier rapport du GIEC (1990) le confirme à travers des projections réalisées indiquant des accroissements de température moyenne mondiale de 0,15 à 0,3 °C par décennie de 1990 à 2005. Cela peut maintenant être comparé avec les valeurs observées d'environ 0,2 °C par décennie renforçant la confiance des projections à court terme (GIEC, 2007).

Les températures en Afrique de l'Ouest, et particulièrement dans le Sahel, ont évolué plus rapidement que la tendance mondiale, avec des augmentations allant de 0,2°C à 0,8°C par décennie depuis la fin des années 1970 dans les zones sahélo saharienne, sahélienne et soudanienne (AGRHYMET, 2010). La hausse observée est toutefois plus importante sur les températures minimales (jusqu’à +1°C) que sur les maximales (jusqu’à + 0,5°C).

Pour le futur, les meilleures estimations et les fourchettes vraisemblables pour le réchauffement global de l’air en surface pour les six scénarios SRES (Special Report on Emission Scenarios) de référence montrent que dans le cas du scénario le plus bas du Rapport spécial B1 est de 1,8 °C (dans une fourchette de vraisemblance de 1,1 à 2,9 °C), tandis que celle correspondant au
scénario le plus élevé (A1F1) est de 4°C (dans une fourchette de vraisemblance de 2,4 à 6,4°C) (LORENE et al., 2005).
L’augmentation tendancielle des températures au Burkina Faso sera de l’ordre de 0,5 °C au Sud-Ouest et de 0,7 °C au nord pour les maxima et respectivement pour les mêmes zones de l’ordre de 0,6 °C et 1,3 °C pour les minima à l’horizon 2025 (OUEDRAOGO, 2007).
Les changements climatiques sont donc considérés comme une des menaces les plus graves posées au développement durable, avec des effets défavorables attendus sur notamment: la santé humaine, la sécurité alimentaire, l'activité économique, les ressources en eau, les autres ressources naturelles, et les infrastructures. Certes, le climat de la planète a des variations naturelles, mais les scientifiques s'accordent à dire que les concentrations accrues de rejets anthropiques de gaz à effet de serre, dans l'atmosphère, sont en train de causer des changements dans le climat même si beaucoup d'inconnues subsistent encore quant à l’ampleur exacte et au rythme du phénomène (DERMARGNE, 2006).
Les conséquences de ces changements se traduisent aussi bien par des modifications (amplitude, fréquences) des paramètres et phénomènes qui caractérisent le climat planétaire, tels que les inondations, la sécheresse, les tornades ou autres, dans un lieu donné (MICHAEL, 2001). Ce réchauffement du climat vient compromettre davantage la situation de l’agriculture des régions sahéliennes déjà très précaires en raison de nombreuses contraintes environnementales et techniques.
D’après SIVAKUMAR et al. (2005), le climat agricole des régions tropicales semi-arides et arides de l’Asie et de l’Afrique est caractérisé par des précipitations faibles et irrégulières et des températures élevées durant la saison de pluie. Si cette tendance se maintient les températures dans le sol des régions sahéliennes pourraient même dépasser 60°C et sous une telle température, la dégradation des enzymes peut limiter la photosynthèse et ralentir la croissance des plantes entraînant une baisse de production (SALINGER et al., 2005).
La baisse des ressources en eau est également un élément important de l’impact des changements climatiques avec les effets collatéraux qui sont : la désorganisation des systèmes culturaux (calendriers culturaux, distribution géographique des espèces cultivées et modification des cycles des cultures).

En Afrique, selon (LORENE et JULIEN, 2005). il semble néanmoins que les précipitations ne devraient pas beaucoup varier en Décembre, Janvier et Février, ni en Juin, Juillet et Août, excepté pour la partie équatoriale de l’Afrique de l’ouest où on prévoit une augmentation de précipitations de 5 à 20% en décembre, janvier et février et une diminution de 5 à 10%en juin, juillet et août. Une baisse assez importante (de 10 à 20%) des pluies de Mars à Novembre est aussi prévue pour le nord alors que pour le sud de l’Afrique, cette baisse s’opérerait de Novembre à Mars à l’ampleur de 5 à 15%.

Au Burkina Faso, des études menées par SOME (1989) et BONKOUNGOU (1992) avaient montré une descente plus au sud des isohyètes. Ainsi, celle de 1200 mm a, de nos jours, disparu du Burkina Faso et, il y aura un glissement de 100 à 150 km vers le Sud des isohyètes 600 et 900 mm. Cette diminution de la pluviométrie a d’ailleurs motivé la mise en œuvre du programme d’ensemencement des nuages SAAGA (nuage en langue nationale Mooré) depuis 1998.

Le Burkina Faso, à l’instar des autres pays de l’Afrique subsaharienne, est très vulnérable à la variabilité et au changement climatique. En effet, l’économie de cette région du monde étant lourdement tributaire des secteurs sensibles au climat (agriculture, pastoralisme, pêche et sylviculture), les impacts du changement climatique risquent de ralentir les progrès socio-économiques, ruiner des années d’efforts consacrés au développement, et mettre en danger les systèmes de soutien aux moyens de subsistance liés à ces secteurs.

Caractérisée par la grande diversité de sa population, la richesse de ses ressources naturelles, et le fait que la majeure partie de sa population dépend de ces ressources pour subvenir à ses besoins, l’Afrique est fortement concernée par l’adaptation aux changements climatiques. Dans le rapport mondial sur le développement humain (PNUD, 2008), Ban Ki Moon, Secrétaire Général de l’ONU déclare que « la lutte contre le changement climatique nécessite une action sur deux fronts : la réduction des émissions des gaz à effet de serre et l'adaptation».

6
L’adaptation concerne les politiques, les pratiques, les projets susceptibles de limiter les dommages et/ou de créer des opportunités associées aux changements climatiques (EEA, 2005). Il n'est pas possible de mettre en place une politique d'adaptation sans tenir compte du contexte social dans lequel baignent des connaissances et/ou savoirs locaux. Pour le PNUD (2008), les politiques sont plus efficaces et répondent mieux aux besoins des pauvres lorsque ceux-ci sont à mesure de participer à l'identification des priorités et à la définition des politiques. En effet, les populations rurales ont une certaine connaissance de leur milieu et de ses ressources dont elles tirent leur subsistance.

L’adaptation consiste en un ajustement à l’intérieur d’un système humain, en réponse à un stimulus climatique ou à ses effets, actuel ou envisagé incluant la variabilité et les extrêmes climatiques (GIEC 2001). L’adaptation est donc un processus qui prend racine dans la socialisation, l’apprentissage social et politique, et s’exprime à travers des mécanismes et des décisions pour affronter les stress climatiques (NYONG et al, 2007).

Les pratiques et savoirs paysans ou connaissances des populations rurales, constituent un capital qui a des vertus potentielles à même d’impulser le développement. La familiarisation avec les savoirs paysans facilite la compréhension et la communication entre les agents de développement et la population locale, augmentant ainsi les possibilités d’une approche de développement participative et durable (DIALLA, 2004).

Face à ces enjeux futurs, quelles sont les politiques, stratégies et actions en cours et projetées au niveau international, régional et national pour limiter les effets de ces changements climatiques et pour permettre aux populations de s’adapter durablement ?

Des initiatives existent à travers la région en matière d’adaptation en vue de réduire sa grande vulnérabilité aux effets néfastes de variabilité et changements climatiques actuels ou futurs, révélée grâce aux différentes études d’impacts réalisées pendant l’élaboration des communications nationales et des documents de PANA (Programme d’Action National d’Adaptation) dont les objectifs concourent à la préservation des ressources naturelles, pour une meilleure adaptation aux changements climatiques. Les impacts identifiés pour la région concernent les ressources en eau, la production alimentaire, la santé humaine et la désertification. Du fait que les ressources en eau soient un secteur clé de plus en plus fragile dans la région en
raison des besoins croissants des ménages, de l’agriculture, l’élevage, l’industrie, l’énergie etc., on constate que la majorité des activités d’adaptation qui a lieu ou qui est en cours est concentrée autour de ce secteur.

Même si on peut allonger la liste des tentatives de réponses conduites ici et là, il reste que de façon générale, les solutions les plus notables que l’Afrique de l’Ouest apporte à la sécheresse chronique et à l’accentuation de la variabilité climatique qu’elle subit depuis trois décennies concernent surtout la recherche, c’est-à-dire la collecte et dans une moindre mesure, l’analyse des données. Ceci est évidemment très important, encore que les efforts de recherche restent insuffisants.

Depuis plusieurs décennies, de nombreuses ONG déploient beaucoup d’effort pour accompagner les populations aux côtés de l’Etat pour appliquer des mesures d’adaptation aux changements climatiques. Cela est particulièrement visible dans le Centre et la moitié Nord du Burkina Faso où les techniques de conservation des eaux et des sols (cordons pierreux associés au Zaï) et d’agroforesterie sont, de nos jours, appliquées à grande échelle dans la récupération des terres dégradées (glacis) pour l’agriculture, la régénération du couvert végétal et l’amélioration du stockage de l’eau dans la nappe phréatique (OUEDRAOGO, 2009).

Ces stratégies sont, pour l’essentiel, l’utilisation de semences améliorées mais surtout la mise en place des techniques permettant de conserver au mieux les eaux et réduire les pertes de terres dues à l’érosion (SAWADOGO, 2006). Ces initiatives, représentées par les techniques de conservation des eaux et des sols (CES) et des systèmes de cultures associées, constituent les nouvelles orientations du monde agricole dans son élan d’accroître les productions et maintenir les écosystèmes surtout sahéliens déjà fragiles.

Le Zaï permet de faire des économies en semence et amendement organique car les apports sont localisés et protégés du vent et du ruissellement. Il permet également d'augmenter le rendement en grains d'un facteur de 100 dès la première année et de restaurer la fertilité du sol au bout de 5 ans ; le paysan peut alors reprendre une technique de culture moins contraignante (CIRAD, 2010).

Les travaux de SAWADOGO (2006) ont montré que les demi-lunes suivies du paillage et du Zaï donnent les meilleurs rendements avec 900 kg/ha pour le sorgho et 704 kg/ha pour le mil. Même si le labour fournit les rendements les plus faibles, force est de reconnaître que son rendement est
deux fois plus important que les parcelles témoins. Les autres techniques ont triplé les rendements des parcelles témoins.
Par ailleurs, la recherche agricole burkinabè à travers l’INERA a mis au point des variétés de semences adaptées aux conditions climatiques que ce soit pour le sorgho, le maïs, l’arachide, le niébé, le riz, etc.(www.inera.bf)
III. Matériels et méthodes

3.1. Matériels

3.1.1. Les données météorologiques
Pour les besoins de l’étude, nous avons exploité les données pluviométriques de la période 1961-2008 des stations synoptiques (Bobo-Dioulasso, Ouagadougou et Dori) et une station climatologique (Koudougou). Ces stations sont extraites de la carte du réseau du pays (annexe I). La collecte des données a été réalisée à la Direction de la Météorologie Nationale (DMN) du Burkina Faso dans le service de gestion des bases de données. Les paramètres collectés sont :

- la pluviométrie journalière ;
- les températures minimales et maximales journalières sous abris ;
- la vitesse du vent à 2 m du sol.

Les trois stations disposent des données pluviométriques complètes sur la période de 1961 à 2008. Par contre, il a été relevé des données manquantes pour la température au niveau de la station de Bobo-Dioulasso.

3.1.2. Les indices climatiques
Dans la littérature scientifique, on utilise plusieurs indices pour détecter la variabilité et le changement climatique. Il s’agit principalement des indices basés sur la pluviométrie, la température, le vent, etc.

✓ Indices basés sur la température
- anomalies de la température moyenne ;
- anomalies de la température maximale ;
- jours chauds : (jours où la température maximale est >90ème percentile) ;
- nuits chaudes (jours où la température minimale est >90ème percentile).

✓ Indices basés sur les précipitations
- cumul annuel et saisonnier ;
- date de démarrage et de fin de la saison des pluies ;
- longueur de la saison des pluies;
- séquences sèches.

✓ Indices basés sur le vent : le paramètre pris en compte était le nombre de jour où la vitesse du vent est supérieure à un, trois et cinq mètres.
3.1.3. Les données d’enquête terrain

L’objectif visé à travers l’enquête est de collecter des informations sur les connaissances endogènes des populations sur les changements climatiques :

- la perception paysanne de l’évolution du climat ;
- les stratégies locales d’adaptation mises en place ;
- les impacts socio économiques qui découlent des changements climatiques ;
- les indicateurs de saisons (début, fin et répartition).

Les informations ont été collectées au moyen d’une fiche d’enquête élaborée à cet effet. C’est un questionnaire guide qui nous permettra de mettre en relation l’analyse scientifique et les perceptions locales du changement climatique (annexe II).

L’enquête a été réalisée sur six sites (qui sont des sites prédéfinis par le projet ACCA VICAB) dans trois zones climatiques du Burkina Faso (figure 1). Il s’agit de :

- Bani et Yakouta distants respectivement de 32 et 15 Km de Dori en zone sahélienne ;
- Sourguo et Salbisgo à 15 et 30 Km respectivement de Koudougou en zone soudano sahélienne ;
- Nasso et Yabasso à 15 et 35 Km respectivement de Bobo en zone soudanienne.

Figure 1: Localisation des villages d’enquête
Source : Poster ACCA VICAB
Pour avoir un échantillon représentatif, quarante personnes par zone climatique soit cent vingt (120) personnes au total ont été enquêtées pour l’étude.
Le critère d’échantillonnage retenu est que le paysan enquêté devrait être âgé de plus de 50 ans.
Ce critère s’explique par le fait que l’évolution du climat est très lente ; il faut donc des personnes âgées pour disposer des informations historiques fiables.
Le questionnaire fait ressortir une comparaison du passé c'est-à-dire les données d’avant les trente dernières années (avant) par rapport à un passé récent (actuel) soit les dix dernières années.
A l’issue du dépouillement et de l’analyse des données de l’enquête qui sont des données individuelles, des entretiens avec des focus groupes (figure 2) ont été conduit à l’aide d’une documentation de processus (DP) avec un objectif global bien défini, des objectifs spécifiques et les résultats attendus qui sont entre autres des renseignements sur la portée des indicateurs de l’hivernage, une bonne appréhension de la variation du régime des vents, etc.(annexe III).

Figure 2: Entretiens réalisées en focus groupes à Yabasso, Salbisho, Sourgou et Yakouta
3.1.4. Les outils et logiciels

Dans cette étude, les outils et logiciels suivants ont été utilisés :

- Instat+ version 3.03 est un logiciel d’analyse de données agro climatologiques développé dans les années 1980 par STERN et al. (2006). Ce logiciel a servi à réaliser les analyses statistiques des données climatologiques : date de démarrage et de fin de la saison, longueur de la saison, cumuls pluviométriques de la saison et l’analyse des séquences sèches.

- SPSS (Statistical Package for Social Sciences) version 12.0, un des logiciels spécialisés dans le traitement des données en vue d’analyses statistiques a été utilisé pour l’analyse des données d’enquête. Il lit les données, les traduit en format SPSS et exécute les opérations mathématiques et statistiques. Ce logiciel permet de présenter à la suite de l’analyse les résultats sous forme de tableaux et de graphiques.
3.2. Méthode

Le logiciel Instat+ (ver3.0) a été utilisé afin de caractériser pour l’ensemble des stations sélectionnées et sur la période de 1961 à 2008, les indicateurs agro climatiques les plus déterminants d’une part et d’autre part la température et la vitesse du vent.

Dans le but de confronter ces résultats aux données d’enquêtes, nous avons utilisé les stations de Bobo-Dioulasso, Koudougou et Dori pour les analyses relatives aux données pluviométriques étant donné que la variation spatiale de la pluie est assez importante, et les stations de Bobo-Dioulasso, Ouagadougou et Dori pour le reste de l’analyse.

Les différents indicateurs caractérisés sont:

- **la date de démarrage de la saison des pluies**

 Le premier jour à partir du premier avril avec un cumul pluviométrique de 20 mm en un jour, sans séquence sèche de plus de neuf jours dans les trente jours qui suivent le semis a été déterminé comme critère de démarrage de la saison des pluies :

- **La date de fin de la saison des pluies**

 La date de fin de saison a été déterminé en utilisant comme critère celui du bilan hydrique (critère agro météorologique du logiciel INSTAT+) qui considère la date de fin de saison de pluie celle à laquelle la consommation en eau de la plante épuise la réserve hydrique du sol (0,05 mm) et ceci à partir du premier septembre (STERN et al., 2006). Pour cela, nous avons considéré la réserve utile (RU) de 80 mm/m de sol

- **la longueur de la saison des pluies**

 La longueur de la saison des pluies est la différence entre les dates de fin et de début de la saison des pluies. Ces deux dates sont exprimées en jours juliens (SIVAKUMAR & GUEYE, 1992 ; SARR & GNOUMOU, 2005).

- **le cumul pluviométrique saisonnier**

 Il a été déterminé en considérant le cumul pluviométrique (exprimé en mm) compris entre la date de début et celle de fin de saison des pluies.

- **le cumul pluviométrique des mois les plus pluvieux de la saison**

 Pour cela, tous les mois ont été générés avec le logiciel Instat+, puis les cumuls de juillet, août et septembre considérés comme les mois les plus pluvieux ont été analysés.

- **le nombre de jours de pluie supérieur à 1 mm, à 10 mm et celui supérieur à 50 mm**
- **La séquence sèche la plus longue**
A partir des données journalières de la pluie, les séquences sèches qui correspondent au nombre de jours sans pluie (P<1 mm) ont été déterminées.

- **Le nombre de jours chauds**
Avec Instat+, un seuil a été déterminé (le 90ème percentile des températures maximales), puis le nombre de jours où la température journalière maximale est supérieure à ce seuil a été compté.

- **Le nombre de nuits chaudes**
Contrairement à la détermination des nombres de jours chauds, le comptage du nombre de nuits chaudes a été fait en utilisant la température minimale. Un seuil a été déterminé (le 90ème percentile des températures minimales), puis le nombre de jours où la température journalière minimale est supérieure à ce seuil a été compté.

- **La caractérisation de la température en hivernage et en saison froide**
Pour montrer l’évolution de la température pour les différentes périodes, l’anomalie de la température moyenne pour l’hivernage (mai–octobre) et pour la saison froide (novembre–février) ont été utilisées respectivement.

- **Les nombres de jours où les vitesses moyennes journalières du vent sont supérieures à 1,3 et 5 m/s ont été déterminés avec Instat+.**
IV. Résultats

4.1. Les résultats des données d’enquêtes

4.1.1. Age, sexe et activités

La majorité de la population enquêtée a une tranche d’âge comprise entre 50 et 80 ans avec une prédominance des hommes à Bobo-Dioulasso et Dori (plus de 50 et 75% respectivement), contrairement à Koudougou où les femmes représentent plus de la moitié des enquêtés (annexe IV).

L’agriculture est la principale activité menée en ce sens qu’elle occupe plus 80% de la population dans les trois zones ; l’élevage et le commerce constituent les activités secondaires et tertiaires (annexe V).

4.1.2. Perception des populations de l’évolution du climat

4.1.2.1. La pluviométrie

- Evolution globale de la saison d’hivernage

Globalement, les populations enquêtées constatent que les saisons des pluies sont de plus en plus sèches comme illustré dans la figure 3 ci-dessous : soit 95% en zones soudanienne (Bobo) et soudano sahélienne (Koudougou) et 100% en zone sahélienne.

![Figure 3: Perception paysanne de l’évolution globale de la saison des pluies](image-url)
Variation du cumul pluviométrique des mois de juillet, août et septembre

Selon les populations enquêtées, la répartition de la pluie n’est pas uniforme ; elle est variable d’une année à une autre (figure 4).

Aussi, dans une même année, en considérant les mois de juillet, août et septembre comme les mois les plus pluvieux de la saison d’hivernage, une comparaison de leur cumul fait ressortir une variation importante. Plus du trois quart de la population en zone soudanienne et sahélienne (Bobo-Dioulasso et Dori) constate que la variation est plus importante en Août, par contre septembre est le mois où le cumul a plus varié en zone soudano sahélienne (Koudougou).

Figure 4: Perception paysanne de la variabilité interannuelle de la pluviométrie
La perception paysanne de variabilité du cumul des mois de Juillet à Septembre correspondant aux mois les plus pluvieux est résumée dans la figure 5 suivante.

Figure 5: Variation observée dans le cumul des mois de juillet, août, septembre
- **Dates de début de la saison**

Quant à l’installation de la saison, en zone soudanienne (Bobo-Dioulasso), 75% de la population enquêtée affirme qu’avant le début de l’hivernage intervenait dans la première décade de mai, et de nos jours, l’hivernage démarre à la deuxième décade de juin.

Plus de la moitié de la population en zone soudano sahélienne affirment qu’avant, la saison s’installait à la mi-mai, tandis qu’actuellement elle commence à la mi-juin.

La mi-mai et la mi-juin sont respectivement les dates du début de l’hivernage d’avant et actuel en zone sahélienne. (Figure 6)

Ainsi, il ressort que le début de la saison est de plus en plus tardif dans les trois zones agro climatiques du Burkina Faso (Annexe VI).

Figure 6: Perception paysanne de l’évolution de la date d’installation de l’hivernage

Dbt_mai = début mai ; Dbt_jlt = début juillet ; Mi_jlt = mi juillet ; avant = il y’a plus de trente ans ; actuel = les dix dernières années
Dates de fin de la saison

La fin de la saison d’hivernage d’avant intervenait à la fin octobre et actuellement la saison est bouclée dès fin septembre affirmant plus de 75% des personnes enquêtées dans la zone soudanienne.

En zone soudano-sahélienne, tout comme en zone soudanienne, fin octobre et fin septembre sont les dates de fin de saison d’hivernage respectivement pour les trente dernières années (75%) et la décennie passée (65%).

Plus au nord, en zone sahélienne, la population constatait la fin de la saison en début octobre et actuellement la saison prend fin dans la première moitié du mois de septembre (Figure 7).

Ainsi, la fin de la saison des pluies connaît une fin de plus en plus précoce aussi bien à Bobo-Dioulasso, à Koudougou qu’à Dori (Annexe VII).

Figure 7: Perception paysanne de l'évolution de la date de fin de l'hivernage

Dbt = début ; Sept = septembre ; Oct = octobre
- **Longueur de la saison d'hivernage**

En zone soudanienne près de 90% des paysans enquêtés affirment que la saison d'hivernage avant durait en moyenne six mois, mais de nos jours sa durée est comprise entre quatre et cinq mois.

En zone soudano sahélienne, les avis sont partagés entre cinq à six mois pour la longueur de la saison dans le passé, tandis que de nos jours la saison dure en moyenne entre quatre et cinq mois. Quatre et trois mois sont respectivement pour la période d’avant et actuelle, les longueurs moyennes de la saison d’hivernage en zone sahélienne (figure 8).

Figure 8: Appréciation paysanne de la longueur moyenne de la saison d'hivernage
- Les séquences sèches
La perception sur les poches de sécheresse au cours de l’hivernage est la même pour les populations des trois zones agro climatiques. Elles y sont de plus en plus longues et la durée moyenne des séquences sèches est inférieure ou égale à quinze jours à Bobo-Dioulasso, Koudougou et à Dori (figure 9).
En zone soudanienne, près de la moitié de la population observe les séquences sèches en milieu de saison, elles surviennent à tout moment en zone soudano sahélienne tandis que la fin de la saison est la période à laquelle les populations constatent les poches de sécheresse en zone sahélienne.

Figure 9: Appréciation paysanne de la durée moyenne des séquences sèches
4.1.2.2. La température

Dans les trois zones agro climatiques, la quasi-totalité des enquêtées affirment qu’il fait en général de plus en plus chaud. Cette recrudescence de la chaleur est observée de jour comme de nuit pendant l’hivernage comme pendant la saison sèche (figure 10). En effet, la perception de la chaleur d’hivernage n’est pas uniforme dans les trois zones ; elle est faible à Koudougou (65%), plus importante à Bobo-Dioulasso (80%) et très importante à Dori où presque la totalité de la population enquêtée ressent de plus en plus la chaleur.

Figure 10: Perception paysanne de l’évolution de la température globale, nocturne et saisonnière
4.1.2.3. Les vents

La perception de l’évolution du régime des vents repose sur sa date d’installation, sa durée et sa force. Ainsi en zone soudanienne (Bobo-Dioulasso), l’analyse ressort qu’il y’a un changement important de la force de la mousson tandis que celle de l’harmattan reste inchangé (50%). En zone soudano sahélienne (Koudougou), la variation n’est pas importante aussi bien pour la mousson que pour l’harmattan. Mais en zone sahélienne (Dori) par contre, il y’a une variation importante aussi bien pour ce qui est du régime de la mousson que celui de l’harmattan (Figure 11).

Figure 11: Perception paysanne sur la variation du régime de vent de mousson et d’harmattan
4.1.2.4. Les extrêmes climatiques

Pour la majorité des personnes enquêtées à Koudougou (100%) et à Dori (80%), il ressort que l’intensité des pluies est de plus en plus forte ; cependant à Bobo-Dioulasso les avis sont partagés. Plus du trois quart des enquêtés constate que les vents sont de plus en plus violents dans les trois zones. La population en zone soudanienne (Bobo-Dioulasso) et soudano sahélienne (Koudougou) affirme que la fréquence des inondations a augmenté, mais en zone sahélienne (Dori), les avis sont partagés (figure 12).

Figure 12: Appréciation paysanne sur la fréquence des événements climatiques extrêmes
4.1.3. Les impacts socio économiques

Les changements climatiques se perçoivent certes à travers les variations des paramètres climatiques, mais leurs manifestations se ressentent à tous les niveaux sur le vécu quotidien des populations et ce, surtout au niveau socio économique comme illustré en annexe VIII.

- Plus de la moitié de la population enquêtée à Bobo-Dioulasso, Koudougou et à Dori affirme que les conflits sociaux sont devenus de plus en plus fréquents.

Les causes des conflits sont multiples, mais les plus importants dans les trois zones agro climatiques sont liés à l’accès à la terre, à l’eau et au pâturage.

- L’exode rural en zone sahélienne est très important et plus de 90% des enquêtées affirment qu’il est de plus en plus important. En zone soudano sahélienne, ce sont les deux tiers de la population qui constatent une hausse du phénomène d’exode. Mais en zone soudanienne, aucune tendance ne ressort pour la fréquence de l’exode rural.

La mauvaise production et la recherche d’un mieux être sont principalement les causes de l’exode rural dans les trois zones enquêtées.

- L’analyse a fait également ressortir que les surfaces cultivables subissent des variations en fonction des zones.

En zone soudanienne presque toute la population enquêtée a constaté que les surfaces cultivables ont fortement diminuées alors qu’elles ont connu une légère expansion en zone soudano sahélienne et en zone sahélienne (figure 13).

![Figure 13: Appréciation paysanne de l’évolution des surfaces cultivables](image_url)
L’entretien avec les focus groupes a permis de savoir que la baisse de fertilité des sols et la croissance démographique sont les facteurs qui ont engendré l’expansion des surfaces cultivables dans ces deux zones.

Ces surfaces cultivables connaissent de plus en plus une baisse de leur productivité bien que les espaces cultivables aient augmenté dans certaines zones (annexe IX). Comme illustré sur la figure 14, cette baisse s’explique essentiellement par plusieurs facteurs. La baisse de la pluviométrie est le premier facteur aussi bien à Bobo-Dioulasso, à Koudougou et à Dori. Le deuxième facteur est la baisse de la fertilité, suivi de la fin précoce de l’hivernage et enfin le retard de semis. Ces différents facteurs sont perçus à des degrés différents en fonction des zones agro climatiques.

Figure 14: Principaux facteurs de la baisse des rendements agricoles
4.1.4. Les indicateurs traditionnels de saisons
Les indicateurs traditionnels des paramètres de l’hivernage ont été recueillis lors des entretiens avec des focus groupes dans chaque zone climatique. Ces indicateurs varient d’une zone à une autre.

4.1.4.1. Indicateurs de début de l’hivernage
En zone soudanienne, le début de l’hivernage s’annonce par la régénération d’*Adansonia digitata*, la floraison de *Parkia biglobosa* et *Vitellaria paradoxa*, et l’apparition des milles pattes, d’escargots noirs, des dames pluies (insectes rouges).
La population de la zone soudano sahélienne reconnaît le début de l’hivernage à travers les astres (étoiles et lune), les espèces végétales et les oiseaux. Il s’agit essentiellement de l’apparition de la grande ourse, la constellation de 5 étoiles à l’Est (au fur et à mesure qu’elle avance vers le zénith, la fin des semis s’annonce), le chant du „coucou”, le passage des papillons d’Est vers l’Ouest, la perte des feuilles d’*Acacia albida* et *Adansonia digitata* (male), la floraison d’*Adansonia digitata* (femelle) et la fructification du *Lanea microcarpa*.
En zone sahélienne, le début de la saison se reconnaît à travers les étoiles, la volaille et les oiseaux. Il s’agit de l’apparition des oiseaux (les cicognes) et la régénération de *Ziziphus mauritiana, Acacia sp, Adropogon*, la maturation de *Laneaa microcarpus* et la ponte des pintades.

4.1.4.2. Indicateurs de la fin de l’hivernage
Tout comme son installation, la fin de la saison d’hivernage, s’annonce à travers les astres, la végétation, les oiseaux, etc.
La bonne maturation du *Diospiros mespiliformis* en zone soudanienne, le passage du héron du nord vers le sud en zone soudano sahélienne, la floraison d’*Acacia albida*, en zone sahélienne annonce la fin de l’hivernage.

4.1.4.3. Indicateurs d’un hivernage pluvieux
Pour les trois zones, un hivernage pluvieux s’annonce à travers la bonne production de *Lanea*, d’*Adansonia, Diospiros mespiliformis, Furgea virosa*, *Vitellaria paradoxa*, *Daniella Olivieri et*
la régénération totale d’*Acacia albida*. La présence nombreuse de ‘dame pluie’, des termites, des fourmis, des reptiles (boa et naja) dans les champs, l’apparition matinale (vers 5H du matin) d’une étoile, (si cette étoile brille l’hivernage sera pluvieux et la production de maïs sera abondante), les pluies nocturnes (celle qui tombent au moment où la lune est cachée ciel sombre), le degré du froid en décembre (plus il fait froid, plus l’hivernage sera pluvieux) et la ponte des volailles en hauteur sont également des indicateurs d’un hivernage pluvieux.

4.1.4.4. **Indicateurs d’un hivernage sec**

L’effet inverse des éléments sus mentionnés prédit un hivernage sec. Il s’agit entre autres de la mauvaise production d’*Adansonia digitata*, du *Lanea microcarpa*, et du *Vitelaria paradoxa*, la bonne production de *Saba senegalensis* et du *Balanites aegyptiaca*, les pluies qui tombent au clair de lune, la ponte et l’éclosion de la cicogne avant le semis, la ponte des volailles dans les trous, la régénération des arbres par le sommet et la présence du brouillard.

Les populations peuvent prédirent la productivité par spéculation. Ainsi, une bonne production de *Fulgea virosa*, celle d’une bonne production de sorgho blanc et de maïs et une bonne production de *Tamarindus indica* correspond à une bonne production de mil.

Le nombre de poches de chaleur pendant la saison froide correspond au nombre de séquences sèches pour la saison agricole à venir.

En dépit de ce savoir, certaines personnes affirment que: « *la variabilité fait que ces indicateurs ne sont plus fiables* ».

« *Avant, quand la première pluie tombait, si la chaleur se dégage du sol alors l’hivernage sera pluvieux, mais de nos jours il n’y a que des vents de poussière* ».
4.1.5. Les stratégies d’adaptation

L’adaptation se rapporte aux stratégies adoptées par les paysans, dans le cadre de leurs activités, pour faire face aux changements climatiques.

Des différents cas considérés à savoir de mauvaise installation de la saison des pluies, de sécheresse, de réchauffement important et de vent violent les stratégies d’adaptation peuvent parfois varier d’une zone climatique à une autre.

4.1.5.1. Mauvaise installation de la saison des pluies

Lors d’une mauvaise installation de la saison des pluies, le réssemis et le semis des variétés précoces sont les principales stratégies adoptées aussi bien en zone soudanienne, soudano sahélienne que sahélienne. Le semis à sec, la transplantation en juillet et août, ou la combinaison des ces différentes pratiques sont les stratégies et pratiques diversement adoptées (tableau 1).

Tableau 1: Différentes stratégies d’adaptation en cas de mauvaise installation de la saison des pluies (en % de personnes enquêtées)

<table>
<thead>
<tr>
<th>Stratégies et pratiques</th>
<th>Zone soudanienne</th>
<th>Zone Soudano sahélienne</th>
<th>Zone sahélienne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réssemis</td>
<td>44,6</td>
<td>32,2</td>
<td>34,2</td>
</tr>
<tr>
<td>Semis à sec</td>
<td>13,7</td>
<td>18,8</td>
<td></td>
</tr>
<tr>
<td>Réssemis + Semis de variétés précoces</td>
<td>6,8</td>
<td>0</td>
<td>13,5</td>
</tr>
<tr>
<td>Semis de variétés précoces</td>
<td>28,1</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Semis à sec + semis de variétés précoces</td>
<td>6,8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transplantation en juillet/août</td>
<td>0</td>
<td>9</td>
<td>19,3</td>
</tr>
</tbody>
</table>
4.1.5.2. Sécheresse

Comme l’illustre le tableau 2 les différentes stratégies d’adaptation en cas de sècheresse sont diversement adoptées par les populations dans les trois zones climatiques.

En zone soudanienne une proportion élevée des enquêtés utilise de la fumure organique et le billonnage comme principales stratégies d’adaptation en cas de sécheresse. Les cordons pierreux, le Zaï, la demi-lune et l’irrigation de complément sont aussi adoptés dans une moindre mesure (18%).

Ces mêmes techniques occupent des proportions différentes en zone soudano sahélienne. Soit 29% pour les cordons pierreux, 30% pour l’utilisation de fumure organique, en plus la technique du Zaï, de la demi-lune et du billonnage.

Dans la zone sahélienne les stratégies et pratiques d’adaptation les plus adoptées par les populations sont l’association fumure organique, cordons pierreux la demi-lune. La technique du Zaï et le billonnage sont également pratiqués dans cette zone.

Tableau 2: Différentes stratégies d’adaptation en cas de sècheresse en zone soudanienne, soudano sahélienne et sahélienne (en % de personnes enquêtées)

<table>
<thead>
<tr>
<th>Stratégies et pratiques</th>
<th>Zone soudanienne</th>
<th>Zone sahélienne</th>
<th>Zone sahélienne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demi-lune</td>
<td>4.1</td>
<td>11.9</td>
<td>15</td>
</tr>
<tr>
<td>Cordons pierreux</td>
<td>15</td>
<td>29</td>
<td>31.8</td>
</tr>
<tr>
<td>Fumure organique</td>
<td>36.9</td>
<td>30</td>
<td>41.1</td>
</tr>
<tr>
<td>Zaï</td>
<td>5.3</td>
<td>24.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Irrigation de complément</td>
<td>8.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Billonnage</td>
<td>30</td>
<td>6</td>
<td>7.9</td>
</tr>
</tbody>
</table>
4.1.5.3. Réchauffement important

Plus de la moitié des populations des trois zones concernées par l’enquête utilise le paillage comme stratégie première d’adaptation en cas de réchauffement important (tableau 3). L’irrigation et le semis tardifs sont aussi adoptés.

Tableau 3: Stratégies et pratiques d’adaptation en cas de réchauffement important (en % de personnes enquêtées)

<table>
<thead>
<tr>
<th>Stratégie et pratiques</th>
<th>Zone soudanienne</th>
<th>Zone Soudano sahélienne</th>
<th>Zone sahélienne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paillage</td>
<td>52</td>
<td>40.2</td>
<td>69</td>
</tr>
<tr>
<td>Irrigation</td>
<td>21.5</td>
<td>4.9</td>
<td>0</td>
</tr>
<tr>
<td>Semis précoce</td>
<td>6.3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Semis tardif</td>
<td>20.2</td>
<td>34.9</td>
<td>21</td>
</tr>
</tbody>
</table>

4.1.5.4. Vents violents

Le redressement des plants est la stratégie la plus adoptée en cas de vent violent dans les trois zones (tableau 4). Le billonnage est aussi une pratique adoptée en plus du redressement des plants en cas de vent violent.

Tableau 4: Stratégies et pratiques d’adaptation en cas de vent violent (en % de personnes enquêtées)

<table>
<thead>
<tr>
<th>Stratégies et pratiques</th>
<th>Zone soudanienne</th>
<th>Zone Soudano sahélienne</th>
<th>Zone sahélienne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billonnage</td>
<td>37.6</td>
<td>30.2</td>
<td>26.1</td>
</tr>
<tr>
<td>Cloisonnement</td>
<td>0</td>
<td>13.1</td>
<td>12.3</td>
</tr>
<tr>
<td>Redressement des plants</td>
<td>62.4</td>
<td>56.7</td>
<td>61.6</td>
</tr>
</tbody>
</table>
4.2. Résultats d’analyses des paramètres climatiques

4.2.1. Les données pluviométriques

4.2.1.1. Evolution générale de la pluviométrie

Les cumuls pluviométriques de Bobo-Dioulasso, Koudougou et Dori ont connu une forte variabilité inter annuelle entre 1961 à 2008 (figure 15). La tendance générale du cumul pluviométrique annuel est à la baisse.

Figure 15: Evolution des cumuls pluviométriques annuels sur la série 1961_2008 à Bobo, Koudougou et Dori
4.2.1.2. Le cumul pluviométrique saisonnier

L’analyse de la contribution des trois mois considérés comme les plus pluvieux de la saison notamment juillet, août et septembre par rapport au cumul total annuel fait ressortir une tendance à la hausse du cumul de juillet dans les trois zones. Le mois d’août connait globalement une baisse de son cumul; par contre le cumul du mois de septembre est demeuré stable dans toutes les zones (figure 16).

Aussi, le nombre de jours où le maximum de précipitation cumulé en trois jours est supérieur à 1, 10 et 50 mm révèlent une légère variabilité dans les différentes zones (annexe X).

Figure 16: Variation du cumul pluviométrique des mois de juillet, août, septembre par rapport au cumul total
4.2.1.3. **La date de début d’hivernage**

L’étude fait ressortir que l’installation de la saison d’hivernage en zone soudanienne en comparant la normale 1961 à 1990 par rapport à la décennie 1999 à 2008 est la mi mai; par contre, en zone soudano sahélienne, la date de début était dans la deuxième décade de mai contrairement à nos jours où elle s’installe dans la dernière décade de juin. Plus au nord, en zone sahélienne, la dernière décade de juin est la période de début d’hivernage avec un rétrécissement peu significatif pour la période actuelle (figure 17).

![Figure 17: Dates de début d’hivernage à Bobo, Koudougou et Dori](image-url)
4.2.1.4. **La date de fin d’hivernage**

Il ressort de l’analyse (figure 18) qu’en zone soudanienne que la date de fin de la saison qui était mi octobre avant est observée actuellement au début de la troisième décade d’octobre.

En zone soudano sahélienne, la première décade et le début de la deuxième décade du mois d’octobre sont les dates respectives de fin de saison d’avant et actuellement. En zone sahélienne par contre, la saison prenait fin au cours de la deuxième décade du mois de septembre avant et s’arrête de nos jours en fin de première décade de septembre.

![Figure 18: Dates de la fin de l’hivernage à Bobo, Koudougou et Dori](image)

Figure 18: Dates de la fin de l’hivernage à Bobo, Koudougou et Dori
4.2.1.5. **La longueur de la saison d'hivernage**

Il ressort que la longueur de la saison est de nos jours plus longue à Bobo-Dioulasso, tandis qu'elle s'écourt de plus en plus à Koudougou et à Dori (figure 19). Ainsi, 150 jours, 130 jours et 90 jours étaient les longueurs de saisons respectivement en zone soudanienne, soudano sahélienne et sahélienne contre 155 jours, 105 jours et 80 jours de nos jours respectivement pour les mêmes zones.

Figure 19: Variation de la longueur moyenne de la saison d'hivernage
4.2.1.6. *Les séquences sèches*

L’analyse fait ressortir que la longueur des séquences sèches se situe entre 6 et 16 jours à compter de la date du début de la saison (figure 20).

Ainsi, la longueur moyenne des séquences sèches en zone soudanienne était de 10 jours avant alors qu’elles sont moins longues et durent 8 jours de nos jours. Ce nombre baisse au fur et à mesure que la saison progresse.

En zone soudano-sahélienne, la longueur moyenne de ces séquences sèches était de 9 jours avant, et connait une hausse de 1 à 2 jours de nos jours. Ces séquences s’observent constamment sur toute la saison.

Plus au nord, les séquences sèches s’allongent passant de 14 jours avant à plus de 15 jours de nos jours. Elles sont plus prononcées en fin de saison agricole dans cette zone.

Figure 20: Evolution de la longueur moyenne des séquences sèches sur les quatre mois qui suivent le semis
4.2.2. La température

L’analyse des anomalies de température montre que la température moyenne est en hausse dans toutes les trois zones climatiques du Burkina Faso avec un écart de 0.74, 1.05 et 1.24° respectivement à Bobo-Dioulasso, Ouagadougou et Dori (Figure 21). De même, l’analyse des extrêmes des données de températures minimales et maximales fait ressortir trois résultats majeurs.

- les nombres de jours chauds et de nuits chaudes connaissent une hausse importante dans les trois zones (figure 22);
- les températures en saison d’hivernage (mai, juin, juillet, août, septembre et octobre) connaissent une tendance à la hausse dans les trois zones climatiques (figure 23);
- aussi bien à Bobo-Dioulasso, Ouagadougou qu’à Dori, les températures de la saison froide (novembre, décembre, janvier et février) connaissent également une tendance à la hausse (figure 24).

Figure 21: Evolution de la température maximale sur la série 1961_2008 à Bobo-Dioulasso, Ouagadougou et Dori. La zone encerclée matérialise les dix dernières années.
Figure 22: Comparaison du nombre des jours et des nuits chauds avant et actuel à Bobo-Dioulasso, Ouagadougou et Dori

Figure 23: Evolution de la température moyenne en hivernage à Bobo-Dioulasso, Ouagadougou et Dori de 1961 à 2008
Figure 24: Évolution de la température moyenne en saison froide à Bobo-Dioulasso, Ouagadougou et Dori de 1961 à 2008
4.2.3. Les vents

L’analyse des données de la vitesse journalière à travers le regroupement de la vitesse en trois classes (V>1m/s, V>3m/s et V>5m/s) montre que le nombre de jours pour les trois classes sont à la baisse (Tableau 5).

A Bobo-Dioulasso en zone soudanienne, le nombre de jours où la vitesse du vent est supérieure à 1m/s était de 30 contre 10 jours actuellement. Pour une vitesse >3m/s, ce nombre est respectivement de 12 jours et 9 jours. Il n’est pas observé de vent de vitesse supérieure à 5 m/s.

A Ouagadougou en zone soudano sahélienne, 30 jours pour la période avant contre 10 jours pour la période actuelle pour les vents de vitesse > 1m/s. Les vents supérieurs à 3 et 5 m/s sont inexistants.

En zone sahélienne, à Dori, on dénombrait 30 jours avant où V>1m/s contre 9 jours de V>1m/s de nos jours. Les vents supérieurs à 3 et 5 m/s sont aussi inexistants.

Tableau 5: Evolution du nombre de jours de vent à vitesse supérieure à 1m/s, 3m/s et 5m/s

<table>
<thead>
<tr>
<th></th>
<th>NJ_V>1ms</th>
<th>NJ_V>3ms</th>
<th>NJ_V>5ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobo-Dioulasso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avant</td>
<td>30</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>actuel</td>
<td>10</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ouagadougou</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avant</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>actuel</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dori</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avant</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>actuel</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
V. Discussion

Dans le contexte du débat scientifique mondial sur le changement global, l’objectif de cette étude est de présenter et de confronter deux appréciations du climat. La première approche est d’origine paysanne, à partir d’enquêtes et d’entretiens semi dirigés réalisés auprès des paysans, la seconde l’analyse des données d’observations scientifiques.

La totalité des personnes enquêtées affirme qu’il fait de plus en plus chaud, aussi bien les nuits que les jours. Il en est de même pour la saison d’hivernage et la saison froide.

L’analyse des anomalies de la température moyenne confirme cette perception de sensation de chaleur. En effet, de 1961 à 2008 la tendance générale est à la hausse dans les trois zones agro climatiques avec cependant un effet prononcé dans la zone sahélienne (+1,24°C à Dori), suivi de la zone soudano sahélienne (+1,05°C à Ouagadougou) et la zone soudanienne a la plus faible hausse (+0,74°C à Bobo-Dioulasso).

Cette tendance est en conformité avec les projections PANA (2006) qui situe l’augmentation de la température de +0,8°C et +1,7°C a l’horizon 2025 et 2050 respectivement. Dans le rapport de la CEDEAO-Club /Sahel/OCDE/CILSS (2008) cité par SARR (2010), il ressort que les températures en Afrique de l’Ouest, et particulièrement dans le Sahel, ont évolué quelque peu plus rapidement que la tendance mondiale, avec des augmentations allant de 0,2°C à 0,8°C par décennie depuis la fin des années 1970 dans les zones sahélo saharienne, sahélienne et soudanienne. La faible augmentation de la température dans la zone soudanienne comparativement aux deux autres zones s’expliquerait par la durée de la saison de pluie qui est de 150 jours à Bobo-Dioulasso contre 130 jours à Ouagadougou et 80 jours à Dori.

Les précipitations dans la bande sahélienne sont en grande partie tributaires de l’intensité de la mousson (KOULM et al. 2004). La variation de la mousson engendrerait une variation du cycle des pluies. Ainsi, pour ce qui est de la tendance générale de la saison pluvieuse, presque toute la population enquêtée dans les trois zones climatiques du Burkina Faso affirme que les saisons sont de plus en plus sèches. Cette perception se confirme avec l’analyse de la tendance du cumul

En ce qui concerne les paramètres de la saison, les paysans des trois zones constatent d’abord une installation de plus en plus tardive de la saison car il y’a plus de trente ans, ils semaient en début mai, actuellement il faut attendre en mi juin pour commencer le semis. Ensuite, la fin de l'hivernage est de plus en plus précoce ; en effet, avant la pluie s'arrêtait en octobre, tandis qu'actuellement dès en mi septembre les pluies cessent de tomber. Ce qui se traduit par un rétrécissement de la longueur de la saison qui était de quatre à six mois avant contre trois à cinq actuellement. SAWADOGO (2006) a mené une enquête sur la perception paysanne des changements des précipitations auprès de 1530 exploitations agricoles du Burkina Faso et a ressorti que les paysans perçoivent clairement les changements des précipitations qui se traduisent par une diminution et une irrégularité des pluies, un dérèglement de la saison d’hivernage et une fréquence des poches de secheresse.

Ces résultats sont confirmés par l’analyse des données météorologiques qui indiquent que une saison une installation de plus en plus tardive de la saison en zone soudano sahélienne, précoce en zone sahélienne et stable en zone soudanienne. Ensuite une date de fin de plus en plus précoce en zone soudano sahélienne et en zone sahélienne, mais une fin tardive en zone soudanienne. Ce qui se traduit par une modification de la longueur de la saison.

En zone sahélienne, la longueur est de 90 jours pour la période 1961-1990 contre 80 jours pour la période 1999-2008 ; en zone soudano sahélienne 130 jours contre 105 jours et 150 jours contre 150 jours en zone soudanienne. En effet cet allongement de la saison s’explique par le fait que

Concernant le régime des vents, les personnes enquêtées arrivent à faire une distinction claire entre la mousson et l’harmattan. Cela en se rapportant à l’évolution des saisons. Ainsi, en zone soudanienne et sahélienne, la population ressent que la mousson est plus en plus forte ; contrairement aux données de météorologiques de la même période. Cette discordance de point de vue s’expliquerait par le fait que les paysans ne tiennent compte que des vents instantanés qui sont effectivement forts en début de saison pluvieuse a cause de la réduction du couvert végétal. Dans la zone sahélienne, les populations étaient déjà habituées aux vents forts à cause du manque du couvert végétal qui est intervenu beaucoup plus tôt.

Quant à l’harmattan, les enquêtés la trouvent de plus en plus fort dans la zone sahélienne. Ce qui n’est pas le cas dans les zones soudanienne et soudano sahélienne où une moitié des personnes enquêtées trouve que l’harmattan est de plus en plus fort contrairement à l’avis de l’autre moitié. Une autre nuance sur les questions relatives aux vents au niveau des paysans est que ces derniers ne considèrent qu’il y’a vent que par les dommages causés par celui-ci. En partant sur cette base, la vitesse moyenne journalière observée ne peut être en concordance avec la perception paysanne. Néanmoins, PANA (2006), rapportait une fréquence élevée des vents froids, secs et poussiéreux du secteur nord-est (Harmattan) et les vents chauds et humides du secteur sud-ouest (mousson) avec des fortes vitesses en cas d’orage ou de ligne de grains.

La recrudescence, ces dernières années, de phénomènes météorologiques extrêmes n’est pas imperceptible à la population Burkinabé. L’enquête a ressorti que les pluies qui tombent sont de plus en plus intenses et accompagnées de vents de poussière très violents. Aussi, la population est régulièrement victimes d’inondation dont le nombre par année a augmenté d’après les enquêtés. Les pires inondations ont été enregistrées au Burkina Faso en 2007 et 2009 (SARR, 2010).

Par ailleurs, selon le GIEC (2007), il est très vraisemblablement (probabilité >90) établi que les événements de fortes précipitations, les inondations dévastatrices et les vagues de chaleur continueront à devenir plus fréquents dans le monde. Ces événements seront de plus en plus intenses et surtout de plus en plus variables d’une année à l’autre.
Tout ceci n’est pas sans conséquence sur la société et sur l’environnement. En outre, les impacts socio économiques sur la population vulnérable sont considérables. Les surfaces cultivables sont insuffisantes, ce qui engendre d’une part les conflits (surtout entre éleveurs et agriculteurs) et d’autre part l’exode rural / les migrations climatiques pour la recherche d’un mieux être. En l’absence de mesures d’adaptation et/ou de réduction de la vulnérabilité du secteur agricole une bonne partie de la population des pays serait exposée à des situations d’insécurité alimentaire due à ces événements extrêmes.

Une enquête réalisée par SAWODOGO (2006) montre que les cordons pierreux et le Zaï peuvent induire respectivement une augmentation des rendements de 60 % et 25 % par rapport au champ sans aménagement.

La pratique du Zaï et la protection des rejets arbus tifs dans les champs (régénération naturelle assistée) qui a permis la révégétalisation de nombreux terroirs villageois et un « reverdissement du Sahel » (Grain de sel, 2010).

Plutôt que de concevoir le savoir local et celui scientifique comme absolument incompatible, cette étude met en relation les perceptions locales du changement climatique et les études scientifiques.
Conclusion

La présente étude a permis de confirmer l’assertion selon laquelle la connaissance du climat tient une place importante parmi les savoir-faire développés par les populations pour s’adapter aux contraintes du milieu au Sahel. Elle a montré que les paysans perçoivent clairement les changements climatiques opérés au niveau des précipitations, de la température et du régime des vents. Les perceptions paysannes corroborent les observations agro météorologiques et la littérature sur la crise climatique au Sahel. La baisse des précipitations, le dérèglement de la saison des pluies, l’irrégularité des pluies et la fréquence de poches de sécheresse relevées par les paysans constituent des manifestations scientifiquement acceptées de la crise climatique au Sahel. Les paysans ont adopté une gamme variée de stratégies d’adaptation aux changements climatiques.

Bibliographie

http://www.google.com/search?as_q=protocole+de+kyoto&btnG=Rechercher&lr=lang_fr

DIALLA B. E (2004), „Les savoirs locaux : un capital culturel souvent occulté”,

DT-CAPES N°2004-11, Ouagadougou, Burkina Faso

GACHON et al. 2007. Report on canadien contributions to the CIDA- CILSS. Project (A030978-002). « Climate change adaptation capacity support ».

PANA (Burkina Faso) 2006. Programme d’Action National d’Adaptation à la variabilité et aux changements climatiques. 76p.

SIVAKUMAR M.V.K, 2005. Global Capabilities to take climate change/variability and long-range predictions into account for better agricultural decision. 40p.
SOME L., 1989 : Diagnostique agropédoclimatique du risque de sécheresse au Burkina Faso : Etude de quelques techniques agronomiques améliorant la résistance pour la culture du sorgho, de mil et de maïs. Thèse doctorat, Université de Montpellier II. 312 pages

Annexe 1: Carte du réseau météorologique du Burkina Faso
Annexe 2: Fiche d’enquête sur la perception paysanne du changement du climat et les stratégies d’adaptation au Burkina Faso

Fiche d’enquête

Perception paysanne du climat, les stratégies d’adaptation au Burkina Faso

<table>
<thead>
<tr>
<th>Numéro :……………</th>
<th>Date de l’enquête :…………………</th>
<th>Lieu de l’enquête …………</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone climatique …………………………</td>
<td>Province………………………………</td>
<td></td>
</tr>
<tr>
<td>Département/Commune …………………………</td>
<td>Village/Secteur …………………</td>
<td></td>
</tr>
</tbody>
</table>

I. Généralités sur l’enquêté

<table>
<thead>
<tr>
<th>1. Age………………………</th>
<th>2. Ethnie………………………………</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Sexe /../ 1=homme 2=femme</td>
<td>4. Etat matrimonial :../ 1= marié 2=célibataire 3= divorcé 4= veuf/veuve</td>
</tr>
</tbody>
</table>

5. Activités 1, 2, 3,4 (par ordre d’importance)

<table>
<thead>
<tr>
<th>1. agriculture ………………</th>
<th>3. commerce …………………………</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. élevage………………………</td>
<td>4. Autres (préciser) …………………</td>
</tr>
</tbody>
</table>

II. Perception paysanne de la variabilité climatique

A. **Pluie**

1. Les saisons de pluie sont elles de + en + :

<table>
<thead>
<tr>
<th>Pluvieuse /...../</th>
<th>Sèche /...../</th>
<th>Normale /...../</th>
</tr>
</thead>
</table>

2. Les pluies sont elles de + en + variable d’une année à une autre ?

<table>
<thead>
<tr>
<th>Oui /...../</th>
<th>Non /...../</th>
</tr>
</thead>
</table>

3. Y’a-t-il des changements importants dans le cumul des mois les plus pluvieux ?

<table>
<thead>
<tr>
<th>juillet /...../</th>
<th>Août /...../</th>
<th>Septembre /...../</th>
</tr>
</thead>
</table>

B. **Paramètres de la saison**

4. Quelle est la date de début de l’hivernage

<table>
<thead>
<tr>
<th>Avant</th>
<th>Actuelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai □ début □ Mi □ Fin</td>
<td>Mai □ début □ Mi □ Fin</td>
</tr>
<tr>
<td>Juin □ début □ Mi □ Fin</td>
<td>Juin □ début □ Mi □ Fin</td>
</tr>
<tr>
<td>Juillet □ début □ Mi □ Fin</td>
<td>Juillet □ début □ Mi □ Fin</td>
</tr>
</tbody>
</table>

5. Le début de l’hivernage est elle de + en + :

<table>
<thead>
<tr>
<th>Précoce /...../</th>
<th>Tardive /...../</th>
<th>Normale /...../</th>
</tr>
</thead>
</table>

6. Quelle est la date de fin de l’hivernage

<table>
<thead>
<tr>
<th>Avant</th>
<th>Actuelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Août</td>
<td></td>
</tr>
<tr>
<td>Septembre</td>
<td></td>
</tr>
<tr>
<td>Octobre</td>
<td></td>
</tr>
</tbody>
</table>

La fin de l’hivernage est elle de + en + :
1. Précoce /...../
2. Tardive /...../
3. Normale /...../

7. La longueur de la saison est elle de + en +:
1. longue /...../
2. courte /...../
3. Normale /...../

8. Préciser la longueur

<table>
<thead>
<tr>
<th>Avant</th>
<th>Actuelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Les séquences sèches sont elles de plus en plus longues ?
1. Oui /...../
2. Non /...../

10. Si oui préciser la longueur moyenne

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. A quelle période surviennent elles ?
1. Début de saison /...../
2. Milieu de saison /...../
3. Fin de saison /...../
4. A tout moment /...../

C. Température

12. Fait-il de + en + chaud ?
1. Oui /...../
2. Non /...../

13. Les nuits sont elles de + en + chaudes ?
1. Oui /...../
2. Non /...../

14. les hivernages sont de + en + chauds ?
1. Oui /...../
2. Non /...../

15. la saison froide est de plus en plus chaude ?
1. Oui /...../
2. Non /...../

D. Vents

16. Y’a-t-il des changements dans le régime des vents en mousson (saison des pluies) ?
1. Oui /...../
2. Non/...../

17. Y’a-t-il des changements dans le régime des vents en harmattan (saison sèche) ?
1. Oui /...../
2. Non /...../

18. Si oui quels sont les changements en mousson ?

<table>
<thead>
<tr>
<th>Avant</th>
<th>Après</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Le début (mois)
- La durée (en mois)
1. la force du vent est elle de + en + violente /...../
2. la force du vent est elle stable /...../
3. la force du vent est elle de + en + faible /…./

<table>
<thead>
<tr>
<th>19. Si oui quels sont les changements en harmattan :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avant</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>- Le début (mois)</td>
</tr>
<tr>
<td>- La durée (en mois)</td>
</tr>
<tr>
<td>1. la force du vent est elle de + en + violente /…./</td>
</tr>
<tr>
<td>2. la force du vent est elle stable /…./</td>
</tr>
<tr>
<td>3. la force du vent est elle de + en + faible /…./</td>
</tr>
</tbody>
</table>

E. Evènements extrêmes

<table>
<thead>
<tr>
<th>20. Les pluies sont elles de + en + intenses ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oui /...../</td>
</tr>
<tr>
<td>2. Non /...../</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Les vents sont ils de + en + violents ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Oui /...../</td>
</tr>
<tr>
<td>2 Non /...../</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24. Y’a-t-il de + en + des inondations ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oui /...../</td>
</tr>
<tr>
<td>2. Non /...../</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25. Si oui, qu’est ce qui explique cette recrudescence ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27. Le nombre d’inondations par an a-t-il augmenté ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oui /...../</td>
</tr>
<tr>
<td>2. Non /...../</td>
</tr>
</tbody>
</table>

F. Indicateurs

<table>
<thead>
<tr>
<th>28. Quels sont vos indicateurs des dates de début de la saison (à préciser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Astres (types)..................</td>
</tr>
<tr>
<td>2. Végétation (espèce de plantes)...........</td>
</tr>
</tbody>
</table>
| 3. Oiseaux................... | 2. Végétation (espèce de plantes)
| 4. Insectes.................. | 3. Faune (oiseaux).................. |
| | 4. Insectes.................. |

<table>
<thead>
<tr>
<th>30. Quels sont les indicateurs d’un hivernage sec (à préciser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Astres..................</td>
</tr>
<tr>
<td>2. Végétation (espèce de plantes)</td>
</tr>
<tr>
<td>3. Faune (oiseaux)..................</td>
</tr>
<tr>
<td>4. Insectes..................</td>
</tr>
</tbody>
</table>
G. Impacts socio économiques et environnementaux liés à la variabilité

<table>
<thead>
<tr>
<th>31. Existe-t-il de + en + des conflits?</th>
<th>32. L’exode est-il de + en + important?</th>
<th>33. Quelles en sont les causes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oui/....../</td>
<td>1. Oui/....../</td>
<td>1. mauvaises productions/....../</td>
</tr>
<tr>
<td>2. Non/....../</td>
<td>2. Non/....../</td>
<td>2. accès à l’eau/....../</td>
</tr>
<tr>
<td></td>
<td>3. L’exode est-il de + en + important?</td>
<td>3. accès pâturage/....../</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. accès à la terre/....../</td>
</tr>
<tr>
<td>34. Si oui, préciser les destinations</td>
<td></td>
<td>5. autres/....../</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. diminuées/....../</td>
<td>1. plus dense/....../</td>
<td>1. Oui/....../</td>
</tr>
<tr>
<td>2. augmentées/....../</td>
<td>2. moins dense/....../</td>
<td>2. Non/....../</td>
</tr>
<tr>
<td></td>
<td>3. stable/....../</td>
<td>3. ..</td>
</tr>
<tr>
<td></td>
<td>4. diminuées/....../</td>
<td>4. ..</td>
</tr>
<tr>
<td></td>
<td>5. augmentées/....../</td>
<td>5. ..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>39. Quel est l’état actuel de la faune ?</th>
<th>40. Y’a-t-il une disparition d’espèces animales ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. plus important/....../</td>
<td>1. Oui/....../</td>
</tr>
<tr>
<td>2. moins important/....../stable/....../</td>
<td>2. Non/....../</td>
</tr>
<tr>
<td>41. Si oui citer :.................................</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>42. Les rendements sont-ils en baisse ?</th>
<th>43. Si oui, comment expliquez-vous la baisse actuelle des rendements ? (par ordre d’importance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oui/....../</td>
<td>1. baisse de la pluviométrie/....../</td>
</tr>
<tr>
<td>2. Non/....../</td>
<td>2. retard de semis/....../</td>
</tr>
<tr>
<td></td>
<td>3. fin précoce de l’hivernage/....../</td>
</tr>
<tr>
<td></td>
<td>4. sécheresse pendant les phases critiques (floraison)/....../</td>
</tr>
<tr>
<td>9. Autres (préciser)...........................</td>
<td>5. Inondations/....../</td>
</tr>
<tr>
<td>6. baisse de fertilité/....../</td>
<td>6. hausse de température/....../</td>
</tr>
<tr>
<td>7. maladies/....../</td>
<td>7. ..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>44. Quels sont les impacts de la hausse de température sur les cultures ?</th>
<th>45. Quels sont les effets des vents sur les cultures ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. fonte de semis/....../</td>
<td>1. verse des plants/....../</td>
</tr>
<tr>
<td>2. maturation précoce/....../</td>
<td>2. Autres (préciser)..</td>
</tr>
<tr>
<td>3. faiblesse de la production/....../</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>46. Les ressources en eau dont vous disposez sont-elles :</th>
<th>47. Indiquer la profondeur actuelle de la nappe ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pérennes/....../</td>
<td>1. de + en + profonde/....../</td>
</tr>
<tr>
<td>2. Temporaires/....../</td>
<td>2. de – en – profonde/....../</td>
</tr>
</tbody>
</table>
H. Stratégies et pratiques d’adaptation

48. En cas de sécheresse
- Demi-lunes
- Cordons pierreux
- Fumure organique
- Zai
- Irrigation de complément
- Billonnage
- Autres (préciser)

49. En cas de vents violents
- Billonnage
- Cloisonnement
- Redressement des plants

50. En cas de réchauffement important
- Paillage
- Irrigation
- Semis précoce
- Semis tardif

51. En cas de mauvaise installation de la saison des pluies que faites-vous ?
- Ressemis
- Semis à sec
- Abandon des cultures de rente...
- Transplantation en juillet août......
- Semis de variétés précoces
- Autres
Annexe 3: Documentation de Processus des entretiens réalisés en focus groupe à Bobo, Koudougou et Dori

Documentation de Processus (DP) du focus groupe sur la perception paysanne des changements climatiques et les stratégies locales d’adaptation

Objectif: Qu'est-ce que vous essayer d'atteindre dans l'ensemble, et notamment au cours de cette étape du processus?

Objectif global : Vérifier et mieux renseigner les résultats de l’enquête précédemment menée sur la perception paysanne des changements climatiques et leurs stratégies locales d’adaptation.

Objectifs spécifiques :
- Rechercher des informations complémentaires sur les résultats des fiches d’enquêtes ;
- Favoriser un échange participatif pour un partage d’informations sur les perceptions locales des changements climatiques.

Résultats :
- Disposer d’informations claires sur les paramètres climatiques et les indicateurs ;
- Acquérir plus de renseignement sur la portée des indicateurs (dates début hivernage, hivernage pluvieux/sec) ;
- Mieux appréhender les variations (début, durée, force) de la mousson/harmattan et leurs impacts des changements climatiques sur la population.

Approche: Que ferez-vous pour atteindre l'objectif? Quelles mesures prendrez-vous et pourquoi? Quelles sont les personnes qui seront impliquées à chaque étape, et pourquoi?

L’atteinte des objectifs fixé passe nécessairement par un certains nombres d’étapes :

1ère phase : Salutations et présentation (15mn)
- Mot de bienvenu du président du Conseil de Suivi Evaluation (CSE)
- Présentation de l’objet de la mission par ACCA-VICAB et les grandes étapes prévues pour son déroulement.

2ème phase : Recherche des informations complémentaires sur les résultats des fiches d’enquêtes (50mn)
Il s’agira dans cette phase de :
- Rappeler les réponses aux fiches d’enquêtes qui font l’objet d’incompréhension ;
- Identifier les paramètres ainsi que les indicateurs de perception de l’évolution du climat ;
3ème phase : favoriser un échange participatif pour un partage d’informations sur les perceptions locales des changements climatiques (40mn)

- Contribuer au développement de l’échange pour faire ressortir les impacts des changements climatiques sur les activités et la vie des populations ;
- Rappeler aux membres du CSE la nécessité de diffusion des informations sur leurs perceptions des changements climatique ;
- Signaler qu’elles devraient s’approprier le mécanisme d’échange crée et qu’elles devraient pérenniser en absence du projet.

4ème phase : Conclusion de la rencontre (10mn)

Faire le point de la saison pluvieuse : difficultés (organisationnelle, matérielle, contraintes climatiques), les atouts (mobilisation pour les premières activités du champ école et les engagements des membres) et les attentes en début de campagnes.
Mot de remerciement du chef de mission
Mot de clôture par le président du CSE

Déroulement

Arrivée : 08h50
Installation : 08H50-09H00
Démarrage des travaux : 09H00
Fin des travaux : 11H00 et retour : 11H20
Annexe 4: Pourcentage d’hommes et de femmes enquêtés à Bobo, Koudougou et Dori

Annexe 5: Principales activités des populations de Bobo Dioulasso, Koudougou et Dori
Annexe 6: Appréciation de la précocité/tardivité de la date de début des saisons agricoles

Annexe 7: Appréciation de la précocité/tardivité de la fin de l'hivernage
Annexe 8 : Perception paysanne sur la fréquence des conflits et de l’exode rural

Annexe 9: Appréciation de la baisse des rendements agricoles
Annexe 10: Nombre de jours où la pluviométrie est supérieure aux seuils 1, 10 et 50 mm dans les 03 zones agro climatiques

<table>
<thead>
<tr>
<th>Zone</th>
<th>P>1mm Avant</th>
<th>P>1mm Actuel</th>
<th>P>10mm Avant</th>
<th>P>10mm Actuel</th>
<th>P>50mm Avant</th>
<th>P>50mm Actuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobo</td>
<td>61</td>
<td>63</td>
<td>32</td>
<td>31</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ouaga</td>
<td>45</td>
<td>44</td>
<td>23</td>
<td>21</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Koudougou</td>
<td>42</td>
<td>26</td>
<td>22</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dori</td>
<td>24</td>
<td>26</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>