Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4 – 17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
CONTENTS

Foreword ... v
List of Participants .. vi
Introduction ... xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust
(Albugo candida) Between India (ICAR) and Canada (IDRC) for
Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of
Oleiforous Brassica. H.SINGH, D.SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.
BASUDEO SINGH .. 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.
G.N. SACHAN ... 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND
KUMAR and R.P. SINGH .. 35
Disease Problems in Brassicas and Research Activities at Pantnagar.
S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and
S.J. KOLTE .. 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.
G.C. SACHAN .. 56
Economic Performance, Potential and Constraints in Toria Production.
L.R. SINGH .. 66
Rapeseed in Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques
on Oilseed Brassica Performance in the Central, South-Eastern and
North-Western Zones of Ethiopia. HIRUY BALENHE, GETINET
ALEMAW and NIGUSSIE ALEMAW 72
The Achievements and Future of Brassica in Kenya. M.J. MAHASI 79
Rapeseed Adaptation Trials in Cyprus. A. HAJICHIRISTODOULO 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai
Academy of Agricultural Sciences (SAAS) for Recent Years.
SUN CHAOCAI ... 92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding
Project in 1988. WANG ZAO MU 94
A Preliminary Study on the Combining Ability and Heritability of Main
Agronomic Characters in B. juncea. WANG ZAO MU and
WANG YAN FEI ... 98
LIU CHENG QUING and HONG HAI PING 103
Oil Crops in Bhutan. TAYAN RAJ GURUNG ... 119
Brassica Production and Research in Pakistan. REHMA ULLAH KHAN and
MASOOD A.RANA .. 127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT 130
Report on a Tour to Oilseed Brassica Growing Areas of India.
GETINET ALEMAW ... 136
Discussions and Recommendations ... 138

Part 2. Other Oilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAO 144
Highlights of the Second International Safflower Conference Hyderabad,
India from January 9-13, 1989. V.RANGA RAO .. 147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.)
Improvement in India. MANGALA RAI ... 149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT 154
Nigerseed in India: Present Status of Cultivation, Research
Achievements and Strategies. S.M.SHARMA ... 159
Constraints and Opportunities for Increasing the Production and
Productivity of Niger in India. S.M.SHARMA .. 166
New Potential Areas of Niger in India. S.M.SHARMA .. 169
Present Production, Research and Future Strategy for Niger in
Maharashtra. A.V.JOSHI .. 171
Niger in Tribal Bihar. H.B.P.TRIVEDI ... 176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY 180
Agronomic Management/Agro-Techniques for Improving Production of
Niger and Linseed. G.L.MISHRA ... 186
The Present Status of Niger and Linseed Pathology Work in India.
G.S.SAHARAN ... 192
Safflower, Niger and Linseed in Nepal. B.MISHRA .. 203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and
DILRUBA BEGUM ... 208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,
MOHAMMAD SHARI, and ALTAF H.CHAUDHRY ... 213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR 218
Progress in Linseed On-station and On-farm Research in Ethiopia.
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW 220
Investigations on Some Biochemical Characteristics of Nigerseeds
(Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH 229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA .. 233
The Status of Linseed, Safflower and Niger Research and Production in
Kenya. T.C.RIUNGU ... 238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.
HUGH DOGGETT ... 241
Discussions and Recommendations .. 248
Part 3. Oilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and Future. ABBAS OMRAN .. 256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT 265
IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks. J.M.M.ENGELS 272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in India. MANGALA RAI ... 274
Oilseeds Research in India: Network, Its Set Up, Organization, Past Achievements and Current Research Thrusts. V.RANGA RAO 283
Groundnut and the Oilcrops Network. S.N.NIGAM 286
Oilcrops Production in Ethiopia Current Status and Future Prospects. SEME DEBELA .. 288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I. C.ZULBERTI and J.LUGOGO ... 293
Brassica Sub-Network Achievements and Activities, 1987-88. HIRUY BELAYNEH ... 320
The Present Situation and Main Achievements of Sesame Production in East Africa. MOHAMMED EL-HASSAN AHMED 324
Constitution of the Oil Crops Network (Second Draft). MASOOD A.RANA and ABBAS OMRAN .. 330
Although safflower has been under cultivation in India since immemorial either for its orange red dye carthamin extracted from its flowers and/or oil, the crop received practically little attention until early 70’s. The extension of the All India Coordinated Project on Oilseeds which initially started in 1967 to hitherto neglected crop namely safflower gave a fillip to the research and developmental efforts in the crop. Since inception, the number of active research centres on safflower in the country have gone up from 4 to 7 and the network expanded to several non-traditional areas (Madhya Pradesh, Uttar Pradesh, Rajasthan) and situations. Besides, with effect from 1977 a fulfledged Project Coordinator has also been provided exclusively for safflower with headquarters at Solapur (Maharashtra) for the purpose of coordination and monitoring of research activities in the crop. Realizing the crucial importance of genetic resource conservation, documentation and evaluation, the ICAR has also set up a Germplasm Management Unit at the Headquarters of Project Coordinator (Safflower) since VIth Plan.

The last two decades of organized research activity in safflower has indeed been very rewarding; it opened several hitherto unknown and untapped opportunities for improving the yields and incomes of dryland areas and augment the country’s edible oilseeds production. Extensive trials carried out in different parts of the country for the first time brought out the superior potentials of safflower as an entire crop under receding moisture conditions. In fact, in a number of areas both conventional (Maharashtra, Karnataka, Andhra Pradesh) and non-conventional (Eastern Uttar Pradesh, Bundelkhand, South-Eastern Rajasthan, Plateau region of Bihar) cultivation of safflower proved far more paying and stable than a number of popularly grown winter season crops like chickpea, linseed, coriander, Herbsceum cottons, wheat etc., in drylands.

The impact of these findings on prevailing cropping patterns is clearly discernible in several parts of the country now identified as proven and efficient areas of safflower culture. What is more, a number of feasible and profitable two crop sequences identified for different rainfed areas in the country either on contingency basis or regular pattern (assured rainfall areas) also include safflower which is known for its ability to tap moisture from deeper layers as one of the important component after either a short duration rainy season cereal (sorghum, pearl millet, maize, rice) or grain legumes (green gram, black gram, groundnut, soybean) and non-legumes (sesame). This indeed brightened the prospects for making productive and profitable use of vast stretches of sorghum and soybean fallows currently under utilized in the peninsular region.

Wealth of data generated in recent years also point out safflower with its characteristic rosette habit and deep and efficient rooting system to be an ideal intercrop with a number of post rainy season crops. Thus, inclusion of safflower as an intercrop with coriander, wheat, linseed, gram at predetermined row proportions of 3:1 or 2:1 or their multiples has not only registered higher land equivalent ratios in excess of unity but also produced extra
monitory returns to the tune of Rs.1000 to 2500/- over and above what is realized from the base crop. The popularization of such simple and synergistic crop combinations are expected to lead to sizeable expansion in the acreage under safflower and bring about greater stability to yields and returns from dryland areas in the country.

Equally rewarding are the researches on the breeding and agronomic front. Since 70's the country has developed 13 high yielding varieties of either location specific or multi regional importance with genetic potentials of 2-3 tons/ha. Breeding programs launched in non-traditional areas for the development of spineless varieties of safflower with high yielding potentials have yielded a number of valuable materials of considerable importance.

Simple low-cost practices such as planting at the recommended time and varietal choice have been demonstrated to have significant bearing on the incidence of insect pests and diseases and their management in both rainfed and irrigated areas and returns from costly inputs like fertilizers, chemical plant protection. Even in drylands, application of fertilizers turned out to be a very critical factor in safflower production. Yields and returns from rainfed safflower registered 40 - 50% increase if one supplementary irrigation is provided at sensitive stages of crop growth or when crop encountered moisture stress. Under constraints of water availability in irrigated canals/reservoirs shifts in crop choice from much preferred water intensive crops like wheat to safflower culminated in higher yields and incomes per unit area, water and input.

The prevailing per hectare yields of safflower in the country are very low (< 500 kg). Added to this, there are wide regional disparities in the productivity levels. Results of on-farm trials available from different proven and potential areas of safflower culture in the country reveal existence of vast untapped yield reservoir. According to these, the per hectare yields of safflower even with the technologies currently available, could easily be stepped up to 1 to 1.5 tons/ha in rainfed areas and 1.5-2 tons/ha and above in areas with assured moisture or limited irrigation.

The area, production and productivity of safflower in the country has witnessed remarkable growth in recent years, thanks for the concerted research and developmental efforts. Since early 60's its acreage nearly doubled and production went up by 6.6 fold. While, no doubt, safflower holds tremendous potentials for stepping up yields and returns from dryland areas in the country and thereby impart stability to its production, a number of biotic constraints (Alternaria leafspot, aphids, wilts and root rots) limit realization of its true potentials. The unduly late maturing habit of the currently available varieties in areas with prolonged winter, their poor adaptability to salt affected areas and irrigated conditions, intense spiny nature are some of the other drawbacks limiting expansion of safflower to potentially new areas and situations. The future of safflower in the country and its expansion into newer areas would greatly depend on overcoming these and various other constraints and make its cultivation more attractive and production costs less. Rightly major thrust in the country's on-going research program is for incorporation of genetic resistance against Alternaria leaf blight, aphids in rainfed safflower and Alternaria, aphids, wilt and root...
rots in irrigated safflower.

Various other areas which are currently receiving attention on the research front are:

1. Upgradation of seed oil content in the available improved agronomic base (existing=30%).
2. Development of high yielding varieties of safflower both spiny (traditional belt) and spineless (non-traditional areas) with in built resistance to insect pests and diseases, suited to different situations (irrigated/rainfed, salt affected areas).
3. Exploitation of hybrid vigour.
4. Refine the agronomy of various proven and profitable sequential, relay and intercropping systems for ensuring efficient use of inputs per unit area and time.
5. Integrated management of insect pests and diseases, and
6. Perfect the agronomy of safflower under limited irrigation in vertisols.

With these and the anticipated developments, the safflower scenario in the country is expected to undergo rapid changes in the coming few years and its contribution to the country's vegetable oil pool increased substantially.