Tropical Root Crops

RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops - Africa Branch
TROPICAL ROOT CROPS: RESEARCH STRATEGIES FOR THE 1980s

PROCEEDINGS OF THE FIRST TRIENNIAL ROOT CROPS SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH, 8—12 SEPTEMBER 1980, IBADAN, NIGERIA

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society’s headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

©1981 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

Terry, E.R.
Oduro, K.A.
Caveness, F.

International Society for Tropical Root Crops. Africa Branch, Ibadan NG

UDC: 633.4 (213) ISBN: 0 88936 285 8

Microfiche edition available
Cooperating institutions
CONTENTS

Foreword E.R. Terry .. 7

Participants ... 9

Welcoming Addresses
Bede N. Okigho, President, International Society for Tropical Root Crops — Africa Branch .. 15
Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17
S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19
E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria .. 22

Cassava
Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978 H.C. Ezumah .. 29
Assessment of Cassava Cultivars for Extension Work C. Oyolu 35
Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37
Selection of Cassava for Disease and Pest Resistance in the Congo Joseph Mabanza .. 40
Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42
Field Screening of Cassava Clones for Resistance to *Cercospora henningsii* J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry ... 49
Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T. Sengooba .. 61
Insect Dissemination of *Xanthomonas manihotis* to Cassava in the People’s Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka ... 66
Cassava Root Rot due to *Armillariella tabescens* in the People’s Republic of Congo Casimir Makambila .. 69
Screening for Resistance Against the Green Spider Mite K. Leuschner 75
Biological Control of the Cassava Mealybug Hans R. Herren 79
Entomophagous Insects Associated with the Cassava Mealybug in the People’s Republic of Congo G. Fabres .. 81
Dynamics of Cassava Mealybug Populations in the People’s Republic of Congo G. Fabres .. 84
Consumption Patterns and Their Implications for Research and Production in Tropical Africa Felix I. Nweke .. 88
Problems of Cassava Production in Malawi
R.F. Nembozanga Sauti 95
Evaluation of Some Major Soils from Southern Nigeria for Cassava Production
J.E. Okeke and B.T. Kang .. 99
Effects of Soil Moisture and Bulk Density on Growth and Development of
Two Cassava Cultivars
R. Lal .. 104
Performance of Cassava in Relation to Time of Planting and Harvesting
F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba 111
The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize
S.O. Odurukwe and U.I. Oji .. 116
Intercropping of Plantains, Cocoyams, and Cassava
S.K. Karikari .. 120
Weed Control in Maize—Cassava Intercrop
I. Okezie Akobundu .. 124
Effect of Maize Plant Population and Nitrogen Application on Maize—Cassava
Intercrop
B.T. Kang and G.F. Wilson .. 129
Cassava Leaf Harvesting in Zaire
N.B. Lutaladio and H.C. Ezumah .. 134
Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of
Cassava and Sweet Potato
M.T. Dahniya .. 137
Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in
Cassava
M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard 143
Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of
Cassava
Emmanuel N. Maduagwu and Aderemi F. Adewale .. 149
The Role of Palm Oil in Cassava-Based Rations
Ruby T. Fomunyam, A.A. Adegbola, and O.L. Oke .. 152
Comparison of Pressed and Unpressed Cassava Pulp for Gari Making
M.A.N. Ejiofor and N. Okafor .. 154
Gari Yield from Cassava: Is it a Function of Root Yield?
D.G. Ibe and F.O.C. Ezedinma .. 159

Yams

Parameters for Selecting Parents for Yam Hybridization
Obinani O. Okoli .. 163
Anthrascnose of Water Yam in Nigeria
Okechukwu Alphonso Nwankiti and E.U. Okpala .. 166
Strategies for Progress in Yam Research in Africa
I.C. Onwueme .. 173
Study of the Variability Created by the Characteristics of the Organ of
Vegetative Multiplication in Dioscorea alata
N. Ahoussou and B. Toure .. 177
Growth Pattern and Growth Analysis of the White Guinea Yam Raised from
Seed
C.E. Okezie, S.N.C. Okonkwo, and F.I. Nweke .. 180
Artificial Pollination, Pollen Viability, and Storage in White Yam
M.O. Akoroda, J.E. Wilson, and H.R. Chheda .. 189
Improving the In-Situ Stem Support System for Yams
G.F. Wilson and K. Akapa .. 195
Yield and Shelf-Life of White Yam as Influenced by Fertilizer
K.D. Kpeglo, G.O. Obigbesan, and J.E. Wilson .. 198
Weed Interference in White Yam
R.P.A Unamma, I.O. Akobundu, and A.A.A. Fayemi .. 203
The Economics of Yam Cultivation in Cameroon
S.N. Lyonga .. 208
Effect of Traditional Food Processing Methods on the Nutritional Value of
Yams in Cameroon
Alice Bell and Jean-Claude Favier .. 214

Cocoyams

Strategies for Progress in Cocoyam Research
E.V. Doku .. 227
Root and Storage-Rot Disease of Cocoyam in Nigeria
G.C. Okeke .. 231
Fungal Rotting of Cocoyams in Storage in Nigeria J.N.C. Maduewesi and Rose C.I. Onyike .. 235
A Disease of Cocoyam in Nigeria Caused by Corticium rolfsii O.B. Arene and E.U. Okpala .. 239
Cocoyam Farming Systems in Nigeria H.C. Knipscheer and J.E. Wilson .. 247
Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application and Spacing M.C. Igbokwe and J.C. Ogbannaya .. 255

Abstracts
Cassava Research Program in Liberia Mallik A-As-Saqui .. 259
Effects of Cassava Mosaic on Yield of Cassava Godfrey Chapola .. 259
Effects of Green Manure on Cassava Yield James S. Squire .. 260
Alleviating the Labour Problem in Yam Production: Cultivation without Stakes or Manual Weeding I.C. Onwueme .. 260

Discussion Summary
Strategies for the 1980s .. 263

References .. 265
CASSAVA LEAF HARVESTING IN ZAIRE

N.B. LUTALADIO AND H.C. EZUMAH

PROGRAMME NATIONAL MANIOC (PRONAM), ZAIRE, AND INTERNATIONAL INSTITUTE OF TROPICAL AGRICULTURE, IBADAN, NIGERIA

In Zaire, harvesting cassava leaves for use as a vegetable could increase the total revenue (leaf and root) from the crop by 1.5-6 times, depending on cultivar and on frequency of leaf harvesting. Frequent removal of leaves results in a high incidence of cassava mosaic disease (CMD) and reductions in root and leaf yields. Harvesting leaves once a month provides a high leaf production and returns with low losses in root yield.

La récolte de feuilles de manioc pour l'alimentation pourrait augmenter de 1,5 à 6 fois le revenu total de cette culture au Zaire, selon le cultivar et la fréquence de la cueillette. Cependant, les cueillettes trop rapprochées peuvent provoquer une attaque sévère de mosaïque et compromettre le rendement de la plante à la fois au niveau des tubercules et celui des feuilles. Une seule récolte de feuilles par mois assure la rentabilité de la culture en permettant une production élevée de feuilles et en réduisant les pertes de tubercules.

Cassava is the most important staple food in Zaire. Production is about 11 Mt, Zaire being the largest producer of cassava in Africa and third in the world after Brazil and Indonesia.

In Zaire, cassava provides about 60% of the average person’s daily caloric intake, and its leaves are the basic vegetable, the cheapest and richest source of protein. In addition to consumption by human beings, cassava leaves are used as a nutritionally valuable product in livestock feeds (Hutagalung et al. 1973; Moore 1976).

However, to date there have been few published reports on cassava leaf production. Montaldo and Montilla (1976) reported that harvesting of leaves in Venezuela decreased root production significantly when all mature blades were harvested every 4 months. In Zaire, PRONAM (Programme National Manioc) initiated studies to provide information on how the harvesting of leaves influences cassava foliage production, root yields, disease incidences, and total revenue.

Such information is critical to those who are involved in cassava production, especially in Zaire where leaves and roots are consumed almost daily.

PROCEDURE

Two cassava varieties, Kangu (a local variety grown in Bas-Zaire) and 02864 (a sweet variety developed by INERA), were planted on an alluvial soil deposit at M’vuazi, Zaire, during the growing season 1975-76.

Cassava stakes, 25 cm long, were planted on the flat on 35 m² at spacings of 1.00 × 1.00 m. The experimental design was a randomized block with four replications. The four treatments were harvesting:

- Frequently — whenever leaves were mature enough to be used as a vegetable;
- Once a month;
- Once every 2 months; and
- Not at all — the control.

From 5 months after the cassava was planted, leaves that were considered suitable for sale in the local market were harvested from the topmost part of the cassava canopy. We weighed them to estimate leaf production and the revenue of marketable leaves. Scoring for disease, such as cassava mosaic (CMD), cassava bacterial blight (CBB), and cassava anthracnose (CA) was done during the rainy and dry seasons. Fresh root yield was noted after 12 months.

RESULTS

Increased leaf yield was noticed during the rainy period, and leaf production tended to decline during the dry season as well as with increasing frequency of pruning, although variations in rates of decline were observed among the cultivars (Fig. 1).

Compared with monthly harvests, bimonthly harvests, i.e., every 2 months, reduced leaf production by more than 25% to 16.3 t/ha for Kangu.
and 17.6 t/ha for 02864, and harvesting frequently depressed leaf production even more (to 5.7 and 6.9 t/ha). The highest yields in leaves were obtained when leaves were harvested once a month — 22.7 t/ha for Kangu and 24.5 t/ha for 02864.

The more frequently that cassava leaves were harvested, the higher was the incidence of CMD (Table 1); the relationship of frequency of harvest and the prevalence of CBB and CA may not have been consistent throughout the crops' growth because rainfall and humidity are important in the expression of these two diseases (IITA 1975; Terry 1976). Nevertheless, it is noteworthy that there was a decline in anthracnose with increasing frequency of leaf harvest.

Harvesting leaves generally resulted in reduction of root yields compared with the control (14.5 t/ha for Kangu and 30.2 t/ha for 02864), but the extent of reduction varied with the frequency. Frequent harvesting caused significant reductions of 66 and

Fig. 1. Leaf yield of two cassava cultivars and rainfall distribution at M'vuazi, Zaire.
Table 1. Effect of frequency of leaf picking on the severity of diseases in two cassava cultivars.

<table>
<thead>
<tr>
<th>Leaf harvest</th>
<th>Kangu</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>02864</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMD</td>
<td>CBB</td>
<td>CA</td>
<td>CMD</td>
<td>CBB</td>
<td>CA</td>
<td>CMD</td>
<td>CBB</td>
<td>CA</td>
<td>CMD</td>
</tr>
<tr>
<td>Frequently</td>
<td>5.0</td>
<td>4.8</td>
<td>1.8</td>
<td>4.3</td>
<td>4.0</td>
<td>2.1</td>
<td>4.8</td>
<td>2.5</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Monthly</td>
<td>4.5</td>
<td>2.8</td>
<td>2.2</td>
<td>4.0</td>
<td>3.0</td>
<td>2.2</td>
<td>4.8</td>
<td>2.3</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Every 2 months</td>
<td>3.0</td>
<td>1.8</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.8</td>
<td>2.0</td>
<td>2.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Control</td>
<td>3.0</td>
<td>2.2</td>
<td>2.5</td>
<td>2.2</td>
<td>2.0</td>
<td>3.0</td>
<td>2.2</td>
<td>2.2</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Standard error</td>
<td>1.02</td>
<td>1.34</td>
<td>0.30</td>
<td>0.96</td>
<td>0.96</td>
<td>0.50</td>
<td>1.35</td>
<td>0.19</td>
<td>0.55</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 2. Effect of frequency of leaf picking on revenue (zaires/ha) from two cassava cultivars.

<table>
<thead>
<tr>
<th>Leaf harvest</th>
<th>Root revenue</th>
<th>Leaf revenue</th>
<th>Root revenue</th>
<th>Leaf revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequently</td>
<td>1.47a</td>
<td>5.70a</td>
<td>4.62a</td>
<td>6.90a</td>
</tr>
<tr>
<td>Monthly</td>
<td>3.30b</td>
<td>22.70c</td>
<td>7.56b</td>
<td>24.50c</td>
</tr>
<tr>
<td>Every 2 months</td>
<td>4.20c</td>
<td>16.30b</td>
<td>10.74c</td>
<td>17.60b</td>
</tr>
<tr>
<td>Control</td>
<td>4.35c</td>
<td>—</td>
<td>9.06a</td>
<td>—</td>
</tr>
</tbody>
</table>

*The revenues are based on 0.30 Z and 1.00 Z per kg of fresh roots and fresh leaves respectively; means followed by different letters are significant at the 5% level of probability.

49% to 4.9 and 15.4 t/ha for Kangu and 02864, respectively. Monthly harvests reduced root yields to 11.0 and 25.2 t/ha. Limited leaf harvesting was advantageous for 02864, where picking leaves once every 2 months increased root yields by 18.5% over the control.

The revenues of roots from the control were not significantly different from those obtained when leaves were harvested only once every 2 months, but lower revenues were obtained when leaves were harvested frequently or monthly. Revenue from leaves harvested monthly was higher than that obtained when leaves were harvested frequently or every 2 months. Total revenues (leaf and root) from harvesting leaves of 02864 cultivar frequently, once a month, and every 2 months were respectively, 1.6, 5.9, and 4.7 times those of the control, and for Kangu, they were 1.3, 3.5, and 3.1 times the control revenues.

DISCUSSION AND CONCLUSIONS

When leaves are harvested frequently, leaf production, root yield, and plant development and vigour are depressed. Frequent pruning also increases the prevalence of CMD and affects the overall yield and returns from the crop.

Harvesting leaves every 2 months does not affect root yield under the ecological conditions found in M'vuazi. In other words, a cassava field could be used as a source for leafy vegetables without adverse effects on root yields if leaves were harvested at appropriate intervals. Depending on the growth ability of the cultivar, leaf production could increase as a result of harvesting the leaves, the plant increasing its secondary, tertiary, and other branches. Our results suggest that cassava grown for roots can provide a high leaf revenue with little or no loss in root yields.

Where demands for cassava leaves as a vegetable are high, the revenue from the leaves will justify the efforts of breeders to screen for cassava cultivars with high leaf production and the need for fertilization with nitrogen and irrigation during the dry seasons to boost cassava leaf production.