OIL CROPS: BRASSICA SUBNETWORK

PROCEEDINGS OF THE THIRD WORKSHOP, QUALITY TRAINING, AND CHINESE PROJECT REPORTS, HELD IN SHANGHAI, PEOPLE'S REPUBLIC OF CHINA, 21–24 APRIL 1990

ABBAS OMRAH
Oil Crops:
Brassica Subnetwork

Proceedings of the
Third Workshop, Quality Training,
and Chinese Project Reports,
held in
Shanghai, People's Republic of China,
21–24 April 1990

Edited by
Abbas Omran
Technical Advisor, Oilcrops Network

Organized by
Ministry of Agriculture, Beijing, China
and
International Development Research Centre, Ottawa, Canada

INTERNATIONAL DEVELOPMENT RESEARCH CENTRE
Ottawa • Cairo • Dakar • Johannesburg • Montevideo • Nairobi • New Delhi • Singapore
TABLE OF CONTENTS

Table of Contents ... iii
Participants .. v
Introduction. ABBAS OMRAN ... 1

PART I
QUALITY TRAINING

- Determination of Glucosinolate Content by Gas Liquid Chromatography of Trimethylsilyl Derivatives of Desulfated Glucosinolates. J. P. RANEY AND D.I.MCGREGOR. 14
- Determination of Glucosinolate Content by Gas Chromatography of Trimethylsilyl Derivatives of Glucose. D.I.MCGREGOR. .. 20
- Determination of Total Glucosinolate and Total Indole Glucosinolate Content of Rapeseed/Canola Using Glucose Oxidase to Measure Glucose and Ferric nitrate to Measure Free Thiocyanate Ion. D. I. MCGREGOR. .. 24
- Determination of Total Glucosinolate Content of Rapeseed/Canola Using Immobilized Myrosinase and Glucose Oxidase. S. WANG, Z.Y. YUAN AND D.I. MCGREGOR. 33

SECTION 2. Manual of Additional Training Lectures and Papers.. 41

- Total Glucosinolate Content In Rapeseed Using Reflectance. R.J.W. TRUSCOTT AND J.T. THOLEN. ... 41
- A Simple Method for Identifying the Low-Erucic Acid and Low-Glucosinolate Rapeseed-Turbidity Titration-Colorimetry. WU MOUCHENG AND YUAN JUNHUA. .. 45
- An Outline of Research On Rapeseed Quality Analysis. WU XINGYONG .. 48
- New Methods of Myrosinase Bioreactor and Glucose Sensor for Rapid and Accurate Assay of Glucosinolates in Rapeseeds. ZHONG YI YUAN, XIAO JUN WANG, TIAN MIN ZHU, PEI YING CHEN AND XIN SONG JI. .. 50

PART II
A FINAL SUMMARY REPORT OF SINO–CANADIAN RAPeseed BREeding PROJECT. QU WINGEANG

1. Shanghai Academy of Agricultural Sciences(SAAS), Shanghai, China. YAN ZHANG, GUANGHUA FANG .. 57
2. Institute of Oilcrops Chinese Academy of Agricultural Sciences, Wuhan, China. CHENGQING LIU 61
PART III
BRASSICA SUB-NETWORK COUNTRY PRESENTATIONS

- The Fast Developing Oilcrops Network - A Summary Report. ABBAS OMran ...

- A Brief Report on the Brassica Sub-Network. BASUDEO SINGH ...

- Research Progress on Rapeseed in Egypt. BADR A. EL-AHMAR ...

- Quality Breeding in Brassica carinata A. Braun in Ethiopia. GETINET ALEMAW AND HIRUY BELAYNEH ...

- Some of the contributions of Dr. Hiruy Belayneh to Oilseed Brassica Research in Ethiopia. GETINET ALEMAW ...

- Strategies in Rapeseed and Mustard Development in Kenya. M.J. MAHASI ...

- Status of Brassica Crops in Pakistan. MOHAMMED HANIF QAZI AND PARVEZ KHALIQ ...

- National Uniform Rapeseed-Mustard Yield Trials and Their Role in Variety Selection. MOHAMMED HANIF QAZI AND MASOOD A. RANA ...

- Present Status and Future Strategies of Oilseed Brassica Research in India. P.R. KUMAR AND P.S. BHATNAGAR ...

- Rapeseed-Mustard in Nepal. B. MISHRA ...

- Constraints and Opportunities of Brassica Oilseed Production in Bangladesh. M.A. ISLAM, M.A. KHALEQUE, K.P. BISWAS AND M.R.I. MONDAL ...

- Progress in Rapeseed-Mustard Research in Bhutan. TAYAN RAJ GURUNG ...

- Overview of Rapeseed Production and Research in China. YAN ZHANG ...

- Analysis of Eight High-Quality Rapeseed (Brassica napus L.) Strains for - High and Stable Seed Yield. CHAOCAI SUN, GUANGHUA FANG AND HUA ZHAO ...

- Canola Research in Australia. GREGORY BUZZA ...

- Goals for 1989 - 1991 and Progress of the Barani Agricultural Research and Development Project (BARD) in Pakistan, Pertaining to Brassica. HANS HENNING MUENDEL ...

PART IV
BRASSICA SUB-NETWORK: DISCUSSIONS / RECOMMENDATION

- Collaborative Programmes - Minutes of Meeting for Scientific Exchange and Institutional Collaborative Programmes among Member Countries of Brassica Sub-Network. 140

- India/China Collaboration - Minutes of Meeting of Counterpart Scientists for International Collaborative Research Between China and India ...

- General Discussions and Recommendations ...
NEW METHODS OF MYROSINASE BIOREACTOR AND GLUCOSE SENSOR FOR RAPID AND ACCURATE ASSAY OF GLUCOSINOLATES IN RAPESEEDS

Zhong Yi Yuan, Xiao Jun Wang*, Tian Min Zhu, Pei Ying Chen and Xin Song Ji

Shanghai Institute of Biochem., Academia Sinica, and *Shanghai Academy of Agricultural Sciences, Shanghai, China

As the demand for protein is on the increase, the selection and development of rapeseed species with low glucosinolates is a challenge to the developing countries. A fast, simple, accurate, and precise method is essential for such a program.

Three years ago, we succeeded in constructing a glucose sensor, Fig. 1. An immobilized glucose oxidase membrane was attached on the top of Pt-Ag/AgCl electrode. The glucose sensor was also utilized for clinical diagnosis of blood sugar and monitoring of glucose change in the fermentation broth. The good linearity of glucose between 10^-3 to 2x10^-4 mol/L with r=0.999 and CV<3% made it possible to use 20 μl sample for each assay. Response time is 40 seconds. The glucose oxidase membrane possesses high operational stability that may be used for over 3000 assays, and also stable for storage at 4°C for 2.5 years or at 37°C for 4 months.

In the view of principle of enzyme catalysis, we believe that the combination of glucose sensor with myrosinase-hydrolysis is certainly an approach of promise for measurement of glucosinolate. This is illustrated as follows:

\[
\begin{align*}
\text{S-Glucose} & \quad + \text{H}_2\text{O} \quad \xrightarrow{\text{Myrosinase}} \quad \text{R-N = C = S+HSO}_4^-+\text{Glucose} \\
& \equiv \text{Glucose oxidase} \\
\text{D-Glucose} + \text{O}_2 + \text{H}_2\text{O} & \quad \xrightarrow{\text{Glucose oxidase}} \quad \text{H}_2\text{O}_2 + \text{D-Gluconolactone}
\end{align*}
\]

METHODOLOGY DEVELOPMENT

To determine the total glucosinolates in rapeseeds, we have been developing three types of combined techniques of bioreactor and biosensor:

1. Combination of free myrosinase and GOD electrode
2. Combination of immobilized myrosinase and GOD electrode
3. Co-immobilized myrosinase-glucose oxidase membrane/O_2 electrode

Fig. 2 indicates that pure sinigrin can be hydrolyzed by free myrosinase and the hydrolysates can be assayed on the glucose sensor to obtain a linear response between 1-5 μmoles/mL. In the case of rapeseeds or de-fatted meal, glucosinolates were extracted from the crushed seeds or meal powder with boiling water, and then hydrolyzed by exogenous myrosinase for 5 minutes.
Fig. 1. Schematic diagram of the glucose sensor.

Fig. 2. Immobilization of Myrosinase
Finally, withdrew aliquots of hydrolysate and injected into glucose sensor. The response is obtained in one minute. As shown in Fig. 3, glucosinolate contents between 3 to 130 μmoles/g were linearly related to the response data. The precision and accuracy of the procedure are good as data listed in Tables 1 and 2.

Table 1. Analytical recovery rate of sinigrin in measurement of glucosinolates using the enzyme-enzyme electrode procedure.

<table>
<thead>
<tr>
<th>Concentration of glucosinolate in rapeseeds (μmoles)</th>
<th>Added amount of Sinigrin (μmoles)</th>
<th>Detected amount of total Sinigrin (μmoles)</th>
<th>Recovery rate of Sinigrin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.0 (“86.66”)</td>
<td>16.0</td>
<td>38.5</td>
<td>103.1</td>
</tr>
<tr>
<td></td>
<td>(“909.2”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.0 (“902.2”)</td>
<td>131.5</td>
<td>50.5</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Immobilization of enzymes is a well known technique to stabilized enzyme. We separated and purified myrosinase from seeds of white mustard (Sinapis alba) by ethanol fractionation, ion exchange chromatography and affinity chromatography on Con A-Agarose. Based on the developed methods and supports of enzyme-immobilization in our laboratory, the high activity of myrosinase was covalently bound on ABSE-Agarose (CL) and porous glass beads. This is illustrated as follows:

In the second procedure of determination of glucosinolates, the extract mentioned above was added in a bioreactor (a column containing 1 g immobilized myrosinase) and shaken for 5 minutes. An aliquot of effluent was injected into the glucose sensor. The relation between sinigrin degraded by immobilized enzyme and response on glucose sensor is shown in Fig. 4. Immobilized myrosinase could be repeatedly used for 500 times of hydrolysis. In the case of determination of total glucosinolates in rapeseed, a satisfactory correlation between immobilized myrosinase-glucose sensor method and the routine TMS-gas chromatography was obtained Fig. 5. We are now turning our attention to prepare a Co-immobilized bi-enzyme system on the same membrane. In the preliminary experiments, we found that only extraction of glucosinolates is needed before assay on glucose sensor.

Table 2. Precision of measurement of glucosinolates in rapeseeds using the combined procedure of enzyme and glucose sensor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Times of measurement</th>
<th>Mean content of glucosinolates (μmol/g)</th>
<th>SD (%)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“902.2”</td>
<td>10</td>
<td>7.5</td>
<td>0.27</td>
<td>3.6</td>
</tr>
<tr>
<td>“902.2”</td>
<td>9</td>
<td>105.7</td>
<td>1.51</td>
<td>1.4</td>
</tr>
</tbody>
</table>

In comparison with the conventional methods of glucosinolate assay, these combined procedures of bioreactor and biosensor have many advantages, such as accuracy, precision, simplicity, time saving, and cost saving, Table 3. Encouraged by those results, we are now turning our attention to prepare a Co-immobilized bi-enzyme system on the same membrane. In the preliminary experiments, we found that only extraction of glucosinolates is needed before assay on glucose sensor.

Table 3. A comparison of different methods for glucosinolates detection.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme-Enzyme electrode</td>
<td>15 min.</td>
</tr>
<tr>
<td>Gravimetric</td>
<td>6 hr.</td>
</tr>
<tr>
<td>Thiourea-UV</td>
<td>6 hr.</td>
</tr>
<tr>
<td>Palladium Chloride</td>
<td>3 hr.</td>
</tr>
<tr>
<td>GOD Kit</td>
<td>3 hr.</td>
</tr>
<tr>
<td>GOD paper</td>
<td>20 min.</td>
</tr>
<tr>
<td>TMS-GC</td>
<td>36 min.</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

The work described here was carried out under a National Research Program of Chinese Committee of Science and Technology (75-71-06-10). Financial support was also received partially from the United Laboratories of Transducer, Academia Sinica and IDRC-Canada.
Fig. 3 Response-concentration relationship of glucose and sinigrin on GLUCOSE SENSOR. A sample containing various amounts of glucose or myrosinase-hydrolyzed sinigrin was injected into the GLUCOSE SENSOR.

Fig. 4 Glucosinolate content in myrosinase hydrolysate and response on glucose sensor.
Fig. 5. Relationship between Hydrolysis of Sinigrin by Immobilized Myrosinase & Release of Glucose.

Fig. 6. Correlation between Immobilized Myrosinase-Glucose Sensor Method and A Routine TMS Method.