Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4 – 17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
CONTENTS

Foreword ... v
List of Participants vi
Introduction ... xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust
(Albugo candida) Between India (ICAR) and Canada (IDRC) for
Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of
Oleiferous Brassica. H.SINGH, D.SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.
BASUDEO SINGH .. 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.
G.N. SACHAN ... 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND
KUMAR and R.P. SINGH 35
Disease Problems in Brassicas and Research Activities at Pantnagar.
S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and
S.J. KOLTE ... 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.
G.C. SACHAN ... 56
Economic Performance, Potential and Constraints in Toria Production.
L.R. SINGH ... 66
Rapeseed in Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques
on Oilseed Brassica Performance in the Central, South-Eastern
and North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET
ALEMAW and NIGUSSIE ALEMAYEHU 72
The Achievements and Future of Brassica in Kenya. M.J. MAHASI 79
Rapeseed Adaptation Trials in Cyprus. A. HADJICHRISTODOLOU 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai
Academy of Agricultural Sciences (SAAS) for Recent Years.
SUN CHAOCAI .. 92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding
Project in 1988. WANG ZAO MU 94
A Preliminary Study on the Combining Ability and Heritability of Main
Agronomic Characters in B. juncea. WANG ZAO MU and
WANG YAN FEI .. 98
LIU CHENG QUING and HONG HAI PING 103
Part 2. Other Oilcrops Subnetwork-I

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safflower Research and Coordination in India. V.RANGA RAO</td>
<td>144</td>
</tr>
<tr>
<td>Highlights of the Second International Safflower Conference Hyderabad, India from January 9-13, 1989. V.RANGA RAO</td>
<td>147</td>
</tr>
<tr>
<td>Coordinated Research Efforts and Linseed (Linum Usitatissimum L.) Improvement in India. MANGALA RAI</td>
<td>149</td>
</tr>
<tr>
<td>Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT</td>
<td>154</td>
</tr>
<tr>
<td>Nigerseed in India: Present Status of Cultivation, Research Achievements and Strategies. S.M.SHARMA</td>
<td>159</td>
</tr>
<tr>
<td>Constraints and Opportunities for Increasing the Production and Productivity of Niger in India. S.M.SHARMA</td>
<td>166</td>
</tr>
<tr>
<td>New Potential Areas of Niger in India. S.M.SHARMA</td>
<td>169</td>
</tr>
<tr>
<td>Present Production, Research and Future Strategy for Niger in Maharashtra. A.V.JOSHI</td>
<td>171</td>
</tr>
<tr>
<td>Niger in Tribal Bihar. H.B.P.TRIVEDI</td>
<td>176</td>
</tr>
<tr>
<td>Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY</td>
<td>180</td>
</tr>
<tr>
<td>Agronomic Management/Agro-Techniques for Improving Production of Niger and Linseed. G.L.MISHRA</td>
<td>186</td>
</tr>
<tr>
<td>The Present Status of Niger and Linseed Pathology Work in India. G.S.SAHARAN</td>
<td>192</td>
</tr>
<tr>
<td>Safflower, Niger and Linseed in Nepal. B.MISHRA</td>
<td>203</td>
</tr>
<tr>
<td>Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and DILRUBA BEGUM</td>
<td>208</td>
</tr>
<tr>
<td>Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA, MOHAMMAD SHARI, and ALTAF H.CHAUDHRY</td>
<td>213</td>
</tr>
<tr>
<td>Present Status of Safflower in Egypt. BADR A. EL-AHMAR</td>
<td>218</td>
</tr>
<tr>
<td>Progress in Linseed On-station and On-farm Research in Ethiopia. HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW</td>
<td>220</td>
</tr>
<tr>
<td>Investigations on Some Biochemical Characteristics of Nigerseeds (Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH</td>
<td>229</td>
</tr>
<tr>
<td>Processing of Oil Seeds in Ethiopia. DEJENE TEZERA</td>
<td>233</td>
</tr>
<tr>
<td>The Status of Linseed, Safflower and Niger Research and Production in Kenya. T.C.RIUNGU</td>
<td>238</td>
</tr>
<tr>
<td>Summary and Wrap-up for Other Oilcrops Sub-Network Meeting. HUGH DOGGETT</td>
<td>241</td>
</tr>
<tr>
<td>Discussions and Recommendations</td>
<td>248</td>
</tr>
</tbody>
</table>
Part 3. Oilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and Future. ABBAS OMRAN .. 256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT 265
IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks. J.M.M.ENGELS .. 272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in India. MANGALA RAI ... 274
Oilseeds Research in India: Network, Its Set Up, Organization, Past Achievements and Current Research Thrusts. V.RANGA RAO 283
Groundnut and the Oilcrops Network. S.N.NIGAM 286
Oilcrops Production in Ethiopia Current Status and Future Prospects. SEME DEBELA ... 288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I. C.ZULBERTI and J.LUGOGO ... 293
Brassica Sub-Network Achievements and Activites, 1987-88. HIRUY BELAYNEH ... 320
The Present Situation and Main Achievements of Sesame Production in East Africa. MOHAMMED EL-HASSAN AHMED 324
Constituion of the Oil Crops Network (Second Draft). MASOOD A.RANA and ABBAS OMRAN .. 330
Safflower (Carthamus tinctorius) is an ancient oil crop in Egypt. It was planted and used as a raw material for many industries in Pharaonic era. The extracted oil was used as an edible and as painting oil. The petals were used as a source of pigment for clothes.

Safflower plant was also used as a border for winter crops like wheat, barley and fababean. The majority of the area was planted in upper Egypt, as a border of each farmer after flooding season.

This area was cultivated mainly for petals and used for salted food conservation and the seed was used for bird feeding.

After high dam, continuous irrigation system was established and the area occupied by cotton in upper Egypt increased, and the area occupied by safflower decreased from 4000 faddan to less than 10 faddans (1 faddan = 4,200 m²).

Due to the severe shortage in national edible oil production and the increase of annual consumption, and the limitation of edible oil sources for national extraction which depend mainly on cottonseed and soybean, it is essential to have other sources of edible oil. Those new sources are sunflower (summer) and rapeseed (winter) for new or old lands under irrigation. Safflower was devoted to the area which is rainfed. The annual precipitation ranges from 100 to 150 mm and in some years it reaches 200 mm. This area is located along the north coast and estimated to be more than 40,000 faddans.

Breeding Objectives

The breeding objectives of safflower under rainfed conditions are discussed below:

1. **Drought resistance**

To select drought resistant varieties with a good spreading root system, high capability for water uptake and short duration or high growth rate. This is the main objective in safflower breeding program. For that, the available germplasm (80 landraces and introductions) were sown this season under rainfed condition in north coast area, for screening this material according to their performance.

2. **Spineless varieties**

Most of the agronomic practices are done by hand, so spineless varieties are preferred. However, their yield is low.

3. **Early maturing variety**

The amount of rainfall is higher January and February, and hence, an early maturing variety with a reasonable seed and oil yield is satisfactory.

4. **Resistance to broomrape**

Broom rape is a problem which spreads all over the country. Orobanche carinata, which attacks safflower, is more dangerous. Fortunately, there is a wide variability of susceptibility within the available germplasm. A breeding program for broomrape control will be started next season.

5. **Resistance to salinity**

The new land in north coast is characterized in many places by
high salinity. So, a variety which can tolerate or resist salinity is important for cultivation in this area.

The future expansion of safflower will be under rainfed areas. Since this area is cultivated to barley, an intercropping program should be conducted to give an answer for:

- suitable intercrop ratios,
- suitable plant density for both crops, and
- suitable varieties with minimum competition and reasonable yield per unit area.

We believe that expansion of safflower production in this area will offer a new source for edible oil and assist in increasing the national production.