OIL CROPS: SESAME AND SUNFLOWER SUBNETWORKS

PROCEEDINGS OF THE JOINT SECOND
WORKSHOP HELD IN CAIRO, EGYPT,
9–12 SEPTEMBER 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d’appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c’est un Conseil des gouverneurs international qui en détermine l’orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d’être publiés plus tard dans une série de publications plus soignées. D’un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
SESAME AND SUNFLOWER SUBNETWORKS

Proceedings of the Joint Second Workshop
held in Cairo, Egypt, 9–12 September 1989

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Agricultural Research Centre, MOA, Giza, Egypt
and
International Development Research Centre, Canada

Sponsors
Food and Agriculture Organization, Industrial Crops and European Office, Rome
International Bureau of Plant Genetic Resources, Rome
International Development Research Centre, Canada

Scientific and Organizing Committee
Dr Abbas Omran
Dr Badr A. El-Ahmar
Dr Eglal Rashed
In September 1989, the Sunflower and Sesame subnetworks held their bi-annual meetings in Cairo, Egypt. The meetings were well attended and papers, presented in these proceedings, provide a very informative overview of some of the cropping systems, management practices, production constraints and research highlights for both crops in several countries.

Chronic edible oil deficit is a major problem facing many developing countries in Africa and Asia where most countries are forced to import large quantities to satisfy the requirements of their growing populations. With the present rates of population increase and the improvement of nutrition standards it is likely that the consumption of edible oil will rise over the years, increasingly drawing on scarce foreign exchange for the importation of this vital food staple. For this reason, several countries have opted to increase self-sufficiency in edible oil.

Production deficits are due to a number of factors, among which neglect in oilcrops research, in both developed and developing countries has been a major one. This is particularly true for minor crops such as sesame. In the context of the IDRC oilcrops network, initiated in 1981, the interchange of information and the sharing of results between scientists have proved to be very useful and beneficial for the generation of scientific knowledge and the stimulation of research in this important area. It is hoped that conclusions and recommendations of this meeting will stimulate further research and development in the future.

A second important reason for limited national production has been the exceptionally low levels of world prices for oils and fats in the 1980’s and the comparative advantage of importation over production for developing countries. The description of a case study using a systems’ approach to analysing the Vegetable Oil/Protein System of Kenya has stirred much interest during the Cairo meetings and it is hoped that similar work can be carried out in other countries in the future.

The Cairo meetings will also unfortunately be remembered as the one which has witnessed the diagnosis of the fatal disease of late Dr. Hiruy Belayneh, Chairman of the Brassica Subnetwork. We will all regret his absence.

On behalf of IDRC and of all participants, I would like to thank the Government of Egypt for its hospitality, the organizers for the excellent arrangements and all those who contributed to the success of these meetings by their presentations and discussions.

Eglal Nached,
Senior Program Officer,
IDRC, Cairo
CONTENTS

Forward	iii
List of Participants	vi
Introduction	ix

Part 1. SESAME SUBNETWORK - II

Sesame Genetic Resources: Collection, Evaluation and conservation.

AMRAM ASHRI ... 2

Sesame Research in the Sudan.

MOHAMED EL-HASSAN AHMED ... 10

Progress in Sesame Research in Ethiopia.

HIRUY BELAYNEH, BULCHA WYESSA AND ELIAS URAGE 13

A Brief Outline of Sesame (Sesamum Indicum L.) Research in Tanzania.

J.Y CHAMBI AND E.M. KAFIRITI .. 17

Scope of Sesame (Sesamum Indicum) in Pakistan.

MUHAMMAD ASLAM, MASOOD A. RANA AND M. SIDDIQUE MIRZA 21

Status of Sesame as Oilseed in Bangladesh.

M.A. KHALEQUE AND HASINA BEGUM 24

Problems and Progress of Sesame Production in India.

S. THANGAVELU, G. KANDASAMY, M. SIVANADAM AND R.K. MURALI BASKARAN 27

Pests of Sesame and their Control.

S. THANGAVELU ... 31

Review and Prospects on Sesame Production in China.

TU LICHUAN ... 41

Sesame Irrigation in Egypt.

AHMED MOHAMED EL-WAKIL ... 44

Agronomic Studies on Growth, Yield and Yield Components of Sesame.

SAMIR TAHA AND MOHAMED EL-SROGY 48

Sesame Research and Progress in Egypt.

NESSIM R. GUIRGUIS .. 52

Root-Rot and Wilt Diseases of Sesame in Egypt.

A.A EL-DEEB ... 55

Highlights on Improving Production of Sesame in Egypt.

A.F. IBRAHIM ... 59

Evaluation of Some Cultivars and Promising Strains of Sesame (Sesamum indicum L.).

A.A. EL-SHIMY AND M.Z. EL-HIFNY 61

Part 2. SUNFLOWER SUBNETWORK - II

Use of Wild Species in Sunflower Breeding.

DRAGON SKORIC .. 70

Sunflower Breeding: General Objectives and Recent Advances.

JOSE FERNANDEZ MARTINEZ .. 95

Progress in Sunflower Research in Ethiopia.

HIRUY BELAYNEH ... 102

Sunflower Adaptation in Morocco.

S. QUATTAR, T.E. AMEZIANE AND A. BAIDADA 106
Effect of Maturity Stages and Desiccant Application on Yield, Oil Content and Oil Quality of Sunflower.
MASOOD A. RANA, CHAUDHRY A. OZAIR, M. AYUB KHAN AND SHAFIULLAH .. 114

Trends and Strategy of Sunflower Production in Pakistan.
MASOOD A. RANA .. 125

Sunflower Production in India - Problems and Prospects.
M. RAI AND P.S. BHATRANGAR ... 128

MANGALA RAI .. 135

Status of Sunflower as Oilseed in Bangladesh.
M.A. KHALEQUE, AND S.H. MIRZA .. 142

Some Aspects Towards Overcoming Vegetable Oils insufficiency in Egypt: Production of Sunflower and its Improvement in Suez Canal Region.
ABDEL-FATTAH MOHAMED ABDEL-WAHAB 144

SALWA I. EL-MOHANDES .. 155

Sunflower Research and Production in Egypt.
BADR A. EL-AHMAR .. 158

Performance of a New Synthetic Sunflower Stock Developed From Local and Introduced Germplasm and Further Improvement Via Population Improvement Method.
R. SHABANA .. 163

Response of Sunflower and Associated Weeds to Some single and Tank Mixed Herbicides.
A.F. IBRAHIM, Z.R. YAHIA, H.R. EL-WEKIL AND E.D. ABUSTEIT .. 167

Report on Sunflower Production In Dakahlia Governorate, Egypt.
S.E. EL-KALLA .. 168

Studies of Diallel Cross in Sunflower (Helianthus annuus L).
KHALED HAMMAD .. 171

Effect of Some Intercropping Patterns of Sunflower/Soybean on Yield, Yield Components and Land Usage in Egypt.
M.A. MADKOUR .. 175

Sunflower Diseases in Egypt.
ARAFYA A. HILAL .. 180

Part 3. GENERAL

The Vegetable Oil/Protein System Program: The Kenyan Experience.
CARLOS ZULBERTI .. 184

Microbial Control of Lepidopterous Pests of Oilseed Crops.
H.S. SALAMA ... 203

Sunflower and Sesame Research in the Philippines.
NENITA M. TEPORA .. 206

Part 4. DISCUSSIONS AND RECOMMENDATIONS

Discussions and Recommendations .. 213
I. Sesame .. 213
II. Sunflower .. 218
III. General .. 223
In Egypt, there is a severe shortage in vegetable edible oils. The majority of local oil production comes from cotton seed. However, there is no prospect to increase the area devoted to cotton cultivation. Therefore, increasing oil production depends on cultivation of the new oilcrops, such as sunflower.

Maximizing sunflower yield under Egyptian condition can be achieved by introduction of good varieties and/or application of suitable cultural treatments. Nitrogen fertilization and plant population density are the main factors affecting yield and its components in sunflower.

Materials and Methods

The experimental site of this study was at the Faculty of Agric., Cairo Univ., Agric. Research Centre (ARC) at Giza. The soil type is loamy clay; the pH 7.8-7.9, total N 0.11 - 0.12% and organic matter 1.17%. Three nitrogen levels, 30, 60 and 90 kg N/feddan (one feddan = 4200 m²), were applied in the form of ammonium nitrate (33% N), after thinning, just before the first irrigation. Also, three plant densities were used (17,000, 35,000 and 70,000 plants/feddan). These densities were obtained in distributions by the following hill spacing and number of plants/hill. The variety used was Mayak:

<table>
<thead>
<tr>
<th>System</th>
<th>Plant spacing (cm)</th>
<th>Row spacing (cm)</th>
<th>Hill spacing (cm)</th>
<th>Plant/hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>17.500</td>
<td>60</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>35.000</td>
<td>60</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>III.</td>
<td>35.000</td>
<td>60</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>IV.</td>
<td>70.000</td>
<td>60</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Results and Discussion

Effect of N fertilization

Two experiments were conducted. Data in Table 1 showed that an average of both experiments showed that increasing N level from 30 to 60 kg/feddan increased plant height, stem diameter, leaf area, leaf area index, head diameter, and dry weight of leaves, stems, head and tops. However, increasing N level from 60 to 90 kg/feddan did not significantly increase these characters. Also, increasing N level from 30 to 60 kg/feddan significantly increased yield and its components, i.e. head diameter, 500-seed weight and seed weight/head, Table 2.

Thus, the present results indicated that application of 60 kg N/feddan to sunflower was enough to maximize growth of the plants, seed and oil yields under the conditions of this study.

Effect of plant population density

As plant population increased leaf area, head diameter, dry weight of leaves, stems and heads were decreased but leaf area index increased in both experiments, Table 3. However, plant height (in both experiments) and stem diameter (in the second one) were not significantly affected by population density.

Seed and oil yields of sunflower and their components (head diameter, seed weight/head, 500-seed weight) were significantly affected by plant population density. However, oil content was not significantly affected.
Table 1. Effect of N levels on plant characteristics at peak flowering.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N levels (kg/fed)</th>
<th>Plant height (cm)</th>
<th>Stem diameter (cm)</th>
<th>Leaf area (dm²)</th>
<th>Leaf area index</th>
<th>Head diameter (cm)</th>
<th>Dry weight (g) of leaves</th>
<th>Stem</th>
<th>Head</th>
<th>Total top</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>198.9</td>
<td>1.89</td>
<td>35.9</td>
<td>2.93</td>
<td>9.2</td>
<td>26.8</td>
<td>59.9</td>
<td>13.5</td>
<td>100.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>213.6</td>
<td>2.10</td>
<td>48.6</td>
<td>4.12</td>
<td>10.0</td>
<td>38.6</td>
<td>93.2</td>
<td>15.2</td>
<td>127.0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>N.S.</td>
<td>7.96</td>
<td>6.49</td>
<td>7.6</td>
<td>4.66</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>116.5</td>
<td>1.54</td>
<td>31.8</td>
<td>2.87</td>
<td>7.7</td>
<td>24.8</td>
<td>25.0</td>
<td>79.7</td>
<td>57.77</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>121.5</td>
<td>1.66</td>
<td>35.1</td>
<td>3.28</td>
<td>7.7</td>
<td>32.9</td>
<td>32.7</td>
<td>7.94</td>
<td>72.94</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>129.0</td>
<td>1.78</td>
<td>34.5</td>
<td>3.01</td>
<td>8.2</td>
<td>36.0</td>
<td>29.6</td>
<td>8.4</td>
<td>74.0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td>5.78</td>
<td>5.69</td>
<td>N.S.</td>
<td>8.80</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Effect of N levels on yield and yield components.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N levels (kg/fed)</th>
<th>Head diameter (cm)</th>
<th>Seed Weight/head (g)</th>
<th>500 seed weight (g)</th>
<th>Seed yield (ton/fed)</th>
<th>Oil content (%)</th>
<th>Oil yield (ton/fed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>13.7</td>
<td>37.7</td>
<td>24.81</td>
<td>1.09</td>
<td>45.52</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>15.0</td>
<td>49.5</td>
<td>28.72</td>
<td>1.43</td>
<td>44.54</td>
<td>0.64</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.08</td>
<td>5.95</td>
<td>2.02</td>
<td>0.214</td>
<td>N.S.</td>
<td>0.143</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>14.28</td>
<td>53.73</td>
<td>28.60</td>
<td>1.34</td>
<td>45.17</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>15.15</td>
<td>61.47</td>
<td>31.60</td>
<td>1.58</td>
<td>44.75</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>15.55</td>
<td>62.52</td>
<td>32.27</td>
<td>1.51</td>
<td>43.97</td>
<td>0.57</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.07</td>
<td>5.06</td>
<td>2.12</td>
<td>0.14 N.S.</td>
<td>0.08 N.S.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Effect of plant population density on plant characteristics at flowering peak.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Plant population density</th>
<th>Plant height (cm)</th>
<th>Stem diameter (cm)</th>
<th>Leaf area (dm²)</th>
<th>Leaf area index</th>
<th>Head diameter (cm)</th>
<th>Dry weight (g) of leaves</th>
<th>Stem</th>
<th>Head</th>
<th>Total top</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>211.3</td>
<td>2.20</td>
<td>55.9</td>
<td>2.31</td>
<td>11.0</td>
<td>44.2</td>
<td>84.7</td>
<td>18.3</td>
<td>147.2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>197.0</td>
<td>1.98</td>
<td>49.8</td>
<td>3.88</td>
<td>9.2</td>
<td>32.6</td>
<td>58.0</td>
<td>13.7</td>
<td>104.2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>211.5</td>
<td>2.03</td>
<td>40.5</td>
<td>3.86</td>
<td>10.0</td>
<td>33.1</td>
<td>69.1</td>
<td>15.5</td>
<td>117.7</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>205.4</td>
<td>1.75</td>
<td>27.3</td>
<td>4.53</td>
<td>8.4</td>
<td>21.1</td>
<td>54.6</td>
<td>9.8</td>
<td>85.5</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>NS</td>
<td>0.21</td>
<td>11.75</td>
<td>0.92</td>
<td>1.41</td>
<td>6.74</td>
<td>12.26</td>
<td>4.42</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>116.5</td>
<td>1.89</td>
<td>35.4</td>
<td>1.51</td>
<td>8.7</td>
<td>28.5</td>
<td>40.6</td>
<td>9.5</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>117.3</td>
<td>1.47</td>
<td>32.2</td>
<td>2.63</td>
<td>8.0</td>
<td>26.0</td>
<td>24.2</td>
<td>7.82</td>
<td>50.02</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>124.9</td>
<td>1.64</td>
<td>39.3</td>
<td>3.28</td>
<td>7.6</td>
<td>49.1</td>
<td>28.7</td>
<td>7.91</td>
<td>52.71</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>130.8</td>
<td>1.69</td>
<td>28.2</td>
<td>4.52</td>
<td>7.3</td>
<td>21.4</td>
<td>22.2</td>
<td>7.18</td>
<td>50.78</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>NS</td>
<td>NS</td>
<td>6.198</td>
<td>0.657</td>
<td>0.67</td>
<td>4.375</td>
<td>7.25</td>
<td>1.073</td>
<td>9.849</td>
<td>15.9</td>
</tr>
</tbody>
</table>
Inspite of the reduction in yield components, such increase in seed and oil yield could be explained by the number of harvestable plants which increased from 14,875 to 28,525 to 49000 plants /feddan, when plant population density increased from 17,000 to 35,000 to 70,000 plants/feddan, respectively, Table 4.

Regarding the plant population density of 35,000 plants/feddan, the average results of treatment used by two systems (II & III), revealed that system III resulted in greater harvestable plants, seeds and oil yields by 10.2, 13.1 and 10.2%, respectively, over system II, as an average of both experiments.

Table 4. Effect of plant population density on yield and yield components.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Plant population diameter (cm)</th>
<th>Seed weight/head (g)</th>
<th>500 seed weight (g)</th>
<th>Seed yield (ton/fed)</th>
<th>Seed oil content (%)</th>
<th>Oil yield (ton/fed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>16.2</td>
<td>60.8</td>
<td>29.59</td>
<td>1.04</td>
<td>44.87</td>
<td>0.47</td>
</tr>
<tr>
<td>II</td>
<td>13.9</td>
<td>41.0</td>
<td>26.22</td>
<td>1.16</td>
<td>44.69</td>
<td>0.52</td>
</tr>
<tr>
<td>III</td>
<td>13.9</td>
<td>43.2</td>
<td>26.40</td>
<td>1.35</td>
<td>43.93</td>
<td>0.59</td>
</tr>
<tr>
<td>IV</td>
<td>13.4</td>
<td>29.4</td>
<td>24.86</td>
<td>1.48</td>
<td>44.64</td>
<td>0.66</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.81</td>
<td>7.29</td>
<td>1.94</td>
<td>0.177</td>
<td>Ns</td>
<td>0.124</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>17.38</td>
<td>72.22</td>
<td>31.18</td>
<td>1.02</td>
<td>43.64</td>
<td>0.46</td>
</tr>
<tr>
<td>II</td>
<td>15.38</td>
<td>56.62</td>
<td>30.93</td>
<td>1.43</td>
<td>44.75</td>
<td>0.65</td>
</tr>
<tr>
<td>III</td>
<td>14.27</td>
<td>55.69</td>
<td>30.65</td>
<td>1.59</td>
<td>44.26</td>
<td>0.71</td>
</tr>
<tr>
<td>IV</td>
<td>12.89</td>
<td>52.42</td>
<td>30.51</td>
<td>1.86</td>
<td>45.87</td>
<td>0.86</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.46</td>
<td>8.92</td>
<td>Ns</td>
<td>0.24</td>
<td>Ns</td>
<td>0.104</td>
</tr>
</tbody>
</table>