Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4 – 17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d’appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
CONTENTS

Foreword ... v
List of Participants vi
Introduction xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust (Albugo candida) Between India (ICAR) and Canada (IDRC) for Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of Oleiferous Brassica. H. SINGH, D. SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard. BASUDEO SINGH 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India. G.N. SACHAN 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND KUMAR and R.P. SINGH 35
Disease Problems in Brassicas and Research Activities at Pantnagar. S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and S.J. KOLTE 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar. G.C. SACHAN 56
Economic Performance, Potential and Constraints in Toria Production. L.R. SINGH 66
Rapeseed in Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques on Oilseed Brassica Performance in the Central, South-Eastern and North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET ALEMAYEHU and NIGUSSIE ALEMAYEHU 72
Rapeseed Adaptation Trials in Cyprus. A. HADJICHRISTODOULOU 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai Academy of Agricultural Sciences (SAAS) for Recent Years. SUN CHAOCAI 92
A Preliminary Study on the Combining Ability and Heritability of Main Agronomic Characters in B. juncea. WANG ZAO MU and WANG YAN FEI 98
Report on the Execution of Sino-Canada Research Breeding Project. LIU CHENG QUING and HONG HAI PING 103
Oil Crops in Bhutan. TAYAN RAJ GURUNG ... 119
Brassica Production and Research in Pakistan. REHMAAT ULLAH KHAN and
MASOOD A.RANA ... 127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT 130
Report on a Tour to Oilseed Brassica Growing Areas of India.
GETINET ALEMAYUH .. 136
Discussions and Recommendations .. 138

Part 2. Other Oilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAO 144
Highlights of the Second International Safflower Conference Hyderabad,
India from January 9-13, 1989. V.RANGA RAO .. 147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.)
Improvement in India. MANGALA RAI .. 149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT 154
Nigerseed in India: Present Status of Cultivation, Research
Achievements and Strategies. S.M.SHARMA ... 159
Constraints and Opportunities for Increasing the Production and
Productivity of Niger in India. S.M.SHARMA ... 166
New Potential Areas of Niger in India. S.M.SHARMA 169
Present Production, Research and Future Strategy for Niger in
Maharashtra. A.V.JOSHI ... 171
Niger in Tribal Bihar. H.B.P.TRIVEDI .. 176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY 180
Agronomic Management/Agro-Techniques for Improving Production of
Niger and Linseed. G.L.MISHRA .. 186
The Present Status of Niger and Linseed Pathology Work in India.
G.S.SAHARAN ... 192
Safflower, Niger and Linseed in Nepal. B.MISHRA 203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and
DILRUBA BEGUM .. 208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,
MOHAMAD SHARI, and ALTAF H.CHAUDHRY 213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR 218
Progress in Linseed On-station and On-farm Research in Ethiopia.
HIRUY BELAYNEH, NIGUSSIE ALEMAYUH and GETINET ALEMAYUH 220
Investigations on Some Biochemical Characteristics of Nigerseeds
(Guzotia abyssinica Cass). GETINET ALEMAYUH and HIRUY BELAYNEH ... 229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA 233
The Status of Linseed, Safflower and Niger Research and Production in
Kenya. T.C.RIUNGU ... 238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.
HUGH DOGGETT ... 241
Discussions and Recommendations .. 248
Part 3. Oilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and Future. ABBAS OMRAN .. 256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT 265
IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks. J.M.M.ENGELS 272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in India. MANGALA RAI .. 274
Oilseeds Research in India: Network, Its Set Up, Organization, Past Achievements and Current Research Thrusts. V.RANGA RAO 283
Groundnut and the Oilcrops Network. S.N.NIGAM 286
Oilcrops Production in Ethiopia Current Status and Future Prospects. SEME DEBELA ... 288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I. C.ZULBERTI and J.LUGOGO ... 293
Brassica Sub-Network Achievements and Activities, 1987-88. HIRUY BELAYNEH ... 320
The Present Situation and Main Achievements of Sesame Production in East Africa. MOHAMMED EL-HASSAN AHMED 324
Constituion of the Oil Crops Network (Second Draft). MASOOD A.RANA and ABBAS OMRAN .. 330
Safflower research work at Indore (Madhya Pradesh) started in 1979 with financial support from IDRC, Canada, indicated that safflower has considerable scope in the non-traditional states, particularly Madhya Pradesh. The contributions made by the project in safflower research are as follows:

Varietal Improvement

The first high yielding variety developed in the project was JSF-1, which was released in 1984 in the name of Jawahar Safflower-1. This white flowered variety has potential to yield 1500 kg/ha under dry condition and is suitable for the entire Madhya Pradesh and is also doing well in the near-by state of Rajasthan. Quite a few of the new varieties such as JSI-8, 9, 10, 12 & 46 have been developed in recent years and are superior in performance to JSF-1 in different yield trials including multilocation varietal trials conducted in Madhya Pradesh at Indore, Khandwa, Khargone, Dindori, Jaora and Morena. The most promising varieties are given in Table 1.

Table 1. Performance of the new improved varieties of safflower at Indore

<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain yield* (kg/ha)</th>
<th>1000 grain Wt.(g)</th>
<th>Days to flowering</th>
<th>Plant height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSI-9</td>
<td>2019</td>
<td>56</td>
<td>94</td>
<td>78.4</td>
</tr>
<tr>
<td>JSI-46</td>
<td>1837</td>
<td>61</td>
<td>85</td>
<td>75.5</td>
</tr>
<tr>
<td>JSI-10</td>
<td>1814</td>
<td>62</td>
<td>88</td>
<td>78.0</td>
</tr>
<tr>
<td>JSF-1</td>
<td>1747</td>
<td>75</td>
<td>88</td>
<td>68.4</td>
</tr>
</tbody>
</table>

*Based on the last 4 years.

Development of Spineless Varieties

Unlike the traditional areas, the farmers here desire to have spineless varieties as they are not accustomed to the harvesting and threshing of the traditional spiny varieties. In view of this, spineless variety, JSI-7, has been evolved at this centre. It equals the spiny variety JSF-1 in yield and other characters and yields as high as the national spiny check variety, A-1, Table 2. It has been recommended by the All India Rabi Oilseeds Workshop held at Pune in 1988 for release at a state level.

Table 2. Yield comparison of spineless variety JSI-7 with high yielding spiny check varieties JSF-1 (local check) and A-1 (national check) during 1982-84.

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of trials</th>
<th>Average yield (kg/ha)</th>
<th>% less yield than</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JSF-1</td>
<td>A-1</td>
<td>JSF-1</td>
</tr>
<tr>
<td>1982</td>
<td>3</td>
<td>2024</td>
<td>1768</td>
</tr>
<tr>
<td>1983</td>
<td>3</td>
<td>1867</td>
<td>1576</td>
</tr>
<tr>
<td>1984</td>
<td>4</td>
<td>1756</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td>1882</td>
<td>1672</td>
<td>1617</td>
</tr>
</tbody>
</table>
An Exquisite Spineless Safflower Collection

As a result of intensive hybridization amongst 16 diverse spineless types reported earlier (4), several hundred diverse spineless lines have been evolved at Indore.

Table 3. Promising new spineless lines identified during 1987-88.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pedigree</th>
<th>Plant height (cm)</th>
<th>No. of branches/plant</th>
<th>No. of capitula/plant</th>
<th>100 grain weight (g)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spp. No. 33</td>
<td>WSM-1SP-3 x JSI-7</td>
<td>82</td>
<td>10</td>
<td>36</td>
<td>3.00</td>
<td>3600</td>
</tr>
<tr>
<td>Spp. No. 227</td>
<td>JSI-41 x JSI-7</td>
<td>89</td>
<td>5</td>
<td>25</td>
<td>3.55</td>
<td>2222</td>
</tr>
<tr>
<td>Spp. No. 228</td>
<td>JSI-41 x JSI-7</td>
<td>81</td>
<td>8</td>
<td>22</td>
<td>4.15</td>
<td>2222</td>
</tr>
<tr>
<td>SPP. No. 294</td>
<td>JSI-42 x JSI-7</td>
<td>77</td>
<td>7</td>
<td>17</td>
<td>5.75</td>
<td>2089</td>
</tr>
<tr>
<td>SPP. No. 330</td>
<td>JSI-42 x WSM-1-SP-2</td>
<td>84</td>
<td>6</td>
<td>19</td>
<td>4.55</td>
<td>1899</td>
</tr>
</tbody>
</table>

Development of Varieties with High Oil Content

Development of "high oil" varieties (containing more than 35% oil) was started with the introduction of exotic high oil lines from Dr. P.F. Knowles. Good selections showing desirable plant expression were identified from this material and were further crossed to the high yielding spiny varieties. The technique of selection of "high oil" individual plants in the field and testing of their progenies in subsequent season was reported for 2-3 cycles (2). As a result of this recurrent selection for high oil and yield, few promising lines have been developed recently (Table 4).

Table 4. Promising high oil lines identified during 1987-88

<table>
<thead>
<tr>
<th>Plant height (cm)</th>
<th>Flower color</th>
<th>100 grain weight (g)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP. No. 40</td>
<td>Red</td>
<td>3.60</td>
<td>2289</td>
</tr>
<tr>
<td>SPP. No. 2029</td>
<td>Yellow</td>
<td>5.00</td>
<td>2178</td>
</tr>
<tr>
<td>SPP. No. 2000</td>
<td>Yellow</td>
<td>3.35</td>
<td>2133</td>
</tr>
<tr>
<td>SPP. No. 2027</td>
<td>Yellow</td>
<td>4.05</td>
<td>1956</td>
</tr>
</tbody>
</table>

The most promising among them are presented in Table 3. All these spineless materials form the excellent base population for further improvement of spineless safflower.

Development of Disease Resistant Varieties

It was observed that, too early planting (1st week of September to mid September) increases the incidence of foliar diseases particularly *Alternaria*. Using the specific nursery in the off-season suggested for screening against foliar diseases 1985) cultures, viz., ESI-31, ESI-24, ESI-21, O.P. (II) No. 10, ESI-22-5 and ESI-19, having tolerance to foliar diseases have been identified (3).

Certain exotic lines resistant to *Phytophthora* root rot and rust were obtained from California, U.S.A. Few selections showing desirable characters and stabilized plant expression have been isolated from this material. These selections are further being evaluated and are used as a source of resistance for the development of resistant varieties.

Development of Aphid Tolerant Varieties

Aphid (*Uroleucon compositae, Theobald*) is the most serious and
by far the only major insect problem in safflower in this region. Too late planting (end of October to 1st week of November) increases aphid infestation due to greater succulence of plants at the time of aphid infestation where as early planting is less prone to aphid attack (3). A specific nursery is being used for screening safflower lines in the field against aphid (4).

Field screening of the entire breeding material failed to identify the genotype completely resistant to aphid attack. However, certain level of resistance was noticed in few genotypes. The criteria suggested

Table 5. Evaluation of certain insecticides as regards aphid control (Indore, 1984 to 1986)

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Decline in aphids (%)</th>
<th>Yield (kg/ha)</th>
<th>Total return (Rs/ha)</th>
<th>Cost of cultivation (Rs/ha)</th>
<th>Net return (Rs/ha)</th>
<th>Benefit cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethoate 30 EC</td>
<td>66.1</td>
<td>1534</td>
<td>6136</td>
<td>1914</td>
<td>4222</td>
<td>2.20</td>
</tr>
<tr>
<td>Phosphomidon 76 EC</td>
<td>54.2</td>
<td>1343</td>
<td>5372</td>
<td>1856</td>
<td>3516</td>
<td>1.89</td>
</tr>
<tr>
<td>Quinalphos 20 EC</td>
<td>58.7</td>
<td>1435</td>
<td>5740</td>
<td>2158</td>
<td>3582</td>
<td>1.85</td>
</tr>
<tr>
<td>Endosulfan 35 EC</td>
<td>42.5</td>
<td>1414</td>
<td>5656</td>
<td>2008</td>
<td>3648</td>
<td>1.81</td>
</tr>
<tr>
<td>Control</td>
<td>1059</td>
<td>4236</td>
<td>1664</td>
<td>2572</td>
<td>1.54</td>
<td></td>
</tr>
</tbody>
</table>

Control of Aphids by Chemicals

Out of the 4 insecticides viz., Quinolphos, Endosulfan, Phosphomidon and Dimathoate tested for three years (1984 to 1986). Dimethoate 0.05% appeared to be the best as regards effective aphid control and high benefit cost ratio (Table 5).

Economies of Different Management Practices

1. The complete package of practices followed in safflower (full recommended fertilizers and complete plant protection for aphids) gave highest yield and highest net return (Table 6). Although fertilizer has higher yield and total return than those with plant protection measure for aphids, the latter gave higher net return and benefit-cost ratio. The yield losses due to aphids ranged from 14 to 17%.

2. Provision of only one protective irrigation for germination in the soil moisture stress situation increased the crop yield by about 21% because of optimum plant stand, which is difficult to attain under dry (stress) condition.

Intercropping of Safflower in Gram and Linseed

Sole crop of safflower and intercropping of safflower in linseed or gram appeared to be more remunerative than the traditional sole cropping of gram or linseed
Two rows of safflower could be alternated with 4 to 6 rows of linseed or gram. Here field operation viz., weeding, spraying, harvesting, etc. could be easily done in safflower rows compared to those in sole crop. Hence, such intercropping is particularly useful to farmers who are hesitant to grow sole crop of safflower because of spines.

Table 6. Economics of different management practices (Indore, 1984 to 1986)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total treatments</th>
<th>Yield (kg/ha)</th>
<th>Yield losses over protected plots (%)</th>
<th>Cost of cultivation (Rs/ha)</th>
<th>Total return (Rs/ha)</th>
<th>Net return (Rs/ha)</th>
<th>Benefit cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low monetary input (L.M.I.)</td>
<td>228.3</td>
<td>1305</td>
<td>14.10</td>
<td>1071</td>
<td>5212</td>
<td>4141</td>
<td>3.86</td>
</tr>
<tr>
<td>L.M.I. + Plant protection</td>
<td>31.3</td>
<td>1517</td>
<td>-</td>
<td>1321</td>
<td>6068</td>
<td>4747</td>
<td>3.60</td>
</tr>
<tr>
<td>L.M.I. + fertilizer</td>
<td>228.9</td>
<td>1574</td>
<td>17.37</td>
<td>1606</td>
<td>6296</td>
<td>4690</td>
<td>2.92</td>
</tr>
<tr>
<td>L.M.I. + Fertilizer + Plant protection</td>
<td>29.4</td>
<td>1905</td>
<td>-</td>
<td>1856</td>
<td>7620</td>
<td>5764</td>
<td>3.10</td>
</tr>
</tbody>
</table>

NOTE: 1. Low monetary inputs include timely planting, recommended variety, spacing, seeding rate etc.
2. Dimethoate 0.05% spray was applied once/twice for plant protection against aphids.
3. Fertilizer (full recommended dose) was applied at the rate of N40:P40:K20 kg/ha.

A new parameter for intercropping studies

A new parameter, RYE (Relative Yield Efficiency) has been suggested for studies on intercropping experiments (1). It has the following relationship:

\[
\text{RYE} = \frac{\text{Yield per unit row of intercrop}}{\text{Yield per unit row of sole crop}} \times 100
\]

The new parameter estimated the yield potential of a given crop in intercropping system compared to that under sole cropping. The higher the RYE, the greater is the yield efficiency of that crop under intercropping. In general RYE values were higher for safflower intercropped with linseed than those for safflower intercropped with gram (Table 7). This shows that, yield efficiency of safflower is higher when intercropped with linseed.

Development of New Research Techniques

The following new research, techniques/equipments were developed for safflower research.

1. Quick method of oil estimation.
2. Technique for the selection of "high oil" genotypes in the field.
4. New parameter, RYE for intercropping studies.
5. Specific off-season nursery for screening for resistance to foliar diseases.
6. Specific nursery for screening lines against aphids.
8. Electric single plant thresher for threshing of individual plants.
Table 7. Economics of Gram/Linseed: Safflower intercropping

<table>
<thead>
<tr>
<th>Treatments**</th>
<th>Total cost of cultivation (Rs/ha)</th>
<th>Total return (Rs/ha)</th>
<th>Net return (Rs/ha)</th>
<th>Benefit cost ratio</th>
<th>RYE***</th>
</tr>
</thead>
<tbody>
<tr>
<td>B:S 2:2</td>
<td>1787</td>
<td>4606</td>
<td>2855</td>
<td>2.13 (6)</td>
<td>102.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 107.3</td>
<td>(6)</td>
</tr>
<tr>
<td>B:S 4:2</td>
<td>1817</td>
<td>4405</td>
<td>2588</td>
<td>1.99 (6)</td>
<td>103.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 98.2</td>
<td>(6)</td>
</tr>
<tr>
<td>B:S 6:2</td>
<td>1833</td>
<td>4548</td>
<td>2646</td>
<td>2.03 (6)</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 100.3</td>
<td>(6)</td>
</tr>
<tr>
<td>L:S 2:2</td>
<td>1703</td>
<td>5442</td>
<td>3674</td>
<td>2.82 (L)</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 157.8</td>
<td>(L)</td>
</tr>
<tr>
<td>L:S 4:2</td>
<td>1765</td>
<td>5801</td>
<td>3969</td>
<td>2.96 (L)</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 155.7</td>
<td>(L)</td>
</tr>
<tr>
<td>L:S 6:2</td>
<td>1790</td>
<td>6035</td>
<td>4176</td>
<td>3.14 (L)</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(S) 157.0</td>
<td></td>
</tr>
<tr>
<td>Safflower (sole)</td>
<td>1761</td>
<td>6707</td>
<td>4870</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>Gram (sole)</td>
<td>1699</td>
<td>2428</td>
<td>733</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Linseed (sole)</td>
<td>1363</td>
<td>2830</td>
<td>1428</td>
<td>1.76</td>
<td></td>
</tr>
</tbody>
</table>

* based on 4 years (1984 to 1987),
** G = Gram; S = Safflower and L = Linseed, 2:2 = 2 rows of base crop (gram or linseed) alternated with 2 rows of intercrop (safflower).
*** RYE = Relative Yield Efficiency.

References

