Leishmaniasis control strategies

A critical evaluation of IDRC-supported research
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Établi à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlemento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlemento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, Africa, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné a un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
Leishmaniasis control strategies
Leishmaniasis control strategies: A critical evaluation of IDRC-supported research

Proceedings of a workshop held in Mérida, Mexico, November 25–29, 1991, sponsored by the International Development Research Centre, in collaboration with the Universidad Autónoma de Yucatán (UADY) and the Universidad Peruana Cayetano Heredia (UPCH)

Edited by
Pandu Wijeyaratne, Tracey Goodman
and Carlos Espinal
Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Publications staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.

TABLE OF CONTENTS

Foreword
Acknowledgements
Participants

Orientation Papers:

Creating and Sharing Knowledge for Action: Towards a New Way of Seeing the Problem of Endemic Diseases *C.H. Zarowsky*
Ecological and Environmental (Eco-Epidemiological) Approaches to the Control of Leishmaniasis *I.D. Velez*
A Strategy for Control of Cutaneous Leishmaniasis through the CIMDER’s Primary Health Care Model *J. Becerra and M. Munoz*
Health Policy for Leishmaniasis Control: The Experience of Peru *M. Rodriguez*

IDRC Leishmaniasis Project Results:

Observations on the Ecology of Visceral Leishmaniasis in Jacobina, State of Bahia, Brazil *I.A. Sherlock and J.C. Miranda*
Clinical and Field Epidemiological Investigations of Kala-azar (Visceral Leishmaniasis) in West Pokot District of Kenya *M.S. Mutinga, C.M. Mutero, A. Ngindu, P.R. Kenya, F. Amimo and S.N. Nahashon*
Migration, Settlement and Visceral Leishmaniasis in Ethiopia *A. Hailu, N. Berhe, T. Abate, H. Yeneneh, M. Balkew and S. Tedla*
Ecology of Visceral and Cutaneous Leishmaniasis in Tunisia *R. Ben Rachid, R. Ben-Ismaïl and M. Ben Saïd*
Tegumentary Leishmania Infection and Disease in Colombia: Evaluation of Incidence and Risk Factors *K.A. Weigle and N.G. Saravia*
Risk Factors Associated with Cutaneous Leishmaniasis Infection and Disease in the State of Campeche, Yucatan, Mexico *F.J. Andrade-Narvaez et al.*
Risk Factors and Leishmaniasis: Possible Contributions for Control Strategies *J. Calmet Böhme*
Vector Blood Meal Sources and Transmission Studies on Andean Leishmaniasis *J.E. Perez, J.M. Onje, E. Ogusuku, L. Paz, and E. Nieto*
Community and Environmental Risk Factors Associated with Cutaneous Leishmaniasis in Montebello, Anitoquia, Colombia *I.D. Velez, M. Wolff, R. Valderrama, J.P. Escobar, and L. Osorio*
Geographic Distribution and Ecological Risk Factors Associated with Transmission of Cutaneous Leishmaniasis in Jordan

S. Khoury, E. Saliba and O.Y. Oumeish

Epidemiological Studies on Andean Cutaneous Leishmaniasis and their Significance for Designing a Control Strategy

A. Llanos-Cuentas and C. Davies

Evaluation of Project Results: Discussion and Comments on Papers Presented

Panel Discussions:

(i) Leishmaniasis as a Public Health Problem and How it is Addressed Nationally

(Presenters: M. Restrepo and R. Zeledon)

(ii) Appropriating Technology for Leishmaniasis and Other Tropical Diseases

(Presenters: H. Guerra and L.A. Guevara)

(iii) Adapting Leishmaniasis Treatment to Peripheral Health Centres and Communities

(Presenters: A. Llanos-Cuentas and C. Rojas)

(iv) Is Vector and Reservoir Control Possible for Leishmaniasis?

(Presenters: L.A. Sherlock, M. Ben Rachid, and B.L. Travi)

(v) Immunological Considerations in the Control of Leishmaniasis

(Presenters: N.G. Saravia and F.J. Andrade-Naraez)

Working Group Reports and Recommendations:

Working Group #1: "The Role of the Community in Leishmaniasis Prevention and Control"

Working Group #2: "Technology Needs, Availability and Transfer for Leishmaniasis"

Working Group #3: "Regional Patterns of Leishmaniasis as a Basis for Action"

Working Group #4: "Surveillance Systems for Leishmaniasis Control"
- 314 -

- prepare reactives and conduct specialized diagnosis tests;
- coordinate statistical and epidemiological analysis and critically review all information gathered by the program;
- guarantee adequate and timely supply of elements for the appropriate operation of the program;
- conduct studies of the affected areas, in respect to parasites, vectors and environment;
- send all information gathered by the program to the National Ministry of Health;
- conduct studies of the affected areas, with the help of minimum levels and regional hospitals.
- develop research projects.

The control measures should be based on long-term epidemiological studies of the foci, improve knowledge of the ecology and increase the effectiveness of research programs.

Leishmaniasis as a Public Health Problem with Emphasis on Latin America
By Rodrigo Zeledon²

Leishmaniasis is a group of important widespread diseases, apparently of ancient origin. They appear to be far more abundant and of greater public health importance than was previously recognized (WHO 1990). Leishmaniasis is not a notifiable disease in many countries and even in those where it is reportable, the actual number of cases is estimated to be three to five times higher than the number reported. The estimated worldwide prevalence of the different clinical forms exceeds 12 million cases, with an incidence of 400,000 new infections per year. The number of persons at risk has been calculated to be 350 million, affecting about 80 countries. Epidemics involving thousands of cases of cutaneous leishmaniasis (CL) have been observed in countries of Africa and serious epidemics of visceral leishmaniasis (VL) have occurred in Asian and African countries, resulting in tens of thousands of deaths (WHO 1991).

New settlements due to population expansion and new developments, such as industrial, agricultural or water resource projects, may bring non-immune persons into endemic areas which result in high numbers of new infections. Even the less aggressive cutaneous forms of the disease can produce serious socio-economic loss in terms of disability of the affected person and costly treatment which sometimes produces undesirable collateral consequences.

² Programa de Investigacion en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, P.O. Box 304-3000, Heredia, Costa Rica.
In certain forest areas of South America, some development projects have faced serious obstacles due to fear of the workers of contracting mucocutaneous leishmaniasis and suffering its mutilating effects.

Recent discoveries particularly in Latin America, are demonstrating the great complexity of this group of diseases. Cases emerge in both known and new foci involving diverse ecological situations and including a great variety of parasite isolates, animal reservoirs and vectors. Clinical forms previously attributable to a single group of parasites, are now known to be produced by others which were previously associated with a different type of disease and vice-versa. Immunological impairment of different degrees, in which a given parasite plays a role, is becoming more evident, with different types of clinical pictures and resistance to treatment.

As an example of the above situation in the Americas, new foci are emerging in countries such as the United States (Texas) and the Dominican Republic. In the latter, 33 cases have been observed (H. Bogaert-Diaz, personal communication) of a very peculiar clinical form, produced by a new species of parasite. This new form of the disease was discovered only within the last 20 years and has some distinctive characteristics. The lesions are mainly nodules and/or plaques or hypochromic patches with no tendency to ulcerate; they are often disseminated, but some patients had only two or three lesions and seven had only one. The lesions are very rich in parasites and the Montenegro skin test is negative in most of the cases, indicating some sort of immunological impairment. At least two cases have cured spontaneously and others have responded to the intraleosional injection of neglumine antimoniate. This disease is probably also present in neighbouring Haiti where the suspected vector is present and conditions are similar to those of the Dominican Republic. In another Caribbean island, Trinidad, an enzootic cycle exists which at any time could become a true zoonosis involving man (Zeledon 1992).

Other situations that deserve special mention in the Latin American picture, are the findings of a type of cutaneous leishmaniasis produced by *L. infantum* in Costa Rica and Honduras and the identification of *L. amazonensis* as an agent for visceral leishmaniasis in Brazil.

In the first case, a nodular non-ulcerative form of CL sometimes presenting only papules or erythematous plaques has been reported, produced by a strain of *L. infantum* identical to zymodeme MON-1 of the Mediterranean area (Zeledon 1989; Ponce et al. 1991; Zeledon 1991). Some clinical forms are similar to the Dominican Republic cases, but parasites are scarce in the lesions and the anergic reaction to Montenegro test is not present in the Central American cases. Whereas in the Honduran situation, visceral cases occur concomitantly with the cutaneous cases, in Costa Rica only the latter form is observed. This difference may be explained by better sanitary conditions, with a lower child mortality rate and a lower malnutrition index in Costa Rica as compared to Honduras. A prospective study undertaken in Bahia, Brazil (Bardaro et al. 1986; Cerf
1987), suggested that both malnutrition and concomitant infectious diseases, acquired at an early age, are important risk factors in the acquisition of the classical picture of visceral leishmaniasis. Of 1,494 children with normal nutritional status, 12 had visceral leishmaniasis (8.03 cases/1,000). However, of 144 children with a moderate to severe degree of malnutrition, 10 had the disease (69.44 cases/1,000). This means that a child with moderate to severe malnutrition has 8.7 times more risk of developing visceral leishmaniasis. In the same area it was observed that a two year old child has a 1:10 chance of being infected and 1:4 chance of developing the disease, but if the child is malnourished the probability is 1:2. On the other hand, a seven year old child has a 1:6 chance of being infected but only a 1:36 chance of developing the disease.

In relation to the Brazilian situation it has been observed that *L. amazonensis* can produce a wide spectrum of clinical forms that include cutaneous (20/49 cases), mucocutaneous (5/13 cases) and visceral (11/45 cases), as well as four cases of post kala-azar dermal leishmaniasis and one diffuse cutaneous leishmaniasis (Barra et al. 1991). The authors of these data have pointed out the need to re-evaluate the relationship of different species of *Leishmania* and the clinical picture they produce in humans.

These are just a few examples showing the complexity of the new trends of leishmaniasis in the New World. Finally, I would like to analyze, in a general way, the current situation of cutaneous leishmaniasis in a Central American country such as Costa Rica and how this country is addressing it.

The good sanitary conditions prevailing in Costa Rica have made possible an increase in the importance of leishmaniasis among parasitic diseases. The annual estimated incidence is 4,000-5,000 cases in a population of three million, making it the sixth most frequent of all notifiable infectious diseases. CL is widespread in rural areas; it is also associated with primary forest in less populated areas. The incidence tends to be higher during the rainy season. The most affected age group is under 10 years of age and it is common in children under two years. From 1982 to 1986 the mean annual incidence rate per 100,000 for the entire country varied from 55.2 to 116.8 and the highest rates were observed for the province of Limon, on the Atlantic coast, reaching 1,560.7 in 1985 and 1,355.0 in 1986. (Hidalgo et al. 1987).

Costa Rica has a good primary care health program with an important involvement of the community. CL is well integrated so that identification of cases is immediate and treatment mainly by intralesional injections of meglumine antimoniate is offered free of charge. This modality of treatment has proved to be very effective against *L. panamensis*, the agent responsible for practically all cases in the country, and its cost is lowered by a factor of 20. Awareness about the disease among the population also allows early detection of cases with mucosal involvement which, in any event, represents only 3-5% of the cases produced by the same parasite in Costa Rica.
Acknowledgement: Supported in part by the International Development Research Center (IDRC), Ottawa, Canada.

REFERENCES

