Rural Water Supply in Developing Countries

Presentations of a workshop on water supply held in Zomba, Malawi, August 1980
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.
Contents

Foreword 5
Participants 7
Technology
The development of self-help gravity-piped water projects in Malawi
 L.H. Robertson 9
Mulanje tour 12
Rainwater catchment in Botswana
 Gilbert J. Maikano and Lars Nyberg 13
Shallow wells and hand pumps
 Aseged Mammo 18
Shallow wells project, Shinyanga Region
 Y.N. Kashoro 26
Shallow wells program in Malawi
 T.H.B. Nkana 30
Mark series well pumps
 K. Jellema 32
The ndowa pump
 J. Kanyenda 36
Water pumping by wind energy in Kenya
 M.N. Opondo 38
An assessment of water-pumping technologies using locally available energy resources, Botswana
 R. Carothers 44
Simple water treatment methods
 J. Gecaga 53
Technology: discussion 59

Operation and Maintenance
Role of operation and maintenance in training (with emphasis on hand pumps)
 Aseged Mammo 60
Operational maintenance in Malawi
 L.W.C. Munthali and G.A. Kamwanja 63
Role of operation and maintenance in training
 S.K. Ichung'wa 66
A sociological approach to water development
 J.A.K. Kandawire 69
The role of operation and maintenance in community rural water supply training
 A. Mzee 75
The role of the Ministry of Education in the training of future users of rural water supply systems
J. Kuthemba Mwale 79

Health education in rural areas
Y.M.Z. Nyasulu 81

The role of women in rural water development in Kenya
W. Getechah 85

Community participation in rural water supply development
Tsehaye Haile 89

Operation and maintenance: discussion 96

Training
Manpower surveys in Ethiopia
K. Achamyeleh 98

Manpower surveys in Tanzania
R.M.A. Swere 101

Planning and organizing training in Ethiopia
Michael Musie 104

Planning and organizing training in Tanzania
R.M.A. Swere 107

The planning and organization of training for water development in Kenya
R.C. Shikwe 110

Proposed curriculum for rural water supply personnel
J. Kuthemba Mwale 117

Training of workers for piped-water schemes in Malawi
H.R. Khoviwa 120

Views about water supply and training at the Department of Water Affairs, Botswana
Gilbert J. Maikano and Lars Nyberg 123

Training of water technicians in Tanzania
M.M. Kivugo 126

Training program for technical officers in Malawi
G.A. Kamwanja 129

The international water technician's course, Swaziland College of Technology
M.R.Z. Ntshangase 132

Training of civil engineers in Kenya
J. Gecaga 134

Training: discussion 138

Workshop Resolutions 140

Country Action Plans 143
The International Water Technician’s Course, Swaziland College of Technology

M.R.Z. Ntshangase

Origin and Development

The international water technician’s course was first established in 1976 at the instigation of the general director of the Water and Sewage Board in Mbabane, with the objective of providing staff with a basic all-around knowledge of public health, with specific emphasis on water- and sewage works. Since then, the course has become an integral part of the program offered by the Swaziland College of Technology in Mbabane, thus allowing full advantage to be taken of the facilities offered by other departments and sections on the campus. Moreover, strong support has been received from the World Health Organization and some development agencies since the establishment of the course.

Initially, it was thought that the course (of 4 years duration) would consist of 2 years of theoretical training separated by a period of 2 years of practical work in the water branch. Although only the first year of theoretical training (part I), has been given to this point in time, it has been decided to reduce the interval for practical training to 1 year, so as to provide sufficient time for the practical training without adversely affecting the continuity of the theoretical content of the course. At the beginning of the 1981 academic year, the second year of theoretical training (part II) is expected to start for the first time.

Since its beginning, the course has been attended by students from Botswana, Lesotho, and Swaziland. The designation of 1981-1990 as the “International Drinking Water Supply and Sanitation Decade” by the United Nations will certainly promote the success of this course.

Table 1. International water technician’s course curriculum.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Part I</th>
<th>Part II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Chemistry</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Water and sewage technology</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Distribution and collection</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Drawing</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Laboratory practice</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Mechanical operation and maintenance</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Electrical operation and maintenance</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Building practice</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Surveying (land)</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Management and administration</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Measurement and specification</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Hygienics and first aid</td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

1Head, Construction Department, Swaziland College of Technology, Mbabane, Swaziland.
Objectives of the Course

The original objective of the course, as mentioned above, has not changed. The course is expected to prepare staff for progression to middle-level posts in the water industry, i.e., assistant waterworks operators; waterworks and sewage-works operators in charge of plants with conventionally designed treatment; supervisors; inspectors of works; and clerks of works. Table 1 indicates the courses given to prepare the students for these positions.

Admission Requirements

The minimum requirements for admission to the course are a Cambridge overseas school certificate (COSC) or equivalent, which includes courses in chemistry, biology, and mathematics; a City and Guilds of London Institute (CGLI) certificate in general construction; or a special recommendation by the sponsoring organization.

Examinations, Promotion, and Award of Diploma

Students' progress and levels of achievement are assessed on the basis of individual assignments and written examinations throughout the course. In addition, reports are requested from the employers to which students are assigned during the practical period. These reports are taken into account in the overall assessment of the students' progress.

Promotion to part II of the course is subject to the satisfactory completion of both part I of the course and the practical period.

To qualify for the award of the diploma, students are required to complete the entire course, including the practical period, to the satisfaction of the authorities of the Swaziland College of Technology.