Tropical Root Crops

PRODUCTION AND USES IN AFRICA

Proceedings of the Special Symposium of the International Society for Root Crops —
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society’s headquarters are at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

© International Development Research Centre 1984
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa, Canada

Terry, E.R.
Doku, E.V.
Arene. O.B.
Mahungu. N.M.

International Society for Tropical Root Crops. Africa Branch. Ibadan NG

IDRC-221e

UDC: 633.68

Microfiche edition available.
Il existe également une édition française de cette publication.
TROPICAL ROOT CROPS: PRODUCTION AND USES IN AFRICA
ABSTRACT

A mixture of original research, updates on procedures, literature reviews, and survey reports, this document resulted from the second symposium of the International Society for Tropical Root Crops — Africa Branch, with 77 participants from 16 countries. The focus was cassava, yams, cocoyams, and sweet potatoes, from the perspectives of breeders, agronomists, soil specialists, plant pathologists, entomologists, nutritionists, food technologists, etc. Learning from past successes and failures, many of the researchers directed their efforts toward problems obstructing progress in reaching improved production and use of root crops and attempted to view, realistically, the context in which their results would be applied.

RÉSUMÉ

Résultats de recherches récentes, mises à jour sur les méthodes de recherche, revues de publications et rapports de sondages sont contenus dans ce document issu du Deuxième symposium de la Société internationale pour les plantes-racines tropicales — Direction Afrique, qui a réuni 77 participants de 16 pays. Des communications sur le manioc, le taro, le yam et la patate douce ont été présentées par des phytosélecteurs, des agronomes, des pédologues, des phytopathologistes, des entomologistes et des spécialistes de la nutrition et des aliments, entre autres. Tirant leçon de leurs succès et de leurs échecs, beaucoup de ces chercheurs ont dirigé leurs efforts vers la solution des problèmes qui entravent l’augmentation de la production et de la consommation des plantes-racines et ont tenté de considérer d’un œil réaliste le contexte qui sera celui de l’application de leurs recherches.

RESUMEN

Una mezcla de investigaciones originales, actualizaciones de procedimientos, reseñas de literatura e informes de encuestas, este documento es el resultado del segundo simposio de la Sociedad Internacional de Raíces Tropicales, Filial Africana, que contó con 77 participantes de 16 países. El simposio se centró en la yuca, el taro, el cocoyam y las batatas, desde la perspectiva de los fitomejoradores, los agrónomos, los especialistas en suelos, los patólogos vegetales, los entomólogos, los nutricionistas, los tecnólogos alimenticios, etc. A partir de los éxitos y fracasos anteriores, muchos de los investigadores encaminaron sus esfuerzos hacia los problemas que obstaculizan el avance para lograr una producción y un uso mejorados de las raíces y trataron de obtener una visión realista del contexto en que los resultados pueden ser aplicados.
TROPICAL ROOT CROPS:
PRODUCTION AND USES IN AFRICA

EDITORS: E.R. TERRY, E.V. DOKU, O.B. ARENE, AND N.M. MAHUNGU

PROCEEDINGS OF THE SECOND TRIENNIAL SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH HELD IN DOUALA, CAMEROON, 14 – 19 AUGUST 1983
CONTENTS

Foreword .. 9

Participants .. 11

Official addresses
Opening address Nkaifon Perfura ... 15
Presidential address Bede N. Okigbo .. 16
Closing address Nkaifon Perfura ... 17

Introduction
Production potentials of major tropical root and tuber crops E.V. Doku 19
Potential utilization of major root crops, with special emphasis on human, animal, and industrial uses D.G. Coursey 25

Cassava
Genetic parameters of cassava N.M. Mahungu, H.R. Chheda, S.K. Hahn, and C.A. Fatokun ... 37
Evaluation of cassava clones for leaf production in Zaire N.B. Lutaladio 41
Cassava screening in Rwanda J. Mulindangabo .. 45
Effect of variety and planting time on the yield of cassava in Malawi R.F. Nembozanga Sauti ... 49
Response of cassava to fertilizers and town refuse under continuous cropping S.O. Odurukwe and U.I. Oji .. 51
Rapid multiplication of cassava by direct planting M.T. Dahniya and S.N. Kallon ... 53
Effects of shade, nitrogen, and potassium on cassava I.N. Kasele, S.K. Hahn, C.O. Oputa, and P.N. Vine ... 55
Weed interference in cassava—maize intercrop in the rain forest of Nigeria Ray P.A. Unamma and L.S.O. Ene ... 59
Soil-conserving techniques in cassava and yam production P.N. Vine, O.B. Ajayi, D.M. Mitchozounou, E.J. Hounkpatin, and T. Hounkevi ... 67
Factors limiting cassava production among peasants in Lukangu, Zaire Kilumba Ndayi .. 71
Epidemiology of anthracnose in cassava C. Makambila 73
Cassava yield losses from brown leaf spot induced by *Cercosporidium henningsii* J.M. Teri, P.W. Mtakwa, and D. Mshana 79
Susceptibility of cassava to *Colletotrichum manihotis* Muimba-Kankolongo A., M.O. Adeniji, and E.R. Terry 82
Borriyodiplodia stem rot of cassava and methods of selecting varieties for resistance G.W. Otim-Nape .. 86
Distribution and severity of cassava mosaic in the Congo R. Massala .. 89
The cassava mealybug front hypothesis: role of indigenous natural enemies K.M. Lema, R.D. Hennessey, and H.R. Herren 90
Comparative bioecology of two coccinellids, predators of the cassava mealybug, in the Congo G. Fabres and A. Kiyindou 93
Effects of fertilizer application on postembryonic development and reproduction of the cassava mealybug K.M. Lema and N.M. Mahungu ... 97
Control of the cassava green mite in Uganda B. Odongo and G. W. Otim-Nape .. 101
Studies on the nutrient content of yellow-pigmented cassava O. Safo-Kantanka, P. Aboagye, S.A. Amartey, and J.H. Oldham 103
Microbial breakdown of linamarin in fermenting cassava pulp M.A.N. Ejiofor and Nduka Okafor .. 105
Performance of a cassava peeling machine P.M. Nwokedi 108
An improved technique of processing cassava fufu Festus A. Numfor .. 111
Cassava-based diets for rabbits R.T. Fomunyam, A.A. Adegbola, and O.L. Oke .. 114
Effects of cassava meal on the hatchability of chicken eggs D.A. Ngoka, E.C. Chike, A.B. Awoniyi, T. Enyinnia, and S.O. Odurukwe 117

Yams

In-vitro culture of *Dioscorea rotundata* embryos C.E.A. Okezie, F.I.O. Nwoke, and S.N.C. Okonkwo ... 121
Economic indices for clonal selection and breeding of yams O.O. Okoli, J.U. Nwokoye, and C.C. Udugwu .. 125
Seed-yam production M.N. Alvarez and S.K. Hahn 129
Natural antifungal compounds from the peel of yam tubers S.K. Ogundana, D.T. Coxon, and C. Dennis .. 133
Optimal time for fertilization of *Dioscorea rotundata* S.C.O. Nwinyi .. 136
Effects of staking on tuber yield of three cultivars of trifoliate yam S.N. Lyonga and J.T. Ambe .. 138
Effect of time of staking on the development of anthracnose disease of water yam A.O. Nwankiti and I.U. Ahiara 140
Thermodynamics applied to the storage of yam tubers Godson O. Osuji 143
Root-knot susceptibility of crops grown with yam in Nigeria U.G. Atu and R.O. Ogbuji .. 147
Effects of cover plants on root-knot nematode population U.G. Atu and R.O. Ogbuji .. 149
Survival of *Botryodiplodia theobromae* in yam tissues B.I. Aderiye and S.K. Ogundana .. 151
CONTENTS

Variability in the chemical composition of yams grown in Cameroon
T. Agbor Egbe and S. Treche .. 153

Mineral content of yam tubers: raw, boiled, and as flour A. Bell 157

Introduction of flour from Dioscorea dumetorum in a rural area
G. Martin, S. Treche, L. Noubi, T. Agbor Egbe, and
S. Gwangwa’a ... 161

Cocoyams, Sweet Potatoes, and Others
In-vitro methods for cocoyam improvement E. Acheampong and
G.G. Henshaw ... 165

Production of hybrid Xanthosoma sagittifolium and test for resistance to
Pythium myriotylum A. Agueguia and S. Nzietchueng 169

Growth and development of Colocasia and Xanthosoma spp. under
upland conditions M.C. Igbokwe 172

Effects of water-table depth on cocoyam B.S. Ghuman and R. Lal 175
Intercropping cocoyams with plantain: effects on the yield and disease of
cocoyams M.C. Igbokwe, O.B. Arene, T.C. Ndubuizu, and
E.E. Umana ... 182

Root rot of Xanthosoma sagittifolium caused by Pythium myriotylum
in Cameroon Samuel Nzietchueng 185

Sweet-potato production potential in Rwanda G. Ndamage 189

Comportment studies with sweet potatoes in the highland zone of
Cameroon S.N. Lyonga and J.A. Ayuk-Takem 192

Effects of vesicular-arbuscular mycorrhizae, temperature, and phosphorus on Fusarium wilt of sweet potato J.M. Ngeve and
R.W. Roncadori .. 197

On-farm trials as a link between research and technology transfer
H.J. Pfeiffer ... 203

Plantain in root-crop farming systems S.K. Karikari 206

References .. 209

Abstracts

Yellow-pigmented cassava revisited K.A. Oduro 229

Distribution and utilization of cassava in Malawi R.F. Nembozanga Sauti 229

Can cassava productivity be raised in Zambia? N. Hrishi 230

Prospects for developing new white yam varieties M.O. Akoroda 230

Extension of root-crops technology to African farmers T. Enyinnia,
H.E. Okereke, and D.A. Ngoka .. 231
OPTIMAL TIME FOR FERTILIZATION OF *Dioscorea rotundata*

S.C.O. Nwinyi

I compared the effects of applying fertilizer at 8. 9. 10. 11. and 12 weeks after planting (WAP) to determine the best time for fertilization of white yam (*Dioscorea rotundata* cv. Nwapoko). In 1981, the differences between treatments were not significant from each other or from the control (no fertilizer); but, in 1982, yields for all treatments were significantly higher than those for the control (ranging between \(P < 0.05 \) and \(P < 0.001 \)) but not significantly different from one another.

Sobulo (1972b) reported that the last week of April or the first week of May was ideal for fertilization of yams planted in December–February in western Nigeria. Koli (1973) reported good response from split applications at 4 and 12 weeks after planting in northern Ghana. Onwume (1978) recommended fertilization at 1 month after shoot emergence, whereas Obighesan and Agboola (1978) recommended waiting until the yam vines are established. Enwezor and I (1980) suggested that the best time was 9–12 weeks after planting (WAP), which, according to Yayock et al. (1980), is similar to the practice in Nigeria. fertilizer being applied at about 8 WAP or as soon as the soil is sufficiently moist. Recognizing that the onset of rains and their distribution influence the time for planting and fertilization. I attempted to determine the most suitable time to fertilize rain-fed white yam to boost yields in eastern Nigeria.

MATERIALS AND METHODS

The study was carried out at Umudike in 1981 and at Umudike, Nsukka, and Igbariam in 1982. The two experimental sites at Umudike were at the National Root Crops Research Institute, 122 m above sea level. Although the sites had been cultivated earlier, there was no record of fertilization. The site at Nsukka was at the University of Nigeria faculty of agriculture farm, 447 m above sea level. The site was sandy and had not been cropped since 1976 when it was acquired by the university. The site at the Igbariam farm settlement, 34 m above sea level, was on ground that had been planted to palm but was bulldozed in 1979 and allowed to revert to bush (mainly *Imperata cylindrica*, *Eupatorium* spp., *Andropogon tectorum*, and mixed shrubs).

In each location, the field was cleared of existing vegetation, burned, plowed, and harrowed before being divided into 0.144-ha sections for the experiment. Ridges, 1 m high, were formed with a mould-board ridger, and 30 plots (8 m \(\times \) 6 m), consisting of six 8-m-long ridges each, were planted with sets (average weight 0.25 kg) of *D. rotundata* cv. Nwapoko. 1 m \(\times \) 1 m apart. The soils were analyzed, and, after sprouting, the yams were staked singly, two stakes from each of two adjacent ridges being tied together to ensure effective support. The plots were kept weed-free by hand.

Fertilizer (100 kg N. 40 kg P. 100 kg K) was placed in a 3–4 cm deep groove on both sides of the ridges. 15 cm from the crest. The different treatments were for time of application (8, 9, 10, 11, or 12 WAP and no fertilization as the control). The experimental design was a randomized complete block, with five replications. The yams were allowed to grow till complete senescence of the aerial parts and were harvested 30 WAP.

RESULTS AND DISCUSSION

At the two sites in Umudike in 1981, the soils were not deficient (Table 1), and, thus, the control plots were able to support yields that did not differ significantly from those for fertilized plots. In 1982, however, the soils were nutrient poor, and yields from the control plots were
Table 1. Results of soil analyses at the experimental sites (0—23 cm deep).

<table>
<thead>
<tr>
<th>Site</th>
<th>Site</th>
<th>pH</th>
<th>Organic carbon (%)</th>
<th>N (%)</th>
<th>P (ppm)</th>
<th>Carbon exchange capacity (meq/100 g)</th>
<th>Total exchangeable base (meq/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ca</td>
<td>Mg</td>
</tr>
<tr>
<td>Umudike</td>
<td>(9/4/81)</td>
<td>5.80</td>
<td>1.95</td>
<td>0.157</td>
<td>3.25</td>
<td>6.08</td>
<td>2.672</td>
</tr>
<tr>
<td></td>
<td>(22/4/81)</td>
<td>5.50</td>
<td>1.50</td>
<td>0.224</td>
<td>4.02</td>
<td>2.21</td>
<td>0.695</td>
</tr>
<tr>
<td></td>
<td>(30/3/82)</td>
<td>4.95</td>
<td>1.54</td>
<td>0.138</td>
<td>0.00</td>
<td>5.60</td>
<td>0.075</td>
</tr>
<tr>
<td>Nsukka</td>
<td>(14/4/82)</td>
<td>5.00</td>
<td>0.64</td>
<td>0.057</td>
<td>3.675</td>
<td>2.23</td>
<td>0.035</td>
</tr>
<tr>
<td>Igbariam</td>
<td>(12/5/82)</td>
<td>5.10</td>
<td>0.49</td>
<td>0.044</td>
<td>0.00</td>
<td>3.54</td>
<td>0.065</td>
</tr>
</tbody>
</table>

Table 2. Fresh tuber yield (t/ha) of D. rotundata.

<table>
<thead>
<tr>
<th>Planting date (day/month/year)</th>
<th>Umudike</th>
<th>Nsukka</th>
<th>Igbariam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18.33</td>
<td>13.92</td>
<td>14.78</td>
</tr>
<tr>
<td>Treatment (WAP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>18.83*</td>
<td>22.05**</td>
</tr>
<tr>
<td>9</td>
<td>22.01NS</td>
<td>13.90NS</td>
<td>19.17**</td>
</tr>
<tr>
<td>10</td>
<td>22.77NS</td>
<td>15.56NS</td>
<td>18.50*</td>
</tr>
<tr>
<td>11</td>
<td>20.30NS</td>
<td>15.06NS</td>
<td>21.67**</td>
</tr>
<tr>
<td>12</td>
<td>20.28NS</td>
<td>16.27NS</td>
<td>22.25**</td>
</tr>
</tbody>
</table>

*Significance levels: NS = not significant; * = significant at 0.05; ** = significant at 0.01; *** = significant at 0.001.

significantly lower than those from fertilized plots. Although the yields generally increased with the length of time before fertilization, the differences between treatments were not significant except on the Igbariam plots. The trend for increasing benefit with increasing time before fertilization did not hold for the Igbariam plots, probably because the rains had stopped and the last two applications were preceded by about a month of dry weather. This finding confirms Sobulo’s (1972b) observation that rainfall distribution affects the optimal time for fertilization.

The results suggest that fertilization of white yam is effective any time from 8 to 12 WAP. Hamid (1973) and Fayemi (1966) showed that fertilizer application is most effective when it corresponds to the critical time of increased nutrient requirement of the crops, and Jones (1973) observed that root growth of crops kept pace with downward wetting of the subsoil. Jones (1976) further reported that leaching efficiency varied with texture of the soil and that a low-leaching efficiency was related to slow wetting of the subsoil. These findings support the practice of applying fertilizer after the onset of rains, about 8 WAP, and support the observation (Sobulo 1972b) that annual rainfall distribution affects the best time for fertilizer application.

I wish to thank the Director, National Root Crops Research Institute, Umudike, for provision of facilities for this work, and for permission to publish it. I am particularly indebted to S.W. Agua and R.U. Onukwubiri for their assistance at various stages of this work.