Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4 - 17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d’être publiés plus tard dans une série de publications plus soignées. D’un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
CONTENTS

Foreword .. V
List of Participants .. vi
Introduction .. xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust
(Albugo candida) Between India (ICAR) and Canada (IDRC) for
Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of
Oleiferous Brassica. H. SINGH, D. SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.
BASUDEO SINGH ... 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.
G.N. SACHAN ... 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND
KUMAR and R.P. SINGH 35
Disease Problems in Brassicas and Research Activities at Pantnagar.
S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and
S.J. KOLTE ... 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.
G.C. SACHAN ... 56
Economic Performance, Potential and Constraints in Toria Production.
L.R. SINGH ... 66
Rapeseed In Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques
on Oilseed Brassica Performance in the Central, South-Eastern and
North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET
ALEMAW and NIGUSSIE ALEMAYEHU 72
The Achievements and Future of Brassica in Kenya. M.J. MAHASI 79
Rapeseed Adaptation Trials in Cyprus. A. HADJICHRISTODOULOU 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai
Academy of Agricultural Sciences (SAAS) for Recent Years.
SUN CHAOCAI ... 92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding
Project in 1988. WANG ZAO MU 94
A Preliminary Study on the Combining Ability and Heritability of Main
Agronomic Characters in B. juncea. WANG ZAO MU and
WANG YAN FEI .. 98
LIU CHENGQUING and HONG HAI PING 103
Oil Crops in Bhutan. TAYAN RAJ GURUNG 119
Brassica Production and Research in Pakistan. REHMAT ULLAH KHAN and MASOOD A.RANA 127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT ... 130
Report on a Tour to Oilseed Brassica Growing Areas of India.
GETINET ALEMAW ... 136
Discussions and Recommendations 138

Part 2. Other Oilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAO 144
Highlights of the Second International Safflower Conference Hyderabad, India from January 9-13, 1989. V.RANGA RAO 147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.) Improvement in India. MANGALA RAI 149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT 154
Nigerseed in India: Present Status of Cultivation, Research Achievements and Strategies. S.M.SHARMA 159
Constraints and Opportunities for Increasing the Production and Productivity of Niger in India. S.M.SHARMA 166
New Potential Areas of Niger in India. S.M.SHARMA 169
Present Production, Research and Future Strategy for Niger in Maharashtra. A.V.JOSHI ... 171
Niger in Tribal Bihar. H.B.P.TRIVEDI 176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY . 180
Agronomic Management/Agro-Techniques for Improving Production of Niger and Linseed. G.L.MISHRA 186
The Present Status of Niger and Linseed Pathology Work in India.
G.S.SAHARAN ... 192
Safflower, Niger and Linseed in Nepal. B.MISHRA 203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and DILRUBA BEGUM ... 208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA, MOHAMMAD SHARI, and ALTAF H.CHAUDHRY 213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR 218
Progress in Linseed On-station and On-farm Research in Ethiopia.
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW 220
Investigations on Some Biochemical Characteristics of Nigerseeds (Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH 229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA 233
The Status of Linseed, Safflower and Niger Research and Production in Kenya. T.C.RIUNGU ... 238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.
HUGH DOGGETT ... 241
Discussions and Recommendations 248
Part 3. Oilcrops Network Steering Committee-I

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Oilcrops Network for East Africa and South Asia, Achievements and Future. ABBAS OMRAN</td>
<td>256</td>
</tr>
<tr>
<td>Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT</td>
<td>265</td>
</tr>
<tr>
<td>IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks. J.M.M.ENGELS</td>
<td>272</td>
</tr>
<tr>
<td>Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in India. MANGALA RAI</td>
<td>274</td>
</tr>
<tr>
<td>Oilseeds Research in India: Network, Its Set Up, Organization, Past Achievements and Current Research Thrusts. V.RANGA RAO</td>
<td>283</td>
</tr>
<tr>
<td>Groundnut and the Oilcrops Network. S.N.NIGAM</td>
<td>286</td>
</tr>
<tr>
<td>Oilcrops Production in Ethiopia Current Status and Future Prospects. SEME DEBELA</td>
<td>288</td>
</tr>
<tr>
<td>The Vegetable Oil/Protein System in Kenya Summary Report-Phase I. C.ZULBERTI and J.LUGOGO</td>
<td>293</td>
</tr>
<tr>
<td>Brassica Sub-Network Achievements and Activites, 1987-88. HIRUY BELAYNEH</td>
<td>320</td>
</tr>
<tr>
<td>The Present Situation and Main Achievements of Sesame Production in East Africa. MOHAMMED EL-HASSAN AHMED</td>
<td>324</td>
</tr>
<tr>
<td>Constitution of the Oil Crops Network (Second Draft). MASOOD A.RANA and ABBAS OMRAN</td>
<td>330</td>
</tr>
</tbody>
</table>
EFFECT OF SOME EPIDEMIOLOGICAL FACTORS ON OCCURRENCE AND SEVERITY OF ALTERNARIA BLIGHT OF RAPESEED AND MUSTARD

R.P. Awasthi and S.J. Kolte

Abstract

Correlations between weather factors and severity of Alternaria blight (AB) on rapeseed yellow sarson cv T-151 and mustard cv Varuna (T-59) were established based on the data obtained over a seven-year crop period (1980-1987). Relative humidity (>67%), total rainy days (>6), rainfall (>70 mm) and minimum temperature (T-19°C) concomitant with maximum temperature (20-23°C) were found to be positively correlated \((r = 0.511-0.805) \) with AB severity on leaves, whereas the former two factors only showed significant positive correlation \((r = 0.758 \text{ and } 0.962) \) for the spread of pod infection. Relative humidity below 67% was less conducive for a severe development of the disease. The prediction equations for AB severity were derived by regression analysis. The severity of AB was found to be favoured by the above weather factors beyond 30 days of age and the increase in age was positively correlated \((r = 0.777-0.980) \) with the increase in the susceptibility of the crop; the maximum leaf disease severity being at rosette to flowering stage of the crop.

Alternaria blight of rapeseed-mustard is a disease of economic importance in India (2). It occurs quite regularly every year during the crop season (October to March) resulting in 35-46% yield loss (3). In certain cultivars of yellow sarson, the loss in yield may go to the extent of 70%. Though effects of fungicidal sprays, planting dates, etc. have been studied on control of the disease, basic information with respect to epidemiological factors on occurrence and severity of the disease have not been well documented. The present investigation deals with the study of some weather factors and the effect of plant age on the development of the disease. The results obtained over seven-year crop season (1980-1987) are presented herein.

Materials and Methods

1. Growing of the Brassicaspecies and the field layout

Two susceptible Brassica species viz., B. juncea cv T-59 (Varuna) and B. campestris var yellow sarson cv T-151 along with four other exotic Brassica species (B. alba, B. carinata, B. juncea and B. napus) were grown at the Crop Research Centre, Pantnagar, in seven consecutive crop seasons (from 1980-81 to 1986-87). Randomized block design using 3 x 4 m plot size with four replications was followed each year. The sowing was done in rows spaced at 40 cm distance keeping plant-to-plant spacing at 15 cm. A distance of 1.5 m was maintained between plots and replications. Nitrogen @ 100 kg/ha was applied along with phosphorus (40 kg/ha) and potash (40 kg/ha). The sowing was done in the middle of October in 1982 and 1986 and in the last week of October in the other five crop seasons. Other agronomic practices including weeding, irrigation, etc. were followed whenever needed to maintain the proper growth. The crop was protected against aphid infestation by a spray of Metasystox @ 0.1%

2. Recording the AB severity

Average disease severity on leaf and pod was taken separately at weekly interval using 0-5 rating scale which is given in Table 1.

Twenty five leaves/pods were collected randomly from each plot and rated. The disease index was
then calculated using the formula:

\[\text{Disease index (X)} = \frac{\text{Sum of all numerical ratings} \times 100}{25 \times 5} \]

Table 1. Rating scale used to measure AB disease severity.

<table>
<thead>
<tr>
<th>Area covered by spots (%)</th>
<th>Leaf</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No symptoms</td>
<td>No symptoms</td>
</tr>
<tr>
<td>1</td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>2</td>
<td>11-25</td>
<td>11-20</td>
</tr>
<tr>
<td>3</td>
<td>26-50</td>
<td>21-30</td>
</tr>
<tr>
<td>4</td>
<td>51-75</td>
<td>31-50</td>
</tr>
<tr>
<td>5</td>
<td>>75</td>
<td>>50</td>
</tr>
</tbody>
</table>

3. Studying the relationship of weather factors associated with the development of AB

Final severity of AB on middle leaf (on the main stem) referred to as \(Y_1 \) and on pod (on the main raceme) referred to as \(Y_2 \) in different crop seasons were pooled together cultivar-wise and correlated with the meteorological factors viz., mean maximum \((x_1) \) and mean minimum \((x_2) \) temperatures, per cent relative humidity \((x_3) \), total rainfall \((x_4) \), total number of rainy days \((x_5) \) and sunshine hours/day \((x_6) \) recorded for the period between the 5th and the 15th week after sowing for leaf infection and for the period between the 10th and the 18th week after sowing for pod infection. The correlation coefficient \((r) \) between the average disease index and weather factors was computed as per the method given by (5). Similarly the predicted mean disease severity index "y" equation \(Y = a + b_1 x_1 + b_2 x_2 + \ldots + b_6 x_6 \) was derived by multiple regression analysis, where "y" denotes the predicted AB severity on leaf \((Y_1) \) and on pod \((Y_2) \); "a" denotes the intercept and "b_1" to "b_6" denote partial regression coefficients for \(x_1 \) to \(x_6 \) weather factors. Significance of correlation coefficient \((r) \) and coefficient of determination \((R^2) \) was followed at 5% level of probability.

4. Computation of apparent infection Rate

Apparent infection rates \((ir) \) were calculated from the AB severity index at different week times of the plant growth using the formula given by:

\[2.3 \times 10^{\frac{x_2(1-x_1)}{t_2-t_1}} \times (1-x_2) \]

where \(ir = \text{apparent infection rate in non-logarithmic phase} \); \(x_1 = \text{disease index at initial week time} t_1 \) and \(x_2 = \text{disease index at subsequent week times} t_2 \). The apparent infection rates were further used to assess the maximum and minimum infection periods with respect to each crop species in relation to age.

Results and Discussion

In order to understand the effect of weather factors on the most commonly grown susceptible cultivars of mustard (Varuna) and yellow sarson (T-151), the results obtained with respect to these two only are described below. The results on other Brassica species which are not cultivated in India will be described in a separate research article.

1. Leaf infection severity of AB on yellow sarson and mustard

Significant positive correlations \((r = 0.764 \text{ to } 0.804) \) were observed between AB severity index on the yellow sarson leaf and relative humidity \(\text{(RH)} \), total rainfall \(\text{(RF)} \) and minimum temperature \(\text{(Mi Temp)} \). Similar results were obtained with respect to AB severity on leaf of the mustard \((r = 0.725 \text{ to } 0.805) \), but the "r" values in respect of the RH and RF factors were non-significant, Table 1. The values of the \(R^2 \) values revealed that a combined effect of RH, RF and Mi temp accounted for more than 98%
variation in AB severity on leaves of both yellow sarson and mustard, (Table 2). The AB severity prediction equations as derived in the present studies for leaf infection phase in respect of yellow sarson and mustard are given below:

i. AB leaf infection severity on yellow sarson:

\[
Y_1 = -49.95 + (8.28 \times x_2) + (0.12 \times x_3) + (0.85 \times x_4) + (-0.95 \times x_5) + (1.13 \times x_6).
\]

ii. AB leaf infection severity on mustard:

\[
Y_1 = 63.78 + (10.80 \times x_2) + (-2.38 \times x_3) + (1.19 \times x_4) + (-2.58 \times x_5) + (3.64 \times x_6).
\]

The crops were found to be susceptible to leaf infection phase during rosette to flowering stage when the maximum temperature (Max Temp) ranged between 20 and 25°C and the Min Temp was in the range of 7-10°C with average RH of 67-73% concomitant with total RF of 70mm and sunshine period (SP) of 5-7 h/day, (Fig. 1). Less than 67% RH and less than 7°C Mi Temp, irrespective of other favourable factors, did not result in severe occurrence of the leaf infection phase.

Table 1. Relationship of weather factors associated with AB severity on leaves of yellow sarson and mustard, as measured by correlation coefficient (r).

<table>
<thead>
<tr>
<th>Brassica species</th>
<th>Max. Temp. (°C)</th>
<th>Min. Temp. (°C)</th>
<th>R.H. (%)</th>
<th>Total rainfall (mm)</th>
<th>Total rainy days</th>
<th>Sunshine (h/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. campestris var.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow sarson cv T-151</td>
<td>0.190</td>
<td>0.764*</td>
<td>0.804*</td>
<td>0.784*</td>
<td>0.527</td>
<td>-0.608</td>
</tr>
<tr>
<td>B. juncea cv T-59</td>
<td>0.302</td>
<td>0.805*</td>
<td>0.706</td>
<td>0.725</td>
<td>0.511</td>
<td>-0.582</td>
</tr>
</tbody>
</table>

#Significant at 5% level of probability.

Table 2. R² values of different stepwise multiple regression equations for prediction of AB severity on leaves (\(Y_1\)) of yellow sarson and mustard.

<table>
<thead>
<tr>
<th>Stepwise predication equations</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. campestris var yellow sarson cv T-151:</td>
<td></td>
</tr>
<tr>
<td>1. (Y_1 = a + b_1 x_1 + b_2 x_2)</td>
<td>0.65*</td>
</tr>
<tr>
<td>2. (Y_1 = a + b_1 x_1 + b_2 x_2 + b_3 x_3)</td>
<td>0.79*</td>
</tr>
<tr>
<td>3. (Y_1 = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4)</td>
<td>0.99*</td>
</tr>
<tr>
<td>4. (Y_1 = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5)</td>
<td>0.99*</td>
</tr>
<tr>
<td>5. (Y_1 = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6)</td>
<td>0.99*</td>
</tr>
<tr>
<td>B. juncea cv T-59:</td>
<td></td>
</tr>
<tr>
<td>6. (Y_1 = a + b_2 x_2)</td>
<td>0.65*</td>
</tr>
<tr>
<td>7. (Y_1 = a + b_2 x_2 + b_3 x_3)</td>
<td>0.98*</td>
</tr>
<tr>
<td>8. (Y_1 = a + b_2 x_2 + b_3 x_3 + b_4 x_4)</td>
<td>0.98*</td>
</tr>
<tr>
<td>9. (Y_1 = a + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5)</td>
<td>0.99*</td>
</tr>
<tr>
<td>10. (Y_1 = a + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6)</td>
<td>0.99*</td>
</tr>
</tbody>
</table>

*Significant at 5%.
Fig. 1 AVERAGE WEATHER FACTORS FROM 5-15th WEEK AFTER SOWING ASSOCIATED WITH DISEASE SEVERITY ON LEAF OF T-59 AND YST-151 UNDER DIFFERENT CROP SEASONS (1980-81 TO 1986-87).

CROP SEASONS (YEARS)
1980-81 81-82 82-83 83-84 84-85 85-86 1986-87

RAINFALL
MAX. TEMP.
MIN. TEMP.
NO. OF RAINY DAYS
SUNSHINE HRS.

TEMP (°C)
RH (%)
RAINFALL (mm)
DISEASE INDEX

NO. OF RAINY DAYS AND SUNSHINE HRS.
2. Pod infection severity of AB on yellow sarson and mustard

Total rainy days (TRD) \((r = 0.962\) and \(0.758\), respectively) showed significant positive correlation with AB development on pods of yellow sarson and mustard, (Table 3). When TRD was included in the prediction equation for yellow sarson, the value of \(R^2\) was more than 93\%, (Table 4), indicating, there by, that AB severity on yellow sarson pods was mainly influenced by the frequency of TRD during the time from flowering to yellow pod stage of the crop. But in the case of mustard, \(R^2\) values for RH showed maximum (57\%) variation suggesting, thereby, the importance of RH factor in pod infection of mustard. Thus it is concluded that high frequency of TRD and RH appear to be more important factors for the spread of AB infection on pods, (Fig. 2). Similar results have been reported under the Punjab (1) and West Bengal (4) conditions.

Table 3. Relationship of weather factors associated with AB severity on pods of yellow sarson and mustard as measured by correlation coefficient \((r)\).

<table>
<thead>
<tr>
<th>Brassica species</th>
<th>Max. Temp.</th>
<th>Min. Temp.</th>
<th>R.H.</th>
<th>Total rainfall</th>
<th>Total rainy</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^\circ)C</td>
<td>(^\circ)C</td>
<td>(%)</td>
<td>(mm)</td>
<td>days</td>
<td>(h/day)</td>
</tr>
<tr>
<td></td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>(x_6)</td>
</tr>
<tr>
<td>B. campestris var.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow sarson cv T-151</td>
<td>-0.635</td>
<td>-0.001</td>
<td>0.645</td>
<td>0.590</td>
<td>0.962*</td>
<td>-0.324</td>
</tr>
<tr>
<td>B. juncea cv T-59</td>
<td>-0.387</td>
<td>0.334</td>
<td>0.758*</td>
<td>0.144</td>
<td>0.670</td>
<td>-0.511</td>
</tr>
</tbody>
</table>

*Significant at 5%.

Table 4. \(R^2\) values of different stepwise multiple regression equations for prediction of AB severity on pods \(Y_2\) of yellow sarson and mustard.

<table>
<thead>
<tr>
<th>Stepwise prediction equations</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. campestris var yellow sarson cv T-151:</td>
<td></td>
</tr>
<tr>
<td>1. (Y_2 = a + b_5 x_5)</td>
<td>0.93*</td>
</tr>
<tr>
<td>2. (Y_2 = a + b_5 x_5 + b_1 x_1)</td>
<td>0.94*</td>
</tr>
<tr>
<td>3. (Y_2 = a + b_5 x_5 + b_1 x_1 + b_6 x_6)</td>
<td>0.98*</td>
</tr>
<tr>
<td>B. juncea cv T-59:</td>
<td></td>
</tr>
<tr>
<td>4. (Y_2 = a + b_3 x_3)</td>
<td>0.57*</td>
</tr>
<tr>
<td>5. (Y_2 = a + b_3 x_3 + b_1 x_1)</td>
<td>0.66*</td>
</tr>
<tr>
<td>6. (Y_2 = a + b_3 x_3 + b_1 x_1 + b_5 x_5)</td>
<td>0.91*</td>
</tr>
<tr>
<td>7. (Y_2 = a + b_3 x_3 + b_1 x_1 + b_5 x_5 + b_2 x_2)</td>
<td>0.99*</td>
</tr>
<tr>
<td>8. (Y_2 = a + b_3 x_3 + b_1 x_1 + b_5 x_5 + b_2 x_2 + b_6 x_6)</td>
<td>0.99*</td>
</tr>
</tbody>
</table>

*Significant at 5%.

Keeping other factors constant, sunshine period (h/day) showed negative correlation with AB severity in the present study. The prediction equation for pod infection in respect of yellow sarson and mustard are given below.

i. AB infection severity on yellow sarson pod:

\[Y_2 = 16.18 + (3.75 X_1) + (3.52 X_5) + (-4.23 X_6).\]

ii. AB infection severity on mustard pod:

\[Y_2 = -316.24 + (10.84 X_1) + (-4.29 X_2) + (2.78 X_3) + (2.38 X_5) + (-2.62 X_6).\]
3. Relationship between age of the plant and susceptibility to AB

Plant age showed high degree of significant positive correlation with AB severity on leaf \((r = 0.777\) to \(0.850\)) as well as on pod \((r = 0.980\) to \(0.938\)). Maximum apparent infection rate \((ir = 0.763)\) on leaf was observed between 10 and 12 weeks after sowing in the case of yellow sarson and mustard, indicating thereby the maximum susceptibility of the plants, beyond 60-90 days after sowing. Young plants, less than 30 days of age, did not show development of symptoms on the leaf under field conditions.

This suggests that with increase in the age beyond 30 days, the susceptibility of the crop increases and becomes at its peak at 60-90 days. This information, thus, becomes a useful guide for time of application of the fungicides for maximum efficacy of the fungicidal control.

References