INTERCROPPING in semi-arid areas

Report of a symposium held at the Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania, 10-12 May 1976

Editors:
J. H. Monyo, A. D. R. Ker, and Marilyn Campbell

IDRC-076e

/IDRC pub CRDI/. Report of a symposium on /intercropping/ in semi/arid zone/s in the /tropical zone/, with an examination of /agricultural research/ activities — examines the effects of intercropping on /crop/ /plant production/; includes /research result/s, /list of participants/, /bibliography/c notes.

Microfiche Edition $1
Intercropping in Semi-Arid Areas

Report of a symposium held at the Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania, 10–12 May 1976

Editors: J. H. Monyo, A. D. R. Ker, and Marilyn Campbell

The views expressed in this publication are those of the individual author(s) and do not necessarily represent the views of IDRC.
Farmer's field near Ibadan, Nigeria, showing intercrop of cowpea under maize
Contents

Foreword A. D. R. Ker ... 5

Addresses to the Participants

Welcoming address A. M. Hokororo ... 8
Opening address Hon Mr J. S. Malecela 9

Summaries of Papers Presented

An appraisal of some intercropping methods in terms of grain yield, response to applied phosphorus, and monetary return from maize and cowpeas Y. A. Sudi, H. O. Mongi, A. P. Uriyo, and B. R. Singh ... 12

Rhizosphere populations in intercropped maize and soybean T. H. M. Kibani, C. L. Keswani, and M. S. Chowdhury 13

Intercropping for increased and more stable agricultural production in the semi-arid tropics B. A. Krantz, S. M. Virmani, Sardar Singh, and M. R. Rao ... 15

Cropping systems research: the scope and strategy for research in crop combinations based on experience of previous and current studies B. N. Okigbo ... 16

Mixed cropping research at the Institute for Agricultural Research, Samaru, Nigeria E. F. I. Baker and Y. Yusuf ... 17

Crop production practices in intercropping systems R. C. Finlay .. 18

Effects of crop combinations and planting configurations on the growth and yield of soybeans, millet, and sorghum in intercropping R. K. Jana and V. M. Sekao ... 19

Intercropping with sorghum at Alemaya, Ethiopia Brhane Gebrekidan ... 21

Studies on mixtures of maize and beans with particular emphasis on the time of planting beans D. S. O. Osiru and R. W. Willey .. 23

Intercropping of cassava with vegetables G. F. Wilson and M. O. Adeniran ... 24

Some aspects of the productivity and resource use of mixtures of sunflower and fodder radish R. W. Willey and D. A. Lakhani ... 25

Preliminary results of intercropping trials in Zaire with maize and certain legumes Thomas G. Hart and Mangha Kewo ... 27

(con't.)
Contents (concluded)

Effects of maize height difference on the growth and yield of intercropped soybeans D. R. Thompson, J. H. Monyo, and R. C. Finlay .. 29

Intercropping as a means of producing off-season tomatoes during the hot summer months in the Sudan A. T. Abdel Hafeez 30

Development of cowpea ideotypes for farming systems in Western Nigeria Olatunde A. Ojomo .. 30

Cereal–legume breeding for intercropping R. C. Finlay 31

Cowpea as an intercrop under cereals H. C. Wien and D. Nangju 32

Selection criteria in intercrop breeding R. C. Finlay 33

Experiments with maize–bean and maize–potato mixed crops in an area with two short rainy seasons in the highlands of Kenya N. M. Fisher .. 37

Pest control in mixed cropping systems H. Y. Kayumbo 39

Measuring plant density effects on insect pests in intercropped maize–cowpeas B. M. Gerard .. 41

Effects of spraying on yield of cowpeas grown in monoculture and under maize, sorghum, or millet H. Y. Kayumbo, R. C. Finlay, and S. A. Doto 44

Possible relationship between intercropping and plant disease problems in Uganda J. Mukibi .. 45

Attempted control of virus incidence in cowpeas by the use of barrier crops S. A. Shoyinka .. 46

Induced resistance to bean rust and its possible epidemiological significance in mixed cropping D. J. Allen 46

A limited objective approach to the design of agronomic experiments with mixed crops N. M. Fisher .. 47

Systematic spacing designs as an aid to the study of intercropping P. A. Huxley and Z. Maingu 50

Future directions of intercropping and farming systems research in Africa A. D. R. Ker .. 51

Developing mixed cropping systems relevant to the farmers' environment D. W. Norman 52

Assessment of innovations in intercropping systems C. D. S. Bartlett, E. A. Manday, and G. I. Mlay 58

Summary and Conclusions
D. W. Norman .. 59
H. Doggett .. 62

References .. 63

List of Participants .. 67
Mixed Cropping Research at the Institute for Agricultural Research, Samaru, Nigeria

E. F. I. Baker and Y. Yusuf

Institute for Agricultural Research, Ahmadu Bello University, Samaru, Nigeria

Because agricultural research in developing nations has been conditioned by cropping systems of the more developed countries, little attention has been paid to indigenous cropping systems, in particular mixed cropping systems of subsistence farmers. Most research has been directed to increasing production under sole cropping (a predominantly temperate system) instead of asking how to increase production under mixed cropping (the dominant system of tropical subsistence farmers). It is the lack of knowledge of the principles underlying mixed cropping that has prevented the application of improved technology to these farmers.

Although research with mixed crops has been done at this Institute over the past 25 years, albeit intermittently, little progress was made until the findings of Norman (10) that not only is labour used more efficiently but also that returns are less variable from year to year from mixed cropping than from sole cropping. Recognition that mixed cropping is based upon sound economic sense, and is far from being an unsophisticated form of agriculture, led to renewed research at the Institute.

Current research has been directed to answering one question. "Is mixed cropping intrinsically higher yielding than equivalent sole cropping?" As a baseline to answer this question we took a 3-year mixed cropping rotation common to the area around the Institute.

Experiments with the 1st year break, mixtures of a 1:1 ratio of millet and sorghum, showed that yields of both were higher when grown in mixture than when grown alone. This occurred because the different canopy structure formed by mixing a fast-growing early millet with a short, late sorghum allowed better light utilization early in the season when millet was taller than sorghum, and later when the millet had been harvested. It was also demonstrated that adding maize to the mixture gave even greater returns.

For the 2nd year, when the "gicci" system of intercropping cereals with groundnut is practiced, experiments demonstrated that the reduced yield of groundnut, because of competition from cereals, was more than compensated by yield of cereal. This mixture consistently gave returns 30% higher than equivalent sole crops.

In the final year cotton is sown relay within cereals. This is done because farmers are unable to devote time to land preparation for cotton, being more concerned with weeding and harvesting early cereals to end the "hungry gap" after a long dry season. Cotton, consequently, is sown late and within the cereal. Yields are poor. We have demonstrated that rather than sow cotton late within cereal, thus reducing the period of overlap, cotton should be sown under cereal as early as possible, sowing date having a far greater effect on yield than period of overlap.
These and other mixed cropping experiments have demonstrated that the subsistence farmer has developed a highly sophisticated system of cropping based upon good economic sense. We feel that the answer to the question is an unqualified "yes" and now intend moving to high input mixed cropping. Particularly we intend looking at the part played by nitrogen fixation by legumes within mixtures and the possibility of growing continuous legume crops within mixtures of various other crops. We also intend investigating rearrangements of the cereal component to give yet higher populations, possibly by closing up rows and sowing double rows to facilitate mechanization. We have already initiated lysimeter studies to investigate water use by high populations in mixtures.

Finally, preliminary studies have shown that trifluralin is selective in cotton, castor, okra, groundnuts, soybean, sunflower, and tomatoes; chlorbromuron is selective in soybean, maize, and sorghum; and linuron is selective in millet, maize, cowpea, cotton, soybean, and groundnuts. The last is being developed as a herbicide for use in millet/sorghum and cowpea mixtures.

Crop Production Practices in Intercropping Systems

R. C. Finlay

Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania

At the beginning of an intercrop research production program, it is important to identify quickly those factors that in combination increase agricultural production in terms of both quantity and quality.

It is suggested that an interlinked three-tier system be established involving: (1) studies on research fields; (2) experiments in village research-extension demonstrations; and (3) production data collection by sampling in actual farm conditions.

The purpose is to establish a testing and information network that will be self-checking. Priorities are established in meaningful terms within the real crop production sector. Data on the research innovations under development in the farmers' environment are continually being generated, analyzed, and corrected. These are all linked through field research studies, village research-extension experiments, and farmers' recommendations from within their own farming systems. The entire program is based on a recommendation-generating crop production system set within the framework in which the innovation is to function.

1Present address: Plant Science Department, University of Manitoba, Winnipeg, Man.