Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4 – 17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d’appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en determine l'orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

Le Centre Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, África, Asia y el Medio Oriente.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
 CONTENTS

Foreword ... v
List of Participants ... vi
Introduction ... xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust
(Albugo candida) Between India (ICAR) and Canada (IDRC) for
Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of
Oleiferous Brassica. H. SINGH, D. SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard.
BASUDEO SINGH .. 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India.
G.N. SACHAN .. 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND
KUMAR and R.P. SINGH .. 35
Disease Problems in Brassicas and Research Activities at Pantnagar.
S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of
Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and
S.J. KOLTE ... 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar.
G.C. SACHAN .. 56
Economic Performance, Potential and Constraints in Toria Production.
L.R. SINGH ... 66
Rapeseed in Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques
on Oilseed Brassica Performance in the Central, South-Eastern and
North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET
ALEMAW and NIGUSSIE ALEMAYEHU 72
The Achievements and Future of Brassica in Kenya. M.J. MAHASI 79
Rapeseed Adaptation Trials in Cyprus. A. HADJICHRISTODOULOU 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai
Academy of Agricultural Sciences (SAAS) for Recent Years.
SUN CHAOCAI ... 92
Statement on the Execution of the Sino-Canadian Rapeseed Breeding
Project in 1988. WANG ZAO MU 94
A Preliminary Study on the Combining Ability and Heritability of Main
Agronomic Characters in B. juncea. WANG ZAO MU and
WANG YAN FEI ... 98
LIU CHENG QUING and HONG HAI PING 103
Oil Crops in Bhutan. TAYAN RAJ GURUNG 119
Brassica Production and Research in Pakistan. REHMAT ULLAH KHAN and
MASOOD A.RANA ... 127
Summary and Wrap-up for Brassica Sub-Network Meeting. HUGH DOGGETT .. 130
Report on a Tour to Oilseed Brassica Growing Areas of India.
GETINET ALEMAW ... 136
Discussions and Recommendations .. 138

Part 2. Other Oilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAO 144
Highlights of the Second International Safflower Conference Hyderabad, India from January 9-13, 1989. V.RANGA RAO 147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.) Improvement in India. MANGALA RAI 149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT 154
Nigerseed in India: Present Status of Cultivation, Research Achievements and Strategies. S.M.SHARMA 159
Constraints and Opportunities for Increasing the Production and Productivity of Niger in India. S.M.SHARMA 166
New Potential Areas of Niger in India. S.M.SHARMA 169
Present Production, Research and Future Strategy for Niger in Maharashtra. A.V.JOSHI ... 171
Niger in Tribal Bihar. H.B.P.TRIVEDI ... 176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY 180
Agronomic Management/Agro-Techniques for Improving Production of Niger and Linseed. G.L.MISHRA ... 186
The Present Status of Niger and Linseed Pathology Work in India.
G.S.SAHARAN ... 192
Safflower, Niger and Linseed in Nepal. B.MISHRA ... 203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and
DILRUBA BEGUM .. 208
Country Report on Linseed and Safflower in Pakistan. MASOOD A.RANA,
MOHAMMAD SHARI, and ALTAF H.CHAUDHRY ... 213
Present Status of Safflower in Egypt. BADR A. EL-AHMAR 218
Progress in Linseed On-station and On-farm Research in Ethiopia.
HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW 220
Investigations on Some Biochemical Characteristics of Nigerseeds
(Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH 229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA 233
The Status of Linseed, Safflower and Niger Research and Production in
Kenya. T.C.RIUNGU ... 238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting.
HUGH DOGGETT ... 241
Discussions and Recommendations .. 248
Part 3. Oilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and Future. ABBAS OMRAN ... 256
Recent Developments in The Oil Crops Network and the ORU. HUGH DOGGETT 265
IBPGR's New Concept for the Conservation and Utilization of Germplasm;
Global Crop Networks. J.M.M.ENGELS 272
Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in
India. MANGALA RAI ... 274
Oilseeds Research in India: Network, Its Set Up, Organization, Past
Achievements and Current Research Thrusts. V.RANGA RAO 283
Groundnut and the Oilcrops Network. S.N.NIGAM 286
Oilcrops Production in Ethiopia Current Status and Future Prospects.
SEME DEBELA ... 288
The Vegetable Oil/Protein System in Kenya Summary Report-Phase I.
C.ZULBERTI and J.LUGOGO ... 293
HIRUY BELAYNEH ... 320
The Present Situation and Main Achievements of Sesame Production in
East Africa. MOHAMMED EL-HASSAN AHMED 324
Constituition of the Oil Crops Network (Second Draft). MASOOD A.RANA and
ABBAS OMRAN ... 330
Niger or noug (Guizotia abyssinica Cass) is one of the major oilseed crops in Ethiopia. It is grown in mid and high-altitudes on heavy, poorly drained soils (5). It provides about 50-60% of the country's edible oil. However, the seed yield and oil content are very low.

In sunflower, the increase in oil content was achieved through decreasing the thickness of seed coat or increasing the embryo size (3). In safflower, oil content was found to be inversely related with hull percent (4). Niger, safflower and sunflower have similarities in that they all belong to the family Compositae.

Investigations on some of the seed morphology and quality parameters and understanding their relationship would help in indirect selection for oil and improved meal quality. Thus, this experiment was designed:

1) to develop a technique to separate the seed coat (hull) and embryo from niger seeds,

2) to determine the oil, protein and crude fibre contents as well as weight of seed parts of the selected niger genotypes and investigate the inter-relationship among these parameters, and

3) to identify factors which would be useful for screening breeding materials for high oil and protein contents.

Materials and Methods

In 1987, 25 niger accessions selected from 1986 micro, pre-national and national variety trials grown at Holetta were included. In 1987, the study was made on two sets of genotypes which were either high or low in oil content. The two types were identified from the medium-and early-maturing landraces tested in 1987 at Holetta and Debre Zeit, respectively. Holetta and Debre Zeit, are at altitudes of 2380 and 1900 meters, respectively. The inclusion of high and low oil materials was to see the association of this trait with hull characteristics within medium and early maturing ecotypes grown at high and low altitude sites, respectively.

For dehulling, seeds were soaked with water in petridish containing filter papers and were kept in an incubator at temperature of 25 to 30°C for 24 hours. Following this the seeds were oven dried at 75 to 80°C for 24 hours to obtain expanded fibrous hull and shrivelled embryo without any weight loss. For each genotype 20 randomly selected seeds from oven dried samples were carefully separated into seed coat and embryo using sharp needle.
Each fraction was weighed, and hull percent (HP) and embryo percent (EP) were calculated as the ratio of hull and embryo weight expressed as percent of the total seed weight (TSW) respectively. Oil content was determined using wide line magnetic resonance spectrometre (2). Crude fibre and protein contents were determined using acid base digest and the method of Micro Kjeldhal respectively (1). ANOVA was computed for TSW, EP and HP considering the 20 single seeds as replications. Protein, oil and crude fibre determinations were made on three samples from each accessions. A conversion factor of 6.25 was used for protein content.

Results and Discussion

There are significant differences in all characteristics between the genotypes studied in 1987. As shown in Table 1, these genotypes exhibited wide variability in almost all parameters.

Table 1. Mean total seed weight (TSW) hull percent, embryo percent, oil, protein and crude fibre contents of 25 niger populations grown at Holetta in 1986.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>TSW (mg)</th>
<th>Hull (%)</th>
<th>Embryo (%)</th>
<th>Oil (%)</th>
<th>Protein (%)</th>
<th>Crude Fibre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>015584</td>
<td>2.8</td>
<td>13.5</td>
<td>86.5</td>
<td>38.3</td>
<td>27.5</td>
<td>23.4</td>
</tr>
<tr>
<td>200426</td>
<td>4.6</td>
<td>18.4</td>
<td>81.5</td>
<td>38.6</td>
<td>26.6</td>
<td>21.2</td>
</tr>
<tr>
<td>015505</td>
<td>4.1</td>
<td>18.8</td>
<td>81.2</td>
<td>38.5</td>
<td>27.8</td>
<td>22.6</td>
</tr>
<tr>
<td>015506</td>
<td>3.8</td>
<td>19.7</td>
<td>80.3</td>
<td>38.5</td>
<td>26.0</td>
<td>20.6</td>
</tr>
<tr>
<td>202235</td>
<td>3.1</td>
<td>20.0</td>
<td>80.0</td>
<td>39.6</td>
<td>26.2</td>
<td>20.9</td>
</tr>
<tr>
<td>207399</td>
<td>3.8</td>
<td>20.0</td>
<td>79.8</td>
<td>39.9</td>
<td>23.9</td>
<td>19.3</td>
</tr>
<tr>
<td>16650</td>
<td>3.9</td>
<td>20.4</td>
<td>79.6</td>
<td>38.4</td>
<td>26.1</td>
<td>21.2</td>
</tr>
<tr>
<td>015504</td>
<td>3.5</td>
<td>21.2</td>
<td>78.8</td>
<td>38.7</td>
<td>23.3</td>
<td>21.9</td>
</tr>
<tr>
<td>Sendafa</td>
<td>4.7</td>
<td>21.4</td>
<td>76.6</td>
<td>38.3</td>
<td>28.1</td>
<td>21.3</td>
</tr>
<tr>
<td>15637</td>
<td>4.1</td>
<td>25.5</td>
<td>77.5</td>
<td>38.2</td>
<td>28.6</td>
<td>21.9</td>
</tr>
<tr>
<td>207403</td>
<td>4.9</td>
<td>23.5</td>
<td>76.5</td>
<td>39.5</td>
<td>23.3</td>
<td>18.0</td>
</tr>
<tr>
<td>203187</td>
<td>4.0</td>
<td>24.4</td>
<td>76.5</td>
<td>39.5</td>
<td>23.7</td>
<td>22.3</td>
</tr>
<tr>
<td>208425</td>
<td>4.3</td>
<td>25.2</td>
<td>74.8</td>
<td>40.1</td>
<td>23.1</td>
<td>20.7</td>
</tr>
<tr>
<td>207400</td>
<td>4.9</td>
<td>25.2</td>
<td>74.8</td>
<td>39.9</td>
<td>23.3</td>
<td>20.3</td>
</tr>
<tr>
<td>208402</td>
<td>3.6</td>
<td>25.8</td>
<td>74.2</td>
<td>39.5</td>
<td>23.0</td>
<td>21.0</td>
</tr>
<tr>
<td>203182</td>
<td>4.1</td>
<td>27.7</td>
<td>72.3</td>
<td>40.3</td>
<td>22.7</td>
<td>20.7</td>
</tr>
<tr>
<td>IAR/Gu/337</td>
<td>5.9</td>
<td>27.6</td>
<td>72.4</td>
<td>38.8</td>
<td>26.9</td>
<td>22.7</td>
</tr>
<tr>
<td>203199</td>
<td>4.1</td>
<td>29.9</td>
<td>70.1</td>
<td>39.3</td>
<td>24.5</td>
<td>20.3</td>
</tr>
<tr>
<td>203194</td>
<td>3.5</td>
<td>30.1</td>
<td>69.9</td>
<td>39.3</td>
<td>23.3</td>
<td>21.0</td>
</tr>
<tr>
<td>203165</td>
<td>5.5</td>
<td>31.6</td>
<td>68.4</td>
<td>39.9</td>
<td>23.4</td>
<td>22.3</td>
</tr>
<tr>
<td>203191</td>
<td>6.1</td>
<td>34.8</td>
<td>65.2</td>
<td>39.8</td>
<td>22.8</td>
<td>22.7</td>
</tr>
<tr>
<td>Holetta local</td>
<td>6.3</td>
<td>30.3</td>
<td>69.7</td>
<td>38.3</td>
<td>28.3</td>
<td>20.7</td>
</tr>
<tr>
<td>208942</td>
<td>6.4</td>
<td>34.1</td>
<td>65.9</td>
<td>38.8</td>
<td>23.9</td>
<td>19.0</td>
</tr>
<tr>
<td>208387</td>
<td>7.6</td>
<td>36.7</td>
<td>63.3</td>
<td>40.1</td>
<td>23.4</td>
<td>19.7</td>
</tr>
<tr>
<td>203390</td>
<td>7.9</td>
<td>36.6</td>
<td>63.4</td>
<td>39.0</td>
<td>23.1</td>
<td>19.0</td>
</tr>
<tr>
<td>Mean</td>
<td>4.8</td>
<td>25.6</td>
<td>74.4</td>
<td>39.2</td>
<td>24.9</td>
<td>20.9</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>0.4</td>
<td>3.6</td>
<td>3.0</td>
<td>0.2</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CV%</td>
<td>14.4</td>
<td>19.0</td>
<td>7.7</td>
<td>0.8</td>
<td>7.6</td>
<td>8.8</td>
</tr>
</tbody>
</table>

* NMR reading of oven-dried seed.
** Analysis based on oven-dried meal.

Increase in EP was accompanied by an increase in protein and a decrease in hull percent. The relationship between oil content and total seed weight, embryo percent and hull percent was not
clear because of the narrow range of oil content. This could be because of the materials were under high selection pressure for a higher oil.

There appeared to be genotype-parameter interaction in this study. The genotypes PGRC/E 015506, 015585, 200426 and Sendafa which had high embryo and low hull proportions but relatively low oil and quite high protein. Accessions 207399, 203187, and 015504 had low hull, high embryo proportions and high oil content. These relationships indicate that thin hull results in higher embryo proportion which in turn results either in higher oil or protein content as well as low crude fibre.

In 1988, early and medium maturing types were included (Table 2). Increase in oil content was associated with a decrease in hull thickness and an increase in embryo proportion, confirming that larger embryo results in more oil.

The correlation coefficients among total seed weight, oil and protein contents, hull and embryo percents are shown in Table 3. Total seed weight was negatively related with hull thickness and positively, with embryo proportion. Oil content was negatively related with hull thickness and protein content. Embryo percent was negatively associated with hull percent and positively, with oil content indicating that thin-hull seeds have larger embryo size. The positive relationship of embryo proportion and oil content shows that most of the oil is deposited in the embryo. Hull percent was positively associated with crude fibre and negatively with embryo percent showing that thick hulled seeds have more crude fibre than thin hulled seeds.

As it has been observed in sunflower and safflower (3,4), thinner seed coat or hull in niger seed results in larger embryo proportion that can produce more oil and quality meal as a by-product.

Table 2. Mean total seed weight, hull percent, embryo percent, oil and protein content of three lowland and six highland types of niger grown at Debre Zeit and Holetta respectively, in 1988.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total seed weight (mg)</th>
<th>Hull (%)</th>
<th>Embryo (%)</th>
<th>Oil 1 (%)</th>
<th>Protein 2 (%)</th>
<th>Crude fibre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc. No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowland (Bunigde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niger 202470</td>
<td>3.9</td>
<td>32.1</td>
<td>67.9</td>
<td>25.3</td>
<td>29.6</td>
<td>31.5</td>
</tr>
<tr>
<td>202236</td>
<td>5.0</td>
<td>29.6</td>
<td>70.4</td>
<td>30.6</td>
<td>29.1</td>
<td>30.5</td>
</tr>
<tr>
<td>15771</td>
<td>5.3</td>
<td>30.2</td>
<td>69.8</td>
<td>31.2</td>
<td>33.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Highland (Abat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niger 15599</td>
<td>3.3</td>
<td>31.7</td>
<td>68.3</td>
<td>33.6</td>
<td>19.7</td>
<td>26.5</td>
</tr>
<tr>
<td>207408</td>
<td>4.0</td>
<td>31.0</td>
<td>69.0</td>
<td>34.5</td>
<td>27.7</td>
<td>26.5</td>
</tr>
<tr>
<td>200425</td>
<td>4.5</td>
<td>24.4</td>
<td>75.6</td>
<td>38.0</td>
<td>27.9</td>
<td>25.5</td>
</tr>
<tr>
<td>202459</td>
<td>4.3</td>
<td>28.3</td>
<td>71.6</td>
<td>38.8</td>
<td>27.7</td>
<td>25.5</td>
</tr>
<tr>
<td>15761</td>
<td>3.3</td>
<td>27.8</td>
<td>72.2</td>
<td>39.2</td>
<td>28.1</td>
<td>25.5</td>
</tr>
<tr>
<td>202237</td>
<td>4.7</td>
<td>25.5</td>
<td>74.5</td>
<td>39.3</td>
<td>29.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Mean</td>
<td>4.3</td>
<td>28.9</td>
<td>71.0</td>
<td>34.5</td>
<td>28.0</td>
<td>27.2</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>0.1</td>
<td>2.9</td>
<td>3.8</td>
<td>2.1</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>CV %</td>
<td>2.1</td>
<td>23.3</td>
<td>12.2</td>
<td>4.7</td>
<td>3.2</td>
<td>11.4</td>
</tr>
</tbody>
</table>

1 - NMR reading of oven dried seed.
2 - Based on defatted dry meal.
Table 3. Correlation coefficients among some physico-chemical characteristics of 9 niger accessions grown at Holetta and Debre Zeit, Ethiopia in 1988.

<table>
<thead>
<tr>
<th>Character</th>
<th>Hull percent</th>
<th>Embryo percent</th>
<th>Oil content</th>
<th>Protein content</th>
<th>Crude fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total seed weight</td>
<td>-0.28</td>
<td>0.29</td>
<td>-0.01</td>
<td>0.59</td>
<td>0.08</td>
</tr>
<tr>
<td>Hull percent</td>
<td>-0.99**</td>
<td>-0.76*</td>
<td>-0.22</td>
<td>0.62*</td>
<td></td>
</tr>
<tr>
<td>Embryo percent</td>
<td>0.75*</td>
<td></td>
<td>0.23</td>
<td>-0.61*</td>
<td></td>
</tr>
<tr>
<td>Oil content</td>
<td></td>
<td>-0.15</td>
<td></td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>Protein content</td>
<td></td>
<td></td>
<td></td>
<td>-0.31</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at 5% probability level.
** Significant at 1% probability level.

Acknowledgement

Ato Tadesse Deme assisted in the various phases of the study.

References