ZOONOTIC AND PARASITIC DISEASES

PROCEEDINGS OF THE THIRD INTERNATIONAL AND PAN-ARAB SEMINAR

HELD IN AMMAN, JORDAN,

17–20 OCTOBER, 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, África, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
ZOONOTIC AND PARASITIC DISEASES
Proceedings of the Third International and Pan-Arab Seminar
held in Amman, Jordan, 17-20 October 1989

Edited by
Oumeish Youssef Oumeish and Panduka M. Wijeyaratne

Cosponsored by
International Development Research Centre,
Ottawa, Canada
and The Higher Council for Science and Technology,
Amman, Jordan

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the author. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
TABLE OF CONTENTS

1. **ZOONOSES; GENERAL**

 - Environmental and Community Research Issues on the Zoonoses.
 Pandu Wijeyaratne
 1

 - Zoonotic and Parasitic Diseases in the Mediterranean Area.
 George Papdopoulos
 8

 - New Information in Dermatology.
 Lawrence Charles Parish
 19

 - The Changing Pattern of Disease Implications for Epidemiology and Individuals
 V. Tipton
 26

 - Zoonotic Infections in Aids.
 D.C.W. Mabey
 32

2. **LEISHMANIASIS**

 - Epidemiology of cutaneous Leishmaniasis in Jordan: The Current Situation.
 Oumeish Youssef Oumeish
 35

 - The Presence, Distribution and Seasonal Abundance of Potential Vectors of Cutaneous and Visceral Leishmaniasis in Jordan.
 S. Kamhawi
 40

 - Epidemiology of Cutaneous Leishmaniasis in The West Bank of Jordan.
 Hisham Arda
 55

 Mamoon Jallad
 59
- Existence of Leishmania Major in the South of Syria: Causative Agent of Damascus Boll.
 A. Khiami
- Cutaneous Leishmaniasis in Aleppo/Syria.
 A. Chehade, A. Mouakeh
- Leishmaniasis and Primary Health Care in Tunisia.
 R. Ben-Ismail, M.S. Ben Rachid
- Protective Immunity Against Leishmania Donovani in Balb/C Mice.
 Suad Z. Jawdat, Nada K. Al-Hussayni, Layla Kh. Rifaat
- Epidemiological Facts on Kala-Azar in Iraq.
- Treatment of Leishmaniasis
 Mohamed Amen
- Histopathological and Immunological Changes in Experimental Leishmaniasis.
 Magda Youssef, Laila Abou Samia, Soheir E. Hamam

3. HYDATIDOSIS
- Hydatidosis in Jordan: A Review.
 E. Saliba
- Hydatid Disease: A Comparative Study in the Medical City Teaching Hospital After 10 Years.
 A.H. Khalili, T.I. Aljeboori, Remm Munir & M. AlSammak

4. BRUCELLOSIS
- Brucellosis in Animals: Control and Preventive Measures in Jordan.
 N. Abdul Aziz, F. Schenkel

iii
- Update of the Epidemiology and Diagnosis of Brucellosis in Jordan.
 Yahia F. Dajani, Abdel Aziz Masoud

5. **TOXOPLASMOSIS**
- Prevalence of Toxoplasma Antibodies in Iraqi Pregnant Women in Baghdad.
 A.D. Niazi, A.R. Omer, T.S. Al-Hadithe and A. Aswad

6. **RABIES**
- Health Systems Research and Rabies Control.
 K. de Balogh
 Fathy Saleh

7. **SCHISTOSOMIASIS**
 Magda Youssef, Laila M. Boulos and Mervat El-Azzouni
 Hoda F. Farag
- Community Control of Schistosomiasis in Zimbabwe.

8. **RECOMMENDATIONS OF THE SEMINAR**

9. **PARTICIPANTS**

iv
Visceral leishmaniasis is a disseminated infection with Leishmania donovani. It has been described in four continents where both endemic zones and isolated cases can occur. (1)

The parasitic strain is important in determining the clinical manifestations of kala-azar in its pattern of transmission. It was found that pathogenicities of L. donovani of various geographic strains appear to differ. (2) Thus in the Near East, the Mediterranean basin and North China, visceral leishmaniasis affects mainly rural children, and dogs are the main reservoir host "Leishmania infantum". (3)

In Egypt, rare cases have been reported since 1904. Some of these were important whereas others were probably autochthonous. Undoubted evidence of transmission in Egypt came from the focus of visceral leishmaniasis discovered in 1982 at El-Agamy, 30 km west of Alexandria, where more than 20 cases were diagnosed and treated. (4, 5, 6, 7)

The human isolates from this locality belong to the L. donovani complex and are more closely related to L. infantum, as evidenced by the isoenzyme pattern of 6-phosphogluconate dehydrogenase. (8, 9)

The aim of this work is to study the histopathological and some immunological changes which may take place in the liver of mice experimentally infected with L. donovani var. infantum (Egyptian Mediterranean strain).

Material and Methods

The Leishmania strain used in this study is Leishmania donovani (Leishmania infantum-Egyptian strain) isolated from an Egyptian child admitted to Shatby Pediatric Hospital. The case was a female 2.5 years old, from El-Agamy district, Alexandria, Egypt.
The complaint was intermittent fever. Physical examination revealed pallor, temperature 38°C, hepatosplenomegaly and enlarged cervical lymph nodes. Blood picture was:

- Hb 4gm/100ml.
- Total leucocytic count 2.500/mm³.
- Polymorphonuclears 32%.
- Eosinophils 0%.
- Basophils 0%.
- Monocytes 6%.
- Lymphocytes 62%.
- Platelets 28.000/mm³.

The diagnosis was confirmed to be visceral leishmaniasis by bone marrow biopsy and positive serological tests (IHA and IFAT).

Tanabe's medium (10, 11) was used for initial establishment and development of promastigotes from the amastigotes. It was used also for routine propagation of the strain. Subculture was done every 3 weeks.

Modified El-On's medium (12) was used for mass cultivation of promastigotes required for animal inoculation.

Seventy-five Swiss strain laboratory-bred albino mice were used. They were divided into two main groups:

* Fifty animals all infected with L. donovani promastigotes by intracardiac inoculation under anaesthesia, in a standard dose of 20 x 10⁶ promastigotes per mouse. According to the duration of infection animals were subdivided into: group I-a, mice sacrificed one week after infection, groups I-b, I-c, I-d and I-e, sacrificed 2, 4, 8 and 12 weeks after infection respectively.

* Twenty-five animals were used as control, non-infected animals (group II).

After dissection of animals, liver was isolated and divided into two parts. One part was kept at -20°C for indirect fluorescent antibody technique(13), the other was kept in 10% formalin for the histopathological study by H&E and Masson's trichrome stain.(14)
Results

1) Histopathological results:

One week post-infection, liver showed perivascular cellular infiltration with granulomatous formation of lymphocytes, plasma cells and histiocytes (Fig. 15). Liver sinusoids were dilated, Kupffer cells were hyperplastic and prominent. Parasites would be detected inside the hepatocytes and Kupffer cells. No fibrosis was detected. By the end of the second week granulomas were found perivascular and intraparenchymal. Otherwise, no difference from the previous group was noted. After four weeks, granulomas increased in size, they were formed of plasma cells, histiocytes and frequent giant cells. In some animals vascular proliferation and hyalinization of the blood vessels wall was seen.

The parasite was detected in the cytoplasm of both liver and Kupffer cells and even intranuclear parasites could be seen. These nuclei showed early nuclear fragmentation. By the end of the eighth week, granulomas were frequently detected but they were all smaller in size than the early one. By the twelfth week, marked reduction in the size of the granuloma was seen. Hepatocytes were still showing few degenerative changes, but neither necrosis nor fibrosis was observed.

2) Immunofluorescence results:

The liver of normal non-infected animals were absolutely negative in the test.

One week after infection, at a titre of 1/32, fluorescence was observed around the hepatocytes, the dilated vessels and in areas showing granuloma, while at a higher dilution (titre of 1/64) selection of fluorescence occurred and became localized to the zone of granulomas and vessels. At a titre of 1/128, fluorescence appeared as a faint thin peripheral rim around the granulomas. Eight weeks after infection, fluorescence was observed in the same sites at a lower titre (1/4). Twelve weeks after infection the test was negative.

Discussion

In this study, the development of the granuloma was the characteristic histopathological lesion in the liver of all infected animals. Granulomas consisted mainly of lymphocytes,
plasma cells, histiocytes and frequent giant cells. *L. donovani* bodies were seen inside Kupffer cells as well as inside the hepatocytes.

Although it is well known that *L. donovani* is primarily a parasite of cells of mononuclear phagocytic series, it was also detected in the hepatic parenchymal cells.

A similar finding was previously reported in human Kalaazar and was documented by ultra-structural studies (15, 16, 17). Of utmost importance is the observation of *L. donovani* anastigotes inside the nucleus of some hepatocytes with early nuclear fragmentation. The reason is not clear and further investigations are recommended.

IFAT showed fluorescing deposits throughout the first four weeks which present the leishmanial antigen either free or in antigen-antibody complex. Eight weeks after infection fluorescence was observed at lower dilutions while it became negative after twelve weeks. These findings coincide with the histopathological findings where granulomas had healed and lesions resolved completely without residual damage.

It was found that during the course of visceral leishmaniasis there is a large amount of immunoglobulins at high titres, which are non specific as well as specific (18, 19). Amastigotes were also shown to liberate antigenic substances (20). Thus, the presence of *L. donovani* soluble antigen or antigens, corresponding antibodies, and the component of complement leads to the formation of circulating immune complexes (21). It is likely that immune complexes were initially deposited in the hepatic tissue. It was reported by Farsh et al. (22), that infected macrophages have leishmania antigen on their surfaces, and presumably immune complexes can form on them (23). Considering this information, it can be suggested that deposition of immune complexes in the detected sites is likely to be in part due to the circulating antigen-antibody complex, and also to be locally formed complex in situ.

References

