Tropical Root Crops

RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops ~ Africa Branch
TROPICAL ROOT CROPS:
RESEARCH STRATEGIES FOR THE 1980s

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

©1981 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

Terry, E.R.
Oduro, K.A.
Caveness, F.

International Society for Tropical Root Crops. Africa Branch, Ibadan NG

UDC: 633.4 (213) ISBN: 0 88936 285 8

Microfiche edition available
CONTENTS

Foreword
E.R. Terry .. 7

Participants .. 9

Welcoming Addresses
Bede N. Okigho, President, International Society for Tropical Root Crops — Africa Branch ... 15
Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17
S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19
E. Hartmans, Director-General, International Institute of Tropical Agriculture, Nigeria 22

Cassava
Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa
S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh .. 25
Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978
H.C. Ezumah ... 29
Assessment of Cassava Cultivars for Extension Work
C. Oyolu ... 35
Breeding Cassava Resistant to Pests and Diseases in Zaire
T.P. Singh ... 37
Selection of Cassava for Disease and Pest Resistance in the Congo
Joseph Mabanza ... 40
Some Characteristics of Yellow-Pigmented Cassava
K.A. Oduro ... 42
— Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research
E.R. Terry ... 45
Field Screening of Cassava Clones for Resistance to Cercospora henningsii
J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry ... 49
Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in Nigeria
E.C.K. Igwegbe ... 58
Cassava Bacterial Blight Disease in Uganda
G.W. Otim-Nape and T. Sengooba ... 61
Insect Dissemination of Xanthomonas manihotis to Cassava in the People’s Republic of Congo
J.F. Daniel, B. Boher, and N. Nkouka ... 66
Cassava Root Rot due to Armillariella tabescens in the People’s Republic of Congo
Casimir Makambila ... 69
Screening for Resistance Against the Green Spider Mite
K. Leuschner ... 75
Biological Control of the Cassava Mealybug
Hans R. Herren ... 79
Entomophagous Insects Associated with the Cassava Mealybug in the People’s Republic of Congo
G. Fabres ... 81
Dynamics of Cassava Mealybug Populations in the People’s Republic of Congo
G. Fabres ... 84
Consumption Patterns and Their Implications for Research and Production in Tropical Africa
Felix I. Nweke ... 88
Problems of Cassava Production in Malawi
R.F. Nembozanga Sauti
95

Evaluation of Some Major Soils from Southern Nigeria for Cassava Production
J.E. Okeke and B.T. Kang
99

Effects of Soil Moisture and Bulk Density on Growth and Development of Two Cassava Cultivars
R. Lal
104

Performance of Cassava in Relation to Time of Planting and Harvesting
F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba
111

The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize
S.O. Odurukwe and U.I. Oji
116

Intercropping of Plantains, Cocoyams, and Cassava
S.K. Karikari
120

Weed Control in Maize—Cassava Intercrop
I. Okezie Akobundu
124

Effect of Maize Plant Population and Nitrogen Application on Maize—Cassava Intercrop
B.T. Kang and G.F. Wilson
129

Cassava Leaf Harvesting in Zaire
N.B. Lutaladio and H.C. Ezumah
134

Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of Cassava and Sweet Potato
M.T. Dahniya
137

Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in Cassava
M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard
143

Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of Cassava
Emmanuel N. Maduagwu and Aderemi F. Adewale
149

The Role of Palm Oil in Cassava-Based Rations
Ruby T. Fomunyam, A.A. Adegbola, and O.L. Oke
152

Comparison of Pressed and Unpressed Cassava Pulp for Gari Making
M.A.N. Ejiofor and N. Okafor
154

Gari Yield from Cassava: Is it a Function of Root Yield?
D.G. Ibe and F.O.C. Ezedinma
159

Yams

Parameters for Selecting Parents for Yam Hybridization
Obinani O. Okoli
163

Anthracnose of Water Yam in Nigeria
Okechukwu Alphonso Nwankiti and E.U. Okpala
166

Strategies for Progress in Yam Research in Africa
I.C. Onwueme
173

Study of the Variability Created by the Characteristics of the Organ of Vegetative Multiplication in *Dioscorea alata*
N. Ahoussou and B. Toure
177

Growth Pattern and Growth Analysis of the White Guinea Yam Raised from Seed
C.E. Okezie, S.N.C. Okonkwo, and F.I. Nwke
180

Artificial Pollination, Pollen Viability, and Storage in White Yam
M.O. Akoroda, J.E. Wilson, and H.R. Chheda
189

Improving the In-Situ Stem Support System for Yams
G.F. Wilson and K. Akapa
195

Yield and Shelf-Life of White Yam as Influenced by Fertilizer
K.D. Kpeglo, G.O. Obigbesan, and J.E. Wilson
198

Weed Interference in White Yam
R.P.A Unamma, I.O. Akobundu, and A.A.A. Fayemi
203

The Economics of Yam Cultivation in Cameroon
S.N. Lyonga
208

Effect of Traditional Food Processing Methods on the Nutritional Value of Yams in Cameroon
Alice Bell and Jean-Claude Favier
214

Cocoyams

Strategies for Progress in Cocoyam Research
E.V. Doku
227

Root and Storage-Rot Disease of Cocoyam in Nigeria
G.C. Okeke
231
Fungal Rotting of Cocoyams in Storage in Nigeria
J.N.C. Maduewesi and Rose C.I. Onyike

A Disease of Cocoyam in Nigeria Caused by *Corticium rolfsii*
O.B. Arene and E.U. Okpala

Cocoyam Farming Systems in Nigeria
H.C. Knipscheer and J.E. Wilson

Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application and Spacing
M.C. Igbokwe and J.C. Ogbannaya

Abstracts

Cassava Research Program in Liberia
Mallik A-As-Saqui

Effects of Cassava Mosaic on Yield of Cassava
Godfrey Chapola

Effects of Green Manure on Cassava Yield
James S. Squire

Alleviating the Labour Problem in Yam Production: Cultivation without Stakes or Manual Weeding
I.C. Onwueme

Discussion Summary

Strategies for the 1980s

References
EVALUATION OF SOME MAJOR SOILS FROM SOUTHERN NIGERIA FOR CASSAVA PRODUCTION

J.E. OKEKE AND B.T. KANG

NATIONAL ROOT CROPS RESEARCH INSTITUTE, UMUDIKE, UMUHIA, NIGERIA, AND INTERNATIONAL INSTITUTE OF TROPICAL AGRICULTURE, IBADAN, NIGERIA

A pot trial was carried out with cassava and seven benchmark soils commonly used for cassava production in the forest and derived savanna of southern Nigeria. Soils from basement complex rocks from the forest zone (Araromi, Egbeda, and Apomu series) have higher potential for cassava production than those derived from sandy sedimentary rocks (Alagba, Onne, and Nkpologu series) or sandy soil from derived savanna (Shante series). Differential N, P, K, Mg, S responses and Zn deficiency were also observed among the seven soils. The data obtained can be used as a guide for fertilizer experiments.

In the traditional bush fallow system, cassava is usually grown as the last crop because of its ability to produce a reasonable yield on low fertility soils. However, cassava can produce high yields when grown on fertile soils or with judicious fertilization. In minikit trials carried out in East Central State, Nigeria, Ezeilo (1977) reported large and economic root yield increases ranging from 21 to 181% with NPK application. A number of investigators have reported responses to N, P, and K in cassava in various cassava-growing areas in southern Nigeria (Irving 1956; Amon and Adetunji 1973; Obigbesan 1977; Obigbesan and Fayemi 1976; Kang et al. 1980). As part of the Nigerian government’s effort to increase food production in the country, emphasis has been given to the use of fertilizers to increase cassava yield. For this purpose, more and better data are needed about the responses of cassava to the nutrients contained in the soils of the major cassava-growing areas of the country. As one of the initial steps for obtaining the needed information, we carried out a greenhouse trial to assess the nutrient status of seven benchmark soils widely used for cassava production in southern Nigeria.

Table 1. General information on the seven soils used in the experiment.

<table>
<thead>
<tr>
<th>Soil order</th>
<th>Soil series</th>
<th>Location</th>
<th>USDA classification</th>
<th>Vegetation and land use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfisol</td>
<td>Alagba</td>
<td>Ikenne</td>
<td>Oxic paleustalf</td>
<td>Bush regrowth in forest area</td>
</tr>
<tr>
<td>Entisol</td>
<td>Apomu</td>
<td>IITA, Ibadan</td>
<td>Psammentic usthorthent</td>
<td>Grass fallow in forest area</td>
</tr>
<tr>
<td>Alfisol</td>
<td>Egbeda</td>
<td>IITA, Ibadan</td>
<td>Oxic paleustalf</td>
<td>Secondary forest Derived savanna</td>
</tr>
<tr>
<td>Entisol</td>
<td>Shante</td>
<td>Ogbomosho</td>
<td>Psammentic usthorthent</td>
<td>Grass fallow in forest area</td>
</tr>
<tr>
<td>Alfisol</td>
<td>Araromi</td>
<td>Ishoya</td>
<td>Oxic paleustalf</td>
<td>Grass fallow in forest area</td>
</tr>
<tr>
<td>Ultisol</td>
<td>Nkpologu</td>
<td>Umudike</td>
<td>Typic paleudult</td>
<td>Grass fallow in forest area</td>
</tr>
<tr>
<td>Ultisol</td>
<td>Onne</td>
<td>Onne</td>
<td>Typic paleudult</td>
<td>Bush regrowth in forest area</td>
</tr>
</tbody>
</table>
Table 2. Physical and chemical properties of soils used in the experiment.

<table>
<thead>
<tr>
<th>Soil series</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>pH</th>
<th>Organic C (%)</th>
<th>Total N (%)</th>
<th>Bray-I P (ppm)</th>
<th>K (me/100g)</th>
<th>Mg (ppm)</th>
<th>Ca (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apomu</td>
<td>85</td>
<td>7</td>
<td>8</td>
<td>6.0</td>
<td>1.13</td>
<td>0.18</td>
<td>6.0</td>
<td>0.25</td>
<td>1.07</td>
<td>2.90</td>
<td>3.3</td>
</tr>
<tr>
<td>Alagba</td>
<td>81</td>
<td>10</td>
<td>10</td>
<td>6.0</td>
<td>1.40</td>
<td>0.18</td>
<td>1.8</td>
<td>0.08</td>
<td>2.00</td>
<td>3.20</td>
<td>2.4</td>
</tr>
<tr>
<td>Shante</td>
<td>91</td>
<td>5</td>
<td>4</td>
<td>6.4</td>
<td>1.10</td>
<td>0.08</td>
<td>6.0</td>
<td>0.33</td>
<td>0.07</td>
<td>1.70</td>
<td>0.8</td>
</tr>
<tr>
<td>Egbeda</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>6.4</td>
<td>1.60</td>
<td>0.29</td>
<td>3.0</td>
<td>0.60</td>
<td>2.40</td>
<td>1.40</td>
<td>6.8</td>
</tr>
<tr>
<td>Araromi</td>
<td>51</td>
<td>19</td>
<td>30</td>
<td>6.0</td>
<td>2.50</td>
<td>0.39</td>
<td>6.3</td>
<td>1.20</td>
<td>2.50</td>
<td>8.70</td>
<td>23.1</td>
</tr>
<tr>
<td>Nkpologu</td>
<td>87</td>
<td>8</td>
<td>12</td>
<td>4.9</td>
<td>1.10</td>
<td>0.14</td>
<td>4.17</td>
<td>0.21</td>
<td>0.23</td>
<td>0.38</td>
<td>1.5</td>
</tr>
<tr>
<td>Onne</td>
<td>81</td>
<td>7</td>
<td>12</td>
<td>4.1</td>
<td>1.03</td>
<td>0.14</td>
<td>4.17</td>
<td>0.21</td>
<td>0.23</td>
<td>0.38</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 3. Effect of fertilizer application and soil type on height (cm) of cassava variety TMS 30395 at 5 WAP.\(^a\)

<table>
<thead>
<tr>
<th>Fertilizer treatment</th>
<th>Egbeda</th>
<th>Apomu</th>
<th>Alagba</th>
<th>Araromi</th>
<th>Onne</th>
<th>Nkpologu</th>
<th>Shante</th>
<th>Fertilizer mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19.8</td>
<td>21.8</td>
<td>13.0</td>
<td>18.8</td>
<td>15.8</td>
<td>17.0</td>
<td>14.0</td>
<td>17.1</td>
</tr>
<tr>
<td>NPKSMg</td>
<td>21.5</td>
<td>19.8</td>
<td>20.8</td>
<td>17.8</td>
<td>17.5</td>
<td>17.3</td>
<td>15.3</td>
<td>18.5</td>
</tr>
<tr>
<td>NPKS</td>
<td>20.0</td>
<td>18.5</td>
<td>21.8</td>
<td>16.0</td>
<td>18.5</td>
<td>14.5</td>
<td>16.0</td>
<td>18.5</td>
</tr>
<tr>
<td>NPKMg</td>
<td>19.8</td>
<td>17.8</td>
<td>23.8</td>
<td>15.5</td>
<td>13.5</td>
<td>17.5</td>
<td>14.0</td>
<td>18.3</td>
</tr>
<tr>
<td>NPSMg</td>
<td>21.5</td>
<td>19.0</td>
<td>19.8</td>
<td>17.3</td>
<td>20.3</td>
<td>16.5</td>
<td>16.3</td>
<td>18.6</td>
</tr>
<tr>
<td>NKSMg</td>
<td>15.8</td>
<td>17.5</td>
<td>14.8</td>
<td>18.0</td>
<td>18.3</td>
<td>14.0</td>
<td>16.0</td>
<td>16.3</td>
</tr>
<tr>
<td>PKSMg</td>
<td>21.5</td>
<td>19.0</td>
<td>18.8</td>
<td>20.3</td>
<td>15.3</td>
<td>13.5</td>
<td>15.0</td>
<td>17.6</td>
</tr>
<tr>
<td>Soil mean</td>
<td>20.0</td>
<td>19.3</td>
<td>18.9</td>
<td>17.9</td>
<td>17.0</td>
<td>15.8</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Soil type: SE ± 0.72; LSD 5% = 2.2; WAP = weeks after planting.

Table 4. Effect of soil type and fertilizer application on plant dry weight (g) at 12 WAP.\(^a\)

<table>
<thead>
<tr>
<th>Fertilizer treatment</th>
<th>Araromi</th>
<th>Egbeda</th>
<th>Apomu</th>
<th>Alagba</th>
<th>Onne</th>
<th>Nkpologu</th>
<th>Shante</th>
<th>Fertilizer mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>20.0</td>
<td>16.4</td>
<td>13.8</td>
<td>11.8</td>
<td>15.4</td>
<td>9.6</td>
<td>10.5</td>
<td>13.9</td>
</tr>
<tr>
<td>NPKSMg</td>
<td>23.9</td>
<td>19.7</td>
<td>21.4</td>
<td>20.4</td>
<td>15.7</td>
<td>16.2</td>
<td>14.5</td>
<td>18.8</td>
</tr>
<tr>
<td>NPKS</td>
<td>21.4</td>
<td>18.3</td>
<td>19.9</td>
<td>18.4</td>
<td>16.1</td>
<td>14.0</td>
<td>10.6</td>
<td>17.1</td>
</tr>
<tr>
<td>NPKMg</td>
<td>18.8</td>
<td>15.1</td>
<td>15.7</td>
<td>17.3</td>
<td>14.3</td>
<td>14.5</td>
<td>9.9</td>
<td>15.1</td>
</tr>
<tr>
<td>NPSMg</td>
<td>19.7</td>
<td>22.5</td>
<td>16.0</td>
<td>16.0</td>
<td>12.6</td>
<td>14.5</td>
<td>13.3</td>
<td>16.4</td>
</tr>
<tr>
<td>NKSMg</td>
<td>19.0</td>
<td>13.3</td>
<td>15.1</td>
<td>14.5</td>
<td>13.9</td>
<td>14.6</td>
<td>14.2</td>
<td>14.9</td>
</tr>
<tr>
<td>PKSMg</td>
<td>24.1</td>
<td>16.3</td>
<td>15.9</td>
<td>12.6</td>
<td>12.5</td>
<td>11.9</td>
<td>10.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Soil type mean</td>
<td>21.1</td>
<td>17.4</td>
<td>16.8</td>
<td>15.9</td>
<td>14.4</td>
<td>13.6</td>
<td>12.0</td>
<td>15.9</td>
</tr>
</tbody>
</table>

\(^a\)Soil type: SE ± 0.82; LSD 5% = 2.45; fertilizer: SE ± 0.72; LSD 5% = 2.00; fertilizer treatment within soil type: SE = ± 1.89; LSD 5% = 5.3.

Materials and Methods

The list of soil samples used in the experiment is given in Table 1. Soil texture was measured by the hydrometer method; a 1:1 soil:water ratio was used in pH measurements with glass electrode; organic carbon was determined by a modified version of the Allison wet digestion method; total nitrogen was determined by the Kjeldahl method; extractable phosphorus was determined with a Bray no. 1 extractant; exchangeable cations were extracted by 1 N ammonium acetate; and extractable zinc was measured after extraction with 0.1 N hydrochloric acid.

Plant samples were digested in a Tecator model 40 aluminum digestion block; the reagents were nitric, perchloric, and hydrochloric acids. Phosphorus was measured by means of a Technicon...
autoanalyzer; potassium, by means of an EEC flame photometer; and zinc, with a Perkin Elmer model 403 atomic absorption spectrophotometer. Nitrogen was measured by a micro-Kjeldahl distillation method.

The greenhouse trial was a split-plot design with four replications. The seven soil types constituted the main plots; five fertilizer treatments were applied to subplots: NPKSMg, NPKS, NPKMg, NPSMg, NKSMg, PKSMg, and control (no fertilizer). N, P, and K were added at 100 ppm each and Zn and S added at 20 ppm each. Five kilograms of air-dried soil was used in each pot. Fertilizers were thoroughly mixed with soil, and the pots watered to field capacity. Four stakes of cassava variety TMS 30395 were planted in each pot and thinned after 2 weeks to two plants/pot. A top dressing with 25 ppm N was made at 5 WAP (weeks after planting). Plants were harvested at 12 WAP. Index leaf samples were collected at 8 WAP for Zn determination.

RESULTS AND DISCUSSION

SOIL ANALYSIS

Some of the characteristics of the soils used in the study are shown in Table 2. Except for the Araromi soil, which was sandy clay loam, all the soils were coarse, ranging from loamy sand to sandy loam. The Araromi soil, which is derived from amphibolitic rocks, showed the highest nutrient status; the Onne soil, which is derived from marine sediments, exhibited the lowest. Except for the Onne soil, the soils were low in extractable P; the soils derived from sandy sedimentary materials (Ikenne, Nkpologu, and Onne) were also low in exchangeable K. Also noteworthy is the high acid-

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Control</th>
<th>NPKSMg</th>
<th>NPKS</th>
<th>NPKMg</th>
<th>NPSMg</th>
<th>NKSMg</th>
<th>PKSMg</th>
<th>Soil Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egbeda</td>
<td>4.5</td>
<td>5.0</td>
<td>5.2</td>
<td>5.0</td>
<td>5.2</td>
<td>5.8</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Alabba</td>
<td>3.5</td>
<td>4.2</td>
<td>3.8</td>
<td>3.8</td>
<td>4.0</td>
<td>3.9</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Apomu</td>
<td>3.9</td>
<td>5.4</td>
<td>5.2</td>
<td>5.2</td>
<td>5.0</td>
<td>3.3</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>N(%)</td>
<td>3.2</td>
<td>4.4</td>
<td>4.9</td>
<td>5.1</td>
<td>4.6</td>
<td>4.5</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>4.9</td>
<td>3.4</td>
<td>4.5</td>
<td>3.6</td>
<td>3.4</td>
<td>3.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>5.3</td>
<td>6.4</td>
<td>5.6</td>
<td>5.3</td>
<td>6.0</td>
<td>4.9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>5.5</td>
<td>5.9</td>
<td>5.5</td>
<td>5.7</td>
<td>5.1</td>
<td>5.0</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Control</th>
<th>NPKSMg</th>
<th>NPKS</th>
<th>NPKMg</th>
<th>NPSMg</th>
<th>NKSMg</th>
<th>PKSMg</th>
<th>Soil Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egbeda</td>
<td>0.14</td>
<td>0.30</td>
<td>0.20</td>
<td>0.23</td>
<td>0.30</td>
<td>0.16</td>
<td>0.32</td>
<td>0.24</td>
</tr>
<tr>
<td>Alabba</td>
<td>0.22</td>
<td>0.28</td>
<td>0.30</td>
<td>0.22</td>
<td>0.21</td>
<td>0.18</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>Apomu</td>
<td>0.18</td>
<td>0.20</td>
<td>0.32</td>
<td>0.26</td>
<td>0.24</td>
<td>0.18</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>P(%)</td>
<td>0.25</td>
<td>0.32</td>
<td>0.32</td>
<td>0.26</td>
<td>0.24</td>
<td>0.24</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.24</td>
<td>0.16</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.23</td>
<td>0.21</td>
<td>0.24</td>
<td>0.21</td>
<td>0.24</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.20</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.30</td>
<td>0.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Control</th>
<th>NPKSMg</th>
<th>NPKS</th>
<th>NPKMg</th>
<th>NPSMg</th>
<th>NKSMg</th>
<th>PKSMg</th>
<th>Soil Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egbeda</td>
<td>2.60</td>
<td>2.90</td>
<td>2.90</td>
<td>2.91</td>
<td>2.97</td>
<td>1.40</td>
<td>2.54</td>
<td>1.28</td>
</tr>
<tr>
<td>Alabba</td>
<td>1.10</td>
<td>1.39</td>
<td>0.85</td>
<td>1.30</td>
<td>1.75</td>
<td>1.41</td>
<td>2.03</td>
<td>1.26</td>
</tr>
<tr>
<td>Apomu</td>
<td>1.30</td>
<td>2.63</td>
<td>2.60</td>
<td>2.50</td>
<td>1.77</td>
<td>1.26</td>
<td>2.03</td>
<td>1.26</td>
</tr>
<tr>
<td>K(%)</td>
<td>1.64</td>
<td>3.15</td>
<td>2.46</td>
<td>2.46</td>
<td>1.10</td>
<td>1.77</td>
<td>2.13</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>1.50</td>
<td>1.54</td>
<td>2.86</td>
<td>1.12</td>
<td>1.77</td>
<td>2.13</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>3.00</td>
<td>3.10</td>
<td>2.45</td>
<td>1.35</td>
<td>1.51</td>
<td>2.13</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>2.94</td>
<td>2.00</td>
<td>2.60</td>
<td>2.45</td>
<td>2.20</td>
<td>2.01</td>
<td>2.10</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Table 5. N, P, K concentrations (%) in index leaf blade as affected by fertilizer and soil type (12 WAP).
The data clearly showed some relationship between soils, crop growth, and plant nutrient status. It also appears that soils derived from basement complex rocks in the forest zone (Araromi, Egbeda, and Apomu series) have higher potential for cassava production than those derived from sandy sedimentary rocks (Alagba, Onne, and Nkpologu series) or sandy soil from derived savanna (Shante series).

The nitrogen responses in the Apomu, Shante, Alagba, Onne, and Nkpologu soils (Table 4) were to be expected because of the low N and organic C status of these soils. These responses are a reflection of the vegetative cover (Table 1).

The phosphorus responses observed in this pot trial (Table 4 and 5) may be related to the limited

Table 6. Zn levels (ppm) in cassava leaf blades at 8 and 12 WAP.

<table>
<thead>
<tr>
<th>Fertilizer treatment</th>
<th>Egbeda 8 WAP</th>
<th>Egbeda 12 WAP</th>
<th>Alagba 8 WAP</th>
<th>Alagba 12 WAP</th>
<th>Apomu 8 WAP</th>
<th>Apomu 12 WAP</th>
<th>Shante 8 WAP</th>
<th>Shante 12 WAP</th>
<th>Nkpologu 8 WAP</th>
<th>Nkpologu 12 WAP</th>
<th>Onne 8 WAP</th>
<th>Onne 12 WAP</th>
<th>Araromi 8 WAP</th>
<th>Araromi 12 WAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>27 62 20 31</td>
<td>23 62</td>
<td>24 54 29 56</td>
<td>30 54 33 64</td>
<td>27 62 20 31</td>
<td>23 62</td>
<td>24 54 29 56</td>
<td>30 54 33 64</td>
<td>27 62 20 31</td>
<td>23 62</td>
<td>24 54 29 56</td>
<td>30 54 33 64</td>
<td>27 62 20 31</td>
<td>23 62</td>
</tr>
<tr>
<td>NPKSmg</td>
<td>32 40 27 38</td>
<td>32 39</td>
<td>18 16 30 32</td>
<td>41 44 41 55</td>
<td>32 40 27 38</td>
<td>32 39</td>
<td>18 16 30 32</td>
<td>41 44 41 55</td>
<td>32 40 27 38</td>
<td>32 39</td>
<td>18 16 30 32</td>
<td>41 44 41 55</td>
<td>32 40 27 38</td>
<td>32 39</td>
</tr>
<tr>
<td>NPK</td>
<td>35 44 23 40</td>
<td>29 38</td>
<td>20 43 26 29</td>
<td>32 44 32 44</td>
<td>35 44 23 40</td>
<td>29 38</td>
<td>20 43 26 29</td>
<td>32 44 32 44</td>
<td>35 44 23 40</td>
<td>29 38</td>
<td>20 43 26 29</td>
<td>32 44 32 44</td>
<td>35 44 23 40</td>
<td>29 38</td>
</tr>
<tr>
<td>NPKMg</td>
<td>38 32 26 37</td>
<td>39 43</td>
<td>21 22 26 69</td>
<td>38 42 38 45</td>
<td>38 32 26 37</td>
<td>39 43</td>
<td>21 22 26 69</td>
<td>38 42 38 45</td>
<td>38 32 26 37</td>
<td>39 43</td>
<td>21 22 26 69</td>
<td>38 42 38 45</td>
<td>38 32 26 37</td>
<td>39 43</td>
</tr>
<tr>
<td>NPSMg</td>
<td>29 31 29 43</td>
<td>27 54</td>
<td>21 35 24 64</td>
<td>36 39 36 30</td>
<td>29 31 29 43</td>
<td>27 54</td>
<td>21 35 24 64</td>
<td>36 39 36 30</td>
<td>29 31 29 43</td>
<td>27 54</td>
<td>21 35 24 64</td>
<td>36 39 36 30</td>
<td>29 31 29 43</td>
<td>27 54</td>
</tr>
<tr>
<td>NKS Mg</td>
<td>39 56 23 44</td>
<td>36 61</td>
<td>26 48 26 67</td>
<td>33 44 33 60</td>
<td>39 56 23 44</td>
<td>36 61</td>
<td>26 48 26 67</td>
<td>33 44 33 60</td>
<td>39 56 23 44</td>
<td>36 61</td>
<td>26 48 26 67</td>
<td>33 44 33 60</td>
<td>39 56 23 44</td>
<td>36 61</td>
</tr>
<tr>
<td>PKS Mg</td>
<td>27 38 23 33</td>
<td>23 55</td>
<td>24 57 20 59</td>
<td>34 41 35 49</td>
<td>27 38 23 33</td>
<td>23 55</td>
<td>24 57 20 59</td>
<td>34 41 35 49</td>
<td>27 38 23 33</td>
<td>23 55</td>
<td>24 57 20 59</td>
<td>34 41 35 49</td>
<td>27 38 23 33</td>
<td>23 55</td>
</tr>
<tr>
<td>Mean</td>
<td>32 43 24 38</td>
<td>30 50</td>
<td>22 39 22 54</td>
<td>35 44 35 50</td>
<td>32 43 24 38</td>
<td>30 50</td>
<td>22 39 22 54</td>
<td>35 44 35 50</td>
<td>32 43 24 38</td>
<td>30 50</td>
<td>22 39 22 54</td>
<td>35 44 35 50</td>
<td>32 43 24 38</td>
<td>30 50</td>
</tr>
</tbody>
</table>
soil volume used. As indicated by Kang et al. (1980), cassava has low external P requirements, and responses for field-grown cassava are not common.

The sandy entisols (Apomu and Shante) and soils derived from sandy sedimentary rocks (Alagba, Onne, and Nkpologu soils) are potentially more subject to potassium deficiency than are the others. The Shante soil from the derived savanna also showed potential for magnesium and sulfur deficiencies.

Though early zinc deficiency on the Shante and Nkpologu soils was expected because of their low zinc levels (Table 2), it was not expected on the Alagba soil, which had adequate zinc levels. The disappearance of zinc deficiency later (12 WAP) may be related to the ability of the older roots to explore the entire soil volume.

Data from this trial may be useful in the planning of field fertilizer trials in the major cassava-growing areas of southern Nigeria.

We express our thanks to the former Director General of IITA, Dr W.K. Gamble, and the former Director of the National Root Crops Research Institute (NRCRI) Dr B.E. Onochie for providing facilities and funds for the work, to Dr S.K. Hahn, Assistant Director, Tuber and Root Improvement Programme, for his valuable assistance, and to the present Director NRCRI, Dr L.S.O. Ene.