Oil crops: proceedings of the three meetings held at Pantnagar and Hyderabad, India, 4–17 January 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d’être publiés plus tard dans une série de publications plus soignées. D’un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
PROCEEDINGS OF THE THREE MEETINGS HELD AT
PANTNAGAR AND HYDERABAD, INDIA, 4-17 JANUARY 1989

1. The Brassica Subnetwork-II
2. The Other Oil Crops Subnetwork-I
3. The Oil Crops Network Steering Committee-I

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Indian Council of Agricultural Research, New Delhi, India
G.G. Pant University of Agriculture and Technology,
Pantnagar, India
Directorate of Oilseeds Research, Hyderabad, India
International Development Research Centre, Ethiopia/Canada

Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
CONTENTS

Foreword ... v
List of Participants .. vi
Introduction .. xi

Part 1. Brassica Subnetwork-II

Opening Remarks. MAHATIM SINGH 2
Recent Development in Oilseed Brassicas. R.K. DOWNEY 4
The Interinstitutional Collaborative Research Program on White Rust (Albugo candida) Between India (ICAR) and Canada (IDRC) for Rapeseed-Mustard Improvement. P.R. VERMA 9
Stability Parameters for Seed Characters In Different Species of Oleiferous Brassica. H.SINGH, D.SINGH, and V.S. LATHER 14
Oilseed Brassica Research in India. P.R. KUMAR 17
Transfer of Technology and On-farm Trials of Rapeseed and Mustard. BASUDEO SINGH 24
Status of Breeding Research on brassica Oil Crops at Pantnagar, India. G.N. SACHAN 30
Agronomic Investigations on Rapeseed and Mustard at Pantnagar. ARVIND KUMAR and R.P. SINGH 35
Disease Problems in Brassicas and Research Activities at Pantnagar. S.J. KOLTE, R.P. AWASTHI and VISHWANATH 43
Effect of Some Epidemiological Factors on Occurrence and Severity of Alternaria Blight of Rapeseed and Mustard. R.P. AWASTHI and S.J. KOLTE .. 49
Problems of Insect Pests in Brassicas and Research Work at Pantnagar. G.C. SACHAN 56
Economic Performance, Potential and Constraints in Toria Production. L.R. SINGH .. 66
Rapeseed In Egypt. BADR A. EL-AHMAR 70
The Role of High-Yielding Varieties and Production Techniques on Oilseed Brassica Performance in the Central, South-Eastern and North-Western Zones of Ethiopia. HIRUY BELAYNEH, GETINET ALEMAYEHU and NIGUSSIE ALEMAYEHU 72
The Achievements and Future of Brassica in Kenya. M.J. MAHASI ... 79
Rapeseed Adaptation Trials in Cyprus. A. HADJICHRISTODOULO 83
The Rapeseed (Brassica napus L.) Quality Breeding Progress in Shanghai Academy of Agricultural Sciences (SAAS) for Recent Years. SUN CHAOCAI .. 92
A Preliminary Study on the Combining Ability and Heritability of Main Agronomic Characters in B. juncea. WANG ZAO MU and WANG YAN FEI ... 98
Report on the Execution of Sino-Canada Research Breeding Project. LIU CHENG QUING and HONG HAI PING 103
Part 2. Other Oilcrops Subnetwork-I

Safflower Research and Coordination in India. V.RANGA RAO 144
Highlights of the Second International Safflower Conference Hyderabad, India from January 9-13, 1989. V.RANGA RAO 147
Coordinated Research Efforts and Linseed (Linum Usitatissimum L.) Improvement in India. MANGALA RAI 149
Safflower Research in Eighties in Madhya Pradesh (India). A.R.SAWANT 154
Nigerseed in India: Present Status of Cultivation, Research Achievements and Strategies. S.M.SHARMA 159
Constraints and Opportunities for Increasing the Production and Productivity of Niger in India. S.M.SHARMA 166
New Potential Areas of Niger in India. S.M.SHARMA 169
Present Production, Research and Future Strategy for Niger in Maharashtra. A.V.JOSHI 171
Niger in Tribal Bihar. H.B.P.TRIVEDI 176
Cultivation and Varietal Improvement of Linseed in India. R.N.DUBEY 180
Agronomic Management/Agro-Techniques for Improving Production of Niger and Linseed. G.L.MISHRA 186
The Present Status of Niger and Linseed Pathology Work in India. G.S.SAHARAN 192
Safflower, Niger and Linseed in Nepal. B.MISHRA 203
Country Paper on Other Oilcrops in Bangladesh. M.A.KHALEQUE and DILRUBA BEGUM 208
Present Status of Safflower in Egypt. BADR A. EL-AHMAR 218
Progress in Linseed On-station and On-farm Research in Ethiopia. HIRUY BELAYNEH, NIGUSSIE ALEMAYEHU and GETINET ALEMAW 220
Investigations on Some Biochemical Characteristics of Nigerseeds (Guizotia abyssinica Cass). GETINET ALEMAW and HIRUY BELAYNEH 229
Processing of Oil Seeds in Ethiopia. DEJENE TEZERA 233
The Status of Linseed, Safflower and Niger Research and Production in Kenya. T.C.RIUNGU 238
Summary and Wrap-up for Other Oilcrops Sub-Network Meeting. HUGH DOGGETT 241
Discussions and Recommendations 248
Part 3. Oilcrops Network Steering Committee-I

The Oilcrops Network for East Africa and South Asia, Achievements and Future

- ABBAS OMRAN .. 256

Recent Developments in The Oil Crops Network and the ORU

- HUGH DOGGETT .. 265

IBPGR's New Concept for the Conservation and Utilization of Germplasm; Global Crop Networks

- J.M.M. ENGELS .. 272

Technology Mission on Oilcrops for Self-Reliance in Vegetable Oils in India

- MANGALA RAI .. 274

Oilseeds Research in India: Network, Its Set Up, Organization, Past Achievements and Current Research Thrusts

- V.RANGA RAO .. 283

Groundnut and the Oilcrops Network

- S.N. NIGAM ... 286

Oilcrops Production in Ethiopia Current Status and Future Prospects

- SEME DEBELA .. 288

The Vegetable Oil/Protein System in Kenya Summary Report-Phase I

- C.ZULBERTI and J.LUGOGO 293

Brassica Sub-Network Achievements and Activities, 1987-88

- HIRUY BELAYNEH .. 320

The Present Situation and Main Achievements of Sesame Production in East Africa

- MOHAMMED EL-HASSAN AHMED 324

Constitution of the Oil Crops Network (Second Draft)

- MASOOD A.RANA and ABBAS OMRAN 330
REPORT ON A TOUR TO OILSEED BRASSICA GROWING AREAS OF INDIA

Getinet Alemaw

A tour was organized to oilseed Brassica growing areas of India by the Oilcrops Network Project (IDRC) in conjunction with the second Brassica subnetwork meeting in Pantnagar 4-6 Jan, 1989. Scientists participating in the tour were from Bhutan, P.R. China, Ethiopia and Nepal. The tour was organized and led by Drs. Basudeo Singh and P. P. Kumar.

Mixed and intercropping are common practices and irrigation (both power and gravitational) is intensive. Extension work and link between researchers and farmers is strong. At many sites studies on yield limiting factors show that application of full package is important. Among individual factors, application of fertilizers followed by disease control were very influential.

Kanpur

At this station, the cropping sequence of toria, maize, wheat, fallow etc. was studied. The best performance of toria was obtained when toria was grown after lubia. Also the best stage of harvest of toria was found to be at yellow pod stage. Intercropping of wheat with mustard is very common. Some varieties are better for intercropping than others. The best row combination ratio and the right variety need to be studied. The variety Rohini gave the highest yield when sown in 1:9 ratio with wheat. All agronomic packages were as to the wheat crop. The effect of foliar application of fungicides on the incidence of Alternaria leaf spot was also on test. Application of Dithane M-45 at the rate of 0.2% a.i/ha was performing better than other treatments.

Morena Farm

The demonstration site showing farmers’ practice versus researchers’ packages was visited. Mustard was sown with full packages and farmers’ method. The best performance was observed with full packages and improved variety. Among individual factors was the use of fertilizer followed by disease and pest control. Alternaria leaf spot and white rust are important diseases for the area. Leaf spot was successfully controlled by foliar application of Dithane M-45 at the rate of 0.2% a.i/ha which showed excellent performance over the untreated check.

Harayana Agricultural University

Hisar

Breeders are working on Brassica juncea, B. napus, B. campestris var. Toria and B. carinata. The department has also a small gene bank. The oilseed team is consisted of breeders, entomologists, agronomists and soil scientists. Here B. carinata is thought to be resistant to aphids, white rust and Alternaria leaf spot. They claimed seed yields up to 40 q/ha with oil content of 34% and maturity duration of 160 days.

Azotobacter strains are being studied on Indian mustard, Yellow sarson and toria. Its effect being the increase of nitrogen uptake and thereby the decrease of disease incidence and farm cost. Mycorhiza fungus was also found in roots of Brassica oilseeds. Mycorhiza increases phosphorous uptake and disease incidence particularly root diseases. However, its economics as
well as effect on all agronomic characteristics are under scrutiny. So far, it seems that bio-fertilizers are economical.

National Bureau of Plant Genetic Resources (NBPGR)

The bureau has the following organizational set-up.

1. Plant Quarantine Division: Includes pathology, entomology and nematology. The division uses microscopic technique, disinfectant and even x-ray. The division prepares check lists of pests and pathogens to serve as background information. The bureau releases only healthy seeds for experimentation.

2. Germplasm Evaluation Division: The division evaluates all exotic, and local collections made through exchange and exploration for various crops. The evaluation data is stored in documentation facilities which are equipped with IBM PC.

3. Germplasm Conservation Division: This branch conserves accessions in cold storage facilities. The division also conducts seed physiology studies in relation to storage.

4. Exploration and Germplasm collection Division.

5. Germplasm Exchange Division.

6. National Faculty for Plant Tissue Culture: In this division proper culture and plant environment for important crops including medicinal plants are studied.

7. The experimental farm deals with Brassica napus, B. oleracea, B. carinata and B. juncea. Artificial synthesis of B. oleracea and B. nigra. When B. oleracea was used as female plants were dwarf with weak stem and lodges badly. Plants were tall with strong stem when B. oleracea was used as pollen parent. The bureau scientists believe that B. carinata is late but resistant to diseases and pests. Thus, mutation breeding to generate early plants is underway. Some early lines are obtained but they are dwarf with reduced number of branches and pods/plant.