Tropical Root Crops

RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops - Africa Branch
TROPICAL ROOT CROPS: RESEARCH STRATEGIES FOR THE 1980s

PROCEEDINGS OF THE FIRST TRIENNIAL ROOT CROPS SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH, 8—12 SEPTEMBER 1980, IBADAN, NIGERIA

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

©1981 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

Terry, E.R.
Oduro, K.A.
Caveness, F.
International Society for Tropical Root Crops. Africa Branch, Ibadan NG

UDC: 633.4 (213) ISBN: 0 88936 285 8

Microfiche edition available
CONTENTS

Foreword
E.R. Terry ... 7

Participants
... 9

Welcoming Addresses

- **Bede N. Okigbo**, President, International Society for Tropical Root Crops — Africa Branch ... 15
- **Alhaji Ibrahim Gusau**, Minister of Agriculture, Nigeria 17
- **S. Olajuwon Olayide**, Vice-Chancellor, University of Ibadan, Nigeria 19
- **E. Hartmans**, Director-General, International Institute of Tropical Agriculture, Nigeria ... 22

Cassava

Cassava Improvement Strategies for Resistance to Major Economic Diseases and Pests in Africa
S.K. Hahn, E.R. Terry, K. Leuschner, and T.P. Singh ... 25

Cassava Improvement in the Programme National Manioc in Zaire: Objectives and Achievements up to 1978
H.C. Ezumah ... 29

Assessment of Cassava Cultivars for Extension Work
C. Oyolu ... 35

Breeding Cassava Resistant to Pests and Diseases in Zaire
T.P. Singh ... 37

Selection of Cassava for Disease and Pest Resistance in the Congo
Joseph Mabanza ... 40

Some Characteristics of Yellow-Pigmented Cassava
K.A. Oduro ... 42

Cassava: Ecology, Diseases, and Productivity: Strategies for Future Research
E.R. Terry ... 45

Field Screening of Cassava Clones for Resistance to *Cercospora hennisit*
J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry ... 49

Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-Grown Tobacco in Nigeria
E.C.K. Igwegbe ... 58

Cassava Bacterial Blight Disease in Uganda
G.W. Otin-Nape and T. Sengooba ... 61

Insect Dissemination of *Xanthomonas manihotis* to Cassava in the People’s Republic of Congo
J.F. Daniel, B. Boher, and N. Nkouka ... 66

Cassava Root Rot due to *Asmilleriella tabescens* in the People’s Republic of Congo
Casimir Makambila ... 69

Screening for Resistance Against the Green Spider Mite
K. Leuschner ... 75

Biological Control of the Cassava Mealybug
Hans R. Herren ... 79

Entomophagous Insects Associated with the Cassava Mealybug in the People’s Republic of Congo
G. Fabres ... 81

Dynamics of Cassava Mealybug Populations in the People’s Republic of Congo
G. Fabres ... 84

Consumption Patterns and Their Implications for Research and Production in Tropical Africa
Felix I. Nweke ... 88
Problems of Cassava Production in Malawi R.F. Nembozanga Sauti 95
Effects of Soil Moisture and Bulk Density on Growth and Development of Two Cassava Cultivars R. Lal 104
Performance of Cassava in Relation to Time of Planting and Harvesting F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba 111
The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize S.O. Odurukwe and U.I. Oji 116
Intercropping of Plantains, Cocoyams, and Cassava S.K. Karikari 120
Weed Control in Maize—Cassava Intercrop I. Okezie Akobundu 124
Cassava Leaf Harvesting in Zaire N.B. Lutaladio and H.C. Ezumah 134
Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of Cassava and Sweet Potato M.T. Dahniya 137
Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in Cassava M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard 143
Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of Cassava Emmanuel N. Maduagwu and Aderemi F. Adewale 149
The Role of Palm Oil in Cassava-Based Rations Ruby T. Fomunyam, A.A. Adegbola, and O.L. Oke 152
Comparison of Pressed and Unpressed Cassava Pulp for Gari Making M.A.N. Ejiofor and N. Okafor 154
Gari Yield from Cassava: Is it a Function of Root Yield? D.G. Ibe and F.O.C. Ezedinma 159

Yams
Parameters for Selecting Parents for Yam Hybridization Obinani O. Okoli 163
Anthracnose of Water Yam in Nigeria Okechukwu Alphonso Nwankiti and E.U. Okpala 166
Strategies for Progress in Yam Research in Africa I.C. Onwueme 173
Study of the Variability Created by the Characteristics of the Organ of Vegetative Multiplication in Dioscorea alata N. Ahoussou and B. Toure 177
Growth Pattern and Growth Analysis of the White Guinea Yam Raised from Seed C.E. Okezie, S.C.N. Okonkwo, and F.I. Nwede 180
Artificial Pollination, Pollen Viability, and Storage in White Yam M.O. Akoroda, J.E. Wilson, and H.R. Chheda 189
Improving the In-Situ Stem Support System for Yams G.F. Wilson and K. Akapa 195
Yield and Shelf-Life of White Yam as Influenced by Fertilizer K.D. Kpeglo, G.O. Obigbesan, and J.E. Wilson 198
Weed Interference in White Yam R.P.A Unamma, I.O. Akobundu, and A.A.A. Fayemi 203
The Economics of Yam Cultivation in Cameroon S.N. Lyonga 208
Effect of Traditional Food Processing Methods on the Nutritional Value of Yams in Cameroon Alice Bell and Jean-Claude Favier 214

Cocoyams
Strategies for Progress in Cocoyam Research E.V. Doku 227
Root and Storage-Rot Disease of Cocoyam in Nigeria G.C. Okeke 231
Fungal Rotting of Cocoyams in Storage in Nigeria J.N.C. Maduewesi and Rose C.I. Onyike .. 235

A Disease of Cocoyam in Nigeria Caused by Corticium rolfsii O.B. Arene and E.U. Okpala .. 239

Cocoyam Farming Systems in Nigeria H.C. Knipscheer and J.E. Wilson .. 247

Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application and Spacing M.C. Igbokwe and J.C. Ogbannaya 255

Abstracts

Cassava Research Program in Liberia Mallik A-As-Saqui .. 259

Effects of Cassava Mosaic on Yield of Cassava Godfrey Chapola .. 259

Effects of Green Manure on Cassava Yield James S. Squire .. 260

Alleviating the Labour Problem in Yam Production: Cultivation without Stakes or Manual Weeding I.C. Onwueme .. 260

Discussion Summary

Strategies for the 1980s .. 263

References .. 265
YIELD AND NITROGEN UPTAKE BY COCOYAM AS AFFECTED BY NITROGEN APPLICATION AND SPACING

M.C. IGBOKWE AND J.C. OGBONNAYA

NATIONAL ROOT CROPS RESEARCH INSTITUTE, UMUDIKE, UMUAHIA, NIGERIA

Three amounts of N (0, 40, and 80 kg/ha) were tested on cocoyam, Colocasia spp. planted at 80, 60, and 40 × 100 cm at Umudike, Nigeria. Basal dressings of P, K, and Mg were given at 40, 75, and 20 kg/ha respectively. Averaged over all population means, application of N at 40 kg/ha increased yields of corms and cormels by 4.47 t/ha (P = 0.05). The largest yield increase of 8.99 t/ha due to N dressing was achieved with 40 kg/ha at a spacing of 100 × 60 cm. But when averaged over all N rates, the mean yields of corms and cormels with respect to the various spacings were not significantly different even though plant heights increased with population density. Observed significant increase in yield due to N was related to an extra 15.3 kg/ha taken up in the tuber when 40 kg/ha was given. This was equivalent to an apparent recovery of 38.3% of the applied N. Tuber yields were more related to the number of cormels than of corms at harvest.

The use of optimum spacing is necessary for the maximum exploitation of the factors essential for crop growth. Such exploitation can be accomplished when population density of a crop exercises maximum pressure on all production factors, such as solar radiation, soil nutrients, and water.

We believed, therefore, that it was necessary to assess the effects of spacing and nitrogen fertilizer on the yield and N uptake by one of our cocoyam cultivars locally called Ede ofe grown under the upland soil conditions at Umudike, Nigeria.

METHODS

Our experiment was conducted on sandy-loam soil derived from sandstone at Umudike, Nigeria, from May 1979 to February 1980. Some of the soil characteristics were pH 5.3, sand 76.4%, clay 6.8%, silt 16.8%, organic carbon 1.35%, total N 0.074%, available P (Bray P-1) 8.0; and exchangeable cations: Ca 1.87, Mg 1.25, K 0.24, and Na 0.06 me/100 g.

The experimental design was a randomized complete block with three replications. Four spacings, 100 × 80; 100 × 60; 100 × 40; and 100 × 30 cm (corresponding to 12,500; 16,666; 25,000; 33,333 plants/ha) were compared at three nitrogen rates (0, 40, and 80 kg/ha).

Basal dressings of 40, 75, and 20 kg/ha of P, K, and Mg, respectively, were given. Plant height was measured at 4.5 months after the planting, and crops were harvested after 8.5 months.

Soil pH was determined on a 1:2.5 soil, water ratio and texture by the hydrometer method. Organic carbon was by Walkley and Black’s procedure, and available P was as described by Bray and Kurtz. Total exchangeable cations were leached with neutral normal ammonium acetate. Total N in corms and cormels and in soil was measured by the Kjeldahl method.
RESULTS AND DISCUSSION

YIELD OF Corms AND Cormels

Fig. 1 shows that, at all the population densities tested, the highest yields of corms and cormels were obtained with an application of 40 kg N/ha. Averaged over all N rates, the application of 40 kg N/ha increased yield of corms and cormels by 4.47 t/ha equivalent to 112 kg corm and cormel per kg N used (P = 0.05). At N applications of 80 kg/ha, yields were 2.69 t/ha larger than those from plots without N. The reason for this drop in yield is not clear but may be due to increased disease or lodging. However, several multilevel N tests are necessary before the relationship between yield and N dressing can be described accurately. In our experiment only three rates of N were tested (0, 40, and 80 kg/ha). These are too few to show whether the corm/cormel yield N response curve is best fitted by a smooth curve or by two intersecting straight lines.

Of the various spacings we compared, 100 × 60 cm gave the largest mean yield (10.1 t/ha). The difference of 2.55 t/ha between the yield at this spacing and yield at the 100 × 80 cm spacing, which gave the least mean yield (7.57 t/ha) was not significant. However, the increased yield at 100 × 60 cm is in good agreement with the results of Arene and Okpala who obtained lowest rate of incidence of Corticium rolfsii in C. esculenta at a spacing of 60 × 100 cm as against high rates in spacings of 80 × 100 and 100 × 100 cm for shallow planting. They also obtained their best yield at 60 × 100 cm spacings.

N CONCENTRATION, UPTAKE, AND RELATIONSHIP WITH YIELD

Percentage of N in corms and cormels ranged from 1.39 to 2.1 (similar in crude protein to cereals) and was slightly higher (1.9%) at 80 kg N/ha than at 40 kg N/ha and in controls (1.6%). At 80 kg N/ha applications, the largest N uptake (45.9 kg/ha) occurred even though the overall yield was

Table 1. Number of corms and cormels in relation to spacing and nitrogen (kg/ha) application.

<table>
<thead>
<tr>
<th>Spacing (cm)</th>
<th>Corms</th>
<th></th>
<th>Cormels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_0)</td>
<td>(N_{40})</td>
<td>(N_{80})</td>
</tr>
<tr>
<td>100 × 80</td>
<td>33</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>100 × 60</td>
<td>18</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td>100 × 40</td>
<td>34</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>100 × 30</td>
<td>66</td>
<td>42</td>
<td>38</td>
</tr>
</tbody>
</table>
only of yield showed that the cormels accounted for increase in yield increments. The largest yield, 44.4 kg/ha, was given. This amounted to a net apparent recovery of 38.3 and 21% for application of 40 and 80 kg N/ha, respectively, in the corms and cormels. It is noteworthy that the treatment that gave the highest apparent recovery of N also produced the highest yield of corms and cormels (40 kg N/ha). Similarly for the population densities, N uptake was largest at a spacing of 100 × 60 cm (47 kg N/ha), which gave the largest yield.

Fig. 2 shows the relationship between yield of corms and cormels, and the N uptake of the tuber can be expressed by a linear model: $Y_1 = 1.91598 + 0.16725 \times Nc$ where Y_1 = yield of corms and cormels and Nc = uptake of N in corms and cormels (kg/ha).

The correlation coefficient (r) was 0.8706 and regression of yield of corms and cormels on N uptake accounted for 75.9% of the variance.

NUMBER OF CORMS AND CORMELS AND RELATIONSHIP WITH YIELD

Table 1 gives the number of corms and cormels as influenced by spacing and N dressing. Averaged over all spacings, N application had an increasing effect on the number of cormels but not on the number of corms.

The number of corms was only 14% of the total yield, 86% being accounted for by cormels. Cocoyam grown at a spacing of 100 × 60 cm had the largest number of cormels. In other words, the yield increments were largely attributable to the increase of cormels. Regression analysis of total yield showed that the cormels accounted for 43.6% of the variance, whereas the corms accounted for only 21.9%.

PLANT HEIGHT, FLOWERING, AND DEFICIENCY SYMPTOMS

Plant height measurements 4.5 months after planting showed that *Colocasia* spp. grew taller as intra-row spacing decreased. For example, at a spacing of 100 × 80 cm, plants grew to a mean of 70.3 cm, and at 100 × 30 cm, to 81.4 cm (Table 2). This finding was probably due to more competition for solar radiation. N also had an effect on plant height. *Colocasia* given 40 kg N/ha was 14.9 cm taller than that given no N (65.1 as compared with 80.0 cm). Thus, a symptom of deficiency of N was stunting as was general chlorosis of the leaves. The lower leaves died rather quickly.

Flowering was observed under field conditions to be more abundant on plots that received N than on plots without N. Spacing did not have any noticeable effect on flowering (Table 3).

As this work is preliminary, more detailed work is necessary on the combined effect of population and fertilizers for the different cocoyams under the Nigerian environment. Further investigation is especially important in the Southeastern zone where annual rainfall is often more than 2000 mm with consequent leaching of both applied and native N. The sandy nature of the soil with low organic matter, total nitrogen, and phosphate suggests that these nutrients among others will continue to be limiting.

The Director, National Root Crops Research Institute, Umudike, granted us permission to present this paper. Thanks are due to Dr Odurukwe for help with statistical analysis and to Mr Arene for helpful suggestions.

Table 2. Effect of spacing and N application on height (cm) of *Colocasia*

<table>
<thead>
<tr>
<th>Spacing (cm)</th>
<th>0 kg N/ha</th>
<th>40 kg N/ha</th>
<th>80 kg N/ha</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 × 80</td>
<td>55.8</td>
<td>78.8</td>
<td>82.5</td>
<td>70.3</td>
</tr>
<tr>
<td>100 × 60</td>
<td>60.5</td>
<td>81.0</td>
<td>72.6</td>
<td>71.4</td>
</tr>
<tr>
<td>100 × 40</td>
<td>66.0</td>
<td>82.5</td>
<td>70.8</td>
<td>73.1</td>
</tr>
<tr>
<td>100 × 30</td>
<td>78.3</td>
<td>80.0</td>
<td>77.1</td>
<td>81.4</td>
</tr>
</tbody>
</table>

Table 3. The effects of nitrogen application on the flowering of 12 plots of *Colocasia*

<table>
<thead>
<tr>
<th>Nitrogen (kg/ha)</th>
<th>Plots in which flowering was observed</th>
<th>Plants flowering</th>
<th>Mean (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>17</td>
<td>4.3</td>
</tr>
<tr>
<td>40</td>
<td>11</td>
<td>47</td>
<td>11.8</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>29</td>
<td>7.3</td>
</tr>
</tbody>
</table>