Tropical Root Crops

RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops - Africa Branch
TROPICAL ROOT CROPS: RESEARCH STRATEGIES FOR THE 1980s

PROCEEDINGS OF THE FIRST TRIENNIAL ROOT CROPS SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH, 8—12 SEPTEMBER 1980, IBADAN, NIGERIA

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

©1981 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

Terry, E.R.
Oduro, K.A.
Caveness, F.
International Society for Tropical Root Crops. Africa Branch, Ibadan NG

UDC: 633.4 (213) ISBN: 0 88936 285 8

Microfiche edition available
Cooperating institutions
CONTENTS

Foreword E.R. Terry ... 7

Participants ... 9

Welcoming Addresses
Bede N. Okigho, President, International Society for Tropical Root Crops —
Africa Branch ... 15
Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17
S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19
E. Hartmans, Director-General, International Institute of Tropical Agricul-
ture, Nigeria .. 22

Cassava
Cassava Improvement Strategies for Resistance to Major Economic Diseases
Singh .. 25
Cassava Improvement in the Programme National Manioc in Zaire: Objectives
and Achievements up to 1978 H.C. Ezumah 29
Assessment of Cassava Cultivars for Extension Work C. Oyolu 35
Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37
Selection of Cassava for Disease and Pest Resistance in the Congo Joseph
Mabanza ... 40
Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42
-- Cassava: Ecology, Diseases, and Productivity: Strategies for Future
Research E.R. Terry .. 45
Field Screening of Cassava Clones for Resistance to Cercospora henningsii
J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49
Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-
Grown Tobacco in Nigeria E.C.K. Igwegbe 58
Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T.
Sengooba ... 61
Insect Dissemination of Xanthomonas manihotis to Cassava in the People’s
Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka 66
Cassava Root Rot due to Armillariella tabescens in the People’s Republic of
Congo Casimir Makambila ... 69
Screening for Resistance Against the Green Spider Mite K. Leuschner 75
Biological Control of the Cassava Mealybug Hans R. Herren 79
Entomophagous Insects Associated with the Cassava Mealybug in the People’s
Republic of Congo G. Fabres .. 81
Dynamics of Cassava Mealybug Populations in the People’s Republic of
Congo G. Fabres ... 84
Consumption Patterns and Their Implications for Research and Production in
Tropical Africa Felix I. Nweke .. 88
Problems of Cassava Production in Malawi R.F. Nembozanga Sauti
Evaluation of Some Major Soils from Southern Nigeria for Cassava Production J.E. Okeke and B.T. Kang
Effects of Soil Moisture and Bulk Density on Growth and Development of Two Cassava Cultivars R. Lal
Performance of Cassava in Relation to Time of Planting and Harvesting F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba
The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize S.O. Odurukwe and U.I. Oji
Intercropping of Plantains, Cocoyams, and Cassava S.K. Karikari
Weed Control in Maize—Cassava Intercrop I. Okezie Akobundu
Cassava Leaf Harvesting in Zaire N.B. Lutaladio and H.C. Ezumah
The Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of Cassava and Sweet Potato M.T. Dahniya
Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in Cassava M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard
Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of Cassava Emmanuel N. Maduagwu and Aderemi F. Adewale
The Role of Palm Oil in Cassava-Based Rations Ruby T. Fomunyam, A.A. Adegbola, and O.L. Oke
Comparison of Pressed and Unpressed Cassava Pulp for Gari Making M.A.N. Ejiofor and N. Okafor
Gari Yield from Cassava: Is it a Function of Root Yield? D.G. Ibe and F.O.C. Ezedinma

Yams
Parameters for Selecting Parents for Yam Hybridization Obinani O. Okoli
Anthracnose of Water Yam in Nigeria Okechukwu Alphonso Nwankiti and E.U. Okpala
Strategies for Progress in Yam Research in Africa I.C. Onwueme
Study of the Variability Created by the Characteristics of the Organ of Vegetative Multiplication in Dioscorea alata N. Ahoussou and B. Toure
Growth Pattern and Growth Analysis of the White Guinea Yam Raised from Seed C.E. Okezie, S.N.C. Okonkwo, and F.I. Nweke
Artificial Pollination, Pollen Viability, and Storage in White Yam M.O. Akoroda, J.E. Wilson, and H.R. Chheda
Improving the In-Situ Stem Support System for Yams G.F. Wilson and K. Akapa
Yield and Shelf-Life of White Yam as Influenced by Fertilizer K.D. Kpeglo, G.O. Obigbesan, and J.E. Wilson
Weed Interference in White Yam R.P.A Unamma, I.O. Akobundu, and A.A.A. Fayemi
The Economics of Yam Cultivation in Cameroon S.N. Lyonga
Effect of Traditional Food Processing Methods on the Nutritional Value of Yams in Cameroon Alice Bell and Jean-Claude Favier

Cocoyams
Strategies for Progress in Cocoyam Research E.V. Doku
Root and Storage-Rot Disease of Cocoyam in Nigeria G.C. Okeke
Fungal Rotting of Cocoyams in Storage in Nigeria J.N.C. Maduewesi and Rose C.I. Onyike ... 235
A Disease of Cocoyam in Nigeria Caused by *Corticium rolfsii* O.B. Arene and E.U. Okpala .. 239
Cocoyam Farming Systems in Nigeria H.C. Knipscheer and J.E. Wilson 247
Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application and Spacing M.C. Igbokwe and J.C. Ogbannaya 255

Abstracts
Cassava Research Program in Liberia Mallik A-As-Saqui 259
Effects of Cassava Mosaic on Yield of Cassava Godfrey Chapola 259
Effects of Green Manure on Cassava Yield James S. Squire 260
Alleviating the Labour Problem in Yam Production: Cultivation without Stakes or Manual Weeding I.C. Onwueme .. 260

Discussion Summary
Strategies for the 1980s .. 263

References .. 265
THE ROLE OF PALM OIL IN CASSAVA-BASED RATIONS

RUBY T. FOMUNYAM, A.A. ADEGBOLA, AND O.L. OKE

ANIMAL SCIENCE DEPARTMENT AND DEPARTMENT OF CHEMISTRY, UNIVERSITY OF IFE, ILE-IFE, NIGERIA

Palm oil retards the decomposition of the intermediate products of linamarin (acetone cyanohydrin) and amygdalin (mandelonitrile); thus, in animals fed cassava-based diets supplemented with palm oil, the delay in decomposition may prevent absorption of the linamarin. A basic medium (pH 8—9) accelerates the breakdown of these compounds.

Cassava is a cheap, digestible source of calories for humans and domestic animals. However, feeding cassava flour to animals for a considerable time depresses their voluntary feed intake and rate of growth (Oyenuga 1961; Enriquez and Ross 1969; Pido and Adeyanju 1978). Some of the reasons postulated for this reaction include the presence of the cyanogenic glucosides linamarin and lotaustralin, which release hydrogen cyanide or hydrocyanic acid, a deadly poison, upon hydrolysis. The detoxification of hydrocyanic acid by the enzyme rhodanase releases thiocyanate, a goitrogen (Oke, 1978). Some other nutritional problems such as the complexing of lysine by aldehydes of cassava carbohydrates, especially when heated, and the low protein, vitamin, and mineral contents of cassava flour also limit the utilization of this feed source by domestic animals (Oke 1978; Hutagalung 1977). Several methods are used to process cassava roots to decrease the level of toxic compounds in the flour. Grinding, frying, fermenting, boiling, sun drying, and soaking are some of the methods in use. However, not all the toxic compounds are removed from the flour. Carmody (1900) observed that successive water extractions remove further quantities of hydrocyanic acid from cassava roots. Joachim and Pandittesekere (1944) found that the amount of hydrocyanic acid released autolytically increased very rapidly as the amount of time allowed for autolysis was increased up to 24 h. Even when autolysis was essentially complete, a further quantity of hydrocyanic acid could be released by acid hydrolysis. Cooke and Maduagwu (1978) showed that free cyanide was rapidly removed from cassava chips but bound cyanide was less readily removed. These workers established that only a third of the bound cyanide is removed by autolysis at 46.5°C. Hill (1977) showed that 50 mg of linamarin given by stomach tube to rats killed them within 4 h and produced abnormal electrocardiogram tracings similar to those found in cyanide poisoning.

Hawksworth, Drasar, and Hill (1971) observed that Escherichia coli produce β-glucuronidases and β-galactosidases; enterococci produce β-glucosidases and β-galactosidases, and nonsporing anaerobes produce small amounts of all these enzymes except β-glucuronidases. These enzymes could hydrolyze linamarin, lotaustralin, and glucuronides.

Sulfur and fats enable better utilization of cassava flour by animals. Fats, especially, have been noted to influence feed intake regardless of the density of the feed (Carew et al. 1963). Hutagalung and Chang (1977) showed that pigs utilized cassava-based diets more efficiently when supplemented with 5—10% palm oil than did controls or pigs fed diets supplemented with lard or tallow. These researchers also stated that palm oil was more digestible than fats of animal origin. Hew (1975) stated that an 8% palm-oil supplementation of a cassava diet enabled faster growth by animals and beyond this level a plateau was reached. Other workers in this field have observed gains in weight when fats as well as methionine (0.2%) are added to cassava diets (Ross and Enriquez 1967; Hew and Hutagalung 1972; Maner 1974). Devendra and Hew (1977) fed pigs up to 30% palm oil in
10–24% cassava rations and observed no effect. In view of this, work at the University of Ife was designed to investigate the role of palm oil in cassava-based rations.

The intermediate products of linamarin and amygdalin (cyanohydrin and mandelonitrile, respectively) were synthesized according to the method of Vogel (1978). Decomposition rates of 0.2 µl aliquots in phosphate buffer (0.05 M) at different pH levels were investigated. The experiment was repeated with palm oil as the medium. The rate of hydrolysis of mandelonitrile was reduced markedly in the palm oil compared with that in aqueous media; the rate of hydrolysis of acetone cyanohydrin was variable. We measured the rate of hydrolysis as liberated hydrogen cyanide at 30°C using a modified recovery method by Gilchrist (1967).

With this approach, we attempted to discover whether palm oil has any effect on the breakdowns shown in the equations:

(1)

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{O} \quad \text{CN} \\
\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{CH}_3 \\
\end{align*}
\]

\[\text{B-glucosidase} \quad \text{step A}\]

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{CN} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

\[\text{glucose} \quad \text{acetone cyanohydrin}\]

(2)

\[
\begin{align*}
\text{CN} & \quad \text{O} \\
\text{HO} & \quad \text{C} \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{step B} \\
\text{Prussic acetone acid} \\
\end{align*}
\]

Our preliminary results showed that palm oil does slow down the decomposition of acetone cyanohydrin, which is expected, as cyanohydrins decompose in basic media; for example,

(3)

\[
\begin{align*}
\text{CN} & \quad \text{CN} \\
\text{HO} & \quad \text{HO} \quad \text{C} \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{H}_2\text{O} \\
\end{align*}
\]

(4)

(5)

We are now working to evaluate the effects of palm oil on the decomposition of linamarin. One possibility is that, during digestion, palm oil prevents absorption and effects subsequent excretion of linamarin; however, Hill (1967) found no linamarin in feces of rats fed linamarin by stomach tube. He suggested that linamarin was either absorbed intact and excreted in the urine or changed to a yet unidentified metabolite and then excreted in the feces. Another possibility is that palm oil or a component of palm oil modifies the enzyme systems that hydrolyze and metabolize linamarin, most probably via glucuronides.