Tropical Root Crops

RESEARCH STRATEGIES FOR THE 1980s

Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops ~ Africa Branch
TROPICAL ROOT CROPS: RESEARCH STRATEGIES FOR THE 1980s

PROCEEDINGS OF THE FIRST TRIENNIAL ROOT CROPS SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH, 8—12 SEPTEMBER 1980, IBADAN, NIGERIA

EDITORS: E.R. TERRY, K.A. ODURO, AND F. CAVENESS

Although the editorial chores for these proceedings were the sole responsibility of the editors, the International Society for Tropical Root Crops — Africa Branch has a full Editorial Board comprising E.R. Terry, O.B. Arene, E.V. Doku, K.A. Oduro, W.N. Ezeilo, J. Mabanza, and F. Nweke. This Board serves the Society in various editorial capacities at all times.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters is at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.
Cooperating institutions
CONTENTS

Foreword E.R. Terry ... 7

Participants ... 9

Welcoming Addresses
 Bede N. Okigho, President, International Society for Tropical Root Crops —
 Africa Branch .. 15
 Alhaji Ibrahim Gusau, Minister of Agriculture, Nigeria 17
 S. Olajuwon Olayide, Vice-Chancellor, University of Ibadan, Nigeria 19
 E. Hartmans, Director-General, International Institute of Tropical Acul-
 ture, Nigeria .. 22

Cassava
 Cassava Improvement Strategies for Resistance to Major Economic Diseases
 Singh ... 25
 Cassava Improvement in the Programme National Manioc in Zaire: Objectives
 and Achievements up to 1978 H.C. Ezumah 29
 Assessment of Cassava Cultivars for Extension Work C. Oyolu 35
 Breeding Cassava Resistant to Pests and Diseases in Zaire T.P. Singh 37
 Selection of Cassava for Disease and Pest Resistance in the Congo Joseph
 Mabanza ... 40
 Some Characteristics of Yellow-Pigmented Cassava K.A. Oduro 42
 Cassava: Ecology, Diseases, and Productivity: Strategies for Future
 Research E.R. Terry .. 45
 Field Screening of Cassava Clones for Resistance to Cercospora henningsii
 J.B.K. Kasirivu, O.F. Esuruoso, and E.R. Terry 49
 Properties of a Severe Strain of Cassava Latent Virus Isolated from Field-
 Grown Tobacco in Nigeria E.C.K. Igwegbe 58
 Cassava Bacterial Blight Disease in Uganda G.W. Otim-Nape and T.
 Sengooba .. 61
 Insect Dissemination of Xanthomonas manihotis to Cassava in the People’s
 Republic of Congo J.F. Daniel, B. Boher, and N. Nkouka 66
 Cassava Root Rot due to Armillariella tabescens in the People’s Republic of
 Congo Casimir Makambila .. 69
 Screening for Resistance Against the Green Spider Mite K. Leuschner 75
 Biological Control of the Cassava Mealybug Hans R. Herren 79
 Entomophagous Insects Associated with the Cassava Mealybug in the People’s
 Republic of Congo G. Fabres .. 81
 Dynamics of Cassava Mealybug Populations in the People’s Republic of
 Congo G. Fabres .. 84
 Consumption Patterns and Their Implications for Research and Production in
 Tropical Africa Felix I. Nweke ... 88
Problems of Cassava Production in Malawi
R.F. Nembozanga Sauti .. 95

Evaluation of Some Major Soils from Southern Nigeria for Cassava Production
J.E. Okeke and B.T. Kang .. 99

Effects of Soil Moisture and Bulk Density on Growth and Development of
Two Cassava Cultivars
R. Lal .. 104

Performance of Cassava in Relation to Time of Planting and Harvesting
F.O.C. Ezedinma, D.G. Ibe, and A.I. Onwuchuruba 111

The Effects of Previous Cropping on Yields of Yam, Cassava, and Maize
S.O. Odurukwe and U.I. Oji 116

Intercropping of Plantains, Cocoyams, and Cassava
S.K. Karikari .. 120

Weed Control in Maize—Cassava Intercrop
I. Okezie Akobundu ... 124

Effect of Maize Plant Population and Nitrogen Application on Maize—Cassava Intercrop
B.T. Kang and G.F. Wilson 129

Cassava Leaf Harvesting in Zaire
N.B. Lutaladio and H.C. Ezumah 134

Effects of Leaf Harvests and Detopping on the Yield of Leaves and Roots of Cassava and Sweet Potato
M.T. Dahniya .. 137

Metabolism, Synthetic Site, and Translocation of Cyanogenic Glycosides in Cassava
M.K.B. Bediako, B.A. Tapper, and G.G. Pritchard 143

Loss of Hydrocyanic Acid and Its Derivatives During Sun Drying of Cassava
Emmanuel N. Maduagwu and Aderemi F. Adewale 149

The Role of Palm Oil in Cassava-Based Rations
Ruby T. Fomunyam, A.A. Adegbola, and O.L. Oke 152

Comparison of Pressed and Unpressed Cassava Pulp for Gari Making
M.A.N. Ejiofor and N. Okafor 154

Gari Yield from Cassava: Is it a Function of Root Yield?
D.G. Ibe and F.O.C. Ezedinma 159

Yams

Parameters for Selecting Parents for Yam Hybridization
Obinani O. Okoli ... 163

Anthracnose of Water Yam in Nigeria
Okechukwu Alphonso Nwankiti and E.U. Okpala 166

Strategies for Progress in Yam Research in Africa
I.C. Onwueme .. 173

Study of the Variability Created by the Characteristics of the Organ of Vegetative Multiplication in Dioscorea alata
N. Ahoussou and B. Toure 177

Growth Pattern and Growth Analysis of the White Guinea Yam Raised from Seed
C.E. Okezie, S.N.C. Okonkwo, and F.I. Nweke 180

Artificial Pollination, Pollen Viability, and Storage in White Yam
M.O. Akoroda, J.F. Wilson, and H.R. Chheda 189

Improving the In-Situ Stem Support System for Yams
G.F. Wilson and K. Akapa 195

Yield and Shelf-Life of White Yam as Influenced by Fertilizer
K.D. Kpeglo, G.O. Obigbesan, and J.E. Wilson 198

Weed Interference in White Yam
R.P.A Unamma, I.O. Akobundu, and A.A.A. Fayemi 203

The Economics of Yam Cultivation in Cameroon
S.N. Lyonga .. 208

Effect of Traditional Food Processing Methods on the Nutritional Value of Yams in Cameroon
Alice Bell and Jean-Claude Favier 214

Cocoyams

Strategies for Progress in Cocoyam Research
E.V. Doku ... 227

Root and Storage-Rot Disease of Cocoyam in Nigeria
G.C. Okeke .. 231
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal Rotting of Cocoyams in Storage in Nigeria</td>
<td>J.N.C. Maduewesi and Rose C.I. Onyike</td>
<td>235</td>
</tr>
<tr>
<td>A Disease of Cocoyam in Nigeria Caused by Corticium rolfsii</td>
<td>O.B. Arene and E.U. Okpala</td>
<td>239</td>
</tr>
<tr>
<td>Cocoyam Farming Systems in Nigeria</td>
<td>H.C. Knipscheer and J.E. Wilson</td>
<td>247</td>
</tr>
<tr>
<td>Yield and Nitrogen Uptake by Cocoyam as Affected by Nitrogen Application and Spacing</td>
<td>M.C. Igbokwe and J.C. Ogbannaya</td>
<td>255</td>
</tr>
<tr>
<td>Abstracts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava Research Program in Liberia</td>
<td>Mallik A-As-Saqui</td>
<td>259</td>
</tr>
<tr>
<td>Effects of Cassava Mosaic on Yield of Cassava</td>
<td>Godfrey Chapola</td>
<td>259</td>
</tr>
<tr>
<td>Effects of Green Manure on Cassava Yield</td>
<td>James S. Squire</td>
<td>260</td>
</tr>
<tr>
<td>Alleviating the Labour Problem in Yam Production: Cultivation without Stakes or Manual Weeding</td>
<td>I.C. Onwueme</td>
<td>260</td>
</tr>
<tr>
<td>Discussion Summary</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td>Strategies for the 1980s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>265</td>
</tr>
</tbody>
</table>
GARI YIELD FROM CASSAVA: IS IT A FUNCTION OF ROOT YIELD?

D.G. IBE AND F.O.C. EZEDINMA

FACULTY OF AGRICULTURE, UNIVERSITY OF NIGERIA, NSUKKA, NIGERIA

Twelve cassava cultivars constituting 11 hybrids, namely TMX 30395, TMX 1325, TMX 1624, TMX 59/159/91, TMX 30568, TMX 750, TMX 6, TMX 90, TMX 20, TMX 30211 from IITA, and 60506 were harvested 1 year after being planted at the Teaching and Research Farm of the University of Nigeria, Nsukka. Marketable roots of each cultivar were labeled and 100 kg were weighed out from each cultivar and processed into gari in a semimechanized gari factory. The cultivars were grown without fertilizers as is the practice among most farmers. The results showed that the cultivar with the highest root yields was not necessarily the best for gari production. Observations on gari yield and quality in relation to root yields are discussed. Plant breeders and agronomists should consider quality and quantity of gari, rather than mere root yields, in selecting new cassava cultivars for farmers. The hybrids have a lot of promise if the gari yield can be determined by means of time-of-harvesting experiments in the various ecological zones.

Douze cultivars de manioc comprenant onze hybrides, notamment TMX 30395, TMX 1325, TMX 1624, TMX 59/159/91, TMX 30568, TMX 750, TMX 6, TMX 90, TMX 20, TMX 30211 de l'IITA et 60506 ont été récoltés un an après leur plantation à la ferme de recherche et de formation de l'Université du Nigeria, Nsukka. Ces cultivars avaient été produits sans engrais, selon les pratiques traditionnelles des fermiers. Après étiquetage des racines de chaque cultivar, 100 kg de chaque variété ont été transformés en gari dans une meunerie semi-mécanisée. Le cultivar à rendement supérieur/ha n'a pas donné nécessairement la meilleure qualité de gari. Les observations sur le rapport entre le rendement d'un cultivar et la qualité du gari sont actuellement à l'étude. Les phytosélectionneurs et les agronomes qui cherchent de nouveaux cultivars de manioc pour les fermiers devraient s'attacher à rechercher la qualité et la quantité de gari plutôt que le nombre de tubercules. Les hybrides deviendraient très populaires s'il était possible de déterminer les éléments nutritifs du gari par des expériences sur le temps de récolte dans les diverses zones écologiques.

Gari is the staple of the people in southeastern Nigeria and most of the West African countries. Balakrishnan and Sundararaj (1967) indicated that between 12 and 12.5 months after planting was the best time to harvest cassava. However, in Nigeria scarcity of food may at times force farmers to harvest their cassava just 8 or 9 months after planting. Cassava deteriorates quickly after harvest, and storage methods have not been very effective in enabling farmers to store their roots for even 10 days after harvest.

Ibe (1979) described the characteristics of top-quality gari in terms of good binding quality, low HCN, low fibre content (not more than 3%), and low moisture content of not more than 8%.

Farmers evaluate their cassava roots in terms of gari production and starch content; they prefer to grow cassava cultivars that give high root yields as well as high starch and gari yields.

The objective of this paper is to evaluate the gari yield of some TMX cassava hybrids, the overall goal being to determine which cultivars can be processed for high quality and quantity gari. One of the ways of improving the farmers' lot is to provide them with high-yielding cultivars of crops through genetic manipulation. High yields should be reflected in improvements in the economic well-being of the farmers. Hahn (1978) indicated that the cassava ideotype should be short, with little branching to conform to mechanization, early maturing, and resistant to pests and diseases, and should contain enough starch. Some of the TMX cassava cultivars discussed in this paper are tending to conform to Hahn’s description of cassava plant ideotype.

MATERIALS AND METHODS

Twelve cassava cultivars (TMX 30395, TMX 1325, TMX 1624, 631024, TMX 59/159/91, TMX 30568, TMX 750, TMX 6, TMX 90, TMX 20,
TMX 30211) and a control (60506) were grown without fertilizers in a randomized, complete block design with four replications. These were planted in September 1977 and harvested during the first week of October the following year. All the harvested, marketable roots were bulked according to cultivars. Thereafter, 100 kg of each cultivar were peeled by 10 gari producers who were engaged specifically to simulate village production.

After being peeled, the roots were washed and grated immediately. The grated roots or pulps were bagged and stacked in a dewatering device situated at the factory. Four days later the pulps were sieved according to cultivars and fried, the gari producers taking part in the frying of each cultivar. The fried gari was kept in a drying chamber overnight to cool and was weighed the next day for a determination of the gari yields.

RESULTS AND DISCUSSION

The figures obtained suggest that root yield per se is not necessarily a reliable indicator of the amount of gari that can be produced from the cultivars. Gari yield and quality varied sharply from root yields of the various cultivars. 631024 gave the highest root yield (21.5 t/ha) but not the highest amount of pulp for gari production. TMX 30568 gave the highest yield of gari in t/ha, but the gari was not high in quality. TMX 750 produced the smallest amount (0.9 t/ha) and the worst quality gari. The cultivar that produced the highest root yield, 631024, produced only 9%, or 1.9 t/ha, fried gari. However, 631024 ranked highest, followed by the control (60506) and TMX 1325 in terms of quality of gari.

TMX 30211 gave a root yield of 17.4 t/ha and a gari yield of 16%, or 2.7 t/ha; TMX 30568 gave 15.7 t/ha for roots and 20%, or 3.1 t/ha, for gari. TMX 1325 produced 14.9 t/ha for roots and 16.8%, or 2.5 t/ha, for gari. TMX 90 yielded 14.8 t/ha for cassava roots and 3 t/ha for gari. For TMX 59/159/91 and TMX 20, the root yields were 14.1 and 14.0 t/ha, respectively. However, TMX 20 produced a gari yield of 11.9%, or 1.7 t/ha, compared with 6.7%, or 1.0 t/ha for TMX 59/159/91.

It is important to consider gari processing as one of the reliable means of assessing cassava hybrids. Farmers may easily avoid use of hybrid cultivars for producing specific foods if their first attempt is a disappointment. Most of the cultivars in our study grew very vigorously without fertilizers; however, the yields were generally low because the cultivars were grown on marginal lands.