Tropical Root Crops

PRODUCTION AND USES IN AFRICA

Proceedings of the International Symposium of the International Society of Root Crops —
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters are at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

© International Development Research Centre 1984
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa, Canada

Terry, E.R.
Doku, E.V.
Arene, O.B.
Mahungu, N.M.

International Society for Tropical Root Crops. Africa Branch. Ibadan NG

IDRC-221e

UDC: 633.68

Microfiche edition available.

Il existe également une édition française de cette publication.
TROPICAL ROOT CROPS: PRODUCTION AND USES IN AFRICA
ABSTRACT

A mixture of original research, updates on procedures, literature reviews, and survey reports, this document resulted from the second symposium of the International Society for Tropical Root Crops — Africa Branch, with 77 participants from 16 countries. The focus was cassava, yams, cocoyams, and sweet potatoes, from the perspectives of breeders, agronomists, soil specialists, plant pathologists, entomologists, nutritionists, food technologists, etc. Learning from past successes and failures, many of the researchers directed their efforts toward problems obstructing progress in reaching improved production and use of root crops and attempted to view, realistically, the context in which their results would be applied.

RÉSUMÉ

Résultats de recherches récentes, mises à jour sur les méthodes de recherche, revues de publications et rapports de sondages sont contenus dans ce document issu du Deuxième symposium de la Société internationale pour les plantes-racines tropicales — Direction Afrique, qui a réuni 77 participants de 16 pays. Des communications sur le manioc, le taro, le yam et la patate douce ont été présentées par des phytoselecciónneurs, des agronomes, des pédologues, des phytopathologistes, des entomologistes et des spécialistes de la nutrition et des aliments, entre autres. Tirant leçon de leurs succès et de leurs échecs, beaucoup de ces chercheurs ont dirigé leurs efforts vers la solution des problèmes qui entravent l’augmentation de la production et de la consommation des plantes-racines et ont tenté de considérer d’un œil réaliste le contexte qui sera celui de l’application de leurs recherches.

RESUMEN

Una mezcla de investigaciones originales, actualizaciones de procedimientos, reseñas de literatura e informes de encuestas, este documento es el resultado del segundo simposio de la Sociedad Internacional de Raíces Tropicales, Filial Africana, que contó con 77 participantes de 16 países. El simposio se centró en la yuca, el ñame, el cocoyam y las batatas, desde la perspectiva de los fitomejoradores, los agrónomos, los especialistas en suelos, los patólogos vegetales, los entomólogos, los nutricionistas, los tecnólogos alimenticios, etc. A partir de los éxitos y fracasos anteriores, muchos de los investigadores encaminaron sus esfuerzos hacia los problemas que obstaculizan el avance para lograr una producción y un uso mejorados de las raíces y trataron de obtener una visión realista del contexto en que los resultados pueden ser aplicados.
TROPICAL ROOT CROPS:
PRODUCTION AND USES IN AFRICA

EDITORS: E.R. TERRY, E.V. DOKU, O.B. ARENE, AND N.M. MAHUNGU

PROCEEDINGS OF THE SECOND TRIENNIAL SYMPOSIUM OF THE INTERNATIONAL SOCIETY FOR TROPICAL ROOT CROPS — AFRICA BRANCH HELD IN DOUALA, CAMEROON, 14 – 19 AUGUST 1983
CONTENTS

Foreword .. 9

Participants .. 11

Official addresses
Opening address Nkaifon Perfura ... 15
Presidential address Bede N. Okigbo .. 16
Closing address Nkaifon Perfura .. 17

Introduction
Production potentials of major tropical root and tuber crops E.V. Doku 19
Potential utilization of major root crops, with special emphasis on
human, animal, and industrial uses D.G. Coursey .. 25

Cassava
Genetic parameters of cassava N.M. Mahungu, H.R. Chheda,
S.K. Hahn, and C.A. Fatokun ... 37
Evaluation of cassava clones for leaf production in Zaire N.B. Lutaladio 41
Cassava screening in Rwanda J. Mulindangabo .. 45
Effect of variety and planting time on the yield of cassava in Malawi
R.F. Nembozanga Sauti ... 49
Response of cassava to fertilizers and town refuse under continuous
cropping S.O. Odurukwe and U.I. Oji ... 51
Rapid multiplication of cassava by direct planting M.T. Dahniya and
S.N. Kallon ... 53
Effects of shade, nitrogen, and potassium on cassava I.N. Kasele,
S.K. Hahn, C.O. Oputa, and P.N. Vine .. 55
Weed interference in cassava–maize intercrop in the rain forest of
Nigeria Ray P.A. Unamma and L.S.O. Ene ... 59
Crop performance in complex mixtures: melon and okra in
cassava–maize mixture J.E.G. Ikeorgu, T.A.T. Wahua, and
H.C. Ezumah ... 63
Soil-conserving techniques in cassava and yam production P.N. Vine,
O.B. Ajayi, D.M. Mitchozounou, E.J. Hounkpatin, and
T. Hounkpevi .. 67
Factors limiting cassava production among peasants in Lukangu, Zaire
Kilumba Ndayi .. 71
Epidemiology of anthracnose in cassava C. Makambila 73
Cassava yield losses from brown leaf spot induced by *Cercosporidium henningsii* J.M. Teri, P.W. Mtakwa, and D. Mshana 79
Susceptibility of cassava to *Colletotrichum manihotis* Muimba- Kankolongo A., M.O. Adeniji, and E.R. Terry 82
Borriyodiplodia stem rot of cassava and methods of selecting varieties for resistance G.W. Otim-Nape ... 86
Distribution and severity of cassava mosaic in the Congo R. Massala ... 89
The cassava mealybug front hypothesis: role of indigenous natural enemies K.M. Lema, R.D. Hennessey, and H.R. Herren 90
Comparative biocology of two coccinellids, predators of the cassava mealybug, in the Congo G. Fabres and A. Kiyindou 93
Effects of fertilizer application on postembryonic development and reproduction of the cassava mealybug K.M. Lema and N.M. Mahungu .. 97
Control of the cassava green mite in Uganda B. Odongo and G. W. Otim-Nape ... 101
Studies on the nutrient content of yellow-pigmented cassava O. Safo-Kantanka, P. Aboagye, S.A. Amartey, and J.H. Oldham 103
Microbial breakdown of linamarin in fermenting cassava pulp M.A.N. Ejiofor and Nduka Okafor ... 105
Performance of a cassava peeling machine P.M. Nwokedi ... 108
An improved technique of processing cassava fufu Festus A. Numfor ... 111
Cassava-based diets for rabbits R.T. Fomunyam, A.A. Adegbola, and O.L. Oke ... 114
Effects of cassava meal on the hatchability of chicken eggs D.A. Ngoka, E.C. Chike, A.B. Awoniyi, T. Enyinnia, and S.O. Odurukwe 117

Yams

In-vitro culture of *Dioscorea rotundata* embryos C.E.A. Okezie, F.I.O. Nwoke, and S.N.C. Onkonwo ... 121
Economic indices for clonal selection and breeding of yams O.O. Okoli, J.U. Nwokoye, and C.C. Udugwu ... 125
Seed-yam production M.N. Alvarez and S.K. Hahn ... 129
Natural antifungal compounds from the peel of yam tubers S.K. Ogundana, D.T. Coxon, and C. Dennis ... 133
Optimal time for fertilization of *Dioscorea rotundata* S.C.O. Nwinyi ... 136
Effects of staking on tuber yield of three cultivars of trifoliate yam S.N. Lyonga and J.T. Ambe ... 138
Effect of time of staking on the development of anthracnose disease of water yam A.O. Nwankiti and I.U. Ahiara ... 140
Thermodynamics applied to the storage of yam tubers Godson O. Osuji ... 143
Root-knot susceptibility of crops grown with yam in Nigeria U.G. Atu and R.O. Ogbuju ... 147
Effects of cover plants on root-knot nematode population U.G. Atu and R.O. Ogbuju ... 149
Survival of *Botryodiplodia theobromae* in yam tissues B.I. Aderiye and S.K. Ogundana ... 151
Variability in the chemical composition of yams grown in Cameroon
 T. Agbor Egbe and S. Treche ... 153
Mineral content of yam tubers: raw, boiled, and as flour A. Bell 157
Introduction of flour from Dioscorea dumetorum in a rural area
 G. Martin, S. Treche, L. Noubi, T. Agbor Egbe, and
 S. Gwangwa’a .. 161

Cocoyams, Sweet Potatoes, and Others
In-vitro methods for cocoyam improvement E. Acheampong and
 G.G. Henshaw ... 165
Production of hybrid Xanthosoma sagittifolium and test for resistance to
 Pythium myriotylum A. Agueguia and S. Nzietchueng 169
Growth and development of Colocasia and Xanthosoma spp. under
 upland conditions M.C. Igbokwe .. 172
Effects of water-table depth on cocoyam B.S. Ghuman and R. Lal 175
Intercropping cocoyams with plantain: effects on the yield and disease of
 cocoyams M.C. Igbokwe, O.B. Arene, T.C. Ndubuizu, and
 E.E. Umana ... 182
Root rot of Xanthosoma sagittifolium caused by Pythium myriotylum
 in Cameroon Samuel Nzietchueng .. 185
Sweet-potato production potential in Rwanda G. Ndamage 189
Comportment studies with sweet potatoes in the highland zone of
 Cameroon S.N. Lyonga and J.A. Ayuk-Takem 192
Effects of vesicular-arbuscular mycorrhizae, temperature,
 and phosphorus on Fusarium wilt of sweet potato J.M. Ngeve and
 R.W. Roncadori ... 197
On-farm trials as a link between research and technology transfer
 H.J. Pfeiffer ... 203
Plantain in root-crop farming systems S.K. Karikari 206

References ... 209

Abstracts
Yellow-pigmented cassava revisited K.A. Oduro 229
Distribution and utilization of cassava in Malawi R.F. Nembozanga Sauti
Can cassava productivity be raised in Zambia? N. Hrishi 230
Prospects for developing new white yam varieties M.O. Akoroda 230
Extension of root-crops technology to African farmers T. Enyinnia,
 H.E. Okereke, and D.A. Ngoka ... 231
CASSAVA SCREENING IN RWANDA

J. MULINDANGABO

In Rwanda, work to improve cassava was begun in earnest in 1979 following serious damage from diseases and pests, especially cassava mosaic, bacterial blight, and the cassava green mite. The purpose of this paper is to describe progress in research by the Institut des sciences agronomiques du Rwanda (ISAR) in conjunction with the International Institute of Tropical Agriculture (IITA) to obtain and screen breeding material for resistance to disease and the green mite. The future prospects of cassava research in Rwanda are also discussed.

In 1978, ISAR outlined a screening program to find productive, disease-resistant varieties of cassava. It has now begun advanced yield trials, and final results are expected in another year and a half. Initial findings are promising.

OBJECTIVES

The aim of cassava screening in Rwanda is to obtain varieties that are:
- High yielders in terms of quantity and quality per unit area and time;
- Resistant to disease and insects that have an economic impact, with efforts being concentrated on cassava mosaic, bacterial blight, and acariasis;
- Low in hydrocyanic acid;
- Adapted to different environments in the cassava-growing areas of Rwanda, nutritious, and likely to be accepted by consumers.

IITA's procedures (Hahn 1982) were adopted for cassava screening in ISAR but were adapted to the agroecological conditions found in Rwanda.

RESULTS

Since 1979, five series of seed beds were prepared, representing 42,794 seeds, of which 18,000 came from exotic varieties (IITA) and 24,794 from local families.

Natural infection by cassava mosaic caused little damage, and Cercospora had no economic impact, as it attacked only the lower leaves. Bacterial blight was not observed. None of the plants were spared infestation by the cassava green mite, although some of the clones exhibited tolerance, which was exploited in later screening. The root characteristics of each plant were recorded at harvest.

Clonal evaluation trials were conducted to check and substantiate nursery findings and to try to assess the material for yield. Four series of evaluation trials have already been conducted with roughly 300 clones planted in rows with 4–6 stakes/clone, depending on the availability of planting material.

Observations were regularly recorded; the findings were that:
- 8–10 clones developed mosaic, with the borders consisting of heavily infected plants to facilitate natural infection. The vector, Bemisia tabaci, seems to play a very minor role in transmitting the disease under the conditions existing at Karama.
- All the clones were attacked by Cercospora henningsii, but the upper leaves were spared. Cercospora caribbaea was less severe in its attack.
- The number-one enemy was the green mite, to which all the clones were susceptible, especially during the dry season. Consideration was given to importing plant material in the form of tissues from resistant varieties that have been identified by IITA.

Clones with yields greater than 20 t/ha were selected for a screening trial (Table 1) on the basis of response to diseases and pests

1 Institut des sciences agronomiques du Rwanda (ISAR), Karama, Kigali, Rwanda.
Table 1. Results of clonal evaluation trials, 1980–82.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Infected with</th>
<th>Eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1980</td>
<td>1981</td>
<td>1982</td>
</tr>
<tr>
<td></td>
<td>335</td>
<td>386</td>
<td>324</td>
</tr>
<tr>
<td>Mosaic</td>
<td>41</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cercospora</td>
<td>260</td>
<td>210</td>
<td>105</td>
</tr>
<tr>
<td>Acariasis</td>
<td>335</td>
<td>366</td>
<td>324</td>
</tr>
</tbody>
</table>

Characteristics. Screening tests were to compare varieties from the clonal evaluation with a local variety (control). Two screening trials have already been conducted at Karama, and a third is under way. Only the first, set up in 1981, has been completely analyzed. It included 103 clones from the 1980 clonal evaluation. The control Eala 07 included four clones.

During the trial, the harvest was staggered. The first harvest, at 10 months, allowed ISAR staff to detect early, productive species, and the later harvests ensured productive species with longer growing cycles were detected.

Findings showed clonal tolerance to mosaic, susceptibility to Cercospora-induced diseases and acariasis, and a wide genetic range in resistance to drought and attack by the cassava green mite.

At the first harvest, 44 clones were selected and planted in advanced yield trials at Karama, Rubona, Mututu, and Mutara. The yield for these clones was equal to or greater than 20 t/ha (Table 2). The second harvest took place exactly 15 months after planting. The 44 clones selected during the first harvest for the advanced yield trials continued to produce satisfactorily.

Root characteristics were far more interesting in the second than in the first harvest, and there was a substantial increase in yields (Table 3). In fact:

- Some yields had doubled; for example, the control — a late variety — increased from 14.9 t/ha at 10 months to 36.8 t/ha at 15 months; and
- Varieties Eala 07/4, Ikiela/2, PYT Bulk 1977/69 were among the 10 best in both harvests.

In the third harvest after 20 months (Table 4):

- The variety PYT Bulk 1977/31 doubled its 15-month (35.9 t/ha) yield; i.e., it produced 70.9 t/ha;
- Eala 07/4 and Ikiela/2 produced the same yields after 10 months as after 15 or 20 months;
- The local varieties produced higher yields after 20 months than did the exotic families, once again demonstrating that local varieties are late in maturing.
- In the control Eala 07, there was little difference between 15-month and 20-month yields; and
- Although 20-month yields were higher than 15-month yields, the increases did not offset the additional time that the crop occupied the land. The 15-month crop seems the best suited to conditions in Rwanda.

The 44 varieties selected after the first harvest were further tested in advanced yield trials at Karama, Rubona, Mututu, and Mutara. Five local varieties served as controls, bringing the

Table 2. Yields for the 10 best clones in the screening trial, 10 months after planting.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fresh root yields (t/ha)</th>
<th>% of control yield</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kibombwe/1</td>
<td>31.3</td>
<td>210</td>
<td>Local</td>
</tr>
<tr>
<td>30572-1977/12</td>
<td>30.0</td>
<td>201</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07/4</td>
<td>29.6</td>
<td>199</td>
<td>Local</td>
</tr>
<tr>
<td>AYT Bulk 1977/12</td>
<td>28.3</td>
<td>190</td>
<td>IITA</td>
</tr>
<tr>
<td>Ikiela/2</td>
<td>28.2</td>
<td>189</td>
<td>Local</td>
</tr>
<tr>
<td>IYT Bulk 1977/11</td>
<td>27.8</td>
<td>187</td>
<td>IITA</td>
</tr>
<tr>
<td>AYT Bulk 1977/11</td>
<td>27.1</td>
<td>182</td>
<td>IITA</td>
</tr>
<tr>
<td>PYT Bulk 1977/69</td>
<td>27.0</td>
<td>181</td>
<td>IITA</td>
</tr>
<tr>
<td>PYT Bulk 1977/29</td>
<td>26.5</td>
<td>178</td>
<td>IITA</td>
</tr>
<tr>
<td>IYT Bulk 1977/18</td>
<td>25.2</td>
<td>169</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07 (control)</td>
<td>14.9</td>
<td>100</td>
<td>Average for 35 plots</td>
</tr>
</tbody>
</table>

Table 3. Yields for the 10 best clones in the screening trial, 15 months after planting.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fresh root yields (t/ha)</th>
<th>% of control yield</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiyumukwe/1</td>
<td>59.3</td>
<td>161</td>
<td>Local</td>
</tr>
<tr>
<td>Ikiela/2</td>
<td>56.7</td>
<td>154</td>
<td>Local</td>
</tr>
<tr>
<td>PYT Bulk 1977/19</td>
<td>56.6</td>
<td>153</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07/4</td>
<td>54.7</td>
<td>148</td>
<td>Local</td>
</tr>
<tr>
<td>PYT Bulk 1977/18</td>
<td>48.1</td>
<td>130</td>
<td>IITA</td>
</tr>
<tr>
<td>30001/9</td>
<td>47.3</td>
<td>128</td>
<td>IITA</td>
</tr>
<tr>
<td>PYT Bulk 1977/69</td>
<td>44.1</td>
<td>119</td>
<td>IITA</td>
</tr>
<tr>
<td>30595 Bulk 1977/10</td>
<td>40.5</td>
<td>110</td>
<td>IITA</td>
</tr>
<tr>
<td>30572 Bulk 1977/2</td>
<td>37.7</td>
<td>102</td>
<td>IITA</td>
</tr>
<tr>
<td>PYT Bulk 1977/31</td>
<td>35.9</td>
<td>97</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07 (control)</td>
<td>36.8</td>
<td>100</td>
<td>Average for 35 plots</td>
</tr>
</tbody>
</table>
had paid off. The crops were harvested in February and March 1983, i.e., after 15 months' growth (Table 5).

The variety Creolinha Java, which was introduced into Rwanda about 1930–32, stood out. Unfortunately, it tends to be fibrous and has not been accepted by the rural population. As it proved to be a good producer at all four sites, further work should be done on this variety.

A multiple mean comparison (P < 0.05) showed that Creolinha, Ntolili Seed 16, Kiyumukwe/3, Kibombwe/13, and Kiyumukwe/18 were significantly better than the other varieties; Kibombwe/13 was adapted to all four sites. Amer Eala 07, which currently has a wide distribution, proved to be a very promising variety. There are plans to improve it by crossing it with new varieties to shorten the growing cycle and introduce disease resistance. The differences attributable to environment were highly significant. The most favourable environmental conditions were found at Mututu and Mutara and the least at Rubona.

Table 4. Yields for the 10 best clones in the screening trial, 20 months after planting.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fresh root yields (t/ha)</th>
<th>% of control yield</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYT 1977/31</td>
<td>70.9</td>
<td>172</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07/4</td>
<td>68.7</td>
<td>167</td>
<td>Local</td>
</tr>
<tr>
<td>Kibombwe/14</td>
<td>64.7</td>
<td>157</td>
<td>Local</td>
</tr>
<tr>
<td>Ruharwe/3</td>
<td>57.4</td>
<td>140</td>
<td>Local</td>
</tr>
<tr>
<td>Ikiela/2</td>
<td>57.3</td>
<td>139</td>
<td>Local</td>
</tr>
<tr>
<td>Kiyumukwe/1</td>
<td>52.6</td>
<td>128</td>
<td>Local</td>
</tr>
<tr>
<td>Kiyumukwe/3</td>
<td>50.7</td>
<td>123</td>
<td>Local</td>
</tr>
<tr>
<td>PYT Bulk 1977/20</td>
<td>48.9</td>
<td>119</td>
<td>IITA</td>
</tr>
<tr>
<td>30395 Bulk 1977/9</td>
<td>48.2</td>
<td>117</td>
<td>IITA</td>
</tr>
<tr>
<td>IYT Bulk 1976/3</td>
<td>47.6</td>
<td>116</td>
<td>IITA</td>
</tr>
<tr>
<td>Eala 07 (control)</td>
<td>41.0</td>
<td>100</td>
<td>Average for 35 plots</td>
</tr>
</tbody>
</table>

The total number of varieties included in the trials to 49.

The trials were conducted jointly with the Service des semences sélectionnées of the Mutara Office de valorisation agricole et pastorale du Mutara. In the four sites, each variety was planted in rows with 8 plants/row in a Fischer block design with four replications. Planting took place in October–November 1981. The varieties showed good growth except at Rubona where the land set aside for the trial was poor. In general, phytosanitary conditions were satisfactory in the four trials, indicating that screening

Table 5. Mean yields (t/ha) of 20 varieties in advanced yield trials.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Karama</th>
<th>Rubona</th>
<th>Mutara</th>
<th>Mututu</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creolinha</td>
<td>38.8</td>
<td>16.8</td>
<td>82.4</td>
<td>52.5</td>
<td>47.6</td>
</tr>
<tr>
<td>Ntolili seed 16</td>
<td>37.0</td>
<td>16.2</td>
<td>46.5</td>
<td>57.2</td>
<td>39.2</td>
</tr>
<tr>
<td>Kiyumukwe/3</td>
<td>26.7</td>
<td>17.7</td>
<td>62.0</td>
<td>45.9</td>
<td>38.1</td>
</tr>
<tr>
<td>Kibombwe/13</td>
<td>24.2</td>
<td>22.1</td>
<td>63.9</td>
<td>37.8</td>
<td>37.0</td>
</tr>
<tr>
<td>Kiyumukwe/18</td>
<td>24.5</td>
<td>19.4</td>
<td>60.4</td>
<td>33.8</td>
<td>34.5</td>
</tr>
<tr>
<td>IYT 1977/7</td>
<td>24.9</td>
<td>13.4</td>
<td>52.4</td>
<td>40.0</td>
<td>33.4</td>
</tr>
<tr>
<td>Kibombwe/14</td>
<td>29.6</td>
<td>16.6</td>
<td>61.5</td>
<td>24.1</td>
<td>32.9</td>
</tr>
<tr>
<td>Eala 07</td>
<td>37.8</td>
<td>19.3</td>
<td>39.9</td>
<td>34.4</td>
<td>32.9</td>
</tr>
<tr>
<td>Mulundi</td>
<td>20.6</td>
<td>15.9</td>
<td>39.8</td>
<td>54.7</td>
<td>32.7</td>
</tr>
<tr>
<td>IYT Bulk 1977/11</td>
<td>23.2</td>
<td>19.8</td>
<td>44.7</td>
<td>40.6</td>
<td>32.1</td>
</tr>
<tr>
<td>Ikiela/1</td>
<td>31.7</td>
<td>8.9</td>
<td>39.6</td>
<td>42.2</td>
<td>30.6</td>
</tr>
<tr>
<td>Kibombwe/1</td>
<td>25.0</td>
<td>22.8</td>
<td>23.8</td>
<td>48.1</td>
<td>29.9</td>
</tr>
<tr>
<td>30572 1977/24</td>
<td>13.5</td>
<td>15.6</td>
<td>20.8</td>
<td>63.1</td>
<td>28.3</td>
</tr>
<tr>
<td>PYT Bulk 1977/69</td>
<td>31.4</td>
<td>11.1</td>
<td>42.9</td>
<td>25.9</td>
<td>27.8</td>
</tr>
<tr>
<td>Eala 07/4</td>
<td>24.3</td>
<td>12.9</td>
<td>38.4</td>
<td>31.6</td>
<td>26.8</td>
</tr>
<tr>
<td>Maguru</td>
<td>25.9</td>
<td>11.9</td>
<td>40.9</td>
<td>26.9</td>
<td>26.4</td>
</tr>
<tr>
<td>30395 1977/11</td>
<td>21.9</td>
<td>7.3</td>
<td>40.5</td>
<td>30.6</td>
<td>25.1</td>
</tr>
<tr>
<td>IYT Bulk 1976/6</td>
<td>12.3</td>
<td>8.2</td>
<td>19.2</td>
<td>59.4</td>
<td>24.8</td>
</tr>
<tr>
<td>Kiyumukwe/21</td>
<td>20.1</td>
<td>15.6</td>
<td>26.8</td>
<td>34.7</td>
<td>24.3</td>
</tr>
<tr>
<td>IYT Bulk 1976/9</td>
<td>15.9</td>
<td>6.2</td>
<td>27.8</td>
<td>46.9</td>
<td>24.2</td>
</tr>
</tbody>
</table>
were selected. The purpose of the trial was to screen the one or two best varieties for propagation and distribution in a rural environment.

FUTURE PROSPECTS AND CONCLUSIONS

As a result of the initial findings, research will concentrate on:

- Development of a hybrid-producing program designed to improve local varieties, i.e., Eala 07, Creolinha, Maguruyinkware, which have the advantage of being well adapted to Rwanda's ecological conditions but the drawback of being susceptible to diseases. Crossing the best varieties in the selection with local varieties should produce highly productive offspring that are both disease-resistant and adapted to the country's ecological conditions. This hybridization program is to begin in 1984.
- The best varieties from screening will be tested in a rural environment in the Bugesera and Gisaka-Migongo regions as part of a joint study with the farming-system program. This program receives financial aid from the World Bank via the Bugesera-Gisaka-Migongo (BGM) project that has been operating in the region for close to 6 years. Scientific support is provided by IITA, which has supplied two scientists to work in the program. Variety tests in a rural environment will begin with the 1983–84 growing season.
- Trials on cultural methods (planting dates, mixed cassava cropping, mode and method of planting) will be conducted, and the Karama station is to pursue its work on the rapid propagation of the most promising cassava varieties.

I wish to thank Dr S. K. Hahn, the director of IITA's root-crop program, who visited the ISAR project on two occasions, advised judiciously, and offered encouragement. Thanks also go to all those who have helped in the program and without whom this work could not have been satisfactorily completed. Also, I am grateful to ISAR and IDRC for making it possible for me to attend this symposium.