Tropical Root Crops

PRODUCTION AND USES IN AFRICA

Proceedings of the Special Symposium of the International Society for Root Crops —
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

The International Society for Tropical Root Crops — Africa Branch was created in 1978 to stimulate research, production, and utilization of root and tuber crops in Africa and the adjacent islands. The activities include encouragement of training and extension, organization of workshops and symposia, exchange of genetic materials, and facilitation of contacts between personnel working with root and tuber crops. The Society's headquarters are at the International Institute of Tropical Agriculture in Ibadan, Nigeria, but its executive council comprises eminent root and tuber researchers from national programs throughout the continent.

© International Development Research Centre 1984
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa, Canada

Terry, E.R.
Doku, E.V.
Arene, O.B.
Mahungu, N.M.

International Society for Tropical Root Crops. Africa Branch, Ibadan NG

IDRC-221e

UDC: 633.68

Microfiche edition available.
Il existe également une édition française de cette publication.
TROPICAL ROOT CROPS: PRODUCTION AND USES IN AFRICA
ABSTRACT

A mixture of original research, updates on procedures, literature reviews, and survey reports, this document resulted from the second symposium of the International Society for Tropical Root Crops — Africa Branch, with 77 participants from 16 countries. The focus was cassava, yams, cocoyams, and sweet potatoes, from the perspectives of breeders, agronomists, soil specialists, plant pathologists, entomologists, nutritionists, food technologists, etc. Learning from past successes and failures, many of the researchers directed their efforts toward problems obstructing progress in reaching improved production and use of root crops and attempted to view, realistically, the context in which their results would be applied.

RÉSUMÉ

Résultats de recherches récentes, mises à jour sur les méthodes de recherche, revues de publications et rapports de sondages sont contenus dans ce document issu du Deuxième symposium de la Société internationale pour les plantes-racines tropicales — Direction Afrique, qui a réuni 77 participants de 16 pays. Des communications sur le manioc, le taro, le yam et la patate douce ont été présentées par des phytoselecteurs, des agronomes, des pédologues, des phytopathologistes, des entomologistes et des spécialistes de la nutrition et des aliments, entre autres. Tirant leçon de leurs succès et de leurs échecs, beaucoup de ces chercheurs ont dirigé leurs efforts vers la solution des problèmes qui entravent l’augmentation de la production et de la consommation des plantes-racines et ont tenté de considérer d’un œil réaliste le contexte qui sera celui de l’application de leurs recherches.

RESUMEN

Una mezcla de investigaciones originales, actualizaciones de procedimientos, reseñas de literatura e informes de encuestas, este documento es el resultado del segundo simposio de la Sociedad Internacional de Raíces Tropicales, Filial Africana, que contó con 77 participantes de 16 países. El simposio se centró en la yuca, el nabo, el cocoyam y las batatas, desde la perspectiva de los fitomejoradores, los agrónomos, los especialistas en suelos, los patólogos vegetales, los entomólogos, los nutricionistas, los tecnólogos alimenticios, etc. A partir de los éxitos y fracasos anteriores, muchos de los investigadores encaminaron sus esfuerzos hacia los problemas que obstaculizan el avance para lograr una producción y un uso mejorados de las raíces y trataron de obtener una visión realista del contexto en que los resultados pueden ser aplicados.
Tropical Root Crops: Production and Uses in Africa

Editors: E.R. Terry, E.V. Doku, O.B. Arene, and N.M. Mahungu

Proceedings of the Second Triennial Symposium of the International Society for Tropical Root Crops — Africa Branch Held in Douala, Cameroon, 14 – 19 August 1983
CONTENTS

Foreword ... 9

Participants .. 11

Official addresses
Opening address **Nkaifon Perfura** .. 15
Presidential address **Bede N. Okigbo** 16
Closing address **Nkaifon Perfura** .. 17

Introduction
Production potentials of major tropical root and tuber crops **E.V. Doku** 19
Potential utilization of major root crops, with special emphasis on human, animal, and industrial uses **D.G. Coursey** 25

Cassava
Genetic parameters of cassava **N.M. Mahungu, H.R. Chheda, S.K. Hahn, and C.A. Fatokun** .. 37
Evaluation of cassava clones for leaf production in Zaire **N.B. Lutaladio** 41
Cassava screening in Rwanda **J. Mulindangabo** 45
Effect of variety and planting time on the yield of cassava in Malawi **R.F. Nembozanga Sauti** .. 49
Response of cassava to fertilizers and town refuse under continuous cropping **S.O. Odurukwe and U.I. Oji** 51
Rapid multiplication of cassava by direct planting **M.T. Dahniya and S.N. Kallon** ... 53
Effects of shade, nitrogen, and potassium on cassava **I.N. Kasele, S.K. Hahn, C.O. Oputa, and P.N. Vine** 55
Weed interference in cassava—maize intercrop in the rain forest of Nigeria **Ray P.A. Unamma and L.S.O. Ene** 59
Crop performance in complex mixtures: melon and okra in cassava—maize mixture **J.E.G. Ikeorgu, T.A.T. Wahua, and H.C. Ezumah** ... 63
Soil-conserving techniques in cassava and yam production **P.N. Vine, O.B. Ajayi, D.M. Mitchozounou, E.J. Hounkpatin, and T. Hounkevi** ... 67
Factors limiting cassava production among peasants in Lukangu, Zaire **Kilumba Ndayi** ... 71
Epidemiology of anthracnose in cassava **C. Makambila** 73
Cassava yield losses from brown leaf spot induced by Cercosporidium henningsii J.M. Teri, P.W. Mtakwa, and D. Mshana 79
Susceptibility of cassava to Colletotrichum manihotis Muimba-
Kankolongo A., M.O. Adeniji, and E.R. Terry 82
Bororyodiplodia stem rot of cassava and methods of selecting varieties for resistance G.W. Otim-Nape 86
Distribution and severity of cassava mosaic in the Congo R. Massala ... 89
The cassava mealybug front hypothesis: role of indigenous natural enemies K.M. Lema, R.D. Hennessy, and H.R. Herren 90
Comparative bioecology of two coccinellids, predators of the cassava mealybug, in the Congo G. Fabres and A. Kiyindou 93
Effects of fertilizer application on postembryonic development and reproduction of the cassava mealybug K.M. Lema and N.M. Mahungu ... 97
Control of the cassava green mite in Uganda B. Odongo and G. W. Otim-Nape ... 101
Studies on the nutrient content of yellow-pigmented cassava O. Safo-Kantanka, P. Aboagye, S.A. Amartey, and J.H. Oldham 103
Microbial breakdown of linamarin in fermenting cassava pulp M.A.N. Ejiofor and Nduka Okafor ... 105
Performance of a cassava peeling machine P.M. Nwokedi 108
An improved technique of processing cassava fufu Festus A. Numfor .. 111
Cassava-based diets for rabbits R.T. Fomunyam, A.A. Adegbola, and O.L. Oke ... 114
Effects of cassava meal on the hatchability of chicken eggs D.A. Ngoka, E.C. Chike, A.B. Awoniyi, T. Enyinnia, and S.O. Odurukwe 117

Yams
In-vitro culture of Dioscorea rotundata embryos C.E.A. Okezie, F.I.O. Nwoke, and S.N.C. Okonkwo ... 121
Economic indices for clonal selection and breeding of yams O.O. Okoli, J.U. Nwokoye, and C.C. Udugwu 125
Seed-yam production M.N. Alvarez and S.K. Hahn 129
Natural antifungal compounds from the peel of yam tubers S.K. Ogundana, D.T. Coxon, and C. Dennis 133
Optimal time for fertilization of Dioscorea rotundata S.C.O. Nwinyi 136
Effects of staking on tuber yield of three cultivars of trifoliate yam S.N. Lyonga and J.T. Ambe .. 138
Effect of time of staking on the development of anthracnose disease of water yam A.O. Nwankiti and I.U. Ahiara 140
Thermodynamics applied to the storage of yam tubers Godson O. Osuji ... 143
Root-knot susceptibility of crops grown with yam in Nigeria U.G. Atu and R.O. Ogbiuji .. 147
Effects of cover plants on root-knot nematode population U.G. Atu and R.O. Ogbiuji .. 149
Survival of Botryodiplodia theobromae in yam tissues B.I. Aderiye and S.K. Ogundana ... 151
Variability in the chemical composition of yams grown in Cameroon
 T. Agbor Egbe and S. Treche ... 153
Mineral content of yam tubers: raw, boiled, and as flour A. Bell 157
Introduction of flour from Dioscorea dumetorum in a rural area
 G. Martin, S. Treche, L. Noubi, T. Agbor Egbe, and
 S. Gwangwa’a .. 161

Cocoyams, Sweet Potatoes, and Others
In-vitro methods for cocoyam improvement E. Acheampong and
 G.G. Henshaw ... 165
Production of hybrid Xanthosoma sagittifolium and test for resistance to
 Pythium myriotylum A. Agueguia and S. Nzietchueng 169
Growth and development of Colocasia and Xanthosoma spp. under
 upland conditions M.C. Igbokwe 172
Effects of water-table depth on cocoyam B.S. Ghuman and R. Lal 175
Intercropping cocoyams with plantain: effects on the yield and disease of
 cocoyams M.C. Igbokwe, O.B. Arene, T.C. Ndubizu, and
 E.E. Umana ... 182
Root rot of Xanthosoma sagittifolium caused by Pythium myriotylum
 in Cameroon Samuel Nzietchueng 185
Sweet-potato production potential in Rwanda G. Ndamage 189
Comportment studies with sweet potatoes in the highland zone of
 Cameroon S.N. Lyonga and J.A. Ayuk-Takem 192
Effects of vesicular-arbuscular mycorrhizae, temperature,
 and phosphorus on Fusarium wilt of sweet potato J.M. Ngeve and
 R.W. Roncadori ... 197
On-farm trials as a link between research and technology transfer
 H.J. Pfeiffer ... 203
Plantain in root-crop farming systems S.K. Karikari 206

References ... 209

Abstracts
Yellow-pigmented cassava revisited K.A. Oduro 229
Distribution and utilization of cassava in Malawi R.F. Nembozanga Sauti 229
Can cassava productivity be raised in Zambia? N. Hrishi 230
Prospects for developing new white yam varieties M.O. Akoroda 230
Extension of root-crops technology to African farmers T. Enyinnia,
 H.E. Okereke, and D.A. Ngoka .. 231
CROP PERFORMANCE IN COMPLEX MIXTURES: MELON AND OKRA IN CASSAVA—MAIZE MIXTURE

J.E.G. Ikeorgu,¹ T.A.T. Wahua,² and H.C. Ezumah³

We conducted a 2-year investigation at Ibadan, Nigeria, to determine the economic benefits of including melon and okra in a cassava—maize intercropping system. Fresh-root yields of cassava were reduced by 28% by maize in the mixture but only by 3%, 6%, and 9% by okra, melon, or both, respectively. Intercropping had no adverse effect on the grain yield of maize; rather yield was 19% higher in the maize–cassava intercrop than in monoculture. Fresh-froot yields of okra were reduced by 72%, 89%, and 56% in mixtures with cassava, cassava–maize, and cassava–maize–melon, respectively. Melon-seed yields were decreased by 56% and 76% in mixtures with cassava and cassava–maize, respectively. The cassava–maize cropping system yielded the highest amount of calories per hectare; however, total productivity per unit area of land was highest in the cassava–maize mixture with both okra and melon.

As a long-duration (9–18 months) crop, cassava is suitable for intercropping with plants that mature within 2–3 months (before the cassava canopies close). Okigbo and Greenland (1976) estimated that about 50% of the cassava grown in tropical Africa is intercropped with cereals, grain legumes, leafy vegetables, and fruits as well as tree crops. Although there are several reasons that farmers intercrop (Watters 1971; Norman 1975; Andrews and Kassam 1976; Okigbo and Greenland 1976), the most important is that total productivity per unit of land and total income are higher under intercrops than under monocultures. Furthermore, by intercropping, farmers reduce the risk of losing their base crop. Andrews (1972) and Kassam and Stockinger (1973) showed that intercropping is most rewarding when the crops make their maximum demands on the environment (soil nutrients, soil moisture and temperature, light, etc.) at different times.

Maize is the most common crop grown with cassava in Latin America (Moreno and Hart 1979), Asia (Kumar and Hrishi 1979), and Africa (Okigbo 1978) because of the productivity and compatibility of the mixture. The faster growing maize exploits the microenvironment earlier in the growing season than does the cassava. In Nigeria, maize is intercropped about 80% of the time (Okigbo 1977), and a cassava–maize intercropping package has been recommended to farmers by the National Accelerated Food Production Project (NAFPP 1977). Because cassava–maize constitutes the dominant mixture in many traditional intercropping systems, researchers have tended to ignore the other components of the systems — vegetables such as melon, okra, African spinach, fluted pumpkins, and even tomatoes. For instance, all over West Africa, melon (Colocynthis vulgaris) and okra (Abelmoschus esculentus) are popular, although little attention has been paid to them. In one study, Fagbamiye (1977) showed that melon performed poorly in cropping systems based on cassava, maize, and yams but improved the yields of the base crops. We examined the productivity of the cassava–maize mixture, with or without melon and okra, to see how the vegetables affected the mixture microenvironment.

MATERIALS AND METHODS

The study was conducted at the teaching and research farm of the University of Ibadan. The area has two rainy periods — one from April to July (early season), which accounts for most of the 1250-mm annual rainfall, and the other from August to November (late season). Our investigation was carried out during the early seasons.
of 1981 and 1982 on sandy loam of Egbeda soil series (Oxic Paleustalf) classified as Alfsols or Ferric Luvisols. Initial soil analysis indicated pH 6.5; organic matter 1.34%; total N 0.09%; 12.63 μg/g Bray-L-P; and exchangeable Ca, Mg, and K of 3.11, 0.72, 0.38 meq/100 g.

Two morphologically different cassava cultivars: TMS 30001 (sparse canopy, upright) and TMS 30572 (dense canopy, spreading) were combined with maize (TZPB), egusi melon, and an early maturing okra (V45) collected from the National Seed Service, Ibadan. Along with monocultures of each variety, we investigated cassava—maize—okra—melon; cassava—maize—okra; cassava—maize—melon; cassava—maize; cassava—okra; cassava—melon; and cassava—okra—melon, for each cassava variety. The experiment was a split plot fitted into a randomized complete block design with three replicates. The two cassava cultivars formed the main plots and the various crop combinations formed the subplots. Each subplot was 8 m × 8 m.

The land was plowed and harrowed, and all crops were planted at the same time on the flat: the cassava at 1 m × 1 m; the maize (2 plants/hill) between the cassava rows also at 1 m × 1 m; the okra (2 plants/stand) was alternated with cassava within the row; and the melon was planted between the maize and cassava. Thus, the cassava population was 10 000/ha and that of the other components was 20 000 plants/ha, although, in 1982, the melon population was reduced to 10 000 plants/ha.

NPK fertilizer (15:15:15 — 200 kg/ha in 1981 and 400 kg/ha in 1982) was applied to all plots. Plots without melon were weeded twice (21 and 42 days after planting, DAP) and those with melon, only once (21 DAP).

The melons were harvested at 80 DAP and processed for seeds. Okra was harvested at 3–4-day intervals for 6 weeks, starting at 50 DAP. Maize was harvested 100 DAP, dried to 14% moisture, shelled, and weighed. Cassava was harvested at 10 months (ca 300 DAP), and roots were weighed fresh. All weights were extrapolated to yield/hectare.

We used analysis of variance for a split-plot design to assess treatment effects and compared means by Duncan's multiple-range test at the 5% level of significance. The differences attributable to cassava cultivar were not significant; therefore, the values presented in this paper are means for the two cultivars.

RESULTS AND DISCUSSION

Cassava yields were significantly reduced by intercropping (Table 1): in combination with maize, the reduction was 28%. Kang and Wilson (1981) had earlier observed that TZPB maize decreased cassava yields more than an early maturing variety (TZE). The inclusion of okra, melon, or both in cassava—maize mixtures reduced cassava-root yields an additional 3%, 6%, and 9%, respectively.

Intercropping had no adverse effect on maize grain yield: rather, maize yields were 19% higher in the cassava—maize mix than in monoculture, and the reduced cassava yields were compen-

<table>
<thead>
<tr>
<th></th>
<th>Cassava</th>
<th>Maize</th>
<th>Okra</th>
<th>Melon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoculture</td>
<td>25.46a</td>
<td>20.40a</td>
<td>2.29ab</td>
<td>2.96a</td>
</tr>
<tr>
<td>Cassava—maize</td>
<td>19.40b</td>
<td>13.42b</td>
<td>3.07a</td>
<td>3.17a</td>
</tr>
<tr>
<td>Cassava—maize—okra</td>
<td>17.79bc</td>
<td>13.79b</td>
<td>2.32ab</td>
<td>3.00a</td>
</tr>
<tr>
<td>Cassava—maize—melon</td>
<td>14.90c</td>
<td>15.32b</td>
<td>2.42ab</td>
<td>2.84a</td>
</tr>
<tr>
<td>Cassava—maize—okra—melon</td>
<td>16.40bc</td>
<td>12.61b</td>
<td>2.00b</td>
<td>3.26a</td>
</tr>
<tr>
<td>Cassava—okra</td>
<td>25.63a</td>
<td>20.10a</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cassava—melon</td>
<td>22.03ab</td>
<td>16.93bc</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cassava—okra—melon</td>
<td>18.55bc</td>
<td>16.96bc</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within a column do not differ at P < 0.05.

Table 1. Yields (t/ha) of cassava, maize, okra, and melon grown alone and in mixtures.
Table 2. Comparison of caloric equivalents and land-equivalent ratios (LERs) obtained from sole cassava and from four intercropping systems involving cassava, maize, okra, and melon.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Mean for 2 years</th>
<th>Calories (1 × 10^7 cal/ha/day)</th>
<th>LER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sole cassava</td>
<td></td>
<td>9.70</td>
<td>1.00</td>
</tr>
<tr>
<td>Cassava–maize</td>
<td></td>
<td>18.74</td>
<td>1.91</td>
</tr>
<tr>
<td>Cassava–maize–okra</td>
<td></td>
<td>16.80</td>
<td>1.81</td>
</tr>
<tr>
<td>Cassava–maize–melon</td>
<td></td>
<td>17.67</td>
<td>1.92</td>
</tr>
<tr>
<td>Cassava–maize–okra–melon</td>
<td></td>
<td>17.50</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Cassava–maize (already harvested) mixes are popular wherever root crops are grown in the tropics.

Okra yields were reduced by 72%, 89%, and 56% in mixtures with cassava, cassava–maize, and cassava–maize–melon, respectively. Okra performed better in mixtures with melon than in those without, confirming earlier observations (IITA 1975; Fagbamiye 1977) that the yields from crops associated with melon are usually improved.

Yields of melon seed were significantly decreased in combinations with cassava.

All the crop combinations produced higher caloric equivalents and land-equivalent ratios than were obtained under monoculture cassava (Table 2).
sava—maize—melon were superior in terms of land-equivalent ratios. Traditionally, farmers prefer multicrop mixtures to satisfy their dietary needs. Further work is needed to determine the optimal crops and combinations.

We acknowledge, with gratitude, the financial support from the International Foundation for Science under grant 474. We also thank the National Root Crops Research Institute, Umudike; IITA, Ibadan; and the Department of Agronomy, University of Ibadan for providing technical assistance.