INTERCROPPING
in semi-arid areas

Report of a symposium held at the
Faculty of Agriculture, Forestry
and Veterinary Science,
University of Dar es Salaam,
Morogoro, Tanzania,
10-12 May 1976

Editors:
J. H. Monyo, A. D. R. Ker,
and Marilyn Campbell

IDRC-076e
Monyo, J. H.
Ker, A. D. R.
Campbell, M.
IDRC

/IDRC pub CRDI/. Report of a symposium on /intercropping/ in semi/arid zone/s in the /tropical zone/, with an examination of /agricultural research/ activities — examines the effects of intercropping on /crop/ /plant production/; includes /research result/s, /list of participants/, /bibliography/c notes.

Microfiche Edition $1
Intercropping in Semi-Arid Areas

Report of a symposium held at the Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania, 10–12 May 1976

Editors: J. H. Monyo, A. D. R. Ker, and Marilyn Campbell

The views expressed in this publication are those of the individual author(s) and do not necessarily represent the views of IDRC.
Farmer's field near Ibadan, Nigeria, showing intercrop of cowpea under maize
Contents

Foreword A. D. R. Ker .. 5

Addresses to the Participants

Welcoming address A. M. Hokororo 8
Opening address Hon Mr J. S. Malecela 9

Summaries of Papers Presented

An appraisal of some intercropping methods in terms of
grain yield, response to applied phosphorus, and monetary
return from maize and cowpeas Y. A. Sudi, H. O. Mongi,
A. P. Uriyo, and B. R. Singh 12

Rhizosphere populations in intercropped maize and soybean
T. H. M. Kibani, C. L. Keswani, and M. S. Chowdhury 13

Intercropping for increased and more stable agricultural
production in the semi-arid tropics B. A. Krantz,
S. M. Virmani, Sardar Singh, and M. R. Rao 15

Cropping systems research: the scope and strategy for
research in crop combinations based on experience of
previous and current studies B. N. Okigbo 16

Mixed cropping research at the Institute for Agricultural
Research, Samaru, Nigeria E. F. I. Baker and Y. Yusuf 17

Crop production practices in intercropping systems
R. C. Finlay ... 18

Effects of crop combinations and planting configurations on
the growth and yield of soybeans, millet, and sorghum in
intercropping R. K. Jana and V. M. Sekao 19

Intercropping with sorghum at Alemaya, Ethiopia
Brhane Gebrekidan .. 21

Studies on mixtures of maize and beans with particular
emphasis on the time of planting beans D. S. O. Osiru and
R. W. Willey .. 23

Intercropping of cassava with vegetables G. F. Wilson
and M. O. Adeniran ... 24

Some aspects of the productivity and resource use of
mixtures of sunflower and fodder radish R. W. Willey and
D. A. Lakhani .. 25

Preliminary results of intercropping trials in Zaire with
maize and certain legumes Thomas G. Hart and Mangha Kewe 27

(con’t.)
Contents (concluded)

Effects of maize height difference on the growth and yield of intercropped soybeans D. R. Thompson, J. H. Monyo, and R. C. Finlay ... 29

Intercropping as a means of producing off-season tomatoes during the hot summer months in the Sudan A. T. Abdel Hafeez 30

Development of cowpea ideotypes for farming systems in Western Nigeria Olatunde A. Ojomo ... 30

Cereal–legume breeding for intercropping R. C. Finlay 31

Cowpea as an intercrop under cereals H. C. Wien and D. Nangju 32

Selection criteria in intercrop breeding R. C. Finlay 33

Experiments with maize–bean and maize–potato mixed crops in an area with two short rainy seasons in the highlands of Kenya N. M. Fisher ... 37

Pest control in mixed cropping systems H. Y. Kayumbo 39

Measuring plant density effects on insect pests in intercropped maize–cowpeas B. M. Gerard .. 41

Effects of spraying on yield of cowpeas grown in monoculture and under maize, sorghum, or millet H. Y. Kayumbo, R. C. Finlay, and S. A. Doto ... 44

Possible relationship between intercropping and plant disease problems in Uganda J. Mukiibi ... 45

Attempted control of virus incidence in cowpeas by the use of barrier crops S. A. Shoyinka .. 46

Induced resistance to bean rust and its possible epidemiological significance in mixed cropping D. J. Allen ... 46

A limited objective approach to the design of agronomic experiments with mixed crops N. M. Fisher .. 47

Systematic spacing designs as an aid to the study of intercropping P. A. Huxley and Z. Maingu ... 50

Future directions of intercropping and farming systems research in Africa A. D. R. Ker .. 51

Developing mixed cropping systems relevant to the farmers’ environment D. W. Norman .. 52

Assessment of innovations in intercropping systems C. D. S. Bartlett, E. A. Manday, and G. I. Mlay .. 58

Summary and Conclusions D. W. Norman 59

H. Doggett ... 62

References ... 63

List of Participants ... 67
These and other mixed cropping experiments have demonstrated that the subsistence farmer has developed a highly sophisticated system of cropping based upon good economic sense. We feel that the answer to the question is an unqualified "yes" and now intend moving to high input mixed cropping. Particularly we intend looking at the part played by nitrogen fixation by legumes within mixtures and the possibility of growing continuous legume crops within mixtures of various other crops. We also intend investigating rearrangements of the cereal component to give yet higher populations, possibly by closing up rows and sowing double rows to facilitate mechanization. We have already initiated lysimeter studies to investigate water use by high populations in mixtures.

Finally, preliminary studies have shown that trifluralin is selective in cotton, castor, okra, groundnuts, soybean, sunflower, and tomatoes; chlorbromuron is selective in soybean, maize, and sorghum; and linuron is selective in millet, maize, cowpea, cotton, soybean, and groundnuts. The last is being developed as a herbicide for use in millet/sorghum and cowpea mixtures.

Crop Production Practices in Intercropping Systems

R. C. Finlay¹

Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania

At the beginning of an intercrop research production program, it is important to identify quickly those factors that in combination increase agricultural production in terms of both quantity and quality.

It is suggested that an interlinked three-tier system be established involving: (1) studies on research fields; (2) experiments in village research-extension demonstrations; and (3) production data collection by sampling in actual farm conditions.

The purpose is to establish a testing and information network that will be self-checking. Priorities are established in meaningful terms within the real crop production sector. Data on the research innovations under development in the farmers' environment are continually being generated, analyzed, and corrected. These are all linked through field research studies, village research-extension experiments, and farmers' recommendations from within their own farming systems. The entire program is based on a recommendation-generating crop production system set within the framework in which the innovation is to function.

¹Present address: Plant Science Department, University of Manitoba, Winnipeg, Man.