OIL CROPS: SESAME AND SUNFLOWER SUBNETWORKS

PROCEEDINGS OF THE JOINT SECOND WORKSHOP HELD IN CAIRO, EGYPT, 9–12 SEPTEMBER 1989
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in six sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; earth and engineering sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Le Centre de recherches pour le développement international, société publique créée en 1970 par une loi du Parlement canadien, a pour mission d'appuyer des recherches visant à adapter la science et la technologie aux besoins des pays en développement; il concentre son activité dans six secteurs : agriculture, alimentation et nutrition; information; santé; sciences sociales; sciences de la terre et du génie et communications. Le CRDI est financé entièrement par le Parlement canadien, mais c'est un Conseil des gouverneurs international qui en détermine l'orientation et les politiques. Etabli à Ottawa (Canada), il a des bureaux régionaux en Afrique, en Asie, en Amérique latine et au Moyen-Orient.

El Centro Internacional de Investigaciones para el Desarrollo es una corporación pública creada en 1970 por el Parlamento de Canadá con el objeto de apoyar la investigación destinada a adaptar la ciencia y la tecnología a las necesidades de los países en desarrollo. Su actividad se concentra en seis sectores: ciencias agrícolas, alimentos y nutrición; ciencias de la salud; ciencias de la información; ciencias sociales; ciencias de la tierra e ingeniería; y comunicaciones. El Centro es financiado exclusivamente por el Parlamento de Canadá; sin embargo, sus políticas son trazadas por un Consejo de Gobernadores de carácter internacional. La sede del Centro está en Ottawa, Canadá, y sus oficinas regionales en América Latina, África, Asia y el Medio Oriente.

This series includes meeting documents, internal reports, and preliminary technical documents that may later form the basis of a formal publication. A Manuscript Report is given a small distribution to a highly specialized audience.

La présente série est réservée aux documents issus de colloques, aux rapports internes et aux documents techniques susceptibles d'être publiés plus tard dans une série de publications plus soignées. D'un tirage restreint, le rapport manuscrit est destiné à un public très spécialisé.

Esta serie incluye ponencias de reuniones, informes internos y documentos técnicos que pueden posteriormente conformar la base de una publicación formal. El informe recibe distribución limitada entre una audiencia altamente especializada.
OIL CROPS:
SESAME AND SUNFLOWER SUBNETWORKS

Proceedings of the Joint Second Workshop
held in Cairo, Egypt, 9–12 September 1989

Edited by
Abbas Omran
Technical Adviser, Oil Crops Network

Organized by
Agricultural Research Centre, MOA, Giza, Egypt
and
International Development Research Centre, Canada

Sponsors
Food and Agriculture Organization, Industrial Crops and European Office, Rome
International Bureau of Plant Genetic Resources, Rome
International Development Research Centre, Canada

Scientific and Organizing Committee
Dr Abbas Omran
Dr Badr A. El-Ahmar
Dr Eglal Rashed
Material contained in this report is produced as submitted and has not been subjected to peer review or editing by IDRC Communications Division staff. Unless otherwise stated, copyright for material in this report is held by the authors. Mention of proprietary names does not constitute endorsement of the product and is given only for information.
In September 1989, the Sunflower and Sesame subnetworks held their bi-annual meetings in Cairo, Egypt. The meetings were well attended and papers, presented in these proceedings, provide a very informative overview of some of the cropping systems, management practices, production constraints and research highlights for both crops in several countries.

Chronic edible oil deficit is a major problem facing many developing countries in Africa and Asia where most countries are forced to import large quantities to satisfy the requirements of their growing populations. With the present rates of population increase and the improvement of nutrition standards it is likely that the consumption of edible oil will rise over the years, increasingly drawing on scarce foreign exchange for the importation of this vital food staple. For this reason, several countries have opted to increase self-sufficiency in edible oil.

Production deficits are due to a number of factors, among which neglect in oilcrops research, in both developed and developing countries has been a major one. This is particularly true for minor crops such as sesame. In the context of the IDRC oilcrops network, initiated in 1981, the interchange of information and the sharing of results between scientists have proved to be very useful and beneficial for the generation of scientific knowledge and the stimulation of research in this important area. It is hoped that conclusions and recommendations of this meeting will stimulate further research and development in the future.

A second important reason for limited national production has been the exceptionally low levels of world prices for oils and fats in the 1980's and the comparative advantage of importation over production for developing countries. The description of a case study using a system's approach to analysis the Vegetable Oil/Protein System of Kenya has stirred much interest during the Cairo meetings and it is hoped that similar work can be carried out in other countries in the future.

The Cairo meetings will also unfortunately be remembered as the one which has witnessed the diagnosis of the fatal disease of late Dr. Hiruy Belayneh, Chairman of the Brassica Subnetwork. We will all regret his absence.

On behalf of IDRC and of all participants, I would like to thank the Government of Egypt for its hospitality, the organizers for the excellent arrangements and all those who contributed to the success of these meetings by their presentations and discussions.

Eglal Nached,
Senior Program Officer,
IDRC, Cairo
CONTENTS

Forward... iii
List of Participants... vi
Introduction... ix

Part 1. SESAME SUBNETWORK - II

Sesame Genetic Resources: Collection, Evaluation and
conservation.
AMRAM ASHRI... 2
Sesame Research in the Sudan.
MOHAMED EL-HASSAN AHMED................................. 10
Progress in Sesame Research in Ethiopia.
HIRUY BELAYNEH, BULCHA WEYESSA AND ELIAS URAGE.. 13
A Brief Outline of Sesame (Sesamum Indicum L.) Research in
Tanzania.
J.Y CHAMBI AND E.M. KAFIRITI................................... 17
Scope of Sesame (Sesamum Indicum L.) in Pakistan.
MUHAMMAD ASLAM, MASOOD A. RANA AND M. SIDDIQUE MIRZA. 21
Status of Sesame as Oilseed in Bangladesh.
M.A. KHALEQUE AND HASINA BEGUM.......................... 24
Problems and Progress of Sesame Production In India.
S. THANGAVELU, G. KANDASAMY, M. SIVANADAM AND R.K.
MURALI BASKARAN... 27
Pests of Sesame and their Control.
S. THANGAVELU... 31
Review and Prospects on Sesame Production in China.
TU LICHUAN... 41
Sesame Irrigation in Egypt.
AHMED MOHAMED EL-WAKIL................................... 44
Agronomic Studies on Growth, Yield and Yield Components of
Sesame.
SAMIH TAHA AND MOHAMED EL-SROGY...................... 48
Sesame Research and Progress in Egypt.
NESSIM R. GUIRGUIS.. 52
Root-Rot and Wilt Diseases of Sesame in Egypt.
A.A EL-DEEB.. 55
Highlights on Improving Production of Sesame in Egypt.
A.F. IBRAHIM... 59
Evaluation of Some Cultivars and Promising Strains of
Sesame (Sesamum indicum L.).
A.A. EL-SHIMY AND M.Z. EL-HIFNY......................... 61

Part 2. SUNFLOWER SUBNETWORK - II

Use of Wild Species in Sunflower Breeding.
DRAGON SKORIC.. 70
Sunflower Breeding: General Objectives and Recent Advances.
JOSE FERNANDEZ MARTINEZ... 95
Progress in Sunflower Research in Ethiopia.
HIRUY BELAYNEH.. 102
Sunflower Adaptation in Morocco.
S. QUATTAR, T.E. AMEZIANE AND A. BAIDADA............... 106
Effect of Maturity Stages and Desiccant Application on Yield, Oil Content and Oil Quality of Sunflower.
MASOOD A. RANA, CHAUDHRY A. OZAIR, M. AYUB KHAN AND SHAFIULLAH .. 114

Trends and Strategy of Sunflower Production in Pakistan.
MASOOD A. RANA .. 125

Sunflower Production in India - Problems and Prospects.
M. RAI AND P.S. BHATRANGAR ... 128

MANGALA RAI .. 135

Status of Sunflower as Oilseed in Bangladesh.
M. A. KHALEQUE, AND S.H. MIRZA 142

Some Aspects Towards Overcoming Vegetable Oils insufficiency in Egypt: Production of Sunflower and its Improvement in Suez Canal Region.
ABDEL-FATTAH MOHMED ABDEL-WAHAB .. 144

SALWA I. EL-MOHANDES .. 155

Sunflower Research and Production in Egypt.
BADR A. EL-AHMAR .. 158

Performance of a New Synthetic Sunflower Stock Developed From Local and Introduced Germplasm and Further Improvement Via Population Improvement Method.
R. SHABANA .. 163

Response of Sunflower and Associated Weeds to Some single and Tank Mixed Herbicides.
A.F. IBRAHIM, Z.R. YAHIA, H.R. EL-WEKIL AND E.D. ABUSTEIT ... 167

Report on Sunflower Production In Dakahlia Governorate, Egypt.
S.E. EL-KALLA ... 168

Studies of Diallel Cross in Sunflower (Helianthus annuus L).
KHALED HAMMAD .. 171

Effect of Some Intercropping Patterns of Sunflower/Soybean on Yield, Yield Components and Land Usage in Egypt.
M.A. MADKOUR ... 175

Sunflower Diseases in Egypt.
ARAFA A. HILAL ... 180

Part 3. GENERAL

The Vegetable Oil/Protein System Program: The Kenyan Experience.
CARLOS ZULBERTI .. 184

Microbial Control of Lepidopterous Pests of Oilseed Crops.
H.S. SALAMA .. 203

Sunflower and Sesame Research in the Philippines.
NENITA M. TEPORA .. 206

Part 4. DISCUSSIONS AND RECOMMENDATIONS

Discussions and Recommendations 213
I. Sesame .. 213
II. Sunflower .. 218
III. General .. 223
There are 14 known diseases of sunflower (*Helianthus annuus, L*) but only 6 are commonly observed, Table 1. We have contended with most of the diseases recorded in the sunflower growing countries. The first known disease was rust (*Puccinia helianthi Schwu.*), which was recorded in 1931. Root-rot incited by *Sclerotium bataticola,* and *Rhizoctonia solani* was reported on sunflower in 1957. Other diseases were, however, observed between 1970 and 1988.

Diseases known to be present in one area may not be found in others. Some destructive diseases in one area may be of little significance in another because of differences in environment or cultivars. Disease occurrence, prevalence, and severity may differ from year to year.

Some of the sunflower diseases; (charcoal rot, leaf spot, root-rot and rust) have been intensively studied in Egypt. Whereas, little work has been done on the other diseases. Therefore, it is important to determine the nature of these diseases, and such factors as soil and climatic conditions. Means for their control should also be established.

Table 1. List of sunflower diseases in Egypt.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Charcoal rot</td>
<td>Machrophomina phaseolina</td>
<td>Major disease</td>
</tr>
<tr>
<td>2. Rust</td>
<td>Puccinia helianthi</td>
<td></td>
</tr>
<tr>
<td>3. Leaf spots (complex)</td>
<td>Alternaria alternata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curvularia lunata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drechslera rostrata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. spicifera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulocladium botrytis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. septosporum</td>
<td></td>
</tr>
<tr>
<td>4. Wilt</td>
<td>Fusarium oxysporum</td>
<td>Uncommon</td>
</tr>
<tr>
<td>5. Southern blight</td>
<td>Sclerotium rolfsii</td>
<td>Minor disease</td>
</tr>
<tr>
<td>6. Stalk and head rot</td>
<td>Sclerotinia sclerotiorum</td>
<td></td>
</tr>
<tr>
<td>7. Powdery mildew</td>
<td>Erysiphe cichoracearum</td>
<td></td>
</tr>
<tr>
<td>8. Head rot</td>
<td>Rhizopus arrhizus</td>
<td>Heavy damage on</td>
</tr>
<tr>
<td></td>
<td>Aspergillus spp.</td>
<td>short cultivars.</td>
</tr>
<tr>
<td>9. Root-rot (complex)</td>
<td>Rhizoctonia solani</td>
<td>Minor disease</td>
</tr>
<tr>
<td></td>
<td>Pythium spp.</td>
<td></td>
</tr>
<tr>
<td>10. Verticillium wilt</td>
<td>Verticillium dahliae</td>
<td></td>
</tr>
<tr>
<td>11. Gray rot</td>
<td>Botrytis cinerea</td>
<td>Scarce</td>
</tr>
<tr>
<td>12. Black stem</td>
<td>Phoma cucaraceae var.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helianthi-tuberosi</td>
<td></td>
</tr>
<tr>
<td>13. Root-knot</td>
<td>Meloidogyne spp.</td>
<td>Heavy losses in sandy soil</td>
</tr>
<tr>
<td>14. Bacterial disease</td>
<td>Pseudomonas solanacerum</td>
<td>Scarce</td>
</tr>
</tbody>
</table>
Charcoal rot as a major disease is found in most of the growing areas in Egypt, where damage ranges between 5 and 80%. Symptoms of the disease start to appear on 35-45 days old plants and are not usually apparent until after flowering. In infested fields, dark discoloration on the outer surface of the stem basal parts is predominant, and premature ripening and drying stalks which bear poor heads are evident. Varieties Giza-1 and Giza-2 were more tolerant to the disease than the other tested ones. The disease affects plant growth and reduces head diameter, total seed yield, 1000 seed weight, and oil content. Depending on environmental conditions and cultivars, the disease can cause 10-30% yield loss. Many trials were carried out on the control of charcoal rot by applying fungicides as seed dressing. Benomyl, Thiophanate-methyl, Vitavax/Thiram and Homai at the rate of 3-5 g/kg seed gave efficient control of the disease.

Rust is one of the major diseases of sunflower in Egypt. It was frequently observed in different governorates in the Delta, Middle Egypt and as far south as Sohag. Moreover, it is prevalent in north western areas and newly reclaimed lands where the spray irrigation is widely applied. From the previously reported four Races, only Race-1 was identified in Egypt. Plantvax, Calixin and Daconil-2787 gave sufficient control to sunflower rust when applied three times at the rate of 0.25%.

Leaf spot diseases were frequently caused by Alternaria alternata, Drechslera spicifera and D. rostrata and to a lesser extent by Ulocladium spp. and Curvularia lunata. Head rot caused by Rhizopus arrhizus always followed by head wounds was severe under moist conditions on short-stem varieties.

Root rot diseases were caused by Rhizoctonia solani, Pythium spp. and Fusarium spp. Powdery mildew caused by Erysiphe cichoracearum occurred on late maturing sunflower. Several cases of Southern blight disease attributed to Sclerotium rolfusi were observed in many fields, mainly in Upper Egypt. Heavy infestation of root-knot nematodes (Meloidogyne spp.) was reported on sunflower grown in sandy soil.

Selected References on Sunflower Diseases in Egypt
