The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Government of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.
Food Legume Improvement and Development

Proceedings of a workshop held at the University of Aleppo, Aleppo, Syria, 2–7 May 1978

Editors: Geoffrey C. Hawtin and George J. Chancellor

Published by the International Center for Agricultural Research in the Dry Areas and the International Development Research Centre

The views expressed in this publication are those of the individual author(s) and do not necessarily represent the views of ICARDA or IDRC.
Contents

Preface ... 4
Foreword ... 5

Section I An Introduction to Food Legumes in the Region
Some aspects of the agroclimatology of West Asia and North Africa
Hazel C. Harris ... 7
Food legume production: the contribution of West Asia and North Africa
to the world situation F. M. Hamawi 15
Food legumes in the farming system: a case study from Northern Syria
David Gibbon and Adrienne Martin 23
Nutritional quality and importance of food legumes in the Middle Eastern diet
Raja Tannous, Salah Abu-Shakra, and Abdul Hamid Hallab 29

Section II The Present Production and Improvement Situation
Food legumes in Algeria Walid Khayrallah and Lounes Hachemi 33
Production and improvement of grain legumes in Egypt Ali A. Ibrahim,
Abdullah M. Nassib, and Mohamed El-Sherbeeny 39
Food legume production in the Hashemite Kingdom of Jordan
M. Abi Antoun and A. Quol ... 47
Food legume production and improvement in Iran M. C. Amirshahi 51
Food legumes in Iraq Mahmoud A. Mayouf 55
Food legume research and development in the Sudan
Farouk A. Salih .. 58
Food legume improvement in Tunisia M. Bouslama and M. Djerbi 65
Food legume production and improvement in Lebanon
R. Lahoud, M. Mustafa, and M. Shehadeh 69
Grain legume production in Turkey D. Eser 71
Food legume research and production in Cyprus J. Photiades
and G. Alexandrou .. 75
Broad beans (Vicia faba) and dry peas (Pisum sativum) in Ethiopia
Asfaw Telaye .. 80
Food legumes in Syria Sadik El-Matt .. 85
Food legume improvement in the People’s Democratic Republic of Yemen
Shafiq Mohsin Atta ... 88
Food legume production in Libya Ali Salim 90
Status of food legume production in Afghanistan N. Wassimi 91
Food legumes in India A. S. Tiwari 94

Section III Disease Problems on Legume Crops
Diseases of major food legume crops in Syria S. B. Hanounik 98
Food legume diseases in North Africa M. Djerbi, A. Mlaiki, and M. Bouslama
Food legume diseases in Ethiopia Alemu Mengistu 106
Diseases of broad beans (Vicia faba) in the Sudan Mustafa M. Hussein
and Sami O. Freigoun .. 109

Section IV Major Pests and Weeds of Food Legumes
Insect pests of food legumes in the Middle East Nasri S. Kawar 112
Insect pests of chick-pea and lentils in the countries of the Eastern
Mediterranean: a review G. Hariri 120
Some insect pests of leguminous crops in Syria Ara A. Kemkemian 124
The biology and control of Orobanche: a review A. R. Saghiri
and F. Dastghieh ... 126
Broomrape (Orobanche crenata) resistance in broad beans: breeding work in
Egypt Abdullah M. Nassib, Ali A. Ibrahim, and Hamdy A. Saber 133
Accentuation of weed control problems in the dry areas with relevance to
herbicides in food legumes F. Basler 136
Section V Food Legume Development
Genetic resources of grain legumes in the Middle East
L.J.G. Van der Maesen .. 140
Strategies for the genetic improvement of lentils, broad beans, and chick-peas,
with special emphasis on research at ICARDA Geoffrey C. Hawtin 147
Some agronomic and physiological aspects of the important food legume crops in
West Asia M.C. Saxena .. 155
The role of symbiotic nitrogen fixation in food legume production
Rafiqul Islam ... 166
The ICRISAT chick-pea program with special reference to the Middle East
K.B. Singh ... 170
Methods of population improvement in broad bean breeding in Egypt
Pollinating insects: a review Ara A. Kemkemian 179

Section VI Cooperative Approaches to Food Legume Improvement at the
National Level
The training and communications program at ICARDA S. Barghouti 181
FAO food legume programs in the Middle East and North Africa
Hazim A. Al-Jibouri and A. Bozzini 185
The food legume improvement and development program of the field crops
section at ACSAD L.R. Morsi .. 190
The role of IDRC in food legume improvement research F. Kishk 192

Section VII Recommendations for Future Research Priorities 194
Bibliography .. 199
Participants ... 214
Food Legume Production in the Hashemite Kingdom of Jordan

M. Abi Antoun
Faculty of Agriculture, University of Jordan, Amman, Jordan

and A. Quol
Ministry of Agriculture, P.O. Box 2177, Amman, Jordan

Jordan has a classically Mediterranean climate, characterized by warm dry summers and mild winters, during which all the annual rainfall is received. Agroecologically, the country can be divided into three major zones: the Highlands with an annual rainfall of between 300 and 700 mm; the Jordan Valley, which receives about 250–350 mm of rainfall per year; and the Eastern Desert, where the rainfall seldom exceeds 100 mm.

Agriculture is the basic industry of Jordan, constituting about 30% of the gross national product. Of the total land area of the country, 13.3% is arable and, of this, 89% is devoted to the cultivation of winter cereals, mainly wheat and barley. Grain legumes occupy the bulk of the remaining 11%, or 28 000 ha of land concentrated in the northern and central highlands, where annual precipitation ranges between 300 and 450 mm (Fig. 1).

Lentils, chick-peas, and broad beans (fresh and dry) are the major food legumes grown, and the area, production, and yield of these crops for the 5-year period 1973-77 are given in Table 1. Although yield and production are erratic and generally low, there is considerable variation between the major production regions, the northern district of Irbid being the most important production area and together with the Amman district producing the highest yields. The extreme fluctuations in both crop area and yield can be attributed almost entirely to the erratic rainfall and traditional production methods used in the country.

Utilization and Marketing

Despite exports of lentils amounting to 10 000 tonnes in some years, Jordan may be considered a net importer of legume grains. With current market prices of $600/tonne for lentils and $700/tonne for broad beans, there is an increasing interest in expanding pulse production in the country, both for import substitution in the case of broad beans and as a means of increasing export earnings from lentil production. Classically, legume grains are considered to be a good substitute for animal protein in the diets of the poorer sections of the population; however, improved production and transport facilities have made red and white meats available to a large part of the populus, and legumes are now increasingly used as supplementary protein sources, both as dry seed in the case of lentils and chick-peas, and as dry and green seed in the case of broad beans. A canning industry is now evolving in support of chick-pea and broad bean production and distribution.

Production Practices

Food legume production in Jordan is carried out on very traditional lines. The pulses are part of an established 3-year rotation with cereals, and seedbed preparation is minimal.
Lentils are broadcast by hand at a rate of about 100–120 kg/ha in the period mid-December to mid-January and covered by a shallow plough. Chick-peas and broad beans are also hand-seeded, but into a furrow opened with a local plough, the seed rates being 80–100 kg/ha and 60–80 kg/ha respectively. Rhizobial inoculation is not practiced and no fertilizers are applied to the crops. Harvesting in May/June is predominantly by hand, and the crop is left out in the field to dry before being threshed from the haulm by animal-drawn threshing boards or local threshers.

The problems of food legume production, which cause severe limitations on the more widespread cultivation and increased production of these crops, stem from the fact that all
<table>
<thead>
<tr>
<th>Year</th>
<th>Lentils</th>
<th>Chick-peas</th>
<th>Broad beans<sup>a</sup></th>
<th>Year</th>
<th>Lentils</th>
<th>Chick-peas</th>
<th>Broad beans<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area</td>
<td>Prod.</td>
<td>Yield</td>
<td></td>
<td>Area</td>
<td>Prod.</td>
<td>Yield</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
<td>D</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>18250</td>
<td>4490</td>
<td>246</td>
<td>1973</td>
<td>679</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>21802</td>
<td>21596</td>
<td>991</td>
<td>1974</td>
<td>1135</td>
<td>848</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>22229</td>
<td>10476</td>
<td>471</td>
<td>1975</td>
<td>812</td>
<td>1337</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>25016</td>
<td>10873</td>
<td>435</td>
<td>1976</td>
<td>793</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>16179</td>
<td>7377</td>
<td>456</td>
<td>1977</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

^a D = dry seed; F = fresh beans.

^b Figures for 1977 broad bean area, production, and yield were not available at time of writing.
the production processes are carried out in the traditional ways. Improved technologies related to high-yielding and stable cultivars, cultural practices, and mechanization have not been applied to the pulse crops as yet. With the cost of labour rapidly becoming an inhibiting factor to legume production, the evolution of such technologies and their application to the real situation is now becoming a matter of urgency if the present level of production is to be maintained or increased in the future.

Research Activities

Research on food legumes is carried out mainly by the Ministry of Agriculture, at their experimental stations, and the University of Jordan's Faculty of Agriculture. A recent survey and collection of local germ plasm together with material provided by ICARDA has enabled a selection program aimed at identifying genotypes with improved yielding abilities under the local environment conditions to be initiated. Alongside this, investigations into crop agronomy, cultural practices, and improved production techniques (viz. mechanization) are also currently under way. Priorities should be given to the expansion of research activities and the establishment of a firm base to seed multiplication and distribution in the country so that the popularity of grain legumes can be increased to take advantage of the favourable market conditions that exist for pulse products at the present time.