Report of a symposium held at the Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania, 10-12 May 1976

Editors: J. H. Monyo, A. D. R. Ker, and Marilyn Campbell

IDRC-076e
Monyo, J. H.
Ker, A. D. R.
Campbell, M.
IDRC

/IDRC pub CRDI/. Report of a symposium on /intercropping/ in semi/arid zone/s in the /tropical zone/, with an examination of /agricultural research/ activities — examines the effects of intercropping on /crop/ /plant production/; includes /research result/s, /list of participants/, /bibliography/c notes.

Microfiche Edition $1
Intercropping in Semi-Arid Areas

Report of a symposium held at the Faculty of Agriculture, Forestry and Veterinary Science, University of Dar es Salaam, Morogoro, Tanzania, 10–12 May 1976

Editors: J. H. Monyo, A. D. R. Ker, and Marilyn Campbell

The views expressed in this publication are those of the individual author(s) and do not necessarily represent the views of IDRC.
Farmer’s field near Ibadan, Nigeria, showing intercrop of cowpea under maize.
Contents

Foreword A. D. R. Ker ... 5

Addresses to the Participants

Welcoming address A. M. Hokororo .. 8
Opening address Hon Mr J. S. Maleela 9

Summaries of Papers Presented

An appraisal of some intercropping methods in terms of grain yield, response to applied phosphorus, and monetary return from maize and cowpeas Y. A. Sudi, H. O. Mongi, A. P. Uriyo, and B. R. Singh .. 12

Rhizosphere populations in intercropped maize and soybean T. H. M. Kibani, C. L. Keswani, and M. S. Chowdhury .. 13

Intercropping for increased and more stable agricultural production in the semi-arid tropics B. A. Krantz, S. M. Virmani, Sardar Singh, and M. R. Rao .. 15

Cropping systems research: the scope and strategy for research in crop combinations based on experience of previous and current studies B. N. Okigbo .. 16

Mixed cropping research at the Institute for Agricultural Research, Samaru, Nigeria E. F. I. Baker and Y. Yusuf .. 17

Crop production practices in intercropping systems R. C. Finlay .. 18

Effects of crop combinations and planting configurations on the growth and yield of soybeans, millet, and sorghum in intercropping R. K. Jana and V. M. Sekao .. 19

Intercropping with sorghum at Alemaya, Ethiopia Brhane Gebrekidan .. 21

Studies on mixtures of maize and beans with particular emphasis on the time of planting beans D. S. O. Osiru and R. W. Willey .. 23

Intercropping of cassava with vegetables G. F. Wilson and M. O. Adeniran .. 24

Some aspects of the productivity and resource use of mixtures of sunflower and fodder radish R. W. Willey and D. A. Lakhani .. 25

Preliminary results of intercropping trials in Zaire with maize and certain legumes Thomas G. Hart and Mangha Kewe .. 27

(con’t.)
Contents (concluded)

Effects of maize height difference on the growth and yield of intercropped soybeans
D. R. Thompson, J. H. Monyo, and R. C. Finlay ... 29

Intercropping as a means of producing off-season tomatoes during the hot summer months in the Sudan
A. T. Abdel Hafeez ... 30

Development of cowpea ideotypes for farming systems in Western Nigeria
Olatunde A. Ojomo ... 30

Cereal–legume breeding for intercropping
R. C. Finlay ... 31

Cowpea as an intercrop under cereals
H. C. Wien and D. Nangju ... 32

Selection criteria in intercrop breeding
R. C. Finlay ... 33

Experiments with maize–bean and maize–potato mixed crops in an area with two short rainy seasons in the highlands of Kenya
N. M. Fisher ... 37

Pest control in mixed cropping systems
H. Y. Kayumbo ... 39

Measuring plant density effects on insect pests in intercropped maize–cowpeas
B. M. Gerard ... 41

Effects of spraying on yield of cowpeas grown in monoculture and under maize, sorghum, or millet
H. Y. Kayumbo, R. C. Finlay, and S. A. Doto ... 44

Possible relationship between intercropping and plant disease problems in Uganda
J. Mukibi ... 45

Attempted control of virus incidence in cowpeas by the use of barrier crops
S. A. Shoyinka ... 46

Induced resistance to bean rust and its possible epidemiological significance in mixed cropping
D. J. Allen ... 46

A limited objective approach to the design of agronomic experiments with mixed crops
N. M. Fisher ... 47

Systematic spacing designs as an aid to the study of intercropping
P. A. Huxley and Z. Maingu ... 50

Future directions of intercropping and farming systems research in Africa
A. D. R. Ker ... 51

Developing mixed cropping systems relevant to the farmers' environment
D. W. Norman ... 52

Assessment of innovations in intercropping systems
C. D. S. Bartlett, E. A. Manday, and G. I. Mlay ... 58

Summary and Conclusions
D. W. Norman ... 59

H. Doggett ... 62

References ... 63

List of Participants ... 67
Intercropping of Cassava with Vegetables

G. F. Wilson and M. O. Adeniran

Farming Systems Program, International Institute of Tropical Agriculture, Ibadan, Nigeria

Various investigators have shown that the mixtures for traditional cropping systems have higher total productivity than pure stands of any of the individual crops in the mixtures (20, 21, 22, 25). Incompatibility between mixed cropping and some modern agricultural techniques is the reason most often given for not fostering mixtures. Wilson (26), however, contends that many traditional mixed cropping systems could be modified to accommodate some of these techniques. Thus there is no need to base the development of new cropping systems in the tropics solely on pure stands.

In various parts of West Africa where cassava is an important staple, it is a major component of the mixed cropping systems. Vegetables are usually minor crops in such systems, but increases in the vegetable component can significantly improve the nutrition of the people of the area (27). There is, therefore, a need to increase the vegetable component of these systems.

The results of one of a series of experiments on vegetables in a cassava-based cropping system for the humid tropics were as follows.

With the aid of irrigation one crop of cassava was intercropped with three crops of vegetables in the sequence tomato–okra–French bean, and the highest yields were produced when the cassava rows were 2 metres apart. Cassava had no apparent effect on the performance of the tomato, but suppressed the yields of okra and French bean, the second and third crops respectively. The land equivalent ratios showed that the cassava–vegetable intercropping was more efficient than pure cropping of cassava alone or any of the vegetables.

The poor performances of okra and French beans may be due to the zero tillage method used, as these crops have been found to perform better on tilled than on nontilled land.

In regions where cassava is the staple, the diet is sometimes low in essential vitamins, minerals, and protein. Increasing the vegetables in the diet would overcome the vitamin and mineral deficiency and supply a reasonable amount of protein (27). To increase the available vegetables the production must be increased. This could be achieved through an intercropping system in which production of the major staple is maintained.