Pathogenicity of Trypanosomes

Proceedings of a workshop held at Nairobi, Kenya, 20-23 November 1978

editors: George Losos and Amy Chouinard
Pathogenicity of Trypanosomes

Proceedings of a workshop held at Nairobi, Kenya, 20–23 November 1978

Editors: George Losos¹ and Amy Chouinard²

Sponsored by
Veterinary Research Department,
Kenya Agricultural Research Institute,
Muguga, Kenya

in collaboration with
International Development Research Centre,
Ottawa, Canada,
International Laboratory for Research on Animal Diseases,
Nairobi, Kenya, and
Canadian International Development Agency,
Ottawa, Canada

¹IDRC project coordinator, Veterinary Research Department, Muguga, Kenya.
²Editor, Communications Division, IDRC, Ottawa, Canada.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre’s activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Government of Canada; its policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

©1979 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

Losos, G.
Chouinard, A.
Kenya Agricultural Research Institute, Veterinary Research Dept., Muguga KE
IDRC, Ottawa CA
International Laboratory for Research on Animal Diseases, Nairobi KE
CIDA, Ottawa CA

/IDRC publication/. Compilation of workshop papers on /trypanosomiasis/ particularly in /Africa south of Sahara/ - discusses the /metabolism/ of the trypanosome /parasite/s, mechanisms of /disease transmission/, effects on /blood/ and /serum/ /protein/ levels in /cattle/, /immunology/cal aspects, /disease resistance/.

Microfiche edition available
Contents

Participants ... 5

Foreword B.L. Nestel .. 11

Introduction
Welcoming address W. Masiga ... 13
Opening address J. Muliro .. 14
Vote of thanks B.L. Nestel .. 15
Theme and objectives of the conference L. Goodwin 16

The Organism
The metabolism of African trypanosomes in relation to
pathogenic mechanisms B.A. Newton 17
Biology and ultrastructure of trypanosomes in
relation to pathogenesis K. Vickerman and L. Tetley 23
Biochemistry of variant antigens G.A.M. Cross 32
Cross-reacting determinants in trypanosome surface antigens
A.F. Barbet, T.C. McGuire, A.J. Musoke, and H. Hirumi 38
Mechanisms of antigenic variation in salivarian trypanosomes
J.J. Doyle, H. Hirumi, and A.L.W. de Gee 44
Genetic basis of antigenic variation R.O. Williams 46
Cyclical transmission and antigenic variation L. Jenni 49
Antigenic heterogeneity of bloodstream and
metacyclic forms of T. brucei J.D. Barry and S.L. Hajduk 51
Discussion summary B.A. Newton and K. Vickerman 57

Infections
Infections caused by pathogenic African trypanosomes G.J. Losos 59
Rodent trypanosomiases P. A. D'Alesandro 63
Parasitemia and host susceptibility to African
trypanosomiases M. Murray and W.I. Morrison 71
Immunity in the bovine to T. congolense induced by self-cure or
chemotherapy B.T. Welde, W.T. Hockmeyer, R.M. Kovatch,
and M.S. Bhogal ... 82
Trypanosomiases of game animals R. Olubayo 87
Discussion summary F.E.G. Cox and G.A.M. Cross 89

Mechanisms of Cellular Injury: Blood and Circulatory System
Is the anemia in bovine trypanosomiases caused by immunologic
mechanisms? H. Tabel, F.R. Rurangirwa, and G.J. Losos 91
Complement in experimental trypanosomiases
K.H. Nielsen, I.R. Tizard, and J. Sheppard 94
Biologically active lipids generated by autolysis of *T. congolense*
Pharmacologically active substances in *T. vivax* infections
D. Zwart and G.H. Veenendaal
Pharmacologically active substances in *T. brucei* infections
P.F.L. Boreham
Discussion summary
P.F.L. Boreham and F.E.G. Cox

Blood and Hematopoietic Tissue Responses
Anemia of bovine African trypanosomiasis: an overview
M. Murray
Erythropoietic response in bovine trypanosomiasis
J.D. Dargie
Pancytopenia in bovine trypanosomiasis
M.G. Maxie and V.E.O. Valli
Effect of bovine trypanosomiasis on hematopoiesis
G.P. Kaaya, G.J. Losos, M.G. Maxie, and V.E.O. Valli
Effects of *T. congolense* and *T. brucei* on the circulatory volumes of cattle
J.D. Dargie
Hemodilution in bovine trypanosomiasis
M.G. Maxie and V.E.O. Valli
Discussion summary
J.D. Dargie and P.A. D'Alesandro

Lymphoid Tissue Responses
Serum protein changes in bovine trypanosomiasis: a review
H. Tabel
Lymphoid changes in African trypanosomiasis
W.I. Morrison and M. Murray
Changes in the immune system during experimental African trypanosomiasis
T.W. Pearson, G. Roelants, and W.I. Morrison
Immunosuppression of humoral immune response in bovine trypanosomiasis
F.R. Rurangirwa, H. Tabel, and G.J. Losos
Discussion summary
L. Karstad and V.E.O. Valli

Tissue Lesions
Pathogenesis of tissue lesions in *T. brucei* infections
W.I. Morrison, M. Murray, and P.D. Sayer
Organ and tissue weights in diseases caused by *T. vivax* and *T. congolense*
G.J. Losos and P.M. Mwambu
Pathology of *T. congolense* in calves
V.E.O. Valli, C.M. Forsberg, and J.N. Mills
Ultrastructural changes in blood vessels of tissues of cattle experimentally infected with *Trypanosoma congolense* and *T. vivax*: a preliminary report
P.M. Mwambu and G.J. Losos
Discussion summary
V. Houba and G.J. Losos

Conclusions
The trypanosome revisited: a summary of the conference
L. Goodwin

References

4
Mechanisms of antigenic variation in salivarian trypanosomes

J.J. Doyle, H. Hirumi, and A.L.W. de Gee

Abstract. Since the early 1900s there has been controversy on whether trypanosomes require stimulation from a host's antibodies to vary their surface antigens. Our studies in vitro and in vivo indicate that elimination of variant types is hastened by the host's antibodies but antigenic variation is not dependent upon them. We cultured and maintained in vitro a total of 14 clones of variable antigen type 052 of *T. brucei* and, using immunofluorescent techniques, detected antigenic variation in 9 of them. Variant type 221 appeared along with other types that were infective to mice but were not recognized by antisera against 052 and 221. Although 052 and 221 have equal growing times in vivo; in vitro 221 outgrows 052 sufficiently to be detected by present techniques. Despite different growing times in vitro, the direction of variation is the same in vivo as in vitro.

As early as 1909, some scientists postulated that during trypanosomiasis the host's antibodies against surface antigens induced the trypanosome to undergo antigenic variation (Ehrlich 1909; Ehrlich, Roehlant, and Gulblausen 1909); others (Levaditi and McIntosh 1909) believed that the antigenic variation was the result of mutational events independent of environment. The controversy is still largely unresolved, but Beale (1954) and Sommerville (1970) have clearly shown that, under in vitro culture conditions, environmental stimuli including antibodies induce change in the surface antigens of several free living protozoa.

Now that it is possible to clone and maintain animal-infective bloodstream trypanosomes in vitro (Hirumi, Doyle, and Hirumi 1977; Hirumi, Hirumi, and Doyle 1978), the processes underlying antigenic variation can be investigated under defined conditions. Previously, the parasite had to be maintained in normal or immunosuppressed laboratory animals. Recently, Cross (1975) isolated and characterized the variant-specific surface glycoproteins of bloodstream trypanosomes, permitting the production of highly specific antisera for use in the antigenic analysis of trypanosome populations. In the past, antisera were derived by infection of a suitable host. These advances together with immunofluorescence techniques that allow analysis of the antigenic type of individual living trypanosomes have enabled us to observe the process of antigenic variation in vitro in the absence of host antibodies (Doyle et al. submitted for publication).

We cultured and maintained in vitro a total of 14 clones of variable antigen type clone 052 of *T. brucei* stock S427 (Cross and Manning 1973; Cross 1975) for up to 60 days and detected antigenic variation in 9 of them. A new variant type (221) appeared in all clones. Also appearing were populations of trypanosomes that were infective for mice but not recognized by antiserum to 052 or 221 type trypanosomes. They probably are a mixture of variant populations to which we do not, as yet, have specific antisera. This phenomenon is similar to antigenic variation in vivo in that variable antigen type 221 consistently appears in the first relapse of mice infected with clones of variable antigen type 052. Again, variable antigen type 221 occurs together with trypanosomes against which we do not have antisera. Thus, antigenic variation can occur in vitro in the same direction as in vivo in the absence of antivariant antibodies.
In vivo, mice inoculated with a single trypanosome exhibit new variants in the first relapse, generally 10–12 days after infection, whereas, in vitro, new variants are first detected 18–46 days after initiation of the clones. In the normal host, antibodies eventually remove the original variant population, facilitating detection of new variants: in vitro, where there are no antibodies, the population doubling time (PDT) of trypanosomes is the key to detection. Both 052 and 221 variable antigen types have PDTs of approximately 6 h in vivo, whereas they are 14 h and 8 h respectively in vitro. The marked difference in the PDTs in vitro allows detection of 221 type trypanosomes, which inevitably overgrow the original 052 population to the point of detection. Present techniques are not sensitive enough to detect any new variant type that has a PDT similar to or longer than the original variant.

The difference in PDTs is most intriguing in that both populations originally derived from a single trypanosome and, thus, have the same genotype but different surface antigens.

Differential growth rates of variant populations of *T. brucei* in vivo have been recorded (McNeillage and Herbert 1968; Van Meirvenne et al. 1975), and my colleagues and I have observed the phenomenon in *T. vivax*-infected mice and goats (de Gee, Shah, and Doyle submitted for publication). We examined two variant populations of the same genotype that were poorly infective to mice (at most two parasitemic waves). We found that goats infected with either of the two populations suffered from a relapsing infection and that the trypanosomes appearing in the goats 10–12 days after infection could cause lethal relapsing infections in mice. Immune lysis analysis indicated that the original and the goat-derived populations were antigenically different.

The physiological differences of the variable antigens are poorly understood but may be of great importance in elucidating the genetic mechanisms underlying antigenic variation. It may be that *T. vivax* infections in mice are close to *T. brucei-rhodesiense* infections in which preliminary evidence suggests a correlation between a clone’s acquisition of a given variable antigen type and its ability to infect humans (Van Meirvenne, Magnus, and Janssens 1976).

Another area of parasite physiology and host-parasite relationships may prove to be relevant to our understanding of the phenomenon of antigenic variation: the ability of *T. brucei* to undergo a complex series of physiological changes during the course of a parasitemic wave. Whereas the changes apparently adapt the trypanosomes for onward transmission to the tsetse fly, they preclude further multiplication in the mammalian host (Vickerman 1971; Vickerman and Tetley p. 23). While the majority of parasites in a parasitemic wave are undergoing this physiological shift, the trypanosomes carrying new variable antigen types are able to continue multiplying in the mammalian hosts. How this phenomenon relates to the process of antigenic variation is at present under study.

Although the process of antigenic variation is complex, it does not require the action of host antibodies to induce it. Whether or not other physiological stimuli are involved is uncertain, but the occurrence of other complex physiological changes in bloodstream trypanosomes suggests that the switch to display a new variant surface antigen is only part of a far larger process.